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LOCALLY COMPACT GROUPS AND LOCALLY MINIMAL GROUP
TOPOLOGIES

DIKRAN DIKRANJAN, WEI HE, ZHIQIANG XIAO, AND WENFEI XI

Abstract. Minimal groups are the Hausdorff topological groups G satisfying the open
mapping theorem with respect to continuous isomorphisms, i.e., every continuous isomor-
phism G //H, with a Hausdorff topological group H, is a topological isomorphism. A
topological group (G, τ) is called locally minimal if there exists a neighbourhood V of the
identity such that for every Hausdorff group topology σ ≤ τ with V ∈ σ one has σ = τ .
Minimal groups, as well as locally compact groups, are locally minimal. According to a
well known theorem of Prodanov every subgroup of an infinite compact abelian group K
is minimal if and only if K is isomorphic to the group Zp of p-adic integers for some prime
p.

We find a remarkable connection of local minimality to Lie groups and p-adic numbers
by means of the following results extending Prodanov’s theorem: every subgroup of a
locally compact abelian group K is locally minimal if and only if K is either a Lie group
or K has an open subgroup isomorphic to Zp for some prime p. In the nonabelian case
we prove that all subgroups of a connected locally compact group are locally minimal if
and only if K is a Lie group, resolving in the positive Problem 7.49 from [?].

1. Introduction

Among the generalization of compactness for the realm of topological group (rather than
topological spaces), the following one seems to be the most prominent one:

Definition 1.1. A Hausdorff topological group (G, τ) is called minimal if for every Haus-
dorff group topology σ ≤ τ on G one has σ = τ .

The minimal groups were introduced simultaneously and independently in [?] and [?],
where the first examples of noncompact minimal groups can be found. Answering a ques-
tion of Choquet, Döıtchinov [?] showed that minimality (unlike compactness) is not pre-
served even under finite direct products. The surveys [?, ?, ?, ?] contain various information
on minimal groups. The recent progress in the field of minimal groups is outlined in [?],
for minimal topological rings see [?]–[?].

In many of the proofs of the above results, as well as in some proofs of the present paper,
the following useful criterion for minimality of dense subgroup is used, where a subgroup H
of a topological group G is said to be essential in G if H nontrivially meets each nontrivial
closed normal subgroup N of G.
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Fact 1.2. [Minimality Criterion] Let H be a dense subgroup of a topological group G. Then
H is minimal iff G is minimal and H is essential in G.

This criterion was given first by Stephenson [?] and by Prodanov [?] in the case of
compact G (i.e., a dense subgroup H of a compact group G is minimal if and only if H is
essential in G). The present general form was found later by Banaschewski [?].

Here we recall the celebrated theorem of Prodanov [?] characterizing the groups of p-adic
integers that largely triggered this paper:

Theorem 1.3. [?] An infinite compact abelian group K is isomorphic to Zp for some prime
p if and only if every subgroup H of K is minimal.

While this theorem connects minimal groups to p-adic numbers, the minimal topologies
on the torsion abelian groups led to a relevant connection to Lie groups in [?]. Nevertheless,
a simultaneous connection of minimality to both issues in a single result was never achieved
so far.

Various counterparts of Theorem ?? concerning minimality in the class of topological
rings were obtained in [?, ?, ?].

Regardless of its numerous nice features, the class of minimal groups has an important
shortcoming, namely it does not contain the class of locally compact groups that presents
the first basic generalization of compactness. Indeed, it was shown by Stephenson [?] that
a locally compact abelian group is minimal if and only if it is compact. The following
natural generalization of minimality was introduced by Morris and Pestov in [?] with the
aim to resolve this problem (local q-minimality was introduced later in [?]):

Definition 1.4. [?][?] A topological group (G, τ) is called locally minimal with respect to
a neighbourhood V of the identity of G if for every Hausdorff group topology σ ≤ τ with
V ∈ σ one has σ = τ . A locally minimal groups G is called locally q-minimal whenever
every Hausdorff quotient of G is still locally minimal.

It was shown in [?] that locally compact groups are locally minimal. Locally minimal
groups were studied in detail in [?, ?, ?, ?] (see also [?]). This suggests to find a “local”
version of Theorem ?? by replacing compact by “locally compact” and minimal by “locally
minimal”:

Problem 1.5. [?, Problem 7.47] Describe the locally compact groups G such that every
subgroup of G is locally minimal.

It turns out that at least in the case of Lie groups one can say even more. Let us recall
first that locally compact groups are locally q-minimal [?].

Lemma 1.6. Every subgroup of a Lie group is locally q-minimal.

