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AN ALGEBRAIC APPROACH TO MSO-DEFINABILITY

ON COUNTABLE LINEAR ORDERINGS

OLIVIER CARTON 1, THOMAS COLCOMBET 2, AND GABRIELE PUPPIS 3

Abstract. We develop an algebraic notion of recognizability for languages of words

indexed by countable linear orderings. We prove that this notion is effectively equivalent

to definability in monadic second-order (MSO) logic. We also provide three logical appli-

cations. First, we establish the first known collapse result for the quantifier alternation

of MSO logic over countable linear orderings. Second, we solve an open problem posed

by Gurevich and Rabinovich, concerning the MSO-definability of sets of rational numbers

using the reals in the background. Third, we establish the MSO-definability of the set of

yields induced by an MSO-definable set of trees, confirming a conjecture posed by Bruyère,

Carton, and Sénizergues.
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§1. Introduction. The paper continues a long line of research aiming at
understanding the notions of regularity for languages of infinite objects, e.g.,
infinite words and trees. The central objects in this paper are words indexed by
countable linear orderings, i.e., total orders over finite or countable sets paired
with functions mapping elements to letters in some finite alphabet. Accordingly,
languages here are just sets of countable words. We use monadic second-order
(MSO) logic as a formalism for describing such languages. In particular, an
MSO formula may involve quantifications over positions of a word, as well as
quantifications over sets of positions. A sentence naturally defines the language
of all words that make the sentence true.

This paper provides a fine comprehension of the expressive power of MSO logic
over countable linear orderings by proving a correspondence between definability
in MSO and recognizability by suitable algebraic structures. More precisely, we
introduce a generalization of the classical notion of finite monoid (i.e., a finite set
equipped with an associative product), that we call ⍟-monoid, and we extend
accordingly the notion of recognizability by monoid morphism to capture a large
class of languages of countable words. Differently from the classical setting, ⍟-
monoids are not finite objects, as the product mapping is defined over countable
sequences of elements and a priori it is not clear how to represent this mapping
by a finite table. To obtain finite presentations of the recognized languages, we
follow an approach similar to [28], namely, we associate with each ⍟-monoid a
finite number of operators with finite domain. We prove that, under natural
conditions, the associated algebraic structure, called ⍟-algebra, uniquely deter-
mines a ⍟-monoid. The correspondence between ⍟-monoids and ⍟-algebras,
together with the proposed notion of recognizability, gives a natural framework
where languages of countable words can be represented and manipulated algo-
rithmically. Our main contribution consists in proving that recognizability by
⍟-monoids/algebras corresponds effectively to definability in MSO logic, exactly
as it happens for regular languages of finite words and ω-words:

The languages recognized by ⍟-monoids are the same as the languages
definable in MSO logic.

Prior results (see related work below) also focused on MSO logic over count-
able linear orderings and similar correspondences with algebraic structures, but
mostly from the point of view of decidability of the logical theory. Our study
gives a deeper insight on the expressive power of MSO logic on these struc-
tures. For example, as a by-product of our results we obtain that the quantifier
hierarchy of MSO logic collapses to its second level:

Every language of countable words defined in MSO logic can be equally
defined in the ∃∀-fragment.

The above result is reminiscent of the collapse of MSO to its existential fragment
when interpreted over ω, as shown by Büchi in [6]. We also show that our collapse
result is optimal, in the sense that the first level of the quantifier hierarchy does
not capture the full expressive power of MSO logic on countable linear orderings.
This situation is also very similar to the setting of regular languages of infinite
trees, where a collapse of MSO at the second level holds [20]. Despite this
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similarity and the fact that recognizable languages of countable words are MSO-
interpretable from regular languages of infinite trees, our collapse result does
not follow immediately from Rabin’s result. Indeed, an MSO-interpretation may
exploit second-order quantifications to define linear orderings inside infinite trees.

Our investigation on recognizability by ⍟-monoids provides also new insights
on the type of properties that can be expressed in MSO logic over uncountable
linear orderings. For example, we consider the following question that was raised
and left open by Gurevich and Rabinovich in [14]:

Given a property for sets of rational numbers that is MSO-definable
in the real line, is it possible to define it directly in the rational line?
In other words, is it true that the presence of reals ‘at the background’
does not increase the expressive power of MSO logic?

We answer positively the above question by building up on the correspondence
between MSO-definability and recognizability by ⍟-monoids. The latter expres-
siveness result is inherently non-effective since the MSO theory of the real line
is undecidable [24], while that of the rational line is decidable.

Finally, we establish an interesting correspondence between MSO-definability
of languages of (possibly infinite) trees and MSO-definability of their yields:

Define the yield of a tree as the set of leaves ordered by the infix
relation. Consider an MSO-definable tree language L that is yield-
invariant, namely, such that for all trees t, t′ with the same yield, t ∈ L
iff t′ ∈ L. The set of yields of trees in L is effectively MSO-definable.

In [25] a similar result was shown in the restricted setting of finite trees.

Related work. Büchi initiated the study of MSO logic using the tools of lan-
guage theory. He established that every language of ω-words (i.e., the particular
case of words indexed by the ordinal ω) definable in MSO logic is effectively
recognized by a suitable form of automaton [6]. A major advance was obtained
by Rabin, who extended this result to infinite trees [20]. One consequence of Ra-
bin’s result is that MSO logic is decidable over the class of all countable linear
orderings. Indeed, every linear ordering can be seen as a set of nodes of the infi-
nite tree, with the order corresponding to the infix ordering on nodes. Another
proof of the decidability of the MSO theory of countable linear orderings has
been given by Shelah using the composition method [24]. This automaton-free
approach to logic is based on syntactic operations on formulas and is inspired
from Feferman and Vaught [12]. The same paper of Shelah is also important
for another result it contains: the undecidability of the MSO theory of the real
line (the reals with order). However, for infinite words as for infinite trees, the
theory is much richer than simply the decidability of MSO logic. In particular,
MSO logic is known to be equivalent to a number of different formalisms, such as
automata, some forms of algebras, and, in the ω-word case, regular expressions.
MSO logic is also known to collapse to its existential fragment when interpreted
on the linear order ω, that is, every formula is equivalent to a formula consisting
of a block of existential quantifiers followed by a first-order formula.

Another branch of research has been pursued to raise the equivalence between
logic, automata, and algebra to infinite words beyond ω-words. In [5], Büchi
introduced ω1-automata on transfinite words to prove the decidability of MSO
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logic for ordinals less than ω1. Besides the usual transitions, ω1-automata are
equipped with limit transitions of the form P → q, with P set of states, which are
used in a Muller-like way to process words indexed over ordinals. Büchi proved
that these automata have the same expressive power as MSO logic over ordinals
less than ω1. The key ingredient is the closure under complementation of ω1-
automata. In [2], ω1-automata have been extended to ◇-automata by introducing
limit transitions of the form q → P to process words over linear orderings. In
[22], ◇-automata are proven to be closed under complementation with respect
to countable and scattered linear orderings (a linear ordering is scattered if it is
nowhere dense, namely, if none of its suborders is isomorphic to the rational line).
More precisely, ◇-automata have the same expressive power as MSO logic over
countable and scattered linear orderings [1]. However, it was already noticed in
[1] that ◇-automata are strictly weaker than MSO logic over countable (possibly
non-scattered) linear orderings: indeed, the closure under complementation fails
as there is an automaton that accepts all words with non-scattered domains,
whereas there is none for scattered words.

Some of the results presented here appeared in preliminary form in the con-
ference papers [7] and [9].

Structure of the paper. After the preliminaries in Section 2, we introduce in
Section 3 the notions of ⍟-monoids and ⍟-algebras, and present the correspond-
ing tools and results. In Section 4 we translate MSO formulas to ⍟-algebras
and in Section 5 we establish the converse. In Section 6 we exploit the devel-
oped algebraic framework to solve three open problems that we discussed earlier,
namely: (i) the collapse of the quantifier hierarchy of MSO logic, (ii) the corre-
spondence between classical MSO-definability and definability with the reals ‘at
the background’, and (iii) the MSO-definability of the set of yields induced by a
regular yield-invariant tree language.

Acknowledgements. We are grateful to Achim Blumensath for his numerous
comments on this work and to Alexander Rabinovich for the discussions on the
subject and for introducing us to the question of definability with the reals at
the background.

§2. Preliminaries. In this section we recall some definitions for linear or-
derings, condensations, words, and languages.

2.1. Linear orderings. A linear ordering α = (X,<) is a set X equipped
with a total order <. By a slight abuse of terminology, we call a linear ordering
countable when its domain is finite or countable. We write α∗ to denote the
reverse linear ordering (X,>). Two linear orderings have same order type if
there is an order-preserving bijection between their domains. We denote by ω,
ω∗, ζ, η the order types of (N,<), (−N,<), (Z,<), (Q,<), respectively. Unless
strictly necessary, we do not distinguish between a linear ordering and its order
type.

Given a subset I of a linear ordering α, we denote by α∣I the induced subor-
dering. Given two subsets I, J of α, we write I < J iff x < y for all x ∈ I and all
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y ∈ J . A subset I of α is said to be convex if for all x, y ∈ I and all z ∈ α, x < z < y
implies z ∈ I.

The sum α1+α2 of two linear orderings α1 = (X1,<1) and α2 = (X2,<2) (up to
renaming, assume that X1 and X2 are disjoint) is the linear ordering (X1⊎X2,<),
where < coincides with <1 on X1, with <2 on X2, and, furthermore, it satisfies
X1 < X2. More generally, given a linear ordering α = (X,<) and, for each i ∈ X,
a linear ordering βi = (Yi,<i) (assume that the sets Yi are pairwise disjoint), we
define the sum ∑i∈α βi to be the linear ordering (Y,<′), where Y = ⊎i∈X Yi and,
for every i, j ∈ X, every x ∈ Yi, and every y ∈ Yj , x <′ y iff either i = j and x <i y
hold or i < j holds.

A subset I of a linear ordering α is dense in α if for every x < y ∈ α, there
exists z ∈ I such that x < z < y. For example, (Q,<) is dense in (R,<) and
(R,<) is dense in itself. If a linear ordering α is dense in itself, then we simply
say that α is dense. A linear ordering α is scattered if all its dense suborderings
are empty or singletons. For example, (N,<), (Z,<), and all the ordinals are
scattered. Being scattered is preserved under taking a subordering. A scattered
sum of scattered linear orderings also yields a scattered linear ordering.

Additional material on linear orderings can be found in [23].

2.2. Condensations. A standard way to prove properties of linear orderings
is to decompose them into basic objects (e.g., finite sequences, ω-sequences,
ω∗-sequences, and η-orderings). This can be done by exploiting the notion of
condensation.

Precisely, a condensation of a linear ordering α is an equivalence relation ∼
over α such that for all x < y < z, x ∼ z implies x ∼ y ∼ z. Equivalently, a
condensation of α can be seen as a partition of α into convex subsets.

The order on α induces a corresponding order on the quotient α/∼, which
is called the condensed ordering. This condensed ordering α/∼ inherits some
properties from α: if α is countable (resp., scattered), then α/∼ is countable
(resp., scattered).

2.3. Words and languages. We use a generalized notion of word, which
coincides with the notion of labelled linear ordering. Given a linear ordering α
and a finite alphabet A, a word over A with domain α is a mapping of the form w ∶
α → A. The domain of a word w is denoted dom(w). Unless specifically required,
we shall always consider words of countable domain, and up to isomorphism. The
set of all words (of countable domain) over an alphabet A is denoted A⍟. The
set of all words of non-empty (countable) domain over an alphabet A is denoted
A⊕. Given a word w and a subset I of dom(w), we denote by w∣I the subword
resulting from restricting the domain of w to I. If in addition I is convex, then
w∣I is said to be a factor of w.

Certain words will play a crucial role in the sequel, so we introduce specific
notation for them. For example, we denote the empty word by ε. A word w is
said to be an η-shuffle of set A of letters if (i) the domain dom(w) has order type
η and (ii) for every symbol a ∈ A, the set w−1(a) = {x ∈ dom(w) ∣ w(x) = a} is
dense in dom(w). Recall that η is – up to isomorphism – the unique countable
dense linear ordering with no end-points. Likewise, for every finite set A, there
is a unique, up to isomorphism, η-shuffle of A.
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Given two words u, v, we denote by uv the concatenation of u and v, namely,
the word with domain dom(u) + dom(v), where each position x ∈ dom(u) (resp.,
x ∈ dom(v)) is labelled by u(x) (resp., v(x)). This is readily generalized to
infinite concatenations of the form ∏i∈αwi, for any linear ordering α and any
sequences of words (wi)i∈α, the resulting word having domain ∑i∈α dom(wi).
The ω-power of a word w is defined as wω = ∏i∈ω w. Similarly, we define the

ω∗-power wω
∗

= ∏i∈ω∗w. By a slight abuse of terminology, we also define the
η-shuffle of a tuple of words w1, . . . ,wk as the word

{w1, . . . ,wk}η =def ∏
i∈η
wf(i)

where f is the unique η-shuffle of the set of letters I = {1, . . . , k}.
A ⍟-language (resp., ⊕-language) is any set of words (resp., non-empty words)

over a fixed finite alphabet. The operations of concatenation, ω-power, ω∗-power,
η-shuffle, etc. are extended to languages in the obvious way.

§3. Algebras for countable words. In this section we present the algebraic
objects that are suited for deriving a notion of recognizability for languages of
countable words. As it was already the case for words with domain ω, [19, 28],
our definitions come in two flavors, ⍟-monoids (corresponding to ω-monoids)
and ⍟-algebras (corresponding to Wilke’s algebras). We prove the equivalence
of the two notions when the supports are finite.

3.1. Countable products. We introduce below a notion of product indexed
by countable linear orderings that satisfies a generalized associativity property.

Definition 3.1. A (generalized) product over a set S is a function π from S⊕

to S such that, for every a ∈ S, π(a) = a and, for every family of words (ui)i∈α ∈
(S⊕)⊕,

π(∏i∈α π(ui)) = π(∏i∈α ui) .(generalized associativity)

The pair (S,π) is called a ⊕-semigroup.
If the same definition holds, with π function from S⍟ to S and (ui)i∈α ∈ (S⍟)⍟,
then (S,π) is called a ⍟-monoid.

As an example, the function ∏ that maps any countable sequence of non-
empty words to their concatenation is a generalized product over A⊕. Hence,
(A⊕,∏) is a ⊕-semigroup; it is indeed the free ⊕-semigroup generated by A.
Similarly, (A⍟,∏) is the free ⍟-monoid generated by A.

Given a ⊕-semigroup (S,π), we call neutral element an element 1 ∈ S such
that, for every word w ∈ S⊕, if w∣≠1 is the subword of w obtained by removing
every occurrence of the element 1 and w∣≠1 is non-empty, then π(w) = π(w∣≠1).
Note that the neutral element, if exists, is unique: given two neutral elements
1,1′ ∈ S, we have 1 = π(1) = π(11′∣≠1′) = π(11′) = π(11′∣≠1) = π(1′) = 1′.

At some places in the proofs it will be necessary to use ⊕-semigroups rather
than ⍟-monoids. The two notions are however very close. On the one hand,
any ⍟-monoid (S,π) can be seen as a ⊕-semigroup by simply restricting its
generalized product π to S⊕. On the other hand, any ⊕-semigroup (S,π) can be
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extended to a ⍟-monoid either by letting π(ε) = 1, where ε is the empty word and
1 is the (unique) neutral element of (S,π), or, if (S,π) has no neutral element,
by introducing a fresh element 1 /∈ S and by letting π(ε) = 1 and π(w) = π(w∣≠1)
for all words w over S ⊎ {1}.

A morphism from a ⊕-semigroup (S,π) to another ⊕-semigroup (S′, π′) is a
mapping h ∶ S → S′ such that, for every word (wi)i∈α ∈ S⊕,

h(π(w)) = π′(h̄(w)) ,

where h̄ is the pointwise extension of h to words. A morphism of ⍟-monoids is
defined similarly, this time with (wi)i∈α ∈ S⍟.

A ⊕-language L ⊆ A⊕ is recognizable by a ⊕-semigroup if there exists a mor-
phism h from (A⊕,∏) to some finite ⊕-semigroup (S,π) (here finite means that S
is finite) such that L = h−1(F ) for some F ⊆ S (equivalently, h−1(h(L)) = L).
Similarly, a ⍟-language L ⊆ A⍟ is recognizable by a ⍟-monoid if there ex-
ists a morphism h from (A⍟,∏) to some finite ⍟-monoid (M,π) (here finite
means that M is finite) such that L = h−1(F ) for some F ⊆ M (equivalently,
h−1(h(L)) = L).

