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We study the topological entropy h(f) of continuous endomorphisms f of compact-
like groups. More specifically, we consider the e-spectrum Etop(K) for a compact-like 
group K (namely, the set of all values h(f), when f runs over the set End(K) of 
all continuous endomorphisms of K). We pay particular attention to the class E<∞
of topological groups without continuous endomorphisms of infinite entropy (i.e., 
∞ /∈ Etop(K)) as well as the subclass E0 of E<∞ consisting of those groups K
with Etop(K) = {0}. It turns out that the properties of the e-spectrum and these 
two classes are very closely related to the topological dimension. We show, among 
others, that a compact connected group K with finite-dimensional commutator 
subgroup belongs to E<∞ if and only if dimK < ∞ and we obtain a simple formula 
(involving the entropy function) for the dimension of an abelian topological group 
which is either locally compact or ω-bounded (in particular, compact). Examples 
are provided to show the necessity of the compactness or commutativity conditions 
imposed for the validity of these results (e.g., compact connected semi-simple groups 
K with dimK = ∞ and K ∈ E0, or countably compact connected abelian groups 
with the same property). Since the class E<∞ is not stable under taking closed 
subgroups or quotients, we study also the largest subclasses S(E<∞) and Q(E<∞), 
respectively, of E<∞, having these stability properties. We provide a complete 
description of these two classes in the case of compact groups, that are either abelian 
or connected. The counterpart for S(E0) and Q(E0) is done as well.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Inspired by Kolmogorov-Sinai’s notion of measure-theoretic entropy, Adler, Konheim and McAndrew [1]
introduced the concept of topological entropy for continuous self-maps of compact topological spaces. Then 
it was generalized by Bowen [6] and Dinaburg [19] for uniformly continuous self-maps of metric spaces. 
Hood [27] extended Bowen’s entropy in the more general context of uniform spaces. In this framework, the 
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study of Bowen’s entropy in the realm of topological groups is widely justified and motivated. Recall that, 
for a surjective continuous endomorphism for a compact group, the topological entropy coincides with the 
Kolmogorov-Sinai metric entropy with respect to the normalized Haar measure on the group ([3,45]) and 
with Bowen’s entropy (see §3).

It was shown by Stoyanov [45] that the entropy of continuous endomorphisms of compact groups is 
uniquely determined by a set of seven natural axioms satisfied by the topological entropy. Axiomatic def-
initions of entropy have been studied in different settings by several authors. For instance, Rokhlin [41]
axiomatically defined the measure-theoretic entropy of a continuous automorphism of a Lebesgue space, 
and Llibre and Snoha [33] gave two axiomatic definitions for the entropy of continuous self-maps on a 
compact interval.

The topological entropy, in the above sense, will be denoted by h in the sequel. Naturally, the most 
relevant problems in discrete dynamical systems deal with the values of entropy, for instance, the celebrated 
problem of the existence of continuous automorphisms of compact groups with arbitrarily small positive 
entropy in the following sense. Taking the infimum over all continuous automorphisms α of compact groups, 
is it true that

inf{h(α) |h(α) > 0 } > 0 ? (1)

It is shown in [30] that a negative answer is equivalent to the statement that for any a ∈ ]0,+∞] there 
is a continuous (ergodic) compact group automorphism with topological entropy a (see also [12] for other 
equivalent forms of (1) involving the algebraic entropy). On the other hand, a positive answer implies that 
the set of all possible values of the topological entropy of continuous automorphisms of compact groups 
is countable (for a combinatorial analogue to (1) the reader might see [50] and for its relationship with 
Lehmer’s Problem one can consult [29,30,12] (or [32,42] for Zn-actions).

1.1. Main results

This paper’s predecessor [2] studied the infinitude of Bowen’s entropy by providing a wealth of zero 
entropy continuous endomorphisms on a totally bounded topological group whose extension to the (compact) 
Weil completion of the group has infinite entropy.

This paper deals with natural questions related to the values of Bowen’s entropy in the framework of 
(mostly, compact) group continuous endomorphisms. To this end we study the e-spectrum

Etop(G) = {h(f) : f ∈ End(G)}

for a topological group G. Our first aim is to study the class E∞ of topological groups G without continuous 
endomorphisms of infinite entropy (i.e., such that ∞ /∈ Etop(G)), as well as the class E0 of topological groups 
G with the property Etop(G) = {0} (i.e., such that every continuous endomorphism of G has zero entropy). 
Obviously E<∞ ⊇ E0. This inclusion is proper, according to Corollary 1 below.

