Università degli studi di Udine

On the Sobolev and Hardy constants for the fractional Navier Laplacian

Original

Availability:
This version is available http://hdl.handle.net/11390/1013346 since 2021-03-15T17:07:10Z

Publisher:

Published
DOI:10.1016/j.na.2014.09.021

Terms of use:
The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The aim is to enable open access to all the world.

Publisher copyright
(Article begins on next page)

On the Sobolev and Hardy constants for the fractional Navier Laplacian

Roberta Musina* and Alexander I. Nazarov ${ }^{\dagger}$

Abstract

We prove the coincidence of the Sobolev and Hardy constants relative to the "Dirichlet" and "Navier" fractional Laplacians of any real order $m \in\left(0, \frac{n}{2}\right)$ over bounded domains in \mathbb{R}^{n}.

1 Introduction

For any integer $n \geq 1$ the (fractional) Laplacian of real order $m>0$ over \mathbb{R}^{n} is defined by

$$
\mathcal{F}\left[(-\Delta)_{D}^{m} u\right]=|\xi|^{2 m} \mathcal{F}[u]
$$

where \mathcal{F} is the Fourier transform

$$
\mathcal{F}[u](\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} u(x) d x
$$

Let $p \in(1, \infty)$ and assume $n>p m$. Put $I_{m}(f)=|x|^{m-n} \star f$. Then the Hardy-Littlewood-Sobolev inequality $[9,10,18]$ states that I_{m} is continuous operator from $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{p_{m}^{*}}\left(\mathbb{R}^{n}\right)$, where

$$
p_{m}^{*}:=\frac{p n}{n-p m}
$$

[^0]is the critical Sobolev exponent.
We denote by $\mathcal{D}^{m, p}\left(\mathbb{R}^{n}\right)$ the image of I_{m}. Since for any $f \in L^{p}\left(\mathbb{R}^{n}\right)$
$$
(-\Delta)_{D}^{\frac{m}{2}}\left(|x|^{m-n} \star f\right)=c_{n, m} \cdot f
$$
in the distributional sense on \mathbb{R}^{n} (here the constant $c_{n, m}$ depends only on n and m), we have
$$
\mathcal{D}^{m, p}\left(\mathbb{R}^{n}\right)=\left\{u \in L^{p_{m}^{*}}\left(\mathbb{R}^{n}\right) \left\lvert\,(-\Delta)_{D}^{\frac{m}{2}} u \in L^{p}\left(\mathbb{R}^{n}\right)\right.\right\}
$$

We endow $\mathcal{D}^{m, p}\left(\mathbb{R}^{n}\right)$ with the norm

$$
\|u\|_{\mathcal{D}^{m, p}}=\left\|(-\Delta)_{D}^{\frac{m}{2}} u\right\|_{p}:=\left(\int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\frac{m}{2}} u\right|^{p} d x\right)^{1 / p}
$$

so that $I_{m}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{D}^{m, p}\left(\mathbb{R}^{n}\right)$ is (up to a constant) an isometry with inverse $(-\Delta)_{D}^{\frac{m}{2}}$. In particular, $\mathcal{D}^{m, p}\left(\mathbb{R}^{n}\right)$ is a reflexive Banach space.

In the Hilbertian case $p=2$ we will simply write $\mathcal{D}^{m}\left(\mathbb{R}^{n}\right)$ instead of $\mathcal{D}^{m, 2}\left(\mathbb{R}^{n}\right)$. The explicit value and the extremals of the best constant \mathcal{S}_{m} in the inequality

$$
\int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\frac{m}{2}} u\right|^{2} d x \geq \mathcal{S}_{m}\left(\int_{\mathbb{R}^{n}}|u|^{2_{m}^{*}} d x\right)^{\frac{2}{2_{m}^{*}}} \quad \text { for any } u \in \mathcal{D}^{m}\left(\mathbb{R}^{n}\right)
$$

were furnished by Cotsiolis and Tavoularis in [4].
Next, we introduce the "Dirichlet" Laplacian of order m over a bounded and smooth domain $\Omega \subset \mathbb{R}^{n}$ via the quadratic form

$$
Q_{m}^{D}[u]=\left((-\Delta)_{D}^{m} u, u\right):=\int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\frac{m}{2}} u\right|^{2} d x
$$

with domain

$$
\widetilde{H}^{m}(\Omega)=\left\{u \in \mathcal{D}^{m}\left(\mathbb{R}^{n}\right): \operatorname{supp} u \subset \bar{\Omega}\right\}
$$