We are mainly interested in languages recognizable by finite ⍟-monoids. How-
ever, it is worth noticing that, with respect to membership of non-empty words,
this notion is the same as recognizability by finite ⊕-semigroups: indeed, a lan-
guage L is recognizable by finite ⍟-monoids iff L ∖ {ε} is recognizable by finite
⊕-semigroups.

3.2. From countable products to algebras. The notion of recognizability
for ⍟-languages makes use of a product function π that needs to be represented, a
priori, by an infinite table. This is a not usable as it stands for finite presentations
of languages, nor for decision procedures. That is why, given a finite ⊕-semigroup
(S,π), we define the following (finitely presentable) algebraic operators:

● the binary product ⋅ ∶ S2 → S, mapping any pair of elements a, b ∈ S to the
element π(ab),

● the τ -iteration τ ∶ S → S, mapping any element a ∈ S to the element π(aω)
(thus, τ is the analogous of the ω-power inside S),

● the τ∗-iteration τ∗ ∶ S → S, mapping any element a ∈ S to the element

π(aω
∗

) (thus, τ∗ is the analogous of the ω∗-power inside S),
● the κ-iteration κ ∶ P(S) ∖ {∅} → S, mapping any non-empty subset

{a1, . . . , ak} of S to the element π({a1, . . . , ak}η) (κ is the analogous of
the η-shuffle inside S).

Furthermore, if (S,π) is a ⍟-monoid, we see the neutral element as a nullary
operator induced by π, namely, as 1 = π(ε). One says that ⋅, τ , τ∗, κ (and
possibly 1) are induced by π. From now on, we shall use the operator ⋅ with infix
notation (e.g., a ⋅ b) and the operators τ , τ∗, and κ with superscript notation
(e.g., aτ , {a1, . . . , ak}κ). As shown below, the resulting structures (S, ⋅, τ , τ∗, κ)
(S,1, ⋅, τ , τ∗, κ) have the property of being, respectively, a ⊕-algebra and a ⍟-
algebra.

Definition 3.2. A structure (S, ⋅, τ , τ∗, κ), with ⋅ ∶ S2 → S, τ , τ∗ ∶ S → S, and
κ ∶ P(S) ∖ {∅}→ S, is called a ⊕-algebra if:
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(A1) (S, ⋅) is a semigroup, namely, for every a, b, c ∈ S, a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c,
(A2) τ is compatible to the right, namely, for every a, b ∈ S and every n > 0,

(a ⋅ b)τ = a ⋅ (b ⋅ a)τ and (an)τ = aτ ,
(A3) τ∗ is compatible to the left, namely, for every a, b ∈ S and every n > 0,

(b ⋅ a)τ
∗

= (a ⋅ b)τ
∗

⋅ a and (an)τ
∗

= aτ
∗

,
(A4) κ is compatible with shuffles, namely, for every non-empty subset P of S,

every element c in P , every subset P ′ of P , and every non-empty subset
P ′′ of {Pκ, a ⋅ Pκ, Pκ ⋅ b, a ⋅ Pκ ⋅ b ∣ a, b ∈ P}, we have

Pκ = Pκ ⋅ Pκ = Pκ ⋅ c ⋅ Pκ

= (Pκ)τ = (Pκ ⋅ c)τ

= (Pκ)τ
∗

= (c ⋅ Pκ)τ
∗

= (P ′ ∪ P ′′)κ .

A ⍟-algebra (M,1, ⋅, τ , τ∗, κ) is a ⊕-algebra (M, ⋅, τ , τ∗, κ) with a distinguished
element 1 ∈M such that

(A5) x ⋅ 1 = 1 ⋅ x = x, 1τ = 1τ
∗

= {1}κ = 1, and Pκ = (P ∪ {1})κ, for all x ∈M
and all non-empty P ⊆M .

The typical ⊕-algebras and ⍟-algebras are:

Lemma 3.3. For every alphabet A, (A⊕, ⋅, ω, ω∗, η) is a ⊕-algebra and
(A⍟, ε, ⋅, ω, ω∗, η) is a ⍟-algebra1.

Proof. By a systematic analysis of Axioms A1-A5. ⊣
Furthermore, as we mentioned above, every ⊕-semigroup induces a ⊕-algebra

and every ⍟-monoid induces a ⍟-algebra:

Lemma 3.4. For every ⊕-semigroup (S,π), (S, ⋅, τ , τ∗, κ) is a ⊕-algebra, where
the operators ⋅, τ , τ∗, and κ are those induced by π. Similarly every ⍟-monoid
(S,π), (S,1, ⋅, τ , τ∗, κ) is a ⍟-algebra, where the operators ⋅, τ , τ∗, κ, and 1 are
those induced by π.

Proof. The results are simply inherited from Lemma 3.3 by morphism.
Let (S,π) be a ⊕-semigroup inducing the operators ⋅, τ , τ∗, κ. The struc-
ture (S⊕,∏) is also a ⊕-semigroup, which induces the operations of concate-
nation, ω-power, ω∗-power, and η-shuffle. Furthermore, the product π can be
seen as a surjective morphism from (S⊕,∏) to (S,π) (just a morphism of ab-
stract algebras, not of ⊕-algebras). By definition of ⋅, τ , τ∗, κ, this morphism
maps concatenation to ⋅, ω-power to τ -iteration, ω∗-power to τ∗-iteration, and
η-shuffle to κ-iteration. It follows that any equality involving concatenation, ω-
power, ω∗-power, and η-shuffle is also satisfied by the analogous operations ⋅, τ ,
τ∗, and κ. In particular, the axioms that, thanks to Lemma 3.3, are satisfied by
the ⊕-algebra (S⊕, ⋅, ω, ω∗, η) are directly transferred to (S, ⋅, τ , τ∗, κ). The case
of a ⍟-monoid is similar. ⊣

1Similarly to what happens for Wilke’s algebras [28], (A⊕, ⋅, ω, ω∗, η) is not the free ⊕-algebra
generated by A, as the free algebra generated by a finite set is by definition countable, while

A⊕ has the cardinality of the continuum.
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3.3. From algebras to countable products. Here, we aim at proving a
converse to Lemma 3.4, namely, that every finite ⊕-algebra (S, ⋅, τ , τ∗, κ) can
be uniquely extended to a ⊕-semigroup (S,π), and similarly for ⍟-algebras and
⍟-monoids (Theorem 3.11 and Corollary 3.12).

Let us fix a finite ⊕-algebra (S, ⋅, τ , τ∗, κ). In this section, we assume that all
words are over the alphabet S. The objective of the construction is to attach to
each word u (over the alphabet S) a ‘value’ in S. Furthermore, this value needs
to be shown unique.

The key ingredient for associating a unique value in S to each word u ∈ S⊕ is the
notion of evaluation tree. Intuitively, this is an infinite tree describing a strategy
for evaluating larger and larger factors of the word u. To define these objects, we
need to first introduce the concept of condensation tree, which is a convenient
representation of nested condensations of a linear ordering. This will provide
the underlying structure of an evaluation tree. The nodes of a condensation tree
are convex subsets of the linear ordering and the descendant relation is given by
inclusion. The set of children of each node defines a condensation. Furthermore,
in order to provide an induction parameter, we require that the branches of a
condensation tree are finite (but their length may not be uniformly bounded).

Definition 3.5. A condensation tree over a linear ordering α is a set T of
non-empty convex subsets of α such that:

● α ∈ T ,
● for all I, J in T , either I ⊆ J or J ⊆ I or I ∩ J = ∅,
● for all I ∈ T , the union of all J ∈ T such that J ⊊ I is either I or ∅,
● every subset of T totally ordered by inclusion is finite.

Elements in T are called nodes. The node α is called the root of the tree. Nodes
minimal for ⊆ are called leaves; the other nodes, including the root, are called
internal nodes. A node I ∈ T is a descendant of a node J ∈ T (and accordingly
J is an ancestor of I) if I ⊆ J . If in addition we have I ≠ J , then we say that I
is a proper descendant of J . Similarly, I is a child of a node J (and accordingly
J is the parent of I) if I ⊊ J and, for all K ∈ T , I ⊊K implies J ⊆K. According
to the definition, if I is an internal node of a condensation tree T over α, then it
has a set of children that forms a partition of I into convex subsets. We denote
this partition by childrenT (I), and we observe that it naturally corresponds to a
condensation of α∣I . When the tree T is clear from the context, we will denote by
children(I) the set of all children of I in T and, by extension, the corresponding
condensation and the corresponding condensed ordering. Finally, we define the
subtree of T rooted at some of node I of it as the condensation tree obtained by
restricting T to the descendants of I (including I itself).

We now introduce evaluation trees. Intuitively, these are condensation trees
where each internal node has an associated value in S that can be ‘easily com-
puted’ from the values of its children. Here it comes natural to consider a word

u ‘easy to compute’ if it is isomorphic to either ab, aω, aω
∗

, or P η, for some
elements a, b ∈ S and some non-empty set P ⊆ S. Indeed, in each of these cases,
the value of u can be computed by a single application of the operations of the
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⊕-algebra (S, ⋅, τ , τ∗, κ). Formally, the words that are easily computable are pre-
cisely those that belong to the domain of the partial function π0, defined just
below:

Definition 3.6. Let π0 be the partial function from S⊕ to S such that:

● π0(ab) = a ⋅ b for all a, b ∈ S,
● π0(eω) = eτ for all idempotents e ∈ S (i.e., all e ∈ S such that e ⋅ e = e),

● π0(eω
∗

) = eτ
∗

for all idempotents e ∈ S,
● π0(P η) = Pκ for all non-empty sets P ⊆ S,
● in all remaining cases, π0 is undefined.

Definition 3.7. An evaluation tree over a word u is a pair T = (T, γ), where
T is a condensation tree over the domain of u and γ is a function from T to S
such that:

● every leaf of T is a singleton of the form {x} and γ({x}) = u(x),
● for every internal node I of T , the partial function π0 is defined on the

word γ(children(I)) that has domain children(I) and labels each position
J ∈ children(I) with γ(J); in addition, we have γ(I) = π0(γ(children(I)).

The value of (T, γ) is defined to be γ(α), i.e., the value of the root.

Let us turn back to the problem of associating a unique value in S to each
word u ∈ S⍟. Based on the previous definitions, we can solve this problem in
two steps. First, we show that every word u has an evaluation tree, and thus a
possible value that can be associated with it. Then, we show that the associated
value in fact does not depend on the choice of the evaluation tree over u, namely,
that evaluation trees over the same word induce the same value. The next two
propositions formalize precisely these two steps.

Proposition 3.8. For every word u, there exists an evaluation tree over u.

Proposition 3.9. Evaluation trees over the same word have the same value.

The proofs of the two propositions are quite technical and deferred to Sections
3.4 and 3.5, respectively. Before seeing those proofs in detail, we discuss the basic
ingredients here. We then conclude the section by mentioning a few important
consequences of the developed framework.

The proof of Proposition 3.8 resembles the construction used by Shelah in his
proof of decidability of the monadic second-order theory of countable linear or-
derings [24]. In particular, it uses a theorem of Ramsey [21] and a lemma stating
that every non-trivial word indexed by a countable dense linear ordering has an
η-shuffle as a factor. Note that this latter lemma, and hence also Proposition
3.8, relies on the fact that the domain of the word is countable. The proof of the
proposition also makes use of Zorn’s Lemma (or equally, the Axiom of Choice),
so it is a proof in ZFC. On the other hand, we observe that it does not make
any use of Axioms A1-A4.

Proposition 3.9 can be regarded as the core contribution of the paper, and its
proof technique is quite original. For example. as opposed to Proposition 3.8,
one cannot find any ingredient of the proof of Proposition 3.9 in [24]. The proof
heavily relies on the use of Axioms A1-A4. As a matter of fact, each axiom
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can be seen as an instance of Proposition 3.9 in some special cases of evaluation
trees of small height. The proof also depends on Proposition 3.8, in the sense
that is exploits in several places the existence of evaluation trees over arbitrary
(countable) words.

Another key ingredient for the proof of Proposition 3.9, which is also reused in
other proofs, is the formalization of a suitable induction principle on condensa-
tion and evaluation trees. More precisely, by exploiting the fact that all branches
of a condensation tree are finite, one can associate with any condensation tree T
a countable ordinal rank(T ), called the rank of T . Intuitively, this is the smallest
ordinal β that enables a labelling of the nodes of T by ordinals less than or equal
to β in such a way that the label of each node is strictly greater than the labels
of its children.

Lemma 3.10. It is possible to associate with each condensation tree T a count-
able ordinal rank(T ) in such a way that rank(T ′) < rank(T ) for all subtrees T ′ of
T rooted at proper descendants of the root.

Proof. We associate with each node I ∈ T a countable ordinal βI as follows.
For every leaf I of T , let βI = 0. Then, given an internal node I of T , we
assume that βJ is defined for every child J of I, and we define βI as the ordinal
sup{βJ + 1 ∣ J ∈ children(I)} (note that this is either a successor ordinal or a
limit ordinal, depending on whether the set {βJ + 1 ∣ J ∈ children(I)} has a
maximum element or not). Since T has no infinite branch, it follows that βI is
defined for every node of T . We thus let rank(T ) = βI , where I is the root of
T . By construction, the function rank that maps any condensation tree T to its
rank rank(T ) satisfies the properties stated in the lemma. ⊣

Now, assuming that Propositions 3.8 and 3.9 hold, we can prove the desired
correspondence between ⊕-semigroups and ⊕-algebras:

Theorem 3.11. Every finite ⊕-algebra (S, ⋅, τ , τ∗, κ) is induced by a unique
product π from S⊕ to S.

Proof. Given a word w with domain α, one defines π(w) to be the value of
some evaluation tree over w (the evaluation tree exists by Proposition 3.8 and
the value π(w) is unique by Proposition 3.9).

We prove that π satisfies the generalized associativity property. Let ∼ be a con-
densation of the domain α. For all classes I ∈ α/∼, let TI be some evaluation tree
over w∣I . Let also T ′ be some evaluation tree over the word w′ =∏I∈α/∼ π(w∣I).
One constructs an evaluation tree T over w by first lifting T ′ from the lin-
ear ordering α/∼ to α (this is done by replacing each node J in T ′ by ⋃J)
and then substituting each leaf of T ′ corresponding to some class I ∈ α/∼ with
the evaluation tree TI . The last step is possible (namely, respects the defini-
tion of evaluation tree) because the value of each evaluation tree TI is π(w∣I),
which coincides with the value w′(I) at the leaf I of T ′. By Proposition 3.9,
the resulting evaluation tree T has the same value as T ′ and this proves that
π(w) = π (∏I∈α/∼ π(w∣I)).

It remains to prove that the above choice of π indeed induces the operators
⋅, τ , τ∗, κ. This is done by a straightforward case analysis. ⊣
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The result that we just proved immediately implies an analogous correspon-
dence between ⍟-monoids and ⍟-algebras:

Corollary 3.12. Every finite ⍟-algebra (M,1, ⋅, τ , τ∗, κ) is induced by a
unique product π from M⍟ to M .

Finally, we discuss the algorithmic implications of the above results. In the
same way as we talked of languages recognized by finite ⍟-monoids, we can
equally talk of languages recognized by finite ⍟-algebras. Moreover, because fi-
nite ⍟-algebras are finite objects, this enables the possibility of manipulating and
reasoning on recognized languages by means of algorithms. An example of such
a possibility is given just below, in a theorem that shows the decidability of the
emptiness problem for languages recognized by finite ⍟-algebras. The theorem
also gives effective witnesses of non-empty languages, in the same spirit as some
results of Laüchli and Leonard for models of first-order logic and weak monadic
second-order logic [17, 18]. Other examples of algorithmic manipulation of lan-
guages can be found in Section 4, where we will prove some closure properties
of languages recognized by finite ⍟-algebras.

Theorem 3.13. The problem of testing whether L ≠ ∅ for any language L ⊆
A⍟ recognized by a given finite ⍟-algebra is decidable. Moreover, if L ≠ ∅, then
a finite expression can be effectively constructed that represents some word in L
and is generated by the following grammar:

w ∶∶= ε ∣ a ∣ w ⋅ w ∣ wω ∣ wω
∗

∣ {w, . . . ,w}η for a ∈ A.