It turns out that E0 contains the remarkable class O of Orsatti groups (Proposition 3.9), introduced by 
Orsatti in equivalent terms in a different setting [36]:

Definition 1.1. ([9]) A group of the form K =
∏

p∈P Z
np
p × Fp, where Zp is the compact group of p-adic 

integers, np ≥ 0 is an integer and Fp is a finite p-group for every prime p, is called an Orsatti group.

Orsatti observed that the groups K ∈ O have unique compact topology, namely the product topology 
(which has as basic neighbourhoods of 0 the subgroups {nK : n > 0} [37]). From now on these groups will 
be considered to be equipped with their unique compact topology. It is a natural question whether every 
compact abelian group in E0 is an Orsatti group. By means of Pontryagin duality and Theorem 3.17, this 
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problem can be formulated also as a problem about torsion abelian groups and the algebraic entropy of their 
endomorphisms. This dual algebraic problem triggered the papers [12,13] (see also [11,17,47], as well as the 
survey [10] and the references given there) dedicated to the algebraic entropy. Making use of the family 
built in [13, Theorem 5.4], we provide here a plenty of examples of compact abelian groups K ∈ E0 that are 
not Orsatti groups (see Theorem E (b)). Nevertheless, the class O allows for natural characterizations via 
the class E0 (see Theorem F (a2)).

Our first three theorems (as well as Theorem F) reveal a deep connection between the classes E<∞, E0

(restricted to compact-like groups) and the topological dimension. We need to recall first, that a topological 
group G is ω-bounded if every countable subset of G is contained in some compact subset of G.

For a topological abelian group G and for every integer k we denote by mG
k the (continuous) endomor-

phism G → G defined by the multiplication by k, i.e., mG
k (x) = kx for every x ∈ G. The next theorem 

shows that the entropy of the endomorphism mK
k of a compact abelian group K can “measure” the di-

mension of K in a rather natural way (see (2)). In particular, the compact-like abelian groups in E<∞ are 
finite-dimensional.

Theorem A. Let G be a topological abelian group that is either locally compact or ω-bounded. Then

h(mG
k ) = dimG · log k (2)

for every integer k > 1. Moreover, the following are equivalent:

(a) G is totally disconnected;
(b) h(mG

k ) = 0 for every integer k;
(c) h(mG

k ) = 0 for some integer k > 1.

In particular, if G ∈ E<∞, then dimG < ∞.

We show that the level of compactness cannot be lowered to countable compactness (see Example 4.2). 
On the other hand, in the compact case a more precise connection is available (see §2.1 for background 
concerning pro-p-group and the presentation K =

∏
p∈P Gp in item (b)):

Theorem B. Let K be a compact abelian group. Then:

(a) if dimK < ∞ and K/c(K) ∈ E<∞, then also K ∈ E<∞.
(b) K ∈ E0 if and only if K is totally disconnected and K =

∏
p∈P Gp, where Gp ∈ E0 is a pro-p-group for 

every prime p.

Obviously, (a) is only a partial inverse of the last assertion of Theorem A. On the other hand, we do not 
know whether the condition K/c(K) ∈ E<∞ in (a) is necessary (see Question 7.3). For connected group one 
obviously has this bold equivalence:

Corollary 1. A connected compact abelian group K belongs to E<∞ if and only if dimK < ∞.

The subclass E0 of E<∞ is proper, since every compact abelian group K ∈ E0 is totally disconnected by 
Theorem B(b). In contrast with this, the next example shows that E0 may contain non-abelian compact 
connected groups:
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Example 1.2. Let K = SO3(R). Then K is compact, connected, with dimK = 3 and every non-trivial 
continuous endomorphism ψ of K is an internal automorphism, so h(ψ) = 0 and K ∈ E0 (see Remark 2.6
(a) and Example 6.8 for a proof and general results in this direction).

In the sequel G′ stands for the commutator of a group G. Recall that a group G is abelian precisely when 
G′ is trivial. The groups G with G = G′ are called perfect, these are the groups G with trivial abelianization 
G/G′.

In order to show that G ∈ E<∞ does not imply dimG < ∞ in the non-abelian case, we provide in 
Example 6.8 a connected group G = G′ ∈ E0 with dimG = ∞. The next theorem shows that even a rather 
mild commutativity condition (as dimG′ < ∞) may repair this problem. Item (a) reinforces Corollary 1:

Theorem C. Let K be a compact connected group with dimK ′ < ∞. Then:

(a) K ∈ E<∞ if and only if dimK < ∞;
(b) the following are equivalent:

(b1) K ∈ E0;
(b2) K = K ′;
(b3) dimZ(K) = 0; and
(b4) Z(K) is finite.