We endow $\widetilde{H}^{m}(\Omega)$ with the norm $\|\cdot\|_{\mathcal{D}^{m}}$. Since \mathcal{C}_{0}^{∞} is dense in $\mathcal{D}^{m}\left(\mathbb{R}^{n}\right)$, a standard dilation argument implies that

$$
\mathcal{S}_{m}=\inf _{\substack{u \in \widetilde{H}_{u \neq 0}^{m}(\Omega)}} \frac{Q_{m}^{D}[u]}{\|u\|_{2_{m}^{*}}^{2}}
$$

We introduce also the "Navier" Laplacian $(-\Delta)_{N}^{m}$ of order m over Ω as the $m^{\text {th }}$ power of the conventional Laplacian $-\Delta$ on $H_{0}^{1}(\Omega)$, in the sense of spectral theory. More precisely, for $u \in L^{2}(\Omega)$ we define

$$
(-\Delta)_{N}^{m} u:=\sum_{j \geq 1} \lambda_{j}^{m}\left(\int_{\Omega} u \varphi_{j} d x\right) \varphi_{j} .
$$

Here λ_{j}, φ_{j} are, respectively, the eigenvalues and eigenfunctions (normalized in $\left.L^{2}(\Omega)\right)$ of $-\Delta$ on $H_{0}^{1}(\Omega)$ while the series converges in the sense of distributions.

The corresponding quadratic form is

$$
Q_{m}^{N}[u]=\left((-\Delta)_{N}^{m} u, u\right)=\sum_{j \geq 1} \lambda_{j}^{m}\left(\int_{\Omega} u \varphi_{j} d x\right)^{2}=\int_{\Omega}\left|(-\Delta)_{N}^{\frac{m}{2}} u\right|^{2} d x
$$

with domain

$$
\widetilde{H}_{N}^{m}(\Omega)=\left\{u \in L^{2}(\Omega): Q_{m}^{N}[u]<\infty\right\} .
$$

Finally, we define the Navier-Sobolev constant by

$$
\mathcal{S}_{m}^{N}:=\inf _{\substack{u \in \tilde{H}_{J}^{m}(\Omega) \\ u \neq 0}} \frac{Q_{m}^{N}[u]}{\|u\|_{2_{m}^{*}}^{2}} .
$$

We are in position to state the main result of the present paper.
Theorem 1 Let Ω be a bounded and smooth domain in \mathbb{R}^{n} and $m \in\left(0, \frac{n}{2}\right)$. Then

$$
\mathcal{S}_{m}^{N}=\mathcal{S}_{m} .
$$

Our argument applies also to Hardy-Rellich type inequalities. The explicit value of the positive constant

$$
\mathcal{H}_{m}:=\inf _{\substack{u \in \mathcal{D}^{m}\left(\mathbb{R}^{n}\right) \\ U \neq 0}} \frac{Q_{m}^{D}[u]}{\left\||x|^{-m} u\right\|_{2}^{2}}=\inf _{\substack{u \in \bar{H}^{m}(\Omega) \\ U \neq 0}} \frac{Q_{m}^{D}[u]}{\left\||x|^{-m} u\right\|_{2}^{2}}
$$

has been computed in [11] (see also [5] and [13] for the integer orders $m \in \mathbb{N}$, even in a non-Hilbertian setting). The Navier-Hardy constant over a bounded and smooth domain Ω is defined by

$$
\mathcal{H}_{m}^{N}:=\inf _{\substack{u \in \widetilde{H}_{M}^{m}(\Omega) \\ u \neq 0}} \frac{Q_{m}^{N}[u]}{\left\|\left.x\right|^{-m} u\right\|_{2}^{2}} .
$$

The argument we use to prove Theorem 1 plainly leads to the next result.

Theorem 2 Let Ω be a bounded and smooth domain in \mathbb{R}^{n} and $m \in\left(0, \frac{n}{2}\right)$. Then

$$
\mathcal{H}_{m}^{N}=\mathcal{H}_{m} .
$$

The equalities $\mathcal{S}_{1}^{N}=\mathcal{S}_{1}, \mathcal{H}_{1}^{N}=\mathcal{H}_{1}$ are totally trivial. If $m \neq 1$ is an integer number, then the inequalities $\mathcal{S}_{m}^{N} \leq \mathcal{S}_{m}$ and $\mathcal{H}_{m}^{N} \leq \mathcal{H}_{m}$ follow immediately from $\widetilde{H}^{m}(\Omega) \subseteq \widetilde{H}_{N}^{m}(\Omega)$, whereas the opposite inequalities need a detailed proof.