Proof. Recall that a language L ⊆ A⍟ is recognized by a ⍟-algebra
(M,1, ⋅, τ , τ∗, κ) if there is F ⊆ M and a morphism h ∶ (A⍟,∏) → (M,π) such
that L = h−1(F ), where (M,π) is the ⍟-monoid induced by (M,1, ⋅, τ , τ∗, κ)
(Corollary 3.12). To decide the emptiness problem, it is sufficient to describe an
algorithm that, given (M,1, ⋅, τ , τ∗, κ) and h ∶ A → M (which uniquely extends
to a function from (A⍟,∏) to (M,π)), computes the set

h(A⍟) = {1} ∪ {h(u) ∣ u ∈ A⍟}

(note that L = h−1(F ) ≠ ∅ iff h(A⍟) ∩ F ≠ ∅).
To compute the set h(A⍟), one can simply saturate the subset {1} ∪ h(A)

of M under the operations ⋅, τ , τ∗, κ. Formally, given S ⊆ M , we define the
set generated by S in (M,1, ⋅, τ , τ∗, κ) as the least set ⟨S⟩ that contains S and
satisfies the following closure properties:

● if a, b ∈ ⟨S⟩, then a ⋅ b ∈ ⟨S⟩,
● if a ∈ ⟨S⟩, then aτ ∈ ⟨S⟩,
● if a ∈ ⟨S⟩, then aτ

∗

∈ ⟨S⟩,
● if ∅ ≠ P ⊆ ⟨S⟩, then Pκ ∈ ⟨S⟩.
Clearly, the set ⟨S⟩ can be easily computed from S.

Below we prove that the set generated by {1} ∪ h(A), denoted ⟨{1} ∪ h(A)⟩,
coincide with h(A⍟). First, it is easy to see that ⟨{1} ∪ h(A)⟩ ⊆ h(A⍟), since

{1}∪h(A) ⊆ h(A⍟) and containments in h(A⍟) are preserved under all operations
of the saturation. The opposite containment h(A⍟) ⊆ ⟨{1} ∪ h(A)⟩ follows by
Proposition 3.8 and some inductive argument. More precisely, one first observes
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that the value h(w) of any word w ∈ A⍟ is the same as witnessed by some
evaluation tree Tw. Then, one exploits a simple induction on Tw – in fact, on the
rank of the underlying condensation tree – to verify that the set ⟨{1} ∪ h(A)⟩
contains the value of Tw.

The above arguments show that the set h(A⍟) = ⟨{1}∪h(A)⟩ can be effectively
constructed by a saturation procedure. To conclude, we observe that this pro-
cedure implicitly associates with each element of ⟨{1} ∪ h(A)⟩ a corresponding
finite expression, as generated by the grammar of the claim. ⊣

3.4. Existence of evaluation trees. We introduce a few additional ingre-
dients for the proof of Proposition 3.8, namely, for showing the existence of
evaluation trees over any word. We begin with a variant of Ramsey’s theorem
for additive labellings. Recall that (S, ⋅, τ , τ∗, κ) is a finite ⊕-algebra and, in
particular, (S, ⋅) is a finite semigroup.

Definition 3.14. Let (S, ⋅) be a semigroup. An additive labelling is a func-
tion f that maps any two of points x < y in a linear ordering α to an element
f(x, y) in S in such a way that, for all x < y < z, f(x, y) ⋅ f(y, z) = f(x, z).

Lemma 3.15 (Ramsey [21]). Given a linear ordering α with a minimum ele-
ment � and no maximum element, and given an additive labelling f ∶ α × α →
(S, ⋅), there exist an ω-sequence � < x1 < x2 < . . . of points in α and two elements
a, e ∈ S such that:

● for all y ∈ α, there is xi > y,
● for all i > 0, f(�, xi) = a,
● for all j > i > 0, f(xi, xj) = e.

Note that the conditions in the above lemma imply that e is an idempotent:
indeed, we have e ⋅ e = f(xi, xi+1) ⋅ f(xi+1, xi+2) = f(xi, xi+2) = e.

In the same spirit of Lemma 3.15, the following lemma shows that every count-
able dense word contains an η-shuffle as a factor. Even though this result appears
already in [24], we give a proof of it for the sake of self-containment.

Lemma 3.16 (Shelah [24]). Every word indexed by a non-empty non-singleton
countable dense linear ordering contains a factor that is an η-shuffle.

Proof. Let α be a non-empty non-singleton countable dense linear ordering,
let A = {a1, . . . , an} be a generic alphabet, and let w be a word over A with
domain α. For the sake of brevity, given a symbol a ∈ A, we denote by w−1(a)
the set of all points x ∈ α such that w(x) = a. We then define w0 = w and A0 = ∅,
and we recursively apply the following construction for each index 1 ≤ i ≤ n:

Ai =
⎧⎪⎪⎨⎪⎪⎩

Ai−1 ∪ {ai} if w−1
i (ai) is dense in dom(wi),

Ai−1 otherwise,

wi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wi−1 if w−1
i (ai) is dense in dom(wi),

wi−1∣I otherwise, where I is any open non-empty

convex subset of α such that w−1(ai) ∩ I = ∅.
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By construction, the domain of the factor wn is non-empty, non-singleton, count-
able, and dense. Moreover, for all symbols a ∈ A, either w−1

n (aj) is dense in
dom(wn) or empty, depending on whether a ∈ An or not.This shows that wn is
an η-shuffle of the set An. ⊣

We are now ready to prove Proposition 3.8:

Proof of Proposition 3.8. Let u be a word with countable domain α. We
say that a convex subset I of α is definable if there is an evaluation tree over
the factor u∣I . Similarly, we say that I is strongly definable if every non-empty
convex subset J of I is definable. We first establish the following claim:

Claim. For every ascending chain I0 ⊆ I1 ⊆ . . . of strongly definable convex
subsets of α, the limit I = ⋃i∈N Ii is strongly definable.

Proof of claim. Let J be a non-empty convex subset of I and let Ji = Ii∩J
for all i ∈ N. We prove that J = ⋃i∈N Ji is definable, namely, we show how to
construct an evaluation tree over the factor u∣J . Without loss of generality we
assume that the Ji’s are non-empty. Note that all the Ji’s are strongly definable.
Of course, if the sequence of the Ji’s is ultimately constant, then J = Ji for a
sufficiently large i ∈ N and the existence of an evaluation tree over u∣J follows
trivially from the fact that Ji is strongly definable. We now consider the case
when all the Ji’s coincide on the left. We can partition J into a sequence of
convex subsets K0 < K1 < . . . , where K0 = J0 and Ki+1 = Ji+1 ∖ Ji for all i ≥ 1.
The convex subsets Ki form a condensation of J such that Ji =K0∪. . .∪Ki for all
i ∈ N. For every i < j in N, we define Ki,j =Ki ∪ . . .∪Kj−1. We recall that every
convex Jj , as well as every convex subset Ki,j of it, is strongly definable. We can
thus associate with each Ki,j an evaluation tree Ti,j over u∣Ki,j . We denote by ci,j
the value of Ti,j . Using Lemma 3.15 (i.e., Ramsey’s Theorem), one can extract
a sequence 0 < i1 < i2 < . . . in ω such that ci1,i2 = ci2,i3 = . . . (and moreover, this
element is an idempotent). We can then construct an evaluation tree over u∣J
that has root J and the convex subsets K0,i1 , Ki1,i2 , . . . for children, with the
associated evaluation subtrees T0,i1 , Ti1,i2 , . . . . This allows us to conclude that J
is a definable convex when the Ji’s coincide on the left. The case where the Ji’s
coincide on the right is symmetric. Finally, in the general case, we can partition
each set Ji into two subsets J ′i and J ′′i such that (i) J ′i < J ′′i , (ii) the sequence of
the J ′i ’s coincide on the right, and (iii) the sequence of the J ′′i ’s coincide on the
left. Let J ′ = ⋃i∈N J ′i and J ′′ = ⋃i∈N I ′′i . One knows by the cases above that there
exist evaluation trees over u∣J ′ and over u∣J ′′ . Finally, one can easily construct
an evaluation tree over u∣J = u∣J ′∪J ′′ out of the evaluation trees for J ′ and J ′′.
This proves that J is definable and hence I is strongly definable. ⊣

Turning back to the main proof, let us now consider the set C of all condensa-
tions C of α such that every class is strongly definable. Condensations in C are
naturally ordered by the ‘finer than’ relation. Let us consider a chain (Ci)i∈β of
condensations in C ordered by the finer than relation, i.e., for all j < i in β, Cj
is finer than Cj . Since α is countable, one can assume that β is countable, or
even better that β = ω. Let us consider the limit condensation C, i.e., the finest
condensation that is coarser than every Ci. Each class I ∈ C is the union of a
sequence of convex subsets Ii, with Ii ∈ Ci for all i ∈ N. From the assumption
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that every condensation Ci belongs to C, we get that Ii is strongly definable
and from the claim above, we conclude that I is strongly definable as well. This
shows that the limit condensation C belongs to C and hence every chain of C has
an upper bound in C.

It follows that we can apply Zorn’s Lemma and deduce that C contains a max-
imal element, say C. If C is a condensation with single class, this means that
there exists an evaluation tree over u and the proposition is established. Oth-
erwise, we shall head toward a contradiction. Consider the condensed ordering
induced by C (by a slight abuse of notation, we denote it also by C). Two cases
can happen: either C contains two consecutive classes or C is a dense linear
order.

In the former case, we fix two consecutive classes I, I ′ ∈ C, with I < I ′. We
observe that each class of C is a limit of strongly definable convexes and hence,
by the previous claim, it is also strongly definable. It is then easy to see that the
union I ∪ I ′ of the two consecutive strongly definable convexes I and I ′ is also
strongly definable, which contradicts the definition of C.

In the second case we have that the linear ordering C is dense in itself. As
before, we recall that each class of C is strongly definable and we prove that
there exist non-trivial unions of classes of C that are strongly definable (a con-
tradiction). We begin by associating with each convex subset J of a class I of
C an evaluation tree TJ over u∣J and we denote by cJ the value induced by it.
We then consider the word v = ∏I∈C cI . We know from Lemma 3.16 that that
v contains a factor that is an η-shuffle, say, v′ = v∣C′ for some convex C ′ ⊆ C.
Let J = ⋃I∈C′ I. To prove that J is strongly definable we consider a convex
K ⊆ J and we construct an evaluation tree TK over u∣K as follows. First we
observe that K is the union of all non-empty convexes of the form I ∩K, for
I ∈ C ′, and that each set I ∩K is contained in a class of C, hence it is definable
and has value cI∩K . Now, one needs to distinguish some cases depending on
whether C ′ contains minimal/maximal convexes I intersecting K. For the sake
of simplicity, we only consider the case where C ′ contains a minimal convex I0
such that I0 ∩K ≠ ∅, but no maximal convex I such that I ∩K ≠ ∅. In this
case, we recall that v′ is an η-shuffle and that its restriction to the non-empty
convexes I ∩K, with I ∈ C ′, is the juxtaposition of the singleton cI0∩K and the
η-shuffle ∏I∈C′′(cI∩K), where C ′′ = {I ∈ C ′ ∣ I ∩K ≠ ∅, I ≠ I0}. An evaluation
tree TK over u∣K can be constructed by appending to the root K two subtrees:
the evaluation tree TI0∩K associated with the definable convex I0 ∩K, and the
evaluation tree TK∖I0 that consists of the node K ∖ I0 and the direct subtrees
TI∩K , for all I ∈ C ′′. This shows that there is a non-trivial union J of classes of
C that is strongly definable, which contradicts the definition of C. ⊣

3.5. Equivalence of evaluation trees. We now turn towards proving
Proposition 3.9, namely, the equivalence of evaluation trees with respect to the
induced values. As we already mentioned, the proof is rather long and requires
a series of technical lemmas.

For reasons that will be clear in the sequel, it is convenient to extend slightly
the domain of the partial function π0 that computes values of ‘simple words’
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(cf. Definition 3.6). Intuitively, such an extension adds prefixes and suffixes of
finite length to the elements of the original domain of π0.

Definition 3.6bis. We extend the partial function π0 in such a way that:

● π0(a1 . . . an) = a1 ⋅ . . . ⋅ an for all n ≥ 1 and all a1, . . . , an ∈ S,
● π0(a bω) = a ⋅ bτ for all a, b ∈ S,

● π0(aω
∗

b) = aτ
∗

⋅ b for all a, b ∈ S,
● π0(a P η b) = a ⋅ Pκ ⋅ b for all a, b ∈ S ⊎ {ε}

(by a slight abuse of notation, we let ε ⋅ s = s ⋅ ε = s for all s ∈ S),
● in all remaining cases, π0 remains undefined.

The new definition of π0 results in a more general notion of evaluation tree. Note
that the definition of rank of an evaluation tree still applies to this generalized
notion, since the rank was in fact defined on condensation trees independently
of π0. The generalized notion of evaluation tree, together with the associated
rank, will give a strong enough invariant for having a proof by induction of the
equivalence of evaluation trees.2

The lemma below basically shows that if the (extended) partial mapping π0

is defined over a word, then it is also defined over all its factors. It is convenient
here to allow also some change of letters at the extremities of the word and
make some case distinctions for dealing with the empty word ε. This makes the
statement of the following lemma a bit more technical.

Lemma 3.17. If π0 is defined over a non-empty word of the form u c v, with
u, v ∈ S⊕ ⊎ {ε} and c ∈ S ⊎ {ε}, then it is also defined over the words u a and b v,
for all a, b ∈ S ⊎ {ε} such that a = b = ε implies c = ε. In addition, if a = b = c = ε
or a ⋅ b = c, then π0(u c v) = π0(u a) ⋅ π0(b v).

The proof of the lemma is straightforward by a case distinction, and thus omitted.

The next step consists in showing how to restrict a condensation tree to an ar-
bitrary convex subset (further along, we will lift this operation to the generalized
notion of evaluation tree):

Definition 3.18. Given a condensation tree T over a linear ordering α and
a convex subset I of α (not necessarily an element of T ), define the generalized
subtree of T rooted at I as follows:

T ∣I =def {I ∩ J ∣ J ∈ T, I ∩ J ≠ ∅}.
The above operation can be seen as a further generalization of the notion of

subtree that was given just after Definition 3.5. Below we prove that, not only
T ∣I is a valid condensation tree, but also that this operation does not increase
the rank.

Lemma 3.19. If T is a condensation tree over α and I is a convex subset of
α, then T ∣I is a condensation tree over α∩ I. Furthermore, we have rank(T ∣I) ≤
rank(T ) and (T ∣I)∣J = T ∣J for all convex subsets J of I.

2The extended definition of π0 could have been introduced straight at the beginning, in
place of Definition 3.6. Of course, all the results in the paper would still hold, but some
proofs would become slightly more involved (in particular, those that show the correspondence
between recognizability and MSO definability). This explains why we prefer to adopt a more

restrictive definition of evaluation tree, and use the extended version only here for convenient.
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Proof. We only prove that T ∣I is a condensation tree. The remaining claims
follow easily from our definitions. The property stated in the first item of Defini-
tion 3.5 follows from the fact that α ∈ T and α∩I = I ∈ T ∣I . To prove the property
in the second item, consider two convexes J,K in T . We have that either J ⊆K
or K ⊆ J or J ∩K = ∅. As a consequence, either J ∩ I ⊆ K ∩ I or K ∩ I ⊂ J ∩ I
or (J ∩ I) ∩ (K ∩ I) = ∅. Now, for the third item, consider two convexes J,K in
T such that K ∩ I ∈ T ∣I (or, equally, K ∩ I ≠ ∅) and (K ∩ I) ⊊ (J ∩ I). Since
K ∩ I is non-empty, this means that J ∩K is non-empty too. Thus, either K ⊆ J
or J ⊆ K. If J ⊆ K held, then we would have (J ∩ I) ⊆ (K ∩ I), which would
contradict (K ∩ I) ⊊ (J ∩ I). We thus conclude that K ⊆ J . It remains to verify
the property in the fourth item, namely, the fact that any subset of T ∣I that is
totally ordered by inclusion is finite. Consider such a subset C. For each J ∈ C,
define T⊇J = {K ∈ T ∣ K ∩ I ⊇ J}. By construction, T⊇J is a subset of T that
is totally ordered by inclusion. In particular, T⊇J is finite and has a minimal
element, denoted min(T⊇J). We define C ′ as the set of all convexes of the form
min(T⊇J), with J ∈ C. Since J ⊆ J ′ implies min(T⊇J) ⊆ min(T⊇J ′), we have that
C ′ is a subset of T totally ordered by inclusion, and hence C ′ is finite. Moreover,
since each convex J ∈ C can be written as min(T⊇J) ∩ I, we have that, for all
J, J ′ ∈ C, J ≠ J ′ iff min(T⊇J) ≠ min(T⊇J ′). Since C ′ is finite, we conclude that C
is finite too. ⊣

Putting together all the previous definitions and lemmas, we can show that
an evaluation tree T = (T, γ) over a word u provides not only a value for u,
but also, via restrictions to generalized subtrees, values for all the factors of u.
Intuitively, this means that the mapping γ of T can be extended to all convex
subsets I of α:

Lemma 3.20. For every evaluation tree T = (T, γ) over a word u with domain
α and every convex subset I of α, there is an evaluation tree T ∣I = (T ∣I , γI) such
that γI and γ coincide over (T ∣I) ∩ T = {J ∈ T ∣ J ⊆ I}.