In particular, (a) holds for every compact connected abelian group K.

Theorems A will be proved in §4.1, Theorems B and C – in §4.2.
Combining Theorems A, B and C we can see that for a non-trivial finite-dimensional compact connected 

abelian group K, say with 0 < d := dimK < ∞, one has

{k log d : k ∈ N} ⊆ Etop(K) ⊆ (0,+∞).

In particular, Etop(K) = {0, ∞} can never occur for such a group K (see Example 7.1 for a compact 
connected (necessarily infinite-dimensional) abelian group K with Etop(K) = {0, ∞}).

While Etop(K) = {0} (i.e., K ∈ E0) is equivalent to K = {0} for a compact connected abelian group 
K, the class E0 may contain a plenty of totally disconnected compact abelian groups (actually, all totally 
disconnected compact abelian groups in E<∞ are already in the smaller class E0, see Corollary 2). This 
means that for a totally disconnected compact abelian group K one has the dichotomy

either Etop(K) = {0} (i.e., K ∈ E0) or {0,∞} ⊆ Etop(K).

In other words, we obtain an intermediate “smallness of entropy” property Etop(K) = {0, ∞} for the 
topological e-spectrum of a totally disconnected compact abelian group K. More precisely, the next theorem 
shows that the existence of at least one finite positive value in Etop(K) yields ∞ ∈ Etop(K), i.e., K /∈ E<∞. 
Items (b) and (c) of the theorem describe the structure of the totally disconnected compact abelian groups 
K satisfying Etop(K) � {0, ∞} (for the term semi-standard see Definition 2.4):

Theorem D. For an infinite totally disconnected compact abelian group K the following conditions are 
equivalent:

(a) Etop(K) � {0, ∞};
(b) the group K is not semi-standard;
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(c) K has a direct summand of the form Z(pn)N for some n ∈ N and some prime p, where Z(pn) is the 
cyclic group of order pn;

(d) Etop(K) ⊇ {∞} ∪ {mn log p : m ∈ N} for some prime p and n ∈ N.

This theorem will be proved in §5.1. The proof heavily relies on the Bridge Theorem 3.17 and properties 
of the algebraic entropy ent established in [13]. It implies that K /∈ E0 if and only if {0, ∞} ⊆ Etop(K) (i.e., 
G /∈ E<∞) for an infinite totally disconnected compact abelian group K. We reformulate this equivalently 
in the following immediate corollary of Theorem D(d):

Corollary 2. The totally disconnected compact abelian groups in E0 and E<∞ coincide. In particular, they 
are semi-standard.

Example 1.3. By the above corollary, every totally disconnected compact abelian group in E0 is semi-
standard. More precisely, the semi-standard totally disconnected compact abelian groups K are precisely 
those with Etop(K) ⊆ {0, ∞}. According to item (d) of Theorem D, a typical example of a totally discon-
nected compact abelian group satisfying Etop(K) = {0, ∞} is the group K =

∏∞
n=1 Z(pn) for a prime p. More 

generally, for a sequence (kn)n of natural numbers, the group K =
∏∞

n=1 Z(pn)kn satisfies Etop(K) = {0, ∞}
precisely when the sequence (kn)n is finitely many-to-one, i.e., when K is semi-standard.

Another typical example of a group K with Etop(K) = {0, ∞} (so, K /∈ E<∞) is any product of the form 
K =

∏
p∈P Z

κp
p with at least one infinite κp (actually, any torsion-free totally disconnected compact abelian 

group of uncountable weight will do). Indeed, every torsion-free totally disconnected compact abelian group 
has the form K =

∏
p∈P Z

κp
p for some cardinals κp; furthermore, w(K) > ω precisely when κp = w(Zκp

p ) > ω

for some prime p. If K 	= {0}, then K fails to satisfy item (c) of Theorem D, so Etop(K) ⊆ {0, ∞}. If κp < ∞
for all p, then K ∈ O, so K ∈ E0, i.e., Etop(K) ⊆ {0}. If κp ≥ ω for some prime p, then use Example 5.1 to 
conclude that Zκp

p /∈ E0, so K /∈ E0 as well. Hence, Etop(K) = {0, ∞}.