We verify Lemma ?? in section 2. Using this fact we prove in section 2 our first main
result that beyond a complete solution of Problem ?? in the abelian case naturally involves
also Lie groups (as the above example suggests). A part of this result was anticipated
without proof in [?, Theorem 7.48].
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Theorem 1.7. For a locally compact abelian group K the following conditions are equiv-
alent:

(a) every subgroup H of K is locally q-minimal;
(b) every subgroup H of K is locally minimal;
(c) K is either a Lie group or K has an open subgroup isomorphic to Zp for some

prime p.

The implication (a)⇒ (b) is trivial, while the implication (c)⇒ (a) immediately follows
from Lemma ?? and Lemma ??. Therefore, the proof of Theorem ?? is substantially
reduced to the proof of the missing implication (b) ⇒ (c). The idea of the proof of this
implication is this: the property (b) is hereditary; namely if K satisfies (b), then all
subgroups of K still satisfy (b). Using this observation, we rule out many cases in the
argument by showing that certain concrete groups, as Zp × Zq, Zp × T, Zp × R, Z(p)N,
etc. have subgroups that fail to be locally minimal, so these groups cannot appear as
topological subgroups of a group K satisfying (b). From this we deduce, among others,
that the compact abelian groups satisfying (b) are finite-dimensional (see Lemma ??). This
allows us to conclude the proof of Theorem ?? in section 4.

Since the proof of Theorem ?? does not rely on Theorem ??, as a first application
we obtain a new self-contained proof of Theorem ??. Moreover, Theorem ?? unifies in
an obvious way Lie theory and p-adic numbers “under the same umbrella”, namely local
minimality.

Since the second case in item (c) of Theorem ?? cannot occur when the group is con-
nected, the theorem leaves open the following question, already raised in [?]:

Question 1.8. [?, Problem 7.49] If every subgroup of a connected locally compact group
G is locally minimal, is G necessarily a Lie group?

We offer an affirmative answer to this question in the following theorem providing, among
others, a characterization of the connected Lie groups in terms of local minimality:

Theorem 1.9. Every subgroup of a connected locally compact group K is locally minimal
if and only if K is a Lie group.

Another characterization of Lie groups (via their zero-dimensional subgroups) was re-
cently obtained in [?].

Now we can unify both theorems in a single statement containing the main result of the
paper. The missing implication (c)⇒ (a) in the nonabelian case follows from Example ??.

Theorem 1.10. For a locally compact group K that is either abelian or connected the
following conditions are equivalent:

(a) every subgroup H of K is locally q-minimal;
(b) every subgroup H of K is locally minimal;
(c) K is either a Lie group or K has an open subgroup isomorphic to Zp for some

prime p.
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Note that the second alternative in (c) (entailing total disconnectedness) is effectively
present only in the abelian case, since it is obviously ruled out for connected locally compact
groups K.

Finally, one may ask whether the hypothesis “either abelian or connected” in this corol-
lary can be completely removed, obtaining in this way a definite answer to the general
Problem ??. We conjecture that this is not possible even in the case of compact groups.
More specifically, we conjecture that there exists a compact nonabelian totally disconnected
group K satisfying (b), but failing to satisfy (c) (see Conjecture ??).

Notation and terminology. We denote by N and P the sets of positive natural numbers
and primes, respectively; by Z the integers, by Q the rationals, by R the reals, and by
T the unit circle group which is identified with R/Z. The cyclic group of order n > 1 is
denoted by Z(n). For a prime p the symbol Z(p∞) stands for the quasicyclic p-group (the
Prüfer group) and Zp stands for the p-adic integers.

The subgroup generated by a subset X of a group G is denoted by 〈X〉, and 〈x〉 is the
cyclic subgroup of G generated by an element x ∈ G. The abbreviation K ≤ G is used to
denote a subgroup K of G.

Abelian groups will be written additively. The torsion part t(G) of an Abelian group
G is the set {g ∈ G : ng = 0 for somen ∈ N}. Clearly, t(G) is a subgroup of G when G
is abelian. For a prime p, the p-primary component tp(G) of G is the subgroup of G that
consists of all x ∈ G satisfying pnx = 0 for some positive integer n (so, Z(p∞) = tp(T)).
The group G is said to be divisible if nG = G for every n ∈ N. We denote by r0(G) the
free-rank of a group G.

Throughout the paper all topological groups are assumed to be Hausdorff. For a topo-
logical group G we denote by c(G) the connected component of G. The group G is called
hereditarily disconnected when c(G) is trivial. The Pontryagin dual of a topological abelian

group G will be denoted by Ĝ.
All unexplained terms related to general topology can be found in [?]. For background

on Abelian groups, see [?].