For integer orders $m \in \mathbb{N}$, the statements of Theorems 1 and 2 are known (even in non-Hilbertian setting). The coincidence of the two Hardy constants can be extracted from the proof of Theorem 3.3 in [13] (see also [6, Lemma 1]), where Enzo Mitidieri took advantage of a Rellich-Pokhozhaev type identity [17, 12]. The coincidence of the two Sobolev constants for $m \in \mathbb{N}$ was obtained in [7] (see also [8,21$]$ for previous results in case $p=2$ and $m=2$). We cite also [14], where weighted Sobolev constants are studied under the hypothesis $m=2$.

We emphasize that for $m \notin \mathbb{N}$ none of the inequalities $\mathcal{S}_{m}^{N} \leq \mathcal{S}_{m}, \mathcal{S}_{m}^{N} \geq \mathcal{S}_{m}$ (respectively, $\left.\mathcal{H}_{m}^{N} \leq \mathcal{H}_{m}, \mathcal{H}_{m}^{N} \geq \mathcal{H}_{m}\right)$ is easily checked. For $m \in(0,1)$, Theorem 1 was proved in [15]. To handle the general case of real orders $m>0$ we largely use some of the results in $[15,16]$. Additional tools are the maximum principles for fractional Laplacians and a result about the transform $u \mapsto|u|, u \in \widetilde{H}^{m}(\Omega)$, for $0<m<1$, that might have an independent interest (see Theorem 3).

2 Preliminaries

Here we collect some facts about the Dirichlet and the Navier quadratic forms.

1. First, we note that $\widetilde{H}^{m}(\Omega) \subseteq \widetilde{H}_{N}^{m}(\Omega)$ and

$$
\widetilde{H}^{m}(\Omega)=\widetilde{H}_{N}^{m}(\Omega) \quad \text { if and only if } m<\frac{3}{2} .
$$

This fact is well known for natural orders m; the general case follows immediately from [20, Theorem 1.17.1/1] and [20, Theorem 4.3.2/1].
2. It is well known that for any $m \in \mathbb{N}$

$$
\widetilde{H}_{N}^{m}(\Omega)=\left\{u \in H^{m}(\Omega) \mid \operatorname{tr}_{\partial \Omega}\left[(-\Delta)^{\nu} u\right]=0 \text { for } \nu \in \mathbb{N}_{0}, \nu<\frac{m}{2}\right\} .
$$

We omit the proof of the next simple analog for non integer m.

Lemma 1 Let $m \notin \mathbb{N}, m>1$.

- If $\lfloor m\rfloor \geq 2$ is even, then $\widetilde{H}_{N}^{m}(\Omega)=\left\{u \in \widetilde{H}_{N}^{\lfloor m\rfloor}(\Omega) \left\lvert\,(-\Delta)_{N}^{\frac{\lfloor m\rfloor}{2}} u \in \widetilde{H}^{m-\lfloor m\rfloor}(\Omega)\right.\right\}$.
- If $\lfloor m\rfloor \geq 1$ is odd, then $\widetilde{H}_{N}^{m}(\Omega)=\left\{u \in \widetilde{H}_{N}^{\lfloor m\rfloor}(\Omega) \left\lvert\,(-\Delta)_{N}^{\frac{m}{2}} u \in L^{2}(\Omega)\right.\right\}$.

3. Let $m \in \mathbb{N}$ and let $u \in \widetilde{H}^{m}(\Omega)$. Then it is easy to see that $Q_{m}^{D}[u]=Q_{m}^{N}[u]$. More precisely, if m is even one gets the pointwise equality

$$
(-\Delta)_{D}^{\frac{m}{2}} u=(-\Delta)_{N}^{\frac{m}{2}} u=(-\Delta)^{\frac{m}{2}} u
$$

If m is odd the following integral equalities hold:

$$
\int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\frac{m}{2}} u\right|^{2} d x=\int_{\Omega}\left|(-\Delta)_{N}^{\frac{m}{2}} u\right|^{2} d x=\int_{\Omega}\left|\nabla\left(\Delta^{\frac{m-1}{2}} u\right)\right|^{2} d x
$$

Integrating by parts we can write for all $m \in \mathbb{N}$

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\frac{m}{2}} u\right|^{2} d x=\int_{\Omega}\left|(-\Delta)_{N}^{\frac{m}{2}} u\right|^{2} d x=\int_{\Omega}\left|\nabla^{m} u\right|^{2} d x, \quad u \in \widetilde{H}^{m}(\Omega) \tag{2.1}
\end{equation*}
$$

For non integer orders m the Dirichlet and Navier quadratic forms never coincide on the Dirichlet domain $\widetilde{H}^{m}(\Omega)$. Indeed, the next result holds.