In particular, by a slight abuse of notation, one can denote by γ(I) the value
associated with the convex I in the evaluation tree T ∣I (this notation is consistent
with the value associated with I in the evaluation tree T , when I ∈ T ).

Proof. Let us first assume that I is an initial segment of α, namely, for every
y ∈ I and every x ≤ y, x ∈ I. The proof is by induction on T , namely, on the
rank of the underlying condensation tree. Let C = children(α) be the top-level
condensation of T . We distinguish between two subcases.

If the condensation {I, α ∖ I} is coarser than C, then for all K ∈ T ∣I , with
K ≠ I, we have K ∈ T . Hence it makes sense to define γI(K) = γ(K). We
complete the definition by letting γI(I) = π0(γ(C ∣I)), where γ(C ∣I) is the word
with domain C ∣I = {K ∈ C ∣ K ⊆ I} and with each position J labelled by
the value γ(J) (thanks to Lemma 3.17 the function π0 is defined on the word
γ(C ∣I)). It is easy to check that the (T ∣I , γI) thus defined is an evaluation tree
over the factor u∣I and that γI and γ coincide over (T ∣I)∩T = {K ∈ T ∣ K ⊆ I}.

Otherwise, if the condensation {I, α∖I} is not coarser than C, then there exist
three convex subsets J1 < J2 < J3 of α such that (i) {J1, J2, J3} forms a partition
coarser than C, (ii) J1 ⊆ I, (iii) J3 ⊆ α ∖ I, and (iv) J2 ∈ C with J2 ∩ I ≠ ∅ and
J2 ∖ I ≠ ∅. In particular, we have that the convex J2 ∩ I is included in a proper
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descendant of the root of T , and hence by Lemmas 3.10 and 3.19 rank(T ∣J2∩I) <
rank(T ). We can thus apply the induction hypothesis to construct the evaluation
tree T ∣J2∩I = (T ∣J2∩I , γJ2∩I). Note that for every K ∈ T ∣J1 with K ≠ J1, we have
K ∈ T . Hence it makes sense to define γI(K) = γ(K). For every K ∈ T ∣J2 , we
define γI(K) = γJ2∩I(K). Finally, we let γI(I) = π0(γI(C ∣J1) γJ2∩I(J2 ∩ I))
(again this is well defined thanks to Lemma 3.17). It is easy to check that the
(T ∣I , γI) thus defined is an evaluation tree over u∣I and that γI and γ coincide
over (T ∣I) ∩ T = {K ∈ T ∣ K ⊆ I}.

The proof for the symmetric case, where I is a final segment of α, is analogous.

Finally, we consider the case where I is not an initial segment, nor a final
segment of α. In this case it is possible to write I as I1∩I2, where I1 is an initial
segment and I2 is a final segment of α. By Lemma 3.19 we have T ∣I = (T ∣I1)∣I2 ,
and hence it suffices to apply twice the cases for the initial/final segment dis-
cussed above. ⊣

Now that we have set up the basic tools for reasoning on evaluation trees
and their restrictions, we begin to exploit the axioms of ⊕-algebras to prove a
series of equivalence results. The first of these results can be seen as a form of
associativity rule for the function π0, but for which equality is required to hold
only when every expression is defined:

Lemma 3.21. For every word u of the form ∏i∈α ui, with α countable linear
ordering and ui ∈ S⊕ for all i ∈ α, if both π0(u) and π0(∏i∈α π0(ui)) are defined,
then the two values are equal.

Proof. We prove the lemma by a case analysis, namely, by distinguishing
the order type of u (recall that, since π0(u) is defined, the order type of u must
be either finite, ω, ω∗, η, 1+ η, η + 1, or 1+ η + 1). For the sake of brevity, we let
v =∏i∈α π0(ui).

If u = a1 . . . an for some a1, . . . , an ∈ S, then v has to be of the form b1 . . . bm,
for some m ≥ 1 and some b1, . . . , bn ∈ S. Since ⋅ is associative (see Axiom A1),
we obtain π0(u) = a1 ⋅ . . . ⋅ an = b1 ⋅ . . . ⋅ bm = π0(v).

If u = a eω for some a, e ∈ S, with e idempotent, then v can be either of the
form c1 . . . cm, for some m ≥ 1 and some c1, . . . , cm ∈ S, or of the form b fω,
for some b, f ∈ S, with f idempotent. If v = c1 . . . cm, say with m ≥ 2 (the case
m = 1 is trivial), then we necessarily have c1 = a ⋅ en1 = a ⋅ e for some n1 ≥ 0,
ci = eni = e for all 2 ≤ i < m − 1 and some n2, . . . , nm−1 ≥ 1, and cm = eτ .
Axioms A1 and A2 together imply e ⋅ eτ = e ⋅ (e ⋅ e)τ = (e ⋅ e)τ = eτ . We thus have
π0(u) = a ⋅ eτ = c1 ⋅ . . . ⋅ cm = π0(v). Otherwise, if v = b dω, then, as above, we get
b = a⋅en1 = a⋅e, for some n1 ≥ 0, and f = en2 = en3 = . . . = e, for some n2, n3, . . . ≥ 1.
Using Axioms A1 and A2 we finally derive π0(u) = a ⋅ eτ = b ⋅ fτ = π0(v).

The case u = eω
∗

a is just symmetric to the previous case and uses Axiom A3
instead of Axiom A2.

Finally, the most interesting case is when u = a P η b for some non-empty set
P ⊆ S and some empty or singleton words a, b ∈ S ⊎ {ε}. We further distinguish
some cases depending on the form of v:

● If v = c1 . . . cm, then the proof goes by induction on m. The interesting base
case is m = 2 (for m = 1 the claim holds trivially). We further distinguish
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between five subcases. If the first factor u1 has no last letter and the
last factor u2 has no first letter, then we have c1 = π0(u1) = a ⋅ Pκ and
c2 = π0(u2) = Pκ ⋅ b. Using Axiom A4, we get π0(u) = a ⋅ Pκ ⋅ b = (a ⋅ Pκ) ⋅
(Pκ ⋅b) = c1 ⋅c2 = π0(v). If u1 consists of a single letter, then this letter must
be a ≠ ε. Moreover, u2 cannot have a first letter and hence, as above, we
have π0(u2) = Pκ ⋅ b. We thus derive π0(u) = a ⋅Pκ ⋅ b = c1 ⋅ c2 = π0(v). If u1

has a last letter, say p, but length greater than 1, then p must belong to P
and u2 has no first letter. We thus have π0(u) = a⋅Pκ ⋅b = (a⋅Pκ ⋅p)⋅(Pκ ⋅b) =
π0(v). The cases where u2 has length 1 and where u2 has a first letter and
length greater than 1 are symmetric. Finally, the induction for m > 2 is
straightforward.

● If v = ceω, then, by distinguishing some subcases as above, one verifies that
c = π0(u1) is either a or a ⋅Pκ ⋅p, for some p ∈ P ⊎{ε}, and that e = π0(u2) =
π0(u3) = . . . is either Pκ ⋅ q or q ⋅ Pκ, for some q ∈ P ⊎ {ε}, depending on

whether u1 has a first letter or not. Depending on the various subcases,
and using Axiom A4, we derive either π0(u) = a ⋅Pκ = a ⋅ (Pκ ⋅ q)τ = π0(v),
or π0(u) = a ⋅ Pκ = (a ⋅ Pκ ⋅ p) ⋅ (Pκ ⋅ q)τ = π0(v), or π0(u) = a ⋅ Pκ =
(a ⋅ Pκ) ⋅ (q ⋅ Pκ) = π0(v).

● If v = eω
∗

c, then the claim holds by symmetry with the previous case.
● If v = c Rη d for some non-empty set R ⊆ S and some empty or singleton

words c, d ∈ S ⊎ {ε}, then we prove that R is included in P ∪ (P ⊎ {ε}) ⋅
Pκ ⋅ (P ⊎ {ε}). Let us treat first the case c = d = ε. Since v has no first
nor final letter, this implies a = b = ε. Let us consider an element r ∈ R
and a corresponding factor ui of u, with i ∈ α, such that π0(ui) = r. If
ui consists of the single letter r, then we clearly have r ∈ P . Otherwise
ui has more than one letter and, depending on the existence of a first/last
letter in ui, we get one of the four possibilities r = Pκ, r = p ⋅ Pκ, r = Pκ ⋅ q
and r = p ⋅ Pκ ⋅ q, for suitable p, q ∈ P . This proves that R is included in
P ∪ (P ⊎ {ε}) ⋅ Pκ ⋅ (P ⊎ {ε}). Using Axiom A4 we immediately obtain
π0(u) = Pκ = Rκ = π0(v). The general case where c, d ∈ S ⊎ {ε}, can be
dealt with by using similar arguments plus Axiom A1.

⊣

Corollary 3.22. Let u be a word with domain α such that π0(u) is defined
and let T = (T, γ) be an evaluation tree over u. Then π0(u) = γ(α).

Proof. We prove the claim by induction on T . If T consists of a single
node, then this node must be a leaf and α must be a singleton leaf, and hence
the claim follows immediately by definition of evaluation tree. Otherwise, let
C = children(α) be the top-level condensation. By Lemma 3.17, we know that
π0(u∣I) is defined for all I ∈ C. We can then use the induction hypothesis on the
evaluation tree T ∣I and obtain π0(u∣I) = γ(I). Finally, using Lemma 3.21, we
get π0(u) = π0(γ(C)) = γ(α). ⊣

The following series of lemmas prove equalities between the value at the root
of an evaluation tree and the values induced by π0 under different condensations
of the root. We first consider finite condensations, then ω-condensations (and,
by symmetry, ω∗-condensations), and finally η-condensations. The gathering of
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those results will naturally entail that two evaluation trees over the same word
have the same value (see Corollary 3.27).

Lemma 3.23. Given a word u with domain α, an evaluation tree T = (T, γ)
over u, and a finite condensation I1 < . . . < In of α, we have γ(α) = γ(I1) ⋅ . . . ⋅
γ(In).

Proof. The proof is by induction on T . If T consists of a single leaf, then
α must be a singleton and hence n = 1 and the claim follows trivially. Let
us now consider the case where T has more than one node. We only prove
the claim for n = 2 (for n = 1 it is obvious and for n > 2 it follows from a
simple induction). Let C = children(α) be the top-level condensation and let
J be the unique convex subset in C that intersects both I1 and I2 (if C does
not contain such an element, then we let J = ∅). For the sake of brevity, we
define, for both i = 1 and i = 2, Ci = {K ∈ C ∣ K ⊆ Ii}, ui = ∏K∈Ci

γ(K),
and ai = γ(J ∩ Ii) (with the convention that γ(J ∩ Ii) = ε if J = ∅). Note
that C = C1 ∪ {J} ∪ C2 if J ≠ ∅ (resp., C = C1 ∪ C2 if J = ∅) and hence
γ(α) = π0(u1γ(J)u2) (we assume that γ(J) = ε if J = ∅). Let us consider the case
where J is not empty (the case J = ∅ is similar). Since J ∈ C and C = children(α),
we have rank(T ∣J) < rank(T ) and hence we can apply the induction hypothesis
to the evaluation tree T ∣J and the condensation {J ∩ I1, J ∩ I2} of α∣J . We thus
obtain γ(J) = γ(J ∩ I1) ⋅ γ(J ∩ I2) = a1 ⋅ a2 and hence γ(α) = π0(u1 (a1 ⋅ a2) u2).

Lemma 3.17 then implies π0(u1 (a1 ⋅ a2) u2) = π0(u1 a1) ⋅ π0(u2 a2). Similarly,
Lemma 3.21 implies π0(u1 a1) = γ(I1) and π0(u2 a2) = γ(I2). Overall, we get
π0(α) = γ(I1) ⋅ γ(I2). ⊣

Lemma 3.24. Given a word u with domain α, an evaluation tree T = (T, γ)
over u, and an ω-condensation I0 < I1 < I2 < . . . of α such that γ(I1) = γ(I2) =
. . . is an idempotent, we have γ(α) = γ(I0) ⋅ γ(I1)τ .

Proof. The proof is again by induction on T . Note that the case of T
consisting of a single leaf cannot happen. Let C = children(α) be the top-level
condensation. We distinguish two cases depending on whether C has a maximal
element or not.

Suppose that C has a maximal element, say Jmax, and C ≠ {Jmax} (the case
where C = {Jmax} can be considered as a degenerate case, which can be dealt
with by similar arguments). We can find a condensation K1 < K2 of α that is
coarser than I0 < I1 < I2 < . . . and such that K2 ⊆ Jmax. By Lemma 3.23, we
have γ(α) = γ(K1) ⋅ γ(K2). Moreover, since K1 is the union of a finite sequence
of convex subsets I0, I1, . . . , Ik, by repeatedly applying Lemma 3.21, we obtain
γ(K1) = γ(I0) ⋅ γ(I1) ⋅ . . . ⋅ γ(Ik) = γ(I0) ⋅ γ(I1) (the last equality follows from
the fact that γ(I1) = γ(I2) = . . . is an idempotent). Finally, from the induction
hypothesis (note that rank(T ∣K2) < rank(T )), we get γ(K2) = γ(I1)τ . We thus
conclude that γ(α) = (γ(I0) ⋅ γ(I1)) ⋅ (γ(I1)τ) = γ(I0) ⋅ γ(I1)τ .

If C has no maximal element, then, using standard techniques and Ramsey’s
Theorem (Lemma 3.15), one can construct an ω-condensation J0 < K1 < J1 <
K2 < J2 < . . . of α such that:

● {J0 ∪K1, J1 ∪K2, . . .} is coarser than {I0, I1, I2, . . .},
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● {J0,K1 ∪ J1,K2 ∪ J2, . . .} is coarser than C,
● γ(K1 ∪ J1) = γ(K2 ∪ J2) = . . . is an idempotent.

Let γ(C) be the word with domain C where each position H ∈ C is labelled by
the value γ(H). By construction, we have γ(α) = π0(γ(C)). Moreover, since the
condensation {J0,K1∪J1,K2∪J2, . . .} is coarser than C, by repeatedly applying
Lemma 3.21, we obtain π0(γ(C)) = π0(γ(J0) γ(K1∪J1) γ(K2∪J2) . . . ) = γ(J0)⋅
γ(K1∪J1)τ . Similarly, since {J0∪K1, J1∪K2, . . .} is coarser than {I0, I1, I2, . . .}
and γ(I1) = γ(I2) = . . . is an idempotent, we have γ(J0 ∪K1) = γ(I0) ⋅ γ(I1) and
γ(J1 ∪K2) = γ(J2 ∪K3) = . . . = γ(I1). Thus, by Axioms A1 and A2, we obtain
γ(J0) ⋅ γ(K1 ∪ J1)τ = γ(I0) ⋅ γ(I1)τ . ⊣

We can gather all the results seen so far and prove the following corollary
(recall that an ordering is scattered if all dense suborderings of it are empty or
singletons):

Corollary 3.25. Given a word u with domain α, an evaluation tree T =
(T, γ) over u, a scattered condensation C of α, and an evaluation tree T ′ =
(T ′, γ′) over the word γ(C) =∏I∈C γ(I) with domain C, we have γ(α) = γ′(C).

Proof. As a preliminary remark, note that since the condensation C is scat-
tered, we have that, for every node J in the evaluation tree T ′ = (T ′, γ′), the
condensation of J induced by T ′ is scattered as well. The proof is by induction
on T ′. If T ′ consists of a single node, then γ(C) is a singleton word of value γ(α)
and hence the statement boils down to γ(α) = γ(α). Otherwise, let D be the
childhood of the root C of T ′. From the induction hypothesis, we know that for
every J ∈ D, γ′(J) = γ(⋃J), where ⋃J denotes the union of all convex subsets
of J (recall that J ⊆ C). Moreover, if we denote by ⋃D the condensation of α
obtained from the substitution of each element J ∈D by ⋃J , we have

γ′(C) = π0 (∏
J∈D

γ′(J)) = π0 (∏
J∈D

γ(⋃J)) = π0(γ(⋃D)).

Note that the condensation ⋃D of α has the same order type of the condensation
D of C, namely, it is either a finite condensation, an ω-condensation, or an
ω∗-condensation. Therefore, using either Lemma 3.23 or Lemma 3.24 (or its
symmetric variant), we obtain π0(γ(⋃D)) = γ(α). ⊣

It remains to consider the case of dense condensations, which give rise to
η-shuffles:

Lemma 3.26. Given a word u with domain α, an evaluation tree T = (T, γ)
over u, and a dense condensation C of α such that γ(C) =∏I∈C γ(I) is isomor-
phic to a word of the form a P η b, for some elements a, b ∈ S ⊎ {ε} and some
non-empty set P ⊆ S, we have γ(α) = a ⋅ Pκ ⋅ b.