2. Background on local minimality

In this section we prepare the necessary background for the proofs of Theorem ?? and
Theorem ??.

The group Z endowed with group topologies with a local base at 0 formed by open
subgroups will play a relevant role in our proofs. That is why we start with an example
that will be used in the proofs of section 3.

Example 2.1. For a natural number m > 1 the m-adic topology τm of Z has as basic
neighbourhoods of 0 the family of subgroups {mnZ : n ∈ N}. If m = pq, with distinct
primes p, q, then (Z, τm) is not locally minimal.

Indeed, let V = mn0Z = pn0qn0Z, n0 ∈ Z non-negative, be a basic neighborhood of 0.
Then the family V = {pnqn0Z : n ≥ n0} is a base of 0 for a Hausdorff group topology
σ. Moreover, V ∈ σ ≤ τm, as V ⊆ τm. On the other hand, pn0+1qn0+1Z ∈ τm and



LOCALLY COMPACT GROUPS AND LOCALLY MINIMAL GROUP TOPOLOGIES 5

pn0+1qn0+1Z /∈ σ, so σ 6= τm. Therefore the m-adic topology of Z is not locally minimal
with respect to V .

This example shows that the m-adic topology of Z is locally minimal only if m = p is a
prime. On the other hand, it is well known that the p-adic topologies on Z are precisely
all minimal topologies on Z. Hence, for the family of m-adic topologies of Z the local
minimality is equivalent to minimality.

Definition 2.2. [?] Let H be a subgroup of a topological group G. We say that H is
locally essential in G if there exists a neighborhood V of 0 in G such that H \ {0} meets
each nontrivial closed normal subgroup N of G which is contained in V .

When necessary, we shall say H is locally essential with respect to V to emphasize the
fact that V witnesses local essentiality. In such a case this holds true also for any smaller
neighborhood of zero.

Definition 2.3. A topological group G is said to have no small subgroups (or shortly, to be
an NSS group), if G has a neighborhood of the identity element that contains no nontrivial
subgroups.

Remark 2.4. Obviously, every subgroup of an NSS group is vacuously locally essential
with respect to any neighborhood of the neutral element satisfying the NSS property.

The following criterion for local minimality was established in [?]:

Fact 2.5. [Local Minimality Criterion] Let H be a dense subgroup of a topological group
G. Then H is locally minimal if and only if G is locally minimal and H is locally essential
in G.

The next remark will turn out to be crucial for Lemma ??.

Remark 2.6. It easily follows from Fact ?? and Remark ??, that every dense subgroup
of a locally minimal NSS group is again locally minimal.

Remark 2.7. We recall first that a topological group G is a Lie group if and only if G is
a locally compact NSS group.

(a) According to the structure theory of LCA group, every LCA group K has the form
K = Rn ×G0, where G0 contains an open compact subgroup C.

(b) One can deduce from the above given equivalent form of the definition of Lie group
and from item (a) that an abelian topological group is a Lie group precisely when
it is topologically isomorphic to Rn × Tm × D, where D is a discrete group and
m,n ∈ N.

Proof of Lemma ??. Let L be a Lie group and suppose that H is a subgroup of L. Then
H is locally compact as a closed subgroup of the locally compact Lie group L. Hence, H
is locally minimal. As a subgroup of the NSS group L, the group H is NSS as well. By
Remark ??, H is locally minimal.

In order to prove that H is also locally q-minimal we use the fact that H is a Lie group,
being a closed subgroup of the Lie group L. Let N be a closed normal subgroup of H, then
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N is a closed normal subgroup of H. The quotient homomorphism q : H //H/N is open
and N ∩H = N , as N is closed. This entails that N ∩H is dense in N . According to [?,
Lemma 4.3.2], this implies that also the restriction q �H : H //q(H) is open, when the group
q(H) caries the subgroup topology inherited by the quotient group H/N . The openness of
q �H implies that the quotient group H/N is isomorphic to the dense topological subgroup
q(H) of the quotient group H/N . By what we proved above, H/N is locally minimal as
H/N is a Lie group. 2

Lemma 2.8. If an open subgroup N of a Hausdorff topological group G is locally minimal,
then G itself is locally minimal.