Proposition $1([\mathbf{1 5}, \mathbf{1 6}])$ Let $m>0, m \notin \mathbb{N}$, and let $u \in \widetilde{H}^{m}(\Omega), u \not \equiv 0$. Then

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\frac{m}{2}} u\right|^{2} & <\int_{\Omega}\left|(-\Delta)_{N}^{\frac{m}{2}} u\right|^{2} d x \\
\int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\frac{m}{2}} u\right|^{2} & >\int_{\Omega}\left|(-\Delta)_{N}^{\frac{m}{2}} u\right|^{2} d x
\end{aligned}
$$

In view of Proposition 1, one is lead to ask "how much" the Dirichlet and Navier quadratic forms differ on $\widetilde{H}^{m}(\Omega)$ if $m \notin \mathbb{N}$. The answer takes into account the action of dilations.

Fix any point $x_{0} \in \Omega$ and take $u \in \tilde{H}^{m}(\Omega)$. Concentrate u around x_{0} by putting $u_{\rho}(x)=\rho^{\frac{n-2 m}{2}} u\left(\rho\left(x-x_{0}\right)+x_{0}\right)$ for $\rho \gg 1$. Then $u_{\rho} \in \widetilde{H}^{m}(\Omega)$ and $Q_{m}^{D}\left[u_{\rho}\right] \equiv Q_{m}^{D}[u]$. In contrast, $Q_{m}^{N}\left[u_{\rho}\right]$ depends on ρ, as the Navier quadratic form does depend on the domain Ω. Nevertheless, the next result holds.

Proposition $2([15,16])$ Let $m>0$ and $u \in \widetilde{H}^{m}(\Omega)$. Then

$$
\int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\frac{m}{2}} u\right|^{2} d x=\lim _{\rho \rightarrow \infty} \int_{\Omega}\left|(-\Delta)_{N}^{\frac{m}{2}} u_{\rho}\right|^{2} d x .
$$

4. It is well known that if $u \in \widetilde{H}^{1}(\Omega)=\widetilde{H}_{N}^{1}(\Omega)=H_{0}^{1}(\Omega)$ then $|u| \in \widetilde{H}^{1}(\Omega)$, and $|\nabla| u||=|\nabla u|$ almost everywhere on Ω. By (2.1), this implies

$$
\int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\frac{1}{2}}\right| u \|^{2} d x=\int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\frac{1}{2}} u\right|^{2} d x=\int_{\Omega}\left|(-\Delta)_{N}^{\frac{1}{2}}\right| u| |^{2} d x=\int_{\Omega}\left|(-\Delta)_{N}^{\frac{1}{2}} u\right|^{2} d x .
$$

For smaller orders $m \in(0,1)$ one still has that $\widetilde{H}^{m}(\Omega)=\widetilde{H}_{N}^{m}(\Omega)$ (see point 1 above), but the operator $u \mapsto|u|$ behaves quite differently.

Theorem 3 Let $m \in(0,1)$ and $u \in \widetilde{H}^{m}(\Omega)$. Then $|u| \in \widetilde{H}^{m}(\Omega)$ and

$$
\begin{align*}
\left.\int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\frac{m}{2}}\right| u\right|^{2} d x & \leq \int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\frac{m}{2}} u\right|^{2} d x \tag{2.2}\\
\int_{\Omega}\left|(-\Delta)_{N}^{\frac{m}{2}}\right| u| |^{2} d x & \leq \int_{\Omega}\left|(-\Delta)_{N}^{\frac{m}{2}} u\right|^{2} d x . \tag{2.3}
\end{align*}
$$

In addition, if both the positive and the negative parts of u are nontrivial, then strict inequalities hold in (2.2) and in (2.3).