Proof. We remark here that the proof works for any condensation C, in-
dependently of the form of the word γ(C). However, the use of the following
technical arguments does only make sense when C is a dense condensation. We
prove the lemma by induction on T . As in the proof of Lemma 3.24, the case
of T consisting of a single node cannot happen. Let D = children(α) be the
top-level condensation and let E be the finest condensation that is coarser than
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or equal to both C and D (note that E exists since condensations form a lat-
tice structure with respect to the ‘coarser than’ relation). Moreover, let ∼ be
the condensation over the condensed ordering C such that, for every I, I ′ ∈ C,
I ∼ I ′ holds iff either I = I ′ or there is J ∈ D with I ⊆ J and I ′ ⊆ J . This can
naturally be seen as a condensation C ′ over α which is at least as coarse as C:
the classes of C ′ are either the single classes of C that are not contained in any
class of D, or the unions of the classes of C that are contained in the same class
of D. Furthermore, it is easy to see that E is at least as coarse as C ′. Below,
we disclose further properties of the condensations C, D, E, and C ′.

Let us consider a class I ∈ C ′. Two cases can happen: either I is included in

some J ∈ D, and in this case γ(I) = π0(γ(C ∣I)) holds thanks to the induction

hypothesis, or I belongs to C, and hence γ(I) = π0(γ(C ∣I)) follows trivially. We
have just proved that

∀I ∈ C ′ γ(I) = π0(γ(C ∣I)).(1)

Now, let I, I ′ be two distinct classes in C ′. We claim that there exist x ∈ I
and x′ ∈ I ′ that are not equivalent for D, namely,

∃x ∈ I∃x′ ∈ I ′∀J ∈D x /∈ J ∨ x′ /∈ J.(2)

The proof of this property is by case distinction. If I is contained in some J ∈D
and I ′ is contained in some J ′ ∈D, then we necessarily have J ≠ J ′ (otherwise, we
would have I = I ′ by definition of C ′) and hence Property (2) holds. Otherwise,
either I is not contained in any class J ∈ D, or I ′ is not contained in any class
J ∈D. Without loss of generality, we assume that I is not contained in any class
J ∈D. This means that there exists J ∈D such that I ∩J ≠ ∅ and I ∖J ≠ ∅. Let
us pick some x′ ∈ I ′. Clearly, x′ belongs to some J ′ ∈ D. Then either J ∩ J ′ = ∅
or J = J ′. In the first case, one chooses x ∈ I ∩ J , while in the second case one
chooses x ∈ I ∖ J . This completes the proof of Property (2).

From the above property, we can deduce the following:

If I, I ′ ∈ C ′, I < I ′, and I, I ′ ⊆K for some K ∈ E, then
there are only finitely many classes I ′′ ∈ C ′ between I and I ′.

(3)

Indeed, suppose that the above property does not hold, namely, that there are
infinitely many classes I ′′ ∈ C ′ between I and I ′. In particular, we can find an
ω-sequence of classes I1, I2, . . . such that I = I1 < I2 < . . . < I ′ or I < . . . < I2 < I1 =
I ′. We only consider the first case (the second case is symmetric). By applying
Property (2) to the classes I1, I2, . . . , we can find some points x1 ∈ I1, x′1 ∈ I2,
x2 ∈ I3, x′2 ∈ I4, . . . such that, for all i ≥ 1, xi and x′i are not equivalent for D
(i.e., for all J ∈ D, xi /∈ J or x′i /∈ J). Let X be the set of all points x ∈ α, with
x < Ii for some i ≥ 1, and let X ′ be the set of all points x′ ∈ α, with x′ > Ij for
all j ≥ 1. Since D is a condensation, we have that for all x ∈ X and all x′ ∈ X ′,
x and x′ are not equivalent for D. Moreover, by construction, all such points x
and x′ are not equivalent for C ′, and hence neither for C (recall that C is finer
than C ′). Since E is the defined as the finest condensation that is coarser than
or equal to both C and D and since X ∪X ′ = α, it follows that there is no class
K ∈ E that intersects both X and X ′. In particular, since I ⊆ X and I ′ ⊆ X ′,
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it follows that there is no class K ∈ E such that I ⊆ K and I ′ ⊆ K, which is a
contradiction. This completes the proof of Property (3).

We prove the following last property:

∀K ∈ E γ(K) = π0(γ(C ∣K)).(4)

Let K ∈ E and let T ′ = (T ′, γ′) be an evaluation tree over the word γ(C ′∣K)
(such a tree exists according to Proposition 3.8). From Property (3) we know
that the condensation of C ′∣K induced by the evaluation tree T ′ is scattered. We
can thus apply Corollary 3.25 and obtain γ(K) = γ′(C ′∣K). Moreover, the value
π0(γ(C ′∣K)) is defined and hence, by Corollary 3.22, γ′(C ′∣K) = π0(γ(C ′∣K)).

By Property (1), we obtain γ(C ′∣K) = ∏I∈C′∣K γ(I) = ∏I∈C′∣K π0(γ(C ∣I)).

Finally, from the properties of condensation trees, we derive π0(γ(C ′∣K)) =
π0(∏I∈C′∣K π0(γ(C ∣I))) = γ(C ∣K). This completes the proof of Property (4).

Towards a conclusion, we consider an evaluation tree T ′′ = (T ′′, γ′′) over the
word γ(E) (such a tree exists thanks to Proposition 3.8). From Property (4)
we know that γ(E) = ∏K∈E γ(K) = ∏K∈E π0(γ(C ∣K)). Moreover, By Corol-

lary 3.22, we know that π0(γ(C ∣K)) = γ′′(K) and hence ∏K∈E π0(γ(C ∣K)) =
γ′′(E). Similarly, since E is at least as coarse as D, Corollary 3.22 implies
γ′′(E) = π0(γ(D)) = γ(α). This completes the proof of the lemma. ⊣

Corollary 3.27. Given a word u with domain α, an evaluation tree T =
(T, γ) over u, a condensation C of α, and an evaluation tree T ′ = (T ′, γ′) over
the word γ(C) =∏I∈C γ(I) with domain C, we have γ(α) = γ′(C).

Proof. The proof is exactly the same as for Corollary 3.25, with the only
difference that we do not use the assumption that the condensation C is scattered
and we use Lemma 3.26 for treating the nodes I ′ of T ′ for which the condensation
children(I ′) is dense. ⊣

Finally, Proposition 3.9 follows easily from the previous corollary.

Proof of Proposition 3.9. Let T = (T, γ) and T ′ = (T ′, γ′) be two eval-
uation trees over the same word u with domain α and let C be the finest
condensation of α, whose classes are the singleton sets. Clearly, the evalua-
tion tree T ′ is isomorphic to an evaluation tree T ′′ = (T ′′, γ′′) over the word
γ(C) =∏I∈C γ(I) with domain C. Using Corollary 3.27 we immediately obtain
that γ(α) = γ′′(C) = γ′(α). ⊣

§4. From monadic second-order logic to ⍟-algebras. Let us recall that
monadic second-order (MSO) logic is the extension of first-order logic with set
quantifiers. We assume the reader to have some familiarity with this logic, as well
as with the technique used by Büchi to translate MSO formulas into equivalent
automata. A good survey can be found in [27].

Here, we show a relatively direct consequence of the results obtained in the
previous section, namely, that MSO formulas can be effectively translated to
⍟-algebras:

Theorem 4.1. The MSO definable ⍟-languages are effectively recognizable.
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Before turning to the proof of the above result, let us remark that we could have
equally well used the composition method of Shelah for establishing Theorem 4.1.
Indeed, given any MSO sentence ψ, one can construct effectively a ⍟-algebra
recognizing the language defined by ψ [24].

Our proof of Theorem 4.1 follows Büchi’s approach, namely, we establish a
number of closure properties for recognizable ⍟-languages. Then, each construc-
tion of the logic will be translated into an operation on languages. To disjunction
corresponds union, to conjunction corresponds intersection, to negation corre-
sponds complementation, etc. We assume the reader to be familiar with this
approach (in particular the coding of the valuations of free variables).

The ⍟-languages corresponding to the atomic predicates are easily shown to
be recognizable. Similarly, the language operations of intersection, union, and
complementation can be implemented easily by means of classical algebraic op-
erations:

Lemma 4.2. The recognizable ⍟-languages are effectively closed under inter-
section, union, and complementation.

Proof. Given two ⍟-monoids (M1, π1) and (M2, π2) recognizing the lan-
guages L1 = h−1

1 (F1) and L2 = h−1
2 (F2), respectively, with F1 ⊆ M1, F2 ⊆ M2,

and h1 and h2 morphisms to (M1, π1) and (M2, π2), respectively, we have
that A⍟ ∖ L1 = h−1

1 (M1 ∖ F1), L1 ∩ L2 = (h1 × h2)−1(F1 × F2), and L1 ∪ L2 =
(h1 × h2)−1((M1 ×M2) ∖ (F1 × F2)). In particular, the complement of L1 is
recognized by (M1, π1), while the union and the intersection of L1 and L2 are
recognized by the product ⍟-monoid (M1 ×M2, π1 × π2). Moreover, the latter
product can be easily implemented at the level of ⍟-algebras: the operators of a
⍟-algebra that corresponds to (M1 ×M2, π1 × π2) can be obtained by applying
component-wise the operators of some ⍟-algebras that correspond to (M1, π1)
and (M2, π2). ⊣

What remains to be proved is the closure under projection. Formally, given a
language L over some alphabet A, and a mapping f from A to another alpha-
bet B, the projection of L via f is the language f(L), where f is extended in a
pointwise manner to words and languages. The logical operation of existential
quantification corresponds, at the level of the defined languages, to a projection.
Hence, it remains to prove the following:

Lemma 4.3. The recognizable ⍟-languages are effectively closed under projec-
tions.

Proof. We first describe the construction for a given ⍟-monoid (M,π), and
then show how to adapt the construction at the level of ⍟-algebras. The projec-
tion is implemented, as usual, by a powerset construction, namely, by providing
the definition of a generalized product over P(M). Given two words u and U
over M and P(M), respectively, we write u ∈ U if dom(u) = dom(U) and
u(x) ∈ U(x) for all x ∈ dom(U). We then define the mapping π̃ from P(M)⍟
to P(M) by letting

π̃(U) =def {π(u) ∣ u ∈ U} for all U ∈ P(M)⍟ .
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Let us show that π̃ is associative. Consider a word U over P(M) and a conden-
sation ∼ of its domain. Then,

π̃(U) = {π(u) ∣ u ∈ U}
= {π(∏I∈α/∼ π(u∣I)) ∣ u ∈ U}
= {π(∏I∈α/∼ aI) ∣ aI ∈ π̃(U ∣I) for all I ∈ α/∼}
= π̃(∏I∈α/∼ π̃(U ∣I)) ,

where the second equality is derived from the associativity of π.
Hence (P(M), π̃) is a ⍟-monoid.

Next, we show that (P(M), π̃) recognizes any projection of a language rec-
ognized by (M,π). Let let L ⊆ A⍟ be a language recognized by (M,π) via some
morphism h ∶ (A,∏) → (M,π),, namely, L = h−1(h(L)), and let f ∶ A → B
be a projection. We claim that the projected language L′ = f(L) is recog-
nized by (P(M), π̃) via the morphism g = h ○ f−1 ∶ (B,∏) → (P(M), π̃).
Clearly, we have g−1(g(L′)) ⊇ L′. For the opposite containment, consider a word
v ∈ g−1(g(L′)). By construction, there is a word v′ ∈ L′ such that g(v′) = g(v).
Since v′ ∈ L′ = f(L), there is w′ ∈ L such that v′ = f(w′). Moreover, since
g(v′) = g(v), there is w such that f(w) = v and h(w′) = h(w). Finally, since
L = h−1(h(L)), we conclude that w ∈ L, and hence v = f(w) ∈ L′.

Thanks to Lemma 3.4 and Corollary 3.12, the construction of (P(M), π̃)
can be performed at the level of ⍟-algebras. More precisely, any ⍟-algebra
(M,1, ⋅, τ , τ∗, κ) uniquely determines a ⍟-monoid (M,π), and from this, using
the powerset construction, one defines the ⍟-monoid (P(M), π̃), and finally the
induced ⍟-algebra (P(M),{1}, ⋅̃, τ̃ , τ̃∗, κ̃). The crux in this line of arguments
is that the correspondence between the original ⍟-algebra (M,1, ⋅, τ , τ∗, κ) and
the final ⍟-algebra (P(M),{1}, ⋅̃, τ̃ , τ̃∗, κ̃) may be, a priori, not effective. Below
we explain why, in fact, this correspondence is effective, namely, we explain how
each operator of the ⍟-algebra (P(M),{1}, ⋅̃, τ̃ , τ̃∗, κ̃) can be computed using
the initial ⍟-algebra (M,1, ⋅, τ , τ∗, κ) and some saturation process.

We give the intuition for constructing the most difficult and interesting oper-

ator κ̃, that is, for computing P κ̃ = π̃(P η) for any given non-empty subset P =
{A1, . . . ,Ak} of P(M), using the operators of the ⍟-algebra (M,1, ⋅, τ , τ∗, κ).
We recall that P κ̃ = {1} if A1 = . . . = Ak = {1}, otherwise P κ̃ = (P ∖ {1})κ̃.

We also recall that P κ̃ must represent the set {π(u) ∣ u ∈ U, U ∈ P η} and
hence the computation of P κ̃ is very similar to that of {π(u) ∣ u ∈ A⍟}, which
was done in the proof of Theorem 3.13. The difference here is that one needs
to relativise u to the words that belong to U , for some U ∈ P η. This can be
achieved by performing a product of the ⍟-algebra (M,1, ⋅, τ , τ∗, κ) with a ⍟-
algebra that recognizes the single-word language {P η}, and then applying the
saturation process of Theorem 3.13 on the resulting ⍟-algebra. ⊣

§5. From ⍟-algebras to monadic second-order logic. We have seen in
the previous section that every MSO formula defines a recognizable ⍟-language.
In this section, we prove the converse. Hereafter, we refer to the ∀-fragment
(resp., ∃-fragment) of MSO logic as the set of formulas that start with a block
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of universal (resp., existential) set quantifiers, followed by a first-order formula.
Similarly, the ∃∀-fragment consists of formulas starting with a block of existential
set quantifiers followed by a formula of the ∀-fragment.

Theorem 5.1. The recognizable ⍟-languages are effectively MSO definable.
Furthermore, such languages are definable in the ∃∀-fragment of MSO logic.

We fix for the remaining of the section a morphism h from (A⍟,∏) to a ⍟-
monoid (M,π), with M finite, and a subset F of M . Let also 1, ⋅, τ , τ∗, κ be
defined from π. Our goal is to show that L = h−1(F ) is MSO definable. It is
sufficient for this to show that for every a ∈M , the language

π−1(a) = {w ∈M⍟ ∶ π(w) = a} ,

can be defined by a suitable MSO sentence ϕvalue
a . From this it will follow that

that L = ⋃a∈F h−1(a) is defined by the disjunction ⋁a∈F ϕ̂value
a , where ϕ̂value

a is
obtained from ϕvalue

a by replacing every occurrence of an atom b(x), with b ∈M ,
by ⋁c ∈h−1(b)∩A c(x).

A reasonable approach for defining π−1(a) is to use a formula which, given u ∈
M⍟, guesses some object that ‘witnesses’ π(u) = a. The only objects that we
have seen so far and that are able to “witness” π(u) = a are evaluation trees.
Unfortunately, there is no way an MSO formula can guess an evaluation tree,
since their height cannot be bounded uniformly. That is why we use another
kind of object for witnessing π(u) = a: the so-called Ramseian split, which is
introduced just below.

5.1. Ramseian splits. Ramseian splits are not directly applied to words, but
to additive labellings. Recall that an additive labelling σ from a linear ordering
α to a semigroup (M, ⋅) (which, in our case, will be induced by the ⍟-monoid
(M,π)) is a function that maps any pair of elements x < y from α to an element
σ(x, y) ∈M in such a way that σ(x, y) ⋅ σ(y, z) = σ(x, z) for all x < y < z in α.

Given two positions x < y in a word u, denote by [x, y) the interval {z ∣ x ≤
z < y}. Given a word u and two positions x < y in it, we define σu(x, y) to be the
element π(u∣[x,y)) of the ⍟-monoid (M,π). Quite naturally, σu is an additive

labelling, since for all x < y < z, we have σu(x, y)⋅σu(y, z) = π(u∣[x,y))⋅π(u∣[y,z)) =
π(u∣[x,y) w∣[y,z)) = π(u∣[x,z)) = σu(x, z).