Proof. Denote by τ the topology of G and assume that V witnesses the locally minimality
of (N, τ �N). Then V is a neighborhood of 0 in (G, τ), as N is a τ -open in G. Now we
will prove that V witnesses also the locally minimality of (G, τ). Pick a Hausdorff group
topology σ ≤ τ on G such that V is a σ-neighborhood of 0. Then σ �N is a Hausdorff group
topology on N with σ �N≤ τ �N and V ∈ σ �N . By the choice of V , we have σ �N= τ �N .
Pick an arbitrary neighborhood U of 0 in (G, τ), then U1 = U ∩N ∈ τ �N= σ �N . Hence,
there exists a σ-neighborhood U2 of 0 such that U1 = U2∩N . Since N is a σ-neighborhood
of 0, also U1, as well as U , is a σ-neighborhood of 0. Therefore (G, τ) = (G, σ). �

Lemma 2.9. If K is an abelian group with an open subgroup N ∼= Zp for some prime p,
then every subgroup of K is locally q-minimal.

Proof. Take an arbitrary subgroup H of K. By Prodanov’s theorem ??, the (open) sub-
group H ∩ N of H is is minimal, being also a subgroup of N . To prove that H is lo-
cally q-minimal take a closed subgroup L of H and consider the quotient homomorphism
q : H //H/L. Since q is an open map, q(H ∩N) is an open subgroup of H/L. According
to Lemma ??, in order to deduce that H/L is locally minimal, it suffices to check that the
open subgroup q(H∩N) of H/L is minimal. The verification of the minimality of q(H∩N)
will be done considering two cases.

If L∩N = {0}, then q sends H∩N isomorphically onto q(H∩N). As H∩N is minimal,
the restriction q �H∩N : H ∩N // q(H ∩N) is a topological isomorphism, so q(H ∩N) is
minimal as well.

In case L ∩ N 6= {0}, its closure N1 in N is a closed nonzero subgroup of N ∼= Zp, so
N1 = pnN for some nonnegative integer n. In particular, N/N1

∼= Z(pn) is finite. Then,
the image q(H ∩ N) is finite as well (being algebraically isomorphic to a subgroup of the
finite group N/N1). Therefore, q(H ∩N) is minimal (being actually compact). �

The following lemma will be frequently used to provide dense non-locally-minimal sub-
groups.

Lemma 2.10. Let K be a topological abelian group and let H be a dense subgroup of K. If
H ∩N = {0} for a closed subgroup N of K that is not NSS, then H is not locally minimal.

Proof. Assume for a contradiction that H is locally minimal. By Fact ??, there exists a
neighborhood V of 0 in K witnessing local essentiality of H. Pick a neighborhood U of 0 in
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K such that U+U ⊆ V , so U ⊆ V . As N is not NSS, the intersection W = N ∩U contains
a nontrivial subgroup N1 of N . Then N1 is a closed subgroup of K contained in V , so
N1 ∩H 6= {0}. Since N is closed, N1 ≤ N . This yields N ∩H 6= {0}, a contradiction. �

3. Compact abelian groups with a non-locally minimal subgroup

In this section we present a number of compact abelian groups which have a non-locally
minimal subgroup.

Lemma 3.1. If p is a prime number, then the group Z2
p has a dense subgroup that fails to

be locally minimal.

Proof. Let H = Z × Z. Obviously, H is a dense subgroup of K = Z2
p. Pick an element

κ ∈ Zp such that 〈κ〉 ∩ Z = {0}. Then the subgroup N = {(ξκ, ξ) : ξ ∈ Zp} of K is
closed and non-NSS, being obviously isomorphic to Zp via the isomorphism ξ 7→ (ξκ, ξ).
By the choice of κ, one has N ∩ H = {0}. Now Lemma ?? implies that H is not locally
minimal. �

Lemma 3.2. For any pair p, q of primes the group K = Zp×Zq has a dense subgroup that
fails to be locally minimal.

Proof. For equal primes p = q this is Lemma ??, so we can assume that p 6= q. Let us
check that the diagonal subgroup D = {(n, n) : n ∈ Z} of K is not locally minimal. To this
end it suffices to note that D is topologically isomorphic to Z equipped with the pq-adic
topology and apply Example ??.

An alternative way to see that D is not locally minimal is to notice that D∩(Zp×0) = {0}
and apply Lemma ??. �

Lemma 3.3. For every prime p the group K = Z(p)N has a dense subgroup that fails to
be locally minimal.

Proof. Let H = Z(p)(N) be the direct sum, considered as a subgroup of K. Consider any
partition

N =
∞⋃
i=1

Ni (1)

with infinite Ni. For each i ∈ N let Di be the diagonal subgroup of Gi = Z(p)Ni (i.e., the
subgroup consisting of elements of the form (c, c, . . . , c, . . .), c ∈ Z(p)). Then N =

∏
i∈NDi.

is a closed subgroup of K =
∏

i∈N Z(p)Ni that is not NSS and trivially meets H. By Lemma
??, H is not locally minimal. �

Lemma 3.4. For any infinite sequence p1 < p2 < . . . < pk < . . . of distinct primes the
group K =

∏
n Z(pn) has a dense subgroup that fails to be locally minimal.