Proof. In the paper [2], the Dirichlet fractional Laplacian of order $m \in(0,1)$ was connected with the so-called harmonic extension in $n+2-2 m$ dimensions (see also [1] for the case $m=\frac{1}{2}$). Namely, it was shown that for any $v \in \widetilde{H}^{m}(\Omega)$, the function $w_{v}(x, y)$ minimizing the weighted Dirichlet integral

$$
\mathcal{E}_{m}(w)=\int_{0}^{\infty} \int_{\mathbb{R}^{n}} y^{1-2 m}|\nabla w(x, y)|^{2} d x d y
$$

over the set

$$
\mathcal{W}(v)=\left\{w(x, y): \mathcal{E}_{m}(w)<\infty,\left.\quad w\right|_{y=0}=v\right\},
$$

satisfies

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|(-\Delta)_{N}^{\frac{m}{2}} v\right|^{2} d x=c_{m} \mathcal{E}_{m}\left(w_{v}\right) \tag{2.4}
\end{equation*}
$$

where the constant c_{m} depends only on m.
For any fixed $u \in \widetilde{H}^{m}(\Omega)$ find $w_{u} \in \mathcal{W}(u)$ and $w_{|u|} \in \mathcal{W}(|u|)$. Then clearly $\left|w_{u}\right| \in \mathcal{W}(|u|)$ and therefore $\mathcal{E}_{m}\left(w_{|u|}\right) \leq \mathcal{E}_{m}\left(\left|w_{u}\right|\right)=\mathcal{E}_{m}\left(w_{u}\right)$. Thus (2.2) holds, thanks to (2.4).

Now assume that u changes sign. The function $w_{|u|}(x, y)$ is the unique solution of the boundary value problem

$$
\begin{equation*}
-\operatorname{div}\left(y^{1-2 m} \nabla w\right)=0 \quad \text { in } \quad \mathbb{R}^{n} \times \mathbb{R}_{+} ;\left.\quad w\right|_{y=0}=|u| \tag{2.5}
\end{equation*}
$$

with finite energy. Hence $w_{|u|}$ is analytic in $\mathbb{R}^{n} \times \mathbb{R}_{+}$. Since w_{u} changes sign then $\left|w_{u}\right|$ can not solve (2.5), that implies $\mathcal{E}_{m}\left(\left|w_{u}\right|\right)>\mathcal{E}_{m}\left(w_{|u|}\right)$. Hence the strict inequality holds in (2.2), that concludes the proof for the Dirichlet Laplacian.

To check (2.3) one has to use, instead of [2], the characterization of the Navier fractional Laplacian given (among some other fractional operators) in [19]. Namely, for any $v \in \widetilde{H}^{m}(\Omega)$, the function $w_{v}^{N}(x, y)$ minimizing $\mathcal{E}_{m}(w)$ over the set

$$
\mathcal{W}^{N}(v)=\{w \in \mathcal{W}(v): \operatorname{supp} w(\cdot, y) \subseteq \bar{\Omega} \quad \text { for any } y>0\}
$$

satisfies

$$
\int_{\Omega}\left|(-\Delta)_{N}^{\frac{m}{2}} v\right|^{2} d x=c_{m} \mathcal{E}_{m}\left(w_{v}\right) .
$$

The rest of the proof runs as in the Dirichlet case. We omit details.
Remark 1 Here we deal with maximum principles for the operators $(-\Delta)_{D}^{m}$ and $(-\Delta)_{N}^{m}, m \in(0,1)$.

Let $u \in \widetilde{H}^{m}(\Omega)$, and let $f=(-\Delta)_{D}^{m} u \in\left(\widetilde{H}^{m}(\Omega)\right)^{\prime}$ be a nonnegative and nontrivial distribution. Then it is well known that $u \geq 0$ in Ω. This is actually a simple corollary to Theorem 3. The function u is characterized variationally as the unique minimizer of the energy functional

$$
J(v)=\int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\frac{m}{2}} v\right|^{2} d x-2\langle f, v\rangle
$$

on $\widetilde{H}^{m}(\Omega)$. We have $J(|u|) \leq J(u)$ by Theorem 3. This implies $u=|u| \geq 0$, as desired, by the uniqueness of the minimizer.

By the same reason, if $u \in \widetilde{H}^{m}(\Omega)$ and $(-\Delta)_{N}^{m} u=f \geq 0$ then $u \geq 0$ in Ω.
5. We conclude this preliminary section by recalling a well known fact already mentioned in the Introduction.

Proposition 3 Let $p>1, m>0, n>2 m p$. Then for any $f \in L^{p}\left(\mathbb{R}^{n}\right)$, problem

$$
(-\Delta)_{D}^{m} U=f ; \quad U \in \mathcal{D}^{2 m, p}\left(\mathbb{R}^{n}\right)
$$

has a unique solution. If in addition $f \neq 0$ is nonnegative, then $U>0$ in \mathbb{R}^{n}.
Proof. Up to a multiplicative constant, the unique solution U is explicitly given by $|x|^{2 m-n} \star f$. The statement readily follows.