In item (a) of the next theorem we prove that w(K) ≤ c for every compact totally disconnected abelian 
group G ∈ E<∞ (“totally disconnected” can be omitted in case Question 7.3 has a positive answer). In item 
(b) we show that the weight c can be attained in E<∞ in many ways.

Theorem E.

(a) If K ∈ E<∞ is a totally disconnected compact abelian group, then w(K) ≤ c.
(b) There is a family of 2c many pairwise non-isomorphic compact groups {Ki : i ∈ I} of weight c such that

(b1) (Ki, τ) ∈ E0 for each i;
(b2) the torsion subgroup t(Ki) is dense in Ki for each i ∈ I.

Item (b) of the above theorem will be deduced from results obtained in [13] and the Bridge Theorem 3.17. 
As far as item (b2) is concerned, let us note that if K is a torsion-free totally disconnected compact abelian 
group with w(K) = c, then K /∈ E<∞ (see Example 1.3).

The classes E<∞ and E0 are not closed with respect to taking quotients and same applies to stability with 
respect to taking closed subgroups. Denote by S(E<∞) (resp., by Q(E<∞)) the class of topological groups 
G such that all closed subgroups (all Hausdorff quotient, resp.) of G belongs to E<∞. Obviously, S(E<∞)
(resp., Q(E<∞)) is the largest subclass of E<∞ closed under taking closed subgroups (resp., quotients).

Theorem F. Let K be a compact group.

(a) If K is abelian, then
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(a1) K ∈ S(E<∞) if and only if K ∈ Q(E<∞) if and only if dimK < ∞ and K/c(K) ∈ O.
(a2) K ∈ S(E0) if and only if K ∈ Q(E0) if and only if K ∈ O.

(b) Suppose K is connected.
(b1) K ∈ S(E<∞) if and only if dimK < ∞. In such a case K ∈ Q(E<∞) and K is metrizable.
(b2) K ∈ Q(E<∞) if and only if dimZ(K) < ∞ and K has no Lie components of infinite multiplicity. 

In such a case, G is metrizable.

Theorem F is proved in §6, where we prove actually a more precise result regarding item (a) (see Propo-
sition 6.2 and Corollary 6.6 for some more equivalent condition to those of items (a1) and (a2)).

The paper is organised as follows. Section 2 contains some necessary background on (topological) abelian 
groups and connected compact groups. Section 3 recalls some general properties on the topological entropy 
of continuous endomorphisms of (compact-like) topological groups, the algebraic entropy in discrete abelian 
groups and its connection to the topological one. We prove here also Proposition 3.9, showing that E0
contains the class O. In Section 4 we prove Theorems A, B and C, while §5 provides examples of groups with 
continuous endomorphisms of infinite entropy and the proofs of Theorems D and E using these examples.

In §6 we study the class Oc of compact abelian groups obtained by extending finite-dimensional compact 
connected abelian groups by groups from the class O. We show that the class Oc is stable with respect 
to taking extensions, closed subgroups and quotients. Using these facts it is possible to see that these are 
exactly the groups described in item (a1) of Theorem F. In §6.2 the case of connected non-abelian case is 
considered, here we prove item (b) of Theorem F.

The final section 7 provides some comments, conjectures and open questions.

We dedicate this paper to Adalberto Orsatti, for his memorable work in the theory of abstract and 
topological abelian groups.

Notation and terminology. Our terminology and notation are standard. For instance, N, P , R and T = R/Z

stand for the positive integers, the prime numbers, the additive group of the reals and the circle, respectively; 
Z(n) denotes the cycle group of order n and c the continuum.

For an abelian group G and m ∈ N let

mG = {mx : x ∈ G}, G[m] = {x ∈ G : mx = 0}, and t(G) :=
∞⋃

n=1
G[n!],

the torsion subgroup of G. The group G is divisible, if mG = G for all m > 0. The free rank of an abelian 
group G is denoted by r(G). For p ∈ P the subgroup G[p] is a vector space over the finite field Z/pZ, its 
dimension rp(G) over Z/pZ is called p-rank of G. A subgroup H of G is pure, if mG ∩ H = mH for all 
m ∈ N. For p ∈ P we denote by Zp is the group of p-adic integers.

In the sequel, all topological groups will be assumed to be Hausdorff. Given a topological group G, 
we always consider it with its two-sided uniformity. Then a continuous homomorphism from a topological 
group G1 into a topological group G2 is uniformly continuous respect to the uniformities on G1 and G2. 
A topological group G is said to be totally bounded if for each neighbourhood U of the identity there exists 
a finite set F ⊂ G such that G = UF .