Proof. Let ck be a generator of Z(pk) and x = (c1, c2, . . . , ck, . . .) ∈ K. Then the cyclic
subgroup H = 〈x〉 of K is dense. We check that H is not locally minimal. According to
Lemma ?? it suffices to note that H trivially meets the closed subgroup K1 :=

∏∞
n=1 Z(p2n)

of K (as K1 is not NSS). �
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Corollary 3.5. If all subgroups of a compact abelian totally disconnected group H are
locally minimal, then H is either finite or H is isomorphic to Zp × F with a finite group
F .

Proof. Let H =
∏

p∈PHp, where for each prime p the subgroup Hp is a pro-p-group. For

every p ∈ P, the subgroup Hp[p] = {x ∈ Hp : px = 0} of Hp is a compact abelian group of
exponent p, so isomorphic to Z(p)κ for some cardinal κ. By Lemma ??, κ must be finite.
So, each Hp, with p ∈ P, has finite p-rank. Since Hp is residually finite, Hp is reduced, so
rp(Hp) < ∞ yields that t(Hp) is finite for every prime p [?]. By Lemma ??, t(Hp) 6= 0
only for finitely many primes p. In case all subgroups Hp are torsion, this proves that H
is finite.

Assume that H is infinite, so Hp is non-torsion for some prime p, so Hp contains a copy
of Zp. This means that at most one of the subgroups Hp may be non-torsion, by Lemma
??. Fix this p and note that all other subgroups Hq are torsion, so finite by what we
observed above. So the group F0 :=

∏
q∈P\{p}Hq is finite. As t(Hp) is finite, there exists

n ∈ N, such that pnHp is torsion-free. By Lemma ??, Hp cannot contain copies of Z2
p, so

pnHp
∼= Zp, since an abelian torsion-free pro-p-group is isomorphic to a Cartesian power

Zκp , for some cardinal κ. Therefore Hp
∼= Zp × Fp, where Fp = t(Hp) is a finite p-group.

This proves our assertion H ∼= Zp × F with F = F0 × Fp. �

In the sequel dimK denotes the covering dimension of a locally compact group G (ac-
cording to a well known theorem of Pasynkov, all three principal dimension functions dim,
ind and Ind coincide on locally compact group). When K is compact abelian, then dimK

is equal to the free-rank r0(K̂) of K̂ [?]. Therefore, the dimension is monotone under
taking closed subgroups and quotients of compact abelian groups.

Lemma 3.6. For every prime p the group K = Zp × T has a dense subgroup that fails to
be locally minimal.

Proof. Pick a non-torsion element c ∈ T, so that c generates a dense cyclic subgroup C of T.
Let a = (1, c) ∈ K, where 1 ∈ Z, considered as a subgroup of Zp. Our aim will be to prove
that the subgroup H generated by a is not locally minimal. To this aim we show first that
H is dense in K. Let K1 denote the closure of H in K. Then the projection p2 : K // T
satisfies p2(K1) = T, as p2(K1) is a compact subgroup of T containing the dense subgroup C
of T. Since the continuous homomorphic image p2(K1) of K is connected, we deduce that
K1 cannot be hereditarily disconnected since hereditarily disconnected compact groups
are zero-dimensional [?] and zero-dimensionality of compact groups is preserved by taking
quotients. As the connected component c(K1) ≤ c(K) = {0} × T and as all proper
subgroups of T are zero-dimensional, we deduce that c(K1) = {0} × T. In particular,
K1 ≥ {0} × T. Therefore, K1 = A× T, with A = p1(K1), where p1 : K // Zp is the first
projection. As 1 = p1(a) ∈ A and A is a closed subgroup of Zp, we deduce that A = Zp,
so that K1 = K. This proves that H is dense in K.

At this point we note that the closed subgroupN = Zp×{0} ofK is not NSS andH∩N =
{0}. With Lemma ?? we conclude that H is not locally minimal, a contradiction. �
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Lemma 3.7. For any prime p the group K = Zp×R has a dense subgroup that fails to be
locally minimal.

Proof. Let D = 〈(1, 1)〉 be the diagonal subgroup of Z × Z considered as a subgroup of
K. Then D is a discrete, hence closed subgroup of K. The quotient K/D is compact.
Indeed, let q : K //K/D denote the quotient homomorphism and N := Zp × {0}. Then
M = q(N) ∼= Zp is a closed compact subgroup of K/D and

(K/D)/M ∼= K/(D +N) = K/(Zp × Z) ∼= T.
Since M and (K/D)/M are compact, we deduce that K/D is compact as well.