3 Proof of Theorems 1 and 2

Since $\widetilde{H}^{m}(\Omega) \subseteq \widetilde{H}_{N}^{m}(\Omega)$, then clearly

$$
\mathcal{S}_{m}^{N}=\inf _{\substack{u \in \widetilde{H}_{N}^{m}(\Omega) \\ u \neq 0}} \frac{Q_{m}^{N}[u]}{\|u\|_{2_{m}^{*}}^{2}} \leq \inf _{\substack{u \in \tilde{H}^{m}(\Omega) \\ u \neq 0}} \frac{Q_{m}^{N}[u]}{\|u\|_{2_{m}^{*}}^{2}} .
$$

Hence, $\mathcal{S}_{m}^{N} \leq \mathcal{S}_{m}$ by Proposition 1, if $2 k-1 \leq m \leq 2 k, k \in \mathbb{N}$, and by Proposition 2, otherwise. By the same reason, $\mathcal{H}_{m}^{N} \leq \mathcal{H}_{m}$. Thus, it suffices to prove the opposite inequalities $\mathcal{S}_{m}^{N} \geq \mathcal{S}_{m}$ and $\mathcal{H}_{m}^{N} \geq \mathcal{H}_{m}$.

Fix any nontrivial $u \in \widetilde{H}_{N}^{m}(\Omega)$ and extend it by the null function. To conclude the proof, it is sufficient to construct a function $U \in \mathcal{D}^{m}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{align*}
U & \geq|u| \text { a.e. in } \mathbb{R}^{n} \tag{3.1}\\
\int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\frac{m}{2}} U\right|^{2} d x & \leq \int_{\Omega}\left|(-\Delta)_{N}^{\frac{m}{2}} u\right|^{2} d x . \tag{3.2}
\end{align*}
$$

We have to distinguish between two cases.

1. Case $2 k+1<m \leq 2 k+2$, for some $k \in \mathbb{N}_{0}$.

We use Proposition 3 to fix the unique positive solution U of

$$
(-\Delta)_{D}^{\frac{m}{2}} U=\chi_{\Omega}\left|(-\Delta)_{N}^{\frac{m}{2}} u\right| ; \quad U \in \mathcal{D}^{m}\left(\mathbb{R}^{n}\right)
$$

where $\chi_{\Omega}\left|(-\Delta)_{N}^{\frac{m}{2}} u\right|$ denotes the null extension of the function $\left|(-\Delta)_{N}^{\frac{m}{2}} u\right| \in L^{2}(\Omega)$. Since (3.2) trivially holds, we only have to check (3.1), that is the trickiest step in the whole proof.

It is convenient to write

$$
\frac{m}{2}=k+\alpha, \quad \frac{1}{2}<\alpha \leq 1 .
$$

Since $u \in \widetilde{H}_{N}^{m}(\Omega)$, then for any integer $\nu=0, \cdots, k$ the function $u_{\nu}:=(-\Delta)^{\nu} u$ belongs to $H_{0}^{1}(\Omega)$, compare with Lemma 1. In addition we know that $u_{k} \in \widetilde{H}_{N}^{2 \alpha}(\Omega)$, that implies

$$
u_{k} \in H_{0}^{1}(\Omega), \quad(-\Delta)_{N}^{\alpha} u_{k} \in L^{2}(\Omega) .
$$

We introduce the solutions \widetilde{w}, w to

$$
\begin{aligned}
(-\Delta)_{N}^{\alpha} \widetilde{w}=\left|(-\Delta)_{N}^{\alpha} u_{k}\right| ; & \widetilde{w} \in \widetilde{H}^{\alpha}(\Omega) ; \\
(-\Delta)_{D}^{\alpha} w=\left|(-\Delta)_{N}^{\alpha} u_{k}\right| ; & w \in \widetilde{H}^{\alpha}(\Omega) .
\end{aligned}
$$

We claim that

$$
\begin{equation*}
w \geq \widetilde{w} \geq\left|u_{k}\right| \quad \text { a.e. in } \Omega . \tag{3.3}
\end{equation*}
$$