Definition 5.2. A split of height n of a linear ordering α is a function g ∶ α →
{1, . . . , n}. Two elements x, y ∈ α are called (k-)neighbours iff g(x) = g(y) = k
and g(z) ≤ k for all z ∈ α∣[x,y]∪[y,x] (note that the neighbourhood relation is
an equivalence). The split g is said to be Ramseian for an additive labelling
σ ∶ α → M iff for all equivalence classes X ⊆ α of the neighbourhood relation,
there is an idempotent e ∈M such that σ(x, y) = e for all x < y in X.

Theorem 5.3 (Colcombet [8]). For every finite semigroup (M, ⋅), every linear
ordering α, and every additive labelling σ from α to (M, ⋅), there is a split of α
which is Ramseian for σ and which has height at most 2∣M ∣.
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5.2. Inductive construction of formulas. Below we construct a formula
that, given a word u of domain α, guesses a split of α of height at most 2∣M ∣,
and uses it for representing the function that associates with each convex subset
I of α the value π(u∣I) in M . For the sake of simplicity, we fix a word u of
domain α and the corresponding additive labelling σu over α that is induced
by u. We remark, however, that all constructions that follow are uniform and
do not depend on the chosen word u.

In the following, we make extensive use of properties, functions, sets that are
first-order definable from other parameters. For instance, when we say that a
set X is first-order definable from some variables Ȳ , we mean that there exists a
first-order formula ξ(x, Ȳ ) that describes the membership of x in X on the basis
of Ȳ , that is, x ∈ X iff ξ(x, Ȳ ) holds on the given interpretation of x and Ȳ . In
practice, this means that it is never necessary to quantify over X for defining
properties concerning X: it is sufficient to replace each predicate x ∈ X by the
corresponding formula ξ(x, Ȳ ). This remark is crucial for understanding why
the construction we provide yields a formula in the ∃∀-fragment of MSO logic.

Recall that we aim at constructing, for each a ∈M , a sentence ϕvalue
a that holds

over the word u iff π(u) = a. The starting point is to guess:

1. a split g of α of height at most 2∣M ∣, and;
2. a function f mapping each position x ∈ α to an idempotent f(x) ∈M .

The intention is that a choice of g and f is good when g is a Ramseian split
for σu and the function f maps each position x to the idempotent f(x) that
arises when the neighbourhood class of x is considered (cf. Definition 5.2). In
this a case, by a slight abuse of terminology, we say that (g, f) is a Ramseian
pair.

Observe that neither g nor f can be represented by a single monadic variable.
However, since both g and f are functions from α to sets of bounded size (2∣M ∣
for g, and ∣M ∣ for f), one can guess them using a fixed number of monadic
variables. This kind of encoding is quite standard, and from now on we shall use
explicitly the mappings g and f in our formulas, rather than their encodings.

Knowing a Ramseian pair (g, f) is an advance towards computing the value of
a word. Indeed, Ramseian splits can be used as “accelerating structures” in the
sense that every computation of π(u∣I) for some convex I becomes significantly
easier when a Ramseian split is known, namely, it becomes first-order definable
in terms of the Ramseian split. This is formalized by the following lemma.

Lemma 5.4. Given a ∈ M , one can construct a first-order for-
mula evala(g, f,X) such that for every convex subset I of α:

● if (g, f) is Ramseian, then evala(g, f, I) holds iff π(u∣I) = a,
● if both evala(g, f, I) and evalb(g, f, I) hold, then a = b.

Proof. As already mentioned, we encode both functions g and f by tuples
of monadic predicates. This allows us to use shorthands such as g(x) = k, where
x is a first-order variable and 1 ≤ k ≤ 2∣M ∣, for claiming that the point x of the
underlying word u is mapped via g to the number k. Similarly, we encode the
convex subset I of α by a monadic predicate and we write x ∈ I as a shorthand
for a formula that states that the point x belongs to I.
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We assume from now that (g, f) is Ramseian. Under this assumption, it
will be clear that the constructed formulas will satisfy the desired properties.
We remark, however, that the following definitions make sense also in the case
when (g, f) is not Ramseian, in which case only the second condition of the
lemma will be guaranteed.

Given a convex I, we denote by level(g, I) the maximal value of g(x) for x
ranging over I. Of course, the properties level(g, I) = k and level(g, I) ≤ k are
first-order definable in terms of g and I.

We will construct by induction on k ∈ {0,1, . . . ,2∣M ∣} a partial function evalk

that maps some triples (g, f, I) to elements evalk(g, f, I) ∈M in such a way that
the following properties hold:

● evalk(g, f, I) = a is definable by a first-order formula, say evalka(g, f, I), for
each a ∈M ,

● evalk(g, f, I) is defined iff level(g, I) ≤ k, and in this case it coincides with
π(u∣I) (provided (g, f) is Ramseian).

The base case is when k = 0. In this case, we define evalk(g, f, I) to be the

neutral element 1 when I = ∅, and we let evalk(g, f, I) be undefined when I ≠
∅. Of course, this is first-order definable and satisfies the expected induction
hypothesis.

Let us now construct the partial function evalk(g, f, I) for any k ≥ 1. First,

if level(g, I) < k, then one simply outputs evalk−1(g, f, I). Otherwise, the convex
subset I can be uniquely partitioned into X < J < Y in such a way that X∪J∪Y =
I and J is the minimal convex subset containing I∩g−1(k). Note that the sets X,
J , and Y are first-order definable in the parameters I and g, that is, membership
of any point x in X (resp., J , Y ) is characterized by a first-order formula in the
variables x, I, and g. Furthermore, fix e to be f(x) for some x ∈ I∩g−1(k). From
the assumption that I has level k for g, we know that all elements in I ∩ g−1(k)
are neighbours. In particular, the fact that g is a Ramseian split for σu means
that σu(x, y) = e for all x < y chosen in I ∩ g−1(k). The mapping evalk(g, f, I)
is defined below by a case distinction (we remark that the following definitions
are not symmetric with respect to the underlying order, and this reflects the
asymmetry occurring in the definition of σu, that is, σu(x, y) = π(u∣[x,y)) for all
x < y ∈ α):

1. if J is a singleton {x}, then

evalk(g, f, I) = evalk−1(g, f,X) ⋅ u(x) ⋅ evalk−1(g, f, Y ) ,

2. if J has distinct minimal and maximal elements and y = max(J), then

evalk(g, f, I) = evalk−1(g, f,X) ⋅ e ⋅ u(y) ⋅ evalk−1(g, f, Y ) ,

3. if J has no minimal element but has a maximal element y, then

evalk(g, f, I) = evalk−1(g, f,X) ⋅ eτ
∗

⋅ u(y) ⋅ evalk−1(g, f, Y ) ,

4. if J has a minimal element but no maximal element, then

evalk(g, f, I) = evalk−1(g, f,X) ⋅ eτ ⋅ evalk−1(g, f, Y ) ,
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5. if J has no minimal element and no maximal element, then

evalk(g, f, I) = evalk−1(g, f,X) ⋅ eτ
∗

⋅ eτ ⋅ evalk−1(g, f, Y ) .

One easily checks that the function evalk can be defined by first-order formulas
of the form evalka(g, f, I), with a ∈ M . It is also easy to see that if (g, f) is

Ramseian and level(g, I) ≤ k, then evalk(g, f, I) coincides with π(u∣I).
At this step, the first conclusion of the lemma is already satisfied by the first-

order formulas eval2∣M ∣
a (g, f, I). The second point, however, is false in general.

Indeed, we did not pay attention so far on what the formulas compute in the case
where (g, f) is not Ramseian. In particular, it can happen that both formulas

eval2∣M ∣
a (g, f, I) and eval

2∣M ∣
b (g, f, I) hold for distinct elements a, b ∈M . However,

this can be easily fixed using the following formula:

evala(g, f, I) =def eval2∣M ∣
a (g, f, I) ∧ ⋀

b≠a
¬eval2∣M ∣

b (g, f, I) .

This formula ensures the second property of the lemma by construction, and
behaves like evals whenever (g, f) is Ramseian. ⊣

The formulas constructed in Lemma 5.4 can be seen as defining a partial
function eval that maps g, f, I to some element a ∈ M (the second item in the
lemma enforces that there is no ambiguity about the value, namely, that this is a
function and not a relation). Hereafter, we simply use the notation eval(g, f, I)
as if it were a function.

One needs now to enforce that eval(g, f, I) coincides with π(u∣I), even without
assuming that (g, f) is Ramseian. For this, one uses condensations. A priori,
a condensation is not representable by monadic variables, since it is a binary
relation. However, any set X ⊆ α naturally defines the relation ≈X such that x ≈X
y iff either [x, y] ⊆X, or [x, y]∩X = ∅. It is easy to check that this relation is a
condensation. A form of converse result also holds:

Lemma 5.5. For every condensation ∼, there is X such that ∼ and ≈X coin-
cide.

Proof. It is easy to see that, given a linear ordering β, there exists a subset Y
of β such that for all x < y in β, [x, y] intersects both Y and its complement β∖Y :
indeed, one can first prove this for scattered linear orderings and for dense linear
orderings, and then combine the results for these subcases using the fact that
every linear ordering is a dense sum of non-empty scattered linear orderings [23].

The lemma follows easily from the above argument: consider Y obtained from
the claim above applied to the condensed ordering β = α/∼. We construct the
desired set X in such a way that it contains the elements of the equivalence
classes of ∼ that belong to Y , i.e., X = {x ∣ [x]∼ ∈ Y }. It is easy to see that x ∼ y
iff x ≈X y. ⊣

Lemma 5.5 tells us that it is possible to work with condensations as if they
were monadic variables. In particular, in the sequel we use variables for conden-
sations and we tacitly assume that they are encoded by the sets obtained from
Lemma 5.5.
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Given a convex subset I of α and some condensation ∼ of α∣I , we denote by
u[I,∼] the word with domain β = (α∣I)/∼ in which every ∼-equivalence class J is
labelled by eval(g, f, J). One can easily define a formula consistency(g, f) that
checks that, for all convex subsets I and all condensations ∼ of α∣I , the following
conditions hold:

(C1) if I is a singleton {x}, then eval(g, f, I) = u(x),
(C2) if u[I,∼] = a b for some a, b ∈M , then eval(g, f, I) = a ⋅ b,
(C3) if u[I,∼] = eω for some idempotent e ∈M , then eval(g, f, I) = eτ ,

(C4) if u[I,∼] = eω
∗

for some idempotent e ∈M , then eval(g, f, I) = eτ
∗

,
(C5) if u[I,∼] = P η for some non-empty set P ⊆M , then eval(g, f, I) = Pκ.

For some fixed I and ∼, the above tests require access to the elements
u[I,∼](J), where J is a ∼-equivalence class of α∣I . Since the property of ∼-
equivalence for two positions x, y ∈ α∣I is first-order definable, we know that for
every position x ∈ α∣I , the element eval(g, f, [x]∼) is first-order definable from x.
This shows that the above properties can be expressed by first-order formulas
and hence consistency(g, f) is a formula in the ∀-fragment of MSO logic.

The last key argument is to show how the ‘local’ consistency constraints C1–C5
imply a ‘global’ consistency property. This is done by the following lemma.

Lemma 5.6. If consistency(g, f) holds, then eval(g, f, I) = π(u∣I) for all convex
subsets I of α.

Proof. Recall that, given a convex subset I of α and a condensation ∼ of
α∣I , u[I,∼] is the word with domain β = (α∣I)/∼ in which every ∼-equivalence
class J is labelled by eval(g, f, J). Suppose that consistency(g, f) holds, namely,
that for all convex subsets I of α and all condensations ∼ of α∣I , the conditions
C1–C5 are satisfied.

To show that eval(g, f, I) = π(u∣I) for all convex subsets I, we use again
evaluation trees. Precisely, we fix a convex subset I of α and an evaluation tree
T = (T, γ) over the word u∣I (the evaluation tree exists thanks to Proposition
3.8), and we prove, by an induction on T , that

eval(g, f, I) = γ(I) .

Since γ(I) = π(u∣I) (by Proposition 3.9), it follows that eval(g, f, I) = π(u∣I).
If T consists of a single leaf, then I is a singleton of the form {x}. Condition C1

then immediately implies eval(g, f, I) = u(x) = γ(I).
If the root of T is not a leaf, then we let ∼ be the condensation of α∣I induced

by the children of the root of T and we let β = (α∣I)/∼ be the corresponding
condensed ordering (formally, β = children(I)). Note that for every class J ∈ β,
T ∣J is a subtree of T . From the induction hypothesis on the evaluation tree
T ∣J , we have eval(g, f, J) = γ(J) for all J ∈ β. Moreover, we know from the
definition of u[I,∼] that u[I,∼](J) = eval(g, f, J), for all J ∈ β, and hence u[I,∼]
is isomorphic to the word ∏J∈β γ(J). We also know from the definition of T
that the image under π0 of the word ∏J∈β γ(J) is defined. From this we derive
that ∏J∈β γ(J) is isomorphic to one of the following words:

1. a word a b, for some a, b ∈M ,
2. an ω-word eω, for some idempotent e ∈M ,
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3. an ω∗-word eω
∗

, for some idempotent e ∈M ,
4. a shuffle P η, for some non-empty subset P of M .

We only analyse the first two cases (the remaining cases are all similar).
If the word ∏J∈β γ(J) is of the form a b, with a, b ∈ M , then we let J1 and

J2, with J1 < J2, be the two positions in it (recall that these are ∼-equivalence
classes for α∣I). Thanks to the inductive hypothesis, we have eval(g, f, J1) =
u[I,∼](J1) = γ(J1) = a and eval(g, f, J2) = u[I,∼](J2) = γ(J2) = b. From

Condition C2, using the condensation ∼, we derive eval(g, f, I) = eval(g, f, J1 ∪
J2) = a ⋅ b, and from this we easily conclude that

eval(g, f, I) = a ⋅ b = π0(a b) = π0(γ(J1) γ(J2)) = γ(I).

Let us now consider the case where ∏J∈β γ(J) is an ω-word of the form eω, for
some idempotent e ∈M . We denote by J1 < J2 < . . . the positions in ∏J∈β γ(J)
(recall that these are ∼-equivalence classes for α∣I). As in the previous case, we
know from the inductive hypothesis that eval(g, f, Ji) = u[I,∼](Ji) = γ(Ji) = e
for all i = 1,2, . . . . We know from Condition C3 that eval(g, f, I) = eval(g, f, J1 ∪
J2 ∪ . . . ) = eτ . Finally, we derive

eval(g, f, I) = eτ = π0(eω) = π0(∏
J∈β

γ(J)) = γ(I) .

⊣

We conclude the section by showing how Lemma 5.6 implies Theorem 5.1. We

claim that, given a ∈M , the language π−1(a) is defined by the following sentence
in the ∃∀-fragment of MSO logic:

ϕvalue
a =def ∃g. ∃f. consistency(g, f) ∧ eval(g, f,α) = a .

Let π(u) = a. One can find a Ramseian pair (g, f) using Theorem 5.3. Lemma 5.4
then implies π(u∣I) = eval(g, f, I) for all convex subsets I. Since π is a product,
the constraints C1–C5 are satisfied and consistency(g, f) holds. This proves
that ϕvalue

a holds. Conversely, if ϕvalue
a holds, then consistency(g, f) holds for

some (g, f). Lemma 5.6 then implies

π(u) = π(u∣α) = eval(g, f,α) = a .

§6. Applications. In this section we present consequences of our results.

6.1. Collapse of the quantifier hierarchy. A first consequence of Theo-
rems 4.1 and 5.1 is that the hierarchy of monadic quantifier alternation for MSO
logic interpreted over countable words collapses to its ∃∀-fragment. Clearly, since
MSO logic is closed under complementation, it also collapses to its ∀∃-fragment:

Corollary 6.1. Every ⍟-language definable in MSO logic can be equally de-
fined in the ∃∀-fragment and in the ∀∃-fragment.

Moreover, the collapse result is optimal, in the sense that there exist MSO de-
finable languages that are not definable in the ∃-fragment:
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Proposition 6.2. The language L∀ of countable scattered words over the sin-
gleton alphabet {a} cannot be defined in the ∃-fragment of MSO logic.

Proof. We first recall a folklore result that shows that the language L∀ can-
not be defined in first-order logic. The argument is based on Ehrenfeucht-Fräıssé
games (we refer the reader to [26, 16, 23] for basic knowledge on these games).
One begins by fixing a number n ∈ N and suitable words w ∈ L∀ and w′ /∈ L∀,
which may depend on n. One then considers n rounds of the Ehrenfeucht-
Fräıssé game over w and w′, where two players, called Spoiler and Duplicator,
alternatively mark positions in w and w′ inducing partial isomorphisms. More
precisely, at each round k = 1, . . . , n, Spoiler marks a position in one of the two
words, say either xk ∈ dom(w) or yk ∈ dom(w′) – intuitively this corresponds to
quantifying existentially or universally over w. Duplicator responds by choos-
ing a corresponding position in the other structure, say either yk ∈ dom(w′)
or xk ∈ dom(w). The responses of Duplicator must enforce an isomorphism
between the induced substructures w∣{x1,... ,xk} and w′∣{y1,... ,yk}. If Duplicator
cannot move while preserving the invariant, he loses the game. If he survives n
rounds, he wins. We know from Fräıssé’s Theorem that Duplicator can win the
n-round game if, and only if, w and w′ cannot be distinguished by any formula
of first-order logic with n nested quantifiers – in particular, if this happens for
arbitrarily large n ∈ N, then L∀ cannot be defined in first-order logic.