Our next aim is to see that K/D is divisible. To this end we have to show that q(K/D) =
K/D for every prime q. Indeed, for q 6= p this is obvious, as K itself is q-divisible for every
prime q 6= p. On the other hand, p(K/D) = (pK +D)/D = (pZp ×R +D)/D = K/D, as
(pZp × R) +D = K.

As K/D is divisible, it is a connected compact metrizable group, so it is monothetic
[?, ?]. Let C = 〈c〉 be a dense cyclic subgroup of K/D. There exists y = (y1, y2) ∈ K with
q(y) = c. Then the subgroup H = D + C is a dense subgroup of K.

Next we check that H ∩ N = {0}. According to Lemma ??, this will imply that H is
not locally minimal, as N is not NSS.

Take z = my+ d ∈ N ∩H, for some m ∈ Z and d ∈ D. If m = 0, then z = d ∈ N ∩D =
{0} and we are done in this case. Assume that m 6= 0 and let f : K/D //(K/D)/M ∼= T be
the natural projection. Then q(z) = q(my) = mc, so f(mc) = mf(c) = 0 in (K/D)/M ∼=
T. Therefore, f(C) is a finite (cyclic) subgroup of the infinite group (K/D)/M . On the
other hand, f(C) must be a dense subgroup of (K/D)/M , as C is a dense subgroup of
K/D, a contradiction. �

Corollary 3.8. If L is a non-discrete abelian Lie group, then for any prime p the group
K = Zp × L has a subgroup that fails to be locally minimal.

Proof. If L is compact, then L contains a circle T, so that Lemma ?? applies. If L is
noncompact, then L contains a line R, so Lemma ?? applies. �

Lemma 3.9. If every subgroup of a compact abelian group K is locally minimal, then
dimK <∞.

Proof. Let κ := dimK. To show that κ is finite we need the following

Fact 3.10. [?, 8.15] If a compact abelian group K has dimK = κ, then there exists a
surjective continuous homomorphism f : K // Tκ, such that N := ker f is a totally
disconnected compact group.

Coming back to the proof of Lemma ??, assume for a contradiction, then κ is infinite.
Then Tκ contains a copy of the power TN. Since Z2

p, as a metric compact group is isomorphic

to a subgroup of TN, we deduce that Tκ contains a subgroup L isomorphic to the group Z2
p.

Let G := f−1(L). Then the compact group G has a quotient isomorphic to L ∼= Z2
p. Since

the continuous surjective homomorphism f �L: G //L induces an injective homomorphism

X = L̂ // Y = Ĝ between the Pontryagin duals and since X ∼= Z(p∞) is divisible, we



10 DIKRAN DIKRANJAN, WEI HE, ZHIQIANG XIAO, AND WENFEI XI

deduce that X splits as a subgroup of Y , hence G ∼= Z2
p ×G1 splits as well. Consequently,

our assumption that κ is infinite leads to the conclusion that K contains a subgroup
isomorphic to Z2

p. This contradicts Lemma ??. �

As the referee kindly pointed out, the argument of the above proof showing that an
infinite-dimensional compact abelian group contains an isomorphic copy of Z2

p gives the
following more general fact:

Let Z∗ denote the universal zero-dimensional compactification of Z (which is isomor-
phic to

∏
p∈P Zp). Then every infinite dimensional compact abelian group K contains an

isomorphic copy of (Z∗)dimK .

Proposition 3.11. If every subgroup of a compact abelian group K is locally minimal,
then n = dimK < ∞ and K has a closed subgroup N ∼= Zepp × F , where p is a prime,
ep ∈ {0, 1} and F is a finite group, such that K/N ∼= Tn.

Proof. The inequality n = dimK < ∞ follows from the above lemma. We use here Fact
?? with n = dimK. Hence, it remains to note that N = ker f (as in that fact) has the
special form N ∼= Zepp × F , as required in the proposition, by Corollary ??. �

4. Proofs of Theorem ?? and Theorem ??

As a first corollary of Proposition ?? we obtain a proof of Theorem ?? in the compact
case. Namely, if every subgroup of a compact abelian group K is locally minimal, then
either K ∼= Tn × F is a Lie group, or K ∼= Zp × F , in both cases F is a finite group.