The fact that $\widetilde{w} \geq\left|u_{k}\right|$ readily follows from the maximum principle, see Remark 1 or [3, Lemma 2.5]. Also by the maximum principle w is nonnegative, and hence by [15, Theorem 1] we have $(-\Delta)_{N}^{\alpha} w \geq(-\Delta)_{D}^{\alpha} w$ in the distributional sense on Ω. Therefore,

$$
(-\Delta)_{N}^{\alpha}(w-\widetilde{w}) \geq(-\Delta)_{D}^{\alpha} w-(-\Delta)_{N}^{\alpha} \widetilde{w}=0,
$$

and the maximum principle applies again to get (3.3).
Now we decompose $U \in \mathcal{D}^{m}\left(\mathbb{R}^{n}\right)$ in the same way as we did for u. Namely, we define $U_{\nu}=(-\Delta)^{\nu} U$ for any integer $\nu=0, \cdots, k$, and notice that

$$
(-\Delta)_{D}^{\frac{m}{2}-\nu} U_{\nu}=\chi_{\Omega}\left|(-\Delta)_{N}^{\frac{m}{2}} u\right|, \quad U_{\nu} \in \mathcal{D}^{m-2 \nu}\left(\mathbb{R}^{n}\right)
$$

By Proposition $3, U_{\nu}>0$ on \mathbb{R}^{n}. In particular, the function $U_{k} \in \mathcal{D}^{2 \alpha}\left(\mathbb{R}^{n}\right)$ solves

$$
(-\Delta)_{D}^{\alpha} U_{k}=(-\Delta)_{D}^{\alpha} w \quad \text { in } \Omega ; \quad U_{k}>0=w \quad \text { in } \mathbb{R}^{n} \backslash \bar{\Omega} .
$$

Therefore $U_{k} \geq w$ on Ω, and we have by (3.3)

$$
\begin{equation*}
U_{k} \geq\left|u_{k}\right| \quad \text { a.e. in } \Omega . \tag{3.4}
\end{equation*}
$$

If $k=0$ then we are done. If $k \geq 1$ then (3.4) is equivalent to

$$
-\Delta U_{k-1} \geq\left|-\Delta u_{k-1}\right| \quad \text { a.e. in } \Omega,
$$

that readily implies $U_{k-1} \geq\left|u_{k-1}\right|$ on Ω, as $U_{k-1}>0$ on \mathbb{R}^{n} and $u_{k-1} \equiv 0$ on $\mathbb{R}^{n} \backslash \bar{\Omega}$. Repeating the same argument we arrive at (3.1), and the proof is complete.
2. Case $2 k<m \leq 2 k+1$, for some $k \in \mathbb{N}_{0}$.

Now we write

$$
\frac{m}{2}=k+\alpha, \quad 0<\alpha \leq \frac{1}{2} .
$$

From $u \in \widetilde{H}_{N}^{m}(\Omega)$ we infer that $(-\Delta)^{k} u \in \widetilde{H}^{2 \alpha}(\Omega)$ by Lemma 1 . Since $2 \alpha \in(0,1]$, then also $\left|(-\Delta)^{k} u\right| \in \widetilde{H}^{2 \alpha}(\Omega)$. By Sobolev embedding, $\left|(-\Delta)^{k} u\right| \in L^{2_{2 \alpha}^{*}}(\Omega)$.

Notice that $n>2 k \cdot 2_{2 \alpha}^{*}$. Therefore we can apply Proposition 3 with $m=k$ and $p=2_{2 \alpha}^{*}$ to find the unique positive solution U to

$$
(-\Delta)^{k} U=\left|(-\Delta)^{k} u\right| ; \quad U \in \mathcal{D}^{2 k, 2_{2 \alpha}^{*}}\left(\mathbb{R}^{n}\right)
$$

Since $\left(2_{2 \alpha}^{*}\right)_{2 k}^{*}=2_{m}^{*}$, the Sobolev embedding theorem gives $U \in L^{2_{m}^{*}}\left(\mathbb{R}^{n}\right)$. Moreover, from $(-\Delta)^{k} U \in \mathcal{D}^{2 \alpha}\left(\mathbb{R}^{n}\right)$ we infer that $(-\Delta)_{D}^{\frac{m}{2}} U \in L^{2}\left(\mathbb{R}^{n}\right)$, that is, $U \in \mathcal{D}^{m}\left(\mathbb{R}^{n}\right)$.

The proof of (3.1) runs now in the same way as in the case 1 , and is even more simple since we only have to handle Laplacians of integer orders.

To check (3.2), we write

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\frac{m}{2}} U\right|^{2} d x & =\int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\alpha}\left(\left|(-\Delta)^{k} u\right|\right)\right|^{2} d x \\
& \leq \int_{\mathbb{R}^{n}}\left|(-\Delta)_{D}^{\alpha}\left((-\Delta)^{k} u\right)\right|^{2} d x \\
& \left.\leq \int_{\Omega}\left|(-\Delta)_{N}^{\alpha}\left((-\Delta)^{k} u\right)\right|^{2} d x=\int_{\Omega} \left\lvert\,(-\Delta)_{N}^{\frac{m}{2}} u\right.\right)\left.\right|^{2} d x .
\end{aligned}
$$

Here the first inequality holds by Theorem 3, the second one follows from (2.1) for $2 \alpha=1$ and from Proposition 1 for $2 \alpha \in(0,1)$.