Below, we show that, for all n ∈ N, Duplicator has a strategy to survive n
rounds of the Ehrenfeucht-Fräıssé game induced by the words

w =def aω ∈ L∀ and w′ =def aω (aω
∗

aω)η /∈ L∀ .
Without loss of generality, we can assume that during the first round of the
game the left endpoints of w and w′ are marked. For the subsequent rounds, the
strategy of Duplicator will enforce the following invariant: if the distance between
two positions xi, xj that are marked in w at rounds j < i is less than 2n−i, then
so is the distance between the corresponding positions yi, yj that are marked in
w′, and vice versa. On the other hand, if at round i Spoiler picks a position
xi in w that is at distance at least 2n−i from all previously marked positions,

then, Duplicator can responds by picking a position yi inside a factor aω
∗

aω of
w′ that has no marked positions, thus guaranteeing that yi is at distance at least
2n−i from all other marked positions. This strategy guarantees that Duplicator
survives at least n rounds of the game. The fact that winning strategies for
Duplicator exist for all n ∈ N, proves that L∀ is not definable in first-order logic.

Now, it is straightforward to generalize the above argument to show that,
for every first-order formula ϕ and every pair of finite words u, v over a finite
alphabet, the following implication holds:

uvω ⊧ ϕ implies uvω (vω
∗

vω)η ⊧ ϕ .(⋆)

We can use this result to show that the language L∀ cannot be defined in the
∃-fragment of MSO logic. Suppose, by way of contradiction, that there is a
sentence ψ = ∃X̄ ϕ(X̄) that defines L∀, where ϕ is a first-order formula with free
variables among X̄ = X1, . . . ,Xm. Since aω ∈ L∀, we know that ϕ is satisfied
by an interpretation of the free variables X̄, and that this interpretation can
be encoded by an ω-word w over the alphabet {a} × {0,1}m. By Büchi’s result
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(or, equally, by Theorem 3.13), we can assume, again without loss of generality,
that w is ultimately periodic, namely, of the form uvω, for some finite words
u, v. By the indistinguishability result in (⋆), we know that ϕ is also satisfied by

uvω (vω
∗

vω)η. It follows that aω (aω
∗

aω)η is a model of ψ. However, the latter
word does not belong to L∀, and this contradicts the fact that ψ defines L∀. ⊣

6.2. Definability with the cuts at the background. In [14] Gurevich
and Rabinovich raised and left open the following question: given any MSO
formula ϕ(X1, . . . ,Xm), does there exist another MSO formula ϕ̃(X1, . . . ,Xm)
such that, for all sets of rational numbers A1, . . . ,Am,

(R,<) ⊧ ϕ(A1, . . . ,Am) iff (Q,<) ⊧ ϕ̃(A1, . . . ,Am) ?

In other words, they considered question of whether the ability to use all points of
the real line does give more expressive power for stating properties of predicates
over the rational line – Gurevich and Rabinovich use the suggestive terminology
that the formula ϕ has access to the reals ‘at the background ’. Note that here
we implicitly use the fact that there is a fixed natural embedding of (Q,<) into
(R,<).

Gurevich and Rabinovich answered positively the analogous question where
the rational line is replaced by the order of the natural numbers:

Theorem 6.3 ([14]). For every MSO formula ϕ(X1, . . . ,Xm), there is an
MSO formula ϕ̃(X1, . . . ,Xm) such that, for all sets A1, . . . ,Am ⊆ N,

(R,<) ⊧ ϕ(A1, . . . ,Am) iff (N,<) ⊧ ϕ̃(A1, . . . ,Am) .

We will not enter the details of this result, which is superseded by what follows.
However, already in this case an interesting phenomenon occurs: the existence
of the formula ϕ̃ is inherently non-effective, and this holds even if ϕ̃ is allowed
to use extra predicates with a decidable MSO theory:

Theorem 6.4 ([14]). Let B̄ = B1, . . . ,Bn ⊆ N be a tuple of monadic predicates
such that (N,<, B̄) has a decidable MSO theory. There is no algorithm that
transforms an MSO formula ϕ(X1, . . . ,Xm) to an MSO formula ϕ̃(X1, . . . ,Xm)
such that

(R,<) ⊧ ϕ(A1, . . . ,Am) iff (N,<, B̄) ⊧ ϕ̃(A1, . . . ,Am) .

Proof. Assume that such an algorithm exists, and consider a generic MSO
sentence ϕ. We can apply the algorithm to ϕ to obtain a sentence ϕ̃ such that
(R,<) ⊧ ϕ iff (N,<, B̄) ⊧ ϕ̃. Since the MSO theory of (N,<, B̄) is decidable, we
could decide the MSO theory of (R,<). However, in [24, 15] it has been shown
that MSO theory of the real line is undecidable. ⊣

Despite the inherent difficulty due to the non-effectiveness of the transfor-
mation, we are able to answer positively the question raised by Gurevich and
Rabinovich.

We begin by describing more precisely the relationship between the rational
line and the real line. In fact, for technical reasons, it is convenient to work,
rather than on the real line, on a larger structure that is obtained by completing
the rational line with all Dedekind cuts.
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Definition 6.5. A (Dedekind) cut of a linear ordering α is a subset E of α
such that α∣E is a prefix of α.

The cuts of α are naturally order by the containment relation, that is, for all
cuts E,F , we have E < F iff E ⊊ F . A cut is extremal if it is empty or contains
all elements of the linear order α. Cuts can also be compared with the elements
of α as follows: for all x ∈ α and all cuts E of α, we have x < E (resp., E < x)
iff x ∈ E (resp., x /∈ E). Note that every element x of α has two adjacent cuts:
x− = {y ∈ α ∣ y < x} and x+ = {y ∈ α ∣ y ≤ x}. Cuts that are not of the form x− or
x+ are called natural.

Definition 6.6. The completion of a linear order α, denoted α̂, is obtained
from the disjoint union of the elements of α and the non-extremal cuts of α, and
it is equipped with the extended ordering defined above.

Note that the real line is obtained from the rational line using a similar no-
tion of completion that only adds the non-extremal natural cuts. However,
the difference between the real line and the completion, as defined above, of
the rational line is negligible, especially as far as MSO definability of rational
sets is concerned. In particular, since the natural cuts in Q̂ are definable by
first-order formulas, one can easily transform any MSO formula ϕ(X1, . . . ,Xm)
to an MSO formula ϕ′(X1, . . . ,Xm) such that, for all sets A1, . . . ,Am ⊆ Q,

(R,<) ⊧ ϕ(A1, . . . ,Am) iff (Q̂,<) ⊧ ϕ′(A1, . . . ,Am). As a consequence, to an-
swer the question raised by Gurevich and Rabinovich, it is sufficient to prove the
following result:

Theorem 6.7. For every MSO formula ϕ(X1, . . . ,Xm), there is an MSO for-
mula ϕ̃(X1, . . . ,Xm) such that, for all countable linear orderings α and all sets
A1, . . . ,Am ⊆ α,

α̂ ⊧ ϕ(A1, . . . ,Am) iff α ⊧ ϕ̃(A1, . . . ,Am) .

Next, we generalize the notion of completion to words. We fix a dummy letter
c that is intended to label the cuts. The completion of a word w ∶ α → A is
the word ŵ ∶ α̂ → A ⊎ {c} defined by ŵ(x) = w(x), for all elements x ∈ α, and
ŵ(E) = c for all cuts E ∈ α̂ ∖ α.

A simple, yet important, property is the relationship between the operation
of completion of a word and that of product of words, which is formalized in the
following lemma (proof omitted). Intuitively, the completion of the product of
a series of words is equivalent to a variant of the product on the completions of
the words, where the variant of the product ‘fills the missing cuts’.

Lemma 6.8. For all linear orderings α and all words (ui)i∈α, we have

∧
(∏i∈α ui) =

∧
∏i∈α ûi

where the product variant
∧
∏ is defined by

∧
∏i∈α v̂i = ∏i∈α̂ v

′
i, with v′i = vi if i ∈ α

and v′i = c if i ∈ α̂ ∖ α.

A language L of countable words is said to be MSO definable with the cuts at
the background if there exists an MSO sentence ϕ such that u ∈ L iff û ⊧ ϕ. The
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following proposition is similar to the claim of Theorem 4.1 (note that here we
omit the part about effectiveness).

Proposition 6.9. Languages of countable words that are MSO definable with
the cuts at the background are recognizable by ⍟-monoids.

Proof. Recall that the proof of Theorem 4.1 was based on closure properties
of recognizable ⍟-languages under boolean operations and projections, which
could be easily implemented at the level of the ⍟-algebras. Because in this proof
we do not have to deal with effectiveness, it is convenient to work directly at
the level of ⍟-monoids. In particular, the monoids recognizing the considered
languages will be defined using logical types and Shelah’s composition method
[24]. We shall consider MSO formulas up to syntactic equivalence, that is, up
to associativity, commutativity, idempotency, and distributivity of conjunctions
and disjunctions, commutativity of conjunctions with universal quantifications
and disjunctions with existential quantifications, and renamings of quantified
variables. Recall that, over a fixed finite signature with only relational symbols,
there exist only finitely many sentences up to syntactic equivalence.

Let ϕ be an MSO sentence defining, with the cuts at the background, a lan-
guage L ⊆ A⍟. Let k be the quantifier rank of ϕ, that is, the maximum number
of nested quantifiers in ϕ. Given a word u of possibly uncountable domain, we
define its k-type typek(u) as the (finite) set of all sentences of quantifier rank
at most k. We recall a simplified version of the composition theorem of Shelah,
which shows that the type of a product of words is uniquely determined by the
types of the words:

Claim (Shelah’s composition theorem [24]). Let α be a (possibly uncountable)
linear ordering and, for every i ∈ α, let ui, vi be words (of possibly uncountable
domains). We have

∀i ∈ α typek(ui) = typek(vi) implies typek(∏i∈α ui) = typek(∏i∈α vi) .

To show that L is recognizable, we need to construct a ⍟-monoid (M,π) and

a morphism h from A to M such that L = h−1(h(L)). For this, we define the
function type∧k that maps any countable word to the k-type of its completion,
that is, type∧k(w) = typek(ŵ). The domain M of the ⍟-monoid is precisely the
range of the function type∧k , that is,

M =def {type∧k(w) ∣ w ∈ A⍟} .

We further let word be a function that maps any element m ∈ M to a word
word(m) ∈ A⍟ such that type∧k(word(m)) = m. The product π of the ⍟-monoid
is defined as follows:

π(∏i∈αmi) =def type∧k(∏i∈αword(mi)) .

Even if we do not know yet that π is a product (e.g., that it satisfies generalized
associativity), we can easily verify that the function type∧k behaves like a mor-
phism. Formally, for all countable linear orderings α and all words ui ∈ A⍟, we
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have:

type∧k( ∏i∈α ui ) = typek(
∧
∏i∈α ui)(by definition of type∧k)

= typek(
∧
∏i∈α ûi)(by Lemma 6.8)

= typek(
∧
∏i∈α

∧
word(type∧k(ui)) )(by Claim 6.2)

= type∧k( ∏i∈α word(type∧k(ui)) )(by Lemma 6.8)

= π( ∏i∈α ui )(by definition of π)

Moreover, since type∧k is surjective from A⍟ to M , the property of being a ⍟-
monoid is transferred from (A⍟,∏) to (M,π). Hence, (M,π) is a ⍟-monoid.
Finally, if we let h = type∧k and we consider two words u, v ∈ A⍟ such that
h(u) = u(v), we get u ∈ L iff û ⊧ ϕ iff ϕ ∈ type∧k(u) = h(u) iff ϕ ∈ type∧k(v) iff
v ∈ L. This shows that L is recognized by the ⍟-monoid (M,π) via the morphism
h = type∧k . ⊣

Proposition 6.9 combined with Theorem 5.1 shows that the languages definable
in MSO logic with the cuts at the background are also definable in classical MSO
logic:

Corollary 6.10. Languages of countable words that are MSO definable with
the cuts at the background are MSO definable.

Finally, if we restate the above corollary in terms of relational structures, we
get precisely the claim of Theorem 6.7.

6.3. Yields of tree languages. We conclude the section by considering an-
other open problem related to countable words. More precisely, we will consider
yields of trees, that is, words spelled out by frontiers of trees following the nat-
ural left-to-right order [10, 4].3 We restrict ourselves to labelled binary trees,
namely, trees in which every node has an associated label from a finite alphabet
and every internal node has exactly two (ordered) successors. These trees may
contain leaves as well as infinite paths.

Definition 6.11. The yield of a tree t is the word yield(t) whose domain is
the set of leaves of t, ordered by the infix relation, such that yield(t)(x) = t(x)
for all leaves x.

Given two trees t, t′ and a set X of leaves of t, we denote by t[X/t′] the tree
resulting from the simultaneous substitution in t of all leaves x ∈ X by t′. This
substitution operation is compatible with the analogous operation of substitution
on yields, that is, for all X ⊆ dom(yield(t)), we have

yield(t[X/t′]) = yield(t)[X/yield(t′)] .

3We remark that a different notion of yield was introduced in [11], based on a specific
continuous function that maps trees to finite or ω-words.
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By a slight abuse of notation, given a letter a occurring at some leaves of t, we
denote by t[a/t′] the result of the simultaneous substitution in t of all a-labelled
leaves by t′, and similarly for yield(t)[a/yield(t′)].

Every word of countable domain can be seen as the yield of some tree. Indeed,
this holds trivially for every word indexed over the rationals. Moreover, every
word w of countable domain can be obtained from a word w′ over the rationals
by removing some positions. This latter operation of removing positions can
be implemented at the level of trees by a substitution: if w = yield(t) and X ⊆
dom(w), then w[X/ε] = yield(t[X/tε]), where tε is the infinite complete binary
tree, whose yield is the empty word.

We can also extend the yield function to any language T of trees by letting

yield(T ) = {yield(t) ∣ t ∈ T}. Similarly, given a language L of words, we define the

corresponding tree language as yield−1(L) = {t ∣ yield(t) ∈ L}. We say that a tree
language T is yield-invariant if, for all trees t, t′ such that yield(t) = yield(t′), we

have t ∈ T iff t′ ∈ T (or, equally, if T = yield−1(yield(T ))).
It is known (see, for instance, [25]) that the yield of a regular language T of

finite trees is a context-free language, and in general it is not regular. How-
ever, when the regular tree language T is also yield-invariant, the yield language
yield(T ) is shown to be regular [13]. A converse result also holds: if L is a reg-

ular language of finite words, then T = yield−1(L) is yield-invariant and regular.
The work [4] raises the natural question of whether analogous properties hold
between languages of possibly infinite trees and languages of words of countable
domains. Below, we answer positively to this question by exploiting again the
correspondence between MSO logic and ⍟-algebras.

Theorem 6.12. Let L be a language of countable words and let T = yield−1(L)
be the corresponding yield-invariant language of trees. Then, L is MSO definable
iff T is MSO definable.

The proof of the left-to-right direction is straightforward: if L is defined by an
MSO sentence ϕ, then we can construct another MSO sentence ϕ′ that, when
interpreted on a tree, checks that the frontier satisfies ϕ; the sentence ϕ′ defines
precisely the language T = yield−1(L).

The proof of the converse direction is not immediate, since, a priori, checking
whether a given word w belongs to L requires guessing some tree t ∈ T such that
yield(t) = w. To show that L is recognizable by ⍟-monoids, and hence definable
in MSO logic, we will construct a ⍟-algebra on the basis of a suitable congruence
defined from T .

Definition 6.13. Let T be a tree language over the alphabet A and let c /∈ A
be a fresh letter that will be used as a placeholder for substitution. We denote
by ≅T the equivalence on trees defined by t1 ≅T t2 iff, for all trees t labelled over
the alphabet A ⊎ {c}, we have t[c/t1] ∈ L ↔ t[c/t2] ∈ L. We say that a tree t1
inhabits a ≅T -equivalence class [t2]≅T

if t1 ≅T t2.

We now show some simple but fundamental properties of the relation ≅T . The
first property is that ≅T correctly abstracts trees with the same yield, provided
that the language T is yield-invariant. Formally, if T is yield-invariant and t1
and t2 are two trees such that yield(t1) = yield(t2), then we have t1 ≅T t2. It
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is also easy to verify that ≅T is a congruence with respect to the substitution
operation, that is, t1 ≅T t2 implies t[c/t1] ≅T t[c/t2].