Indeed, G contains a closed subgroup N ∼= Zepp × F , where p is a prime, ep ∈ {0, 1}
and F is a finite group, such that K/N ∼= Tn, according to Proposition ??. If ep = 0
there is noting to prove. Assume that ep = 1, i.e., N ∼= Zp × F . We have to prove that
n = 0. Assume for a contradiction that n > 0. Then K/N ∼= Tn, being a monothetic
group, contains a dense cyclic subgroup C = 〈c〉. Let q : K //K/N be the quotient map.
Since q is surjective, there exists x ∈ K with q(x) = c. Let H := 〈x〉 and K1 = H. By
the choice of c and x, one has H ∩N = {0}. Then, identifying N with Zp × F and letting
B = K1 ∩ Zp, one has also

H ∩B = {0} (2)

Consider two cases.

Case 1. B 6= {0}. Then B is a closed nontrivial subgroup of Zp, so B ∼= Zp is a non-NSS
group. By (??) and Lemma ??, applied to K1, H and B, we deduce that H is not locally
minimal.

Case 2. B = {0}. Now F1 := ker q �K1≤ N ∩K1 is finite, as K1∩Zp = {0} and Zp×{0}
has finite index in N . Since K1/F1

∼= Tn, we deduce that K1 is a compact Lie group.
Our hypothesis K1 ∩ Zp = {0} implies that the sum K1 + Zp is a compact subgroup of K
topologically isomorphic to the direct product K1 × Zp. Since K1 is a Lie group, K1 × Zp
has a subgroup that fails to be locally minimal, by Corollary ??. This contradicts our
assumption that every subgroup of K is locally minimal. Hence this case cannot occur.
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This finishes the proof of Theorem ?? in the compact case. Now we can face the general
case.

Proof of Theorem ??. Now assume that every subgroup of a locally compact abelian
group K is locally minimal. By the structure theory of LCA groups K = Rn ×G0, where
G0 contains an open compact subgroup C. As every subgroup of C is locally minimal, we
deduce by the above argument that either C is a Lie group, or C ∼= Zp for some prime
p. In the former case, K has an open subgroup that is a Lie group, so it is a Lie group
itself. In the latter case, K contains an open subgroup isomorphic to Rn × Zp. According
to Corollary ??, this is possible only if n = 0. This proves the theorem. 2

Deduction of Theorem ?? from Theorem ??. Assume that all subgroups of an
infinite compact abelian group K are minimal. By Theorem ??, K is either a Lie group or
K = Zp × F for some prime p and a finite abelian group F . Since an infinite compact Lie
group contains a torus T ∼= T, it suffices to note that T has non-minimal subgroups (e.g.,
every infinite cyclic subgroup, due to the Criterion ??). Therefore, K = Zp × F . We now
check that F = {0}.

Assume for contradiction that F 6= {0}. Then F contains a nontrivial finite cyclic sub-
group C. Denote by c its generator. Pick an element ξ ∈ Zp independent with 1 and let
H be the subgroup of K1 = Zp × C generated by Z × {0} and x = (ξ, c). Let m = |C|,
so that mx = (mξ, 0) ∈ Zp × {0} and mx 6= 0 is independent with 1. This means that
H ∼= Z2 is torsion-free. Since H contains Zp × {0}, we deduce that H = Zp × B, where
B is a subgroup of C. As the projection p : K1

// C sends H onto C (as c ∈ p(H)), we
deduce that B = C, i.e., H is a dense subgroup of K1. Since the closed nontrivial subgroup
{0}×C of K1 trivially meets H, we deduce that H is not essential in K1. By the Criterion
??, H is not minimal, a contradiction. 2

Proof of Theorem ??. The sufficiency follows from Lemma ??. To prove the necessity
suppose that every subgroup of a connected locally compact group K is locally minimal.
We need to prove that K is a Lie group. We assume that K is nonabelian, since the abelian
case was already covered by Theorem ??.

We consider first the case when K is compact and nonabelian. Using well known facts
from the structure theory of compact connected groups ([?]), we have the equality

K = K ′ · Z(K), (3)

implying K/Z(K) ∼= K ′/(K ′∩Z(K)) and an isomorphism K ′/(K ′∩Z(K)) ∼=
∏
{Li : i ∈ I}

for a family of connected compact algebraically simple Lie groups Li. Moreover, if L̃i
denotes the the universal covering group of each Li, (i ∈ I), then K ′ is isomorphic to a

quotient of the product L =
∏

i∈I L̃i with respect to a closed totally disconnected subgroup
N of L, contained in Z(L). Using that dimN = 0, we are going to prove that I is finite,
so L is a Lie group and consequently, K ′ is a Lie group as well.
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Indeed, assume for a contradiction that I is infinite. Then picking in each L̃i a one-
dimensional torus Ti ∼= T we obtain an infinite-dimensional subgroup T =

∏
i∈I Ti

∼= TI
of L. Let q : L //K ′ ∼= L/N be the canonical projection. Then its restriction f = q �T :
T // q(T ) induces an isomorphism q(T ) ∼= T/(T ∩N). As dim(N ∩ T ) = dimN = 0, we
conclude that q(T ) is infinite-dimensional as well.