Thus, Theorems 1 and 2 are completely proved.

Remark 2 (Non-Hilbertian case) Let $m \in \mathbb{N}$, and let $1<p<\frac{n}{m}$. With minor modifications, one gets an alternative proof of [7, Theorems 1 and 2] concerning the Navier-Sobolev and Navier-Hardy constants for the space $W_{N}^{m, p}(\Omega)$. Best constants in weighted Sobolev inequalities can be included as well, see [14] for $m=2$.

References

[1] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), no. 5, 2052-2093.
[2] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260.
[3] A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Partial Differential Equations 36 (2011), no. 8, 1353-1384.
[4] A. Cotsiolis and N. K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 (2004), no. 1, 225236.
[5] E. B. Davies and A. M. Hinz, Explicit constants for Rellich inequalities in $L_{p}(\Omega)$, Math. Z. 227 (1998), 511-523.
[6] F. Gazzola, H.-C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc. 356 (2004), no. 6, 21492168.
[7] F. Gazzola, H.-C. Grunau and G. Sweers, Optimal Sobolev and Hardy-Rellich constants under Navier boundary conditions, Ann. Mat. Pura Appl. (4) $\mathbf{1 8 9}$ (2010), no. 3, 475-486.
[8] Y. Ge, Sharp Sobolev inequalities in critical dimensions, Michigan Math. J. 51 (2003), no. 1, 27-45.
[9] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I, Math. Z. 27 (1928), no. 1, 565-606.
[10] G. H. Hardy and J. E. Littlewood, On certain inequalities connected with the calculus of variations, J. London Math. Soc. 5 (1930), 34-39.
[11] I. W. Herbst, Spectral theory of the operator $\left(p^{2}+m^{2}\right)^{1 / 2}-Z e^{2} / r$, Comm. Math. Phys. 53 (1977), no. 3, 285-294.
[12] E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations 18 (1993), no. 1-2, 125-151.
[13] E. Mitidieri, A simple approach to Hardy inequalities, Mat. Zametki 67 (2000), no. 4, 563-572 (in Russian); English transl.: Math. Notes 67 (2000), no. 3-4, 479-486.
[14] R. Musina, Optimal Rellich-Sobolev constants and their extremals, Differential Integral Equations 27 (2014), no. 5-6, 579-600.
[15] R. Musina and A. I. Nazarov, On fractional Laplacians, Comm. Partial Differential Equations 39 (2014), no. 9, 1780-1790.
[16] R. Musina and A. I. Nazarov, On fractional Laplacians - II, preprint arXiv:1408.3568 (2014).
[17] S. I. Pokhozhaev, On the eigenfunctions of quasilinear elliptic problems, Mat. Sb. (N.S.) 82 (124) (1970), no. 2 (6), 192-212 (in Russian); English transl.: Math. USSR-Sb., 11 (1970), no. 2, 171-188.
[18] S. L. Sobolev, Applications of functional analysis in mathematical physics, Leningrad State University Publ., Leningrad, 1950 (in Russian); Translations of Mathematical Monographs, Vol. 7, Amer. Math. Soc., Providence, RI, 1963.
[19] P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations 35 (2010), no. 11, 2092-2122.
[20] H. Triebel, Interpolation theory, function spaces, differential operators, Deutscher Verlag Wissensch., Berlin, 1978.
[21] R. C. A. M. Van der Vorst, Best constant for the embedding of the space $H^{2} \cap$ $H_{0}^{1}(\Omega)$ into $L^{2 N /(N-4)}(\Omega)$, Differential Integral Equations 6 (1993), no. 2, 259-276.

[^0]: *Dipartimento di Matematica ed Informatica, Università di Udine, via delle Scienze, 206, 33100 Udine, Italy. Email: roberta.musina@uniud.it. Partially supported by Miur-PRIN 201274FYK7_004, "Variational and perturbative aspects of nonlinear differential problems".
 ${ }^{\dagger}$ St.Petersburg Department of Steklov Institute, Fontanka, 27, St.Petersburg, 191023, Russia and St.Petersburg State University, Universitetskii pr. 28, St.Petersburg, 198504, Russia. E-mail: al.il.nazarov@gmail.com. Supported by RFBR grant 14-01-00534 and by St.Petersburg University grant 6.38.670.2013.