Another crucial property that is used to prove Theorem 6.12 is based on Ra-
bin’s tree theorem [20], which shows that MSO definable tree languages can
be equivalently described by means of automata. Below, we recall some basic
knowledge about tree automata, their problems, and the translation from MSO
logic. We begin by introducing a variant of parity tree automaton that can parse
trees containing leaves and/or infinite paths:

Definition 6.14. A parity tree automaton is a tuple A = (A,Q, I,∆,Ω),
where A is a finite set of node labels, Q is a finite set of states, I ⊆ Q is a
set of initial states, ∆ ⊆ (Q ×A) ⊎ (Q ×A ×Q ×Q) is a set of transition rules,
and Ω ∶ Q → N is a priority function. A successful run of A on a tree t is a tree
ρ that has the same domain as t and satisfies:

● ρ(x0) ∈ I, where x0 is the root of ρ;
● for all leaves x of ρ, (ρ(x), t(x)) ∈ ∆;

● for all internal nodes x of ρ, (ρ(x), t(x), ρ(x1), ρ(x2)) ∈ ∆, where x1 and
x2 are the left and right successors of x, respectively;

● for all infinite paths π in ρ, lim sup (Ω(ρ∣π)) is even, where Ω(ρ∣π) denotes
the sequence of priorities associated with the states along the path π and
lim sup (Ω(ρ∣π)) returns the maximal priority that occurs infinitely often in
the sequence Ω(ρ∣π).

The language recognized by A is the set L (A) of all trees t that admit a suc-
cessful run of A.

We recall that the emptiness problem for parity tree automata, that is, the
problem of testing whether L (A) = ∅ for any given parity tree automaton
A, is decidable. The containment and equivalence problems can be reduced
to the emptiness problem by exploiting effective closures of automata under
intersection and complementation: indeed, we have L (A) ⊆ L (A′) iff L (A) ∩
L (A′) = ∅, where A′ denotes the automaton recognizing the complement of the
language L (A′). There is another fundamental problem that is known to be
decidable, called membership problem. This amounts at testing whether a given
tree t belongs to the language recognized by a given parity tree automaton A.
For this problem to make sense, however, we need to specify how the tree t is
provided in input. A simple solution is to restrict to regular trees, that is, trees
that contain only finitely many non-isomorphic subtrees. It is easy to see that
any regular tree can be finitely represented by a parity tree automaton B that
recognizes the singleton language {t}. The closure of parity tree automata under
intersection implies that the membership problem is decidable: for every regular
tree t represented by the singleton language L (B) = {t}, we have t ∈ L (A) iff
L (B) ∩L (A) ≠ ∅.

We recall below the correspondence between MSO sentences interpreted on
trees and parity tree automata. A proof of this correspondence can be found in
[27] and is based on closure properties of parity tree automata under boolean
operations and projections (originally, this was established by Rabin in [20] using
a different model of automaton).
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Theorem 6.15 (Translation of MSO to tree automata [27]). One can effec-
tively translate any MSO sentence ϕ that defines a tree language T into a parity
tree automaton A that recognizes T .

We are now ready to prove the following key lemma:

Lemma 6.16. For every MSO definable tree language T , ≅T has finite index,
namely, there exist only finitely many ≅T -equivalence classes. Moreover, given
an MSO sentence defining T , one can decide whether t1 ≅T t2, for any pair of
regular trees t1 and t2, and one can compute a finite set of regular trees that
inhabit all ≅T -equivalence classes.

Proof. Let ϕ be an MSO sentence defining the tree language T and let
A = (A,Q, I,∆,Ω) be the corresponding parity tree automaton recognizing T ,
obtained from Theorem 6.15. Given a generic tree t, we abstract the behaviour
of A on t by introducing the A-type of t, defined as

typeA(t) =def {q ∈ Q ∣ t ∈ L (Aq)}
where Aq is the automaton obtained from A by replacing the set I of initial states
with the singleton {q}. Note that there are at most 2∣Q∣ different A-types of trees.
Based on this, we can establish the first claim of the lemma by simply showing
that the type-equivalence induced by A refines the ≅T -equivalence, namely, that
for all trees t1 and t2, typeA(t1) = typeA(t2) implies t1 ≅T t2. Consider two
trees t1, t2 such that typeA(t1) = typeA(t2) and another tree t labelled over the
extended alphabet A ⊎ {c}.

We first prove that A-types are compatible with tree substitutions, that is,
knowing that typeA(t1) = typeA(t2), we get

typeA(t[c/t1]) = typeA(t[c/t2]) .

Consider a state q ∈ typeA(t[c/t1]), namely, such that t[c/t1] ∈ L (Aq). Let ρ be
a successful run of Aq on t[c/t1] and let X be the set of c-labelled leaves of t.
The set X can be equally seen as a set of nodes of ρ. We partition X into some
subsets Xq′ , where q′ ∈ Q and Xq′ = {x ∈ X ∣ ρ(x) = q′}, and for every x ∈ Xq′ ,
we let ρx be the subtree of ρ starting at node x. Note that each subrun ρx, with

x ∈ Xq′ , is a successful run of the automaton Aq
′

on the tree t1. This means
that q′ ∈ typeA(t1) for all non-empty sets Xq′ . Since typeA(t1) = typeA(t2),
we derive that q′ ∈ typeA(t2) for all non-empty sets Xq′ . Thus, there exist

successful runs ρ′x of Aq
′

on t2, for all x ∈ Xq′ . Next, we define the tree ρ′

by substituting in ρ every subtree ρx starting at node x ∈ X with the tree ρ′x
(note that the substitution is performed simultaneously on nodes that may not
be leaves, but these nodes are still pairwise incomparable with respect to the
descendant relation). Since ρ(x) = ρ′(x) for all x ∈ X, we deduce that ρ′ is a
successful run of Aq on t[c/t2]. This proves that q ∈ typeA(t[c/t2]). Symmetric

arguments show that q ∈ typeA(t[c/t2]) implies q ∈ typeA(t[c/t1]).

Now that we know that typeA(t[c/t1]) = typeA(t[c/t2]), we can conclude the
proof of the first claim by observing that

t[c/t1] ∈ L iff typeA(t[c/t1])∩I ≠ ∅ iff typeA(t[c/t2])∩I ≠ ∅ iff t[c/t2] ∈ L
and hence t1 ≅T t2. This shows that ≅T has finite index.
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We turn to the proof of the second claim. Consider two regular trees t1 and t2
represented by singleton languages L (B1) = {t1} and L (B2) = {t2}, respectively.
Recall that t1 ≅T t2 iff for all trees t labelled over A ⊎ {c}, either both trees
t[c/t1] and t[c/t2] are inside L (A), or neither of them are. Further note that
t[c/ti] ∈ L (A) iff there is a state q ∈ Q such that ti ∈ L (Aq) and t ∈ L (Aq),
where Aq is the automaton obtained from A by replacing the transition relation
∆ with

∆q =def (∆ ∩ (Q ×A ×Q ×Q)) ⊎ (∆ ∩ (Q × (A ∖ {c}))) ⊎ ({q, c})
(intuitively, Aq behaves exactly as A on all nodes of the tree t, with the only
exception of the c-labelled leaves, which must be associated with state q). Using
the above properties, we can restate the equivalence t1 ≅T t2 as a (decidable)
boolean combination of emptiness problems:

t1 ≅T t2 iff ⋀
q∈Q

⋁
q′∈Q

( B1 ∩Aq ≠ ∅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t1 ∈Aq

∧ Aq ∩Aq′ ≠ ∅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∃ t ∈Aq ∩Aq′

∧ B2 ∩Aq
′

≠ ∅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t2 ∈Aq′

)

∧ ⋀
q′∈Q

⋁
q∈Q

( B1 ∩Aq ≠ ∅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t1 ∈Aq

∧ Aq ∩Aq′ ≠ ∅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∃ t ∈Aq ∩Aq′

∧ B2 ∩Aq
′

≠ ∅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t2 ∈Aq′

)

∧ ⋁
q∈Q

⋀
q′∈Q

( B1 ∩Aq = ∅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t1 /∈Aq

∧ B2 ∩Aq
′

= ∅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t2 /∈Aq′

) ∨ ( Aq ∪Aq′ = ∅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
/∃ t ∈Aq ∩Aq′

∧ )

∧ ⋁
q′∈Q

⋀
q∈Q

( B1 ∩Aq = ∅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t1 /∈Aq

∧ B2 ∩Aq
′

= ∅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t2 /∈Aq′

) ∨ ( Aq ∪Aq′ = ∅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
/∃ t ∈Aq ∩Aq′

∧ ).

(for simplicity, we identified automata and the recognized languages).
Finally, to compute a set of regular trees that inhabit all ≅T -equivalence

classes, we consider again A-types. We first show how to associate with each
A-type σ a corresponding regular tree tσ such that typeA(tσ) = σ. We do so
by solving a series of emptiness problems. Indeed, we recall that an A-type is
any set σ of states of A such that the language ⋂q∈σ L (Aq) ∩ ⋂q/∈σ L (Aq)
is non-empty. Moreover, if the latter language is non-empty, then it contains
a regular tree tσ that can be effectively constructed from σ. Clearly, we have
typeA(tσ) = σ and hence tσ can be used as a representant of the A-type σ.
Towards a conclusion, we can construct a list of regular trees t1, . . . , tn, one for
each A-type. Since the equivalence ≅T is refined by the type-equivalence induced
by A, we know that every ≅T -equivalence class is inhabited by at least one tree
among t1, . . . , tn. If needed, we can also exploit the decidability of ≅T to select
a minimal subsequence ti1 , . . . , tim of regular inhabitants of all ≅T -equivalence
classes. ⊣

We can now prove the right-to-left direction of Theorem 6.12. Let T be a
yield-invariant language defined by an MSO sentence ϕ. We will exploit Lemma
6.16 and the fact that ≅T is a yield-invariant equivalence compatible with tree
substitutions to construct a ⍟-algebra (M,1, ⋅, τ , τ∗, κ) recognizing the language
L = yield(T ). Formally, we define M to be the set of all ≅T -equivalence classes.
We recall that this set is finite and that ≅T -equivalence classes can be effectively
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manipulated through their regular inhabitants, that is, by means of representants
that have the form of regular trees. We define the operators of the algebra as
follows:

● 1 is the ≅T -equivalence class of the infinite complete tree tε. Note that this
tree tε has no leaves, and hence its yield is the empty word. Moreover,
tε is regular, and hence it can be used as a regular inhabitant of its ≅T -
equivalence class.

● ⋅ is the function that maps any pair of ≅T -equivalence classes [t1]≅T
and

[t2]≅T
to the ≅T -equivalence class

[t1]≅T
⋅ [t2]≅T

=def [ta1a2[a1/t1][a1/t2]]≅T

where ta1a2 is a fixed tree such that yield(t) = a1 a2, and a1, a2 are distinct
fresh letters not occurring in the alphabet of t1 and t2. For example, ta1a2
can be chosen to be the tree

ta1a2 = ●
a1 a2

where the label ● of the root is immaterial. Note that the ≅T -equivalence
class [t1]≅T

⋅[t2]≅T
is well defined thanks to the fact that ≅T is a congruence.

Moreover, because the tree ta1a2 is regular, a regular inhabitant of the class
[t1]≅T

⋅ [t2]≅T
can be effectively constructed from some regular inhabitants

of [t1]≅T
and [t2]≅T

.
● τ is the function that maps any ≅T -equivalence class [t1]≅T

to the ≅T -
equivalence class

[t1]τ≅T
=def [tω[a/t1]]≅T

where tω = ●
a ●
a ...

Again, since tω is a regular tree, a regular inhabitant of the class [t1]τ≅T
can

be computed from a regular inhabitant of the class [t1]≅T
.

● τ∗ is defined similarly to τ , where tω is replaced by the tree

tω∗ = ●
●

... a

a

● κ is the function that maps any set {[t1]≅T
, . . . , [tk]≅T

} of ≅T -equivalence
classes to the ≅T -equivalence class

{[t1]≅T
, . . . , [tk]≅T

}κ =def [tη[a1/t1] . . . [ak/tk]]≅T

where tη is a fixed regular tree with yield {a1, . . . , ak}η and a1, . . . , ak are
fresh letters. For example, tη can be defined by a parity tree automaton so
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as to satisfy the following equation:

tη = ●
tη ●
a1 ●
tη ...

●
tη ●
ak tη

Below, we verify that the structure (M,1, ⋅, τ , τ∗, κ) obtained from the automaton
A is indeed a ⍟-algebra, that is, it satisfies Axioms A1-A5 of Definition 3.2.

Lemma 6.17. The structure (M,1, ⋅, τ , τ∗, κ) obtained from ≅T is a ⍟-algebra.

Proof. The fact that the structure (M,1, ⋅, τ , τ∗, κ) satisfies Axioms A1-A5
follows almost directly from its definition and from the fact that the equivalence
≅T is yield-invariant, that is, t1≅T t2 whenever yield(t1) = yield(t2). For example,
recall the definition of the binary operator ⋅ : for all pairs of trees t1, t2, we have

[t1]≅T
⋅ [t2]≅T

= [
●

t1 t2
]
≅T

.

From this, we easily deduce that ⋅ satisfies Axiom A1:

([t1]≅T
⋅ [t2]≅T

) ⋅ [t3]≅T
=

⎡⎢⎢⎢⎢⎢⎢⎣

●
●

t1 t2

t3

⎤⎥⎥⎥⎥⎥⎥⎦≅T

(by definition)

=

⎡⎢⎢⎢⎢⎢⎢⎣

●
t1 ●
t2 t3

⎤⎥⎥⎥⎥⎥⎥⎦≅T

(by yield-invariance)

= [t1]≅T
⋅ ([t2]≅T

⋅ [t3]≅T
) .(by definition)

We omit the analogous arguments showing that 1, τ , τ∗, and κ satisfy the re-
maining Axioms A2-A5. ⊣

Combining the above lemma, Corollary 3.12, and Theorem 5.1 gives the right-
to-left direction of Theorem 6.12.

We also remark that, if the MSO definable tree language T is not known
to be yield-invariant, we can still construct the structure (M,1, ⋅, τ , τ∗, κ) from
≅T . Below, we explain how to use this structure to decide whether T is yield-
invariant. We follow the same approach described in Section 5 and we construct,
using the operators of (M,1, ⋅, τ , τ∗, κ), a family of MSO sentences of the form
ϕvalue
σ , where σ ranges over the set of possible ≅T -equivalence classes. Given a

word w, these sentences can be used to derive the ≅T -equivalence class of some
tree tw such that yield(tw) = w. In particular, we can define in MSO logic a
word language of the form L = {w ∣ tw ∈ L (A)}. We can then use the left-to-
right implication of Theorem 6.12 to derive an MSO sentence defining the tree



AN ALGEBRAIC APPROACH TO MSO-DEFINABILITY ON COUNTABLE ORDERS 43

language T ′ = yield−1(L). Now, if T is yield-invariant, then T ′ = yield−1(L) =
yield−1(yield(T )) = T , as shown by Theorem 6.12. Conversely, if T ′ = T , then T
is clearly yield-invariant. We thus reduced the problem of deciding whether an
MSO definable tree language T is yield-invariant to the equivalence problem for
MSO sentences interpreted on trees, which is known to be decidable.

Theorem 6.18. The problem of deciding whether a tree language T defined by
an MSO sentence is yield-invariant is decidable.

§7. Conclusion. We have introduced an algebraic notion of recognizability
for languages of countable words and we have shown the correspondence with
the family of languages definable in MSO logic. As a side-product of this result,
we obtained that the hierarchy of monadic quantifier alternation for MSO logic
interpreted over countable words collapses to its ∃∀-fragment (or, equally, to
its ∀∃-fragment). The collapse result is optimal in the sense that there are
recognizable languages that are not definable in the ∃-fragment. Our techniques
are then used to solve an open problem posed by Gurevich and Rabinovich,
concerning the definability of properties of sets of rationals using MSO formulas
interpreted over the real line (definability with the cuts at the background).
Finally, we exploited the correspondence between logic and algebras to solve
another open problem posed by Bruyère, Carton, and Sénizergues, concerning
the characterization of properties of trees that can be defined in MSO logic and
that are yield-invariant.

We conclude by mentioning the possibility of defining models of automata that
extend those from [3] and that capture precisely the expressiveness of MSO logic
over words of countable domains. However, such automata need to have compli-
cated acceptance conditions in order to distinguish between scattered and non-
scattered words and, more generally, to enjoy closure properties under boolean
operations and projections. The definition of an automaton model for languages
of countable words is thus not as natural as that of ⍟-monoid.
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