By Lemma ??, q(T ) (so K ′ and K, as well) has non locally minimal subgroups. This
contradiction shows that I must be finite.

We proved that K ′ is a Lie group. On the other hand, Z(K) is a compact abelian group
having all subgroups locally minimal. So either Z(K) is a Lie group or Z(K) = N×F with
N ∼= Zp for some prime p, and some finite group F . In the former case, we deduce from
(??) that K is a Lie group and we are done. Let us see now that the latter case cannot
occur. Indeed, in that case we pick a closed abelian subgroup L of K ′ isomorphic to T.
The subgroup N of K is central, hence the subgroup of K generated by N and L is abelian
and coincides with N ·L. As all proper closed subgroups of L ∼= T are finite and N ∼= Zp is
totally disconnected (so cannot contain L), we deduce that the intersection N ∩L is trivial,
as N is torsion-free. Then N · L is isomorphic to the direct product N × L ∼= Zp × T, so
that we can apply now Lemma ?? to get a contradiction.

Finally, we can face the general case of an arbitrary connected locally compact group
K. By a theorem of Davis [?], K is homeomorphic to a product C × Rn × D, where C
is a compact subgroup of K, n ∈ N and D is a discrete space. Since K is connected, the
subgroup D must be trivial and C is a compact connected subgroup of K. By the first part
of the proof, C is a (compact) Lie group, as every subgroup of C, being also a subgroup of
K, is locally minimal. In other words, C is a locally Euclidean space. Therefore, the whole
group K, homeomorphic to C ×Rn, is a locally Euclidean space, i.e., K is a Lie group. 2

5. Final remarks and open questions

Let us note that in the alternative case of item (c) of Theorem ?? one has a one dimen-
sional p-adic Lie group. (Here dimension refers to the dimension of the group in question
as a p-adic manifold [?].) This may suggest to replace in item (c) of Theorem ?? the cur-
rent second case by the tempting “p-adic Lie group” thereby obtaining a nice symmetry.
Lemma ?? shows that the two-dimensional p-adic Lie group Z2

p has non-locally-minimal
subgroups, so higher dimensional p-adic Lie groups should be ruled out in the abelian case.
Apparently this may change in the nonabelian case, as the following conjecture suggests:

Conjecture 5.1. We conjecture that the linear p-adic group GL2(Qp) has a locally compact
subgroup, namely

L =

{(
a b
0 1

)
∈ GL2(Qp) : a, b ∈ Qp, a 6= 0

}
∼= (Qp,+) o (Qp \ {0}, ·),

such that every subgroup of L is locally minimal, so in particular also the compact group
(Zp,+)o(Zp\pZp, ·) must have the same property. In both semi-direct products, the action
is given by multiplication of p-adic numbers.
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Question 5.2. Is it possible to transform the sufficient condition for non-local-minimality
of dense subgroups from Lemma ?? into a criterion for non-local-minimality of dense sub-
groups of locally compact (abelian) groups ?

Lemmas ??, ??, ??, ??, ?? and ?? suggest the following:

Question 5.3. Is it possible to add in Theorem ?? also the following weaker condition:

(b∗) every dense subgroup H of K is locally minimal?

Is this possible for metrizable locally compact abelian groups G?

The restriction to metrizablity in the final part of the question is motivated as follows.
Using the fact that the weight and the network weight of a locally minimal group coincide
([?, theorem 2.8]) one can easily show that if all dense subgroups of a compact abelian
group K are locally minimal, then K is metrizable.

Acknowledgement: It is a pleasure to thank the referee for her/his very careful and
generous reading and a wealth of helpful comments that essentially improved the paper.
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33100 Udine, ITALY

Email address: dikran.dikranjan@uniud.it

Wei He, Institute of Mathematics, Nanjing Normal University, Nanjing 210046, China
Email address: weihe@njnu.edu.cn

Zhiqing Xiao, Institute of Mathematics, Nanjing Normal University, Nanjing 210046,
China

Email address: zhiqiang102@126.com

Wenfei Xi, Institute of Mathematics, Nanjing Normal University, Nanjing 210046, China
Email address: xiwenfei0418@Outlook.com