For a topological group G we denote by c(G) the connected component of G and by w(G) the weight of 
G. We say that a topological group (G, τ) has a linear topology, if τ has a local base at the neutral element 
consisting of open subgroup. The Răıkov completion of a topological group G will be denoted by G̃, while 
the extension of a continuous endomorphism α of G to G̃ is denoted by α̃. Finally, we write H ≤ G to 
denote a (topological) subgroup H of G.

Let L be the category of locally compact abelian groups. For G ∈ L we denote by Ĝ the set of all 
continuous characters χ : G → T . With the pointwise operation, Ĝ is actually an abelian group, usually 
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endowed with the compact-open topology. Then Ĝ is a locally compact group, called dual group of G. 
Moreover, Ĝ is compact (resp., discrete) precisely when G is discrete (resp., compact). For every continuous 
homomorphism f : G → H in L, the dual homomorphism f̂ : Ĥ → Ĝ, defined by f̂(χ) = χ ◦ f , for every 
χ ∈ Ĥ, is continuous. The Pontryagin-van Kampen duality theorem states that the functor ·̂ : L → L, 
induces a duality, so ̂̂G ∼= G canonically for all G ∈ L. This implies that f̂ is surjective, whenever f is an 
injective homomorphism between discrete groups. We use K to denote the compact Pontryagin dual Q̂ of 
the discrete group Q of the rational numbers.

We denote by dimG the dimension of G. According to Pasynkov’s celebrated theorem the three major 
dimension functions coincide for locally compact topological groups [38]. When G is compact abelian, 
dimG = r(Ĝ).

For notions and terminology not defined here on topological groups the reader can consult [25], and on 
abstract abelian groups [22].

2. Background on compact groups

2.1. p-Groups and pro-p-groups

Every infinite abelian p-group X admits a p-basic subgroup B ∼=
⊕∞

n=1 Z(pn)(fn), i.e., B is such that X/B

is divisible and B is a pure subgroup of X (cf. [22]). The cardinals fn, known as Ulm-Kaplanski invariants of 
X, are computed by the formula fn = rp(pn−1G[p]/pnG[p]). An abelian p-group G is called semi-standard, 
if all Ulm-Kaplanski invariants fn of G are finite. Let Bm =

⊕m
n=1 Z(pn)(fn) and Lm =

⊕∞
n=m+1 Z(pn)(fn). 

In this notation, the following fact is well-known:

Fact 2.1. For every m ∈ N the subgroup Bm is a direct summand of X, consequently, also Z(pm)(fm) is a 
summand of X.

Proof. The divisibility of X/B yields

X = pmX + B = pmX + Bm + Lm = (pmX + Lm) + Bm.

Let us see that the last sum is direct, i.e., Bm splits in X. Indeed, if z ∈ Bm∩(pmX+Lm), then z = pmx + l

with x ∈ X, l ∈ Lm. So z − l ∈ B ∩ pmX. Since the subgroup B is pure in X we can write z − l = pmb, 
with b ∈ B. Since obviously pmB = pmLm ⊆ Lm, we have z − l ∈ Lm and consequently z ∈ Bm ∩ Lm = 0. 
This proves that Bm ∩ (pmX + Lm) = 0. Therefore, Bm is a direct summand of X. This implies also that 
Z(pm)(fm) is a summand of X. �

In the sequel we intensively use pro-finite abelian group. Let us recall that these are inverse limits of 
finite abelian groups, and so are compact totally disconnected groups (i.e., inverse limits of finite groups). 
The pro-p-groups, where p is a prime, are inverse limits of finite p-groups. In the next lemma we collect 
several properties of these groups used in the sequel.

Lemma 2.2. Let p be a prime and let G be an abelian pro-p-group. Then

(a) the dual of G is a p-group;
(b) G is torsion-free if and only if Ĝ is divisible if and only if G ∼= Zκ

p for some cardinal κ;
(c) G is torsion if and only if G has a finite exponent;
(d) If the quotient group G/N is torsion-free, then N splits topologically in G, i.e., G = N ×H for some 

closed subgroup H of G isomorphic to G/N .
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A pro-finite abelian group G is a topological direct product of pro-p-groups G =
∏

p∈P Gp.

Proof. Items (a)–(c) are folklore (see [25,15]).
(d) According to (b), the subgroup N⊥ ∼= Ĝ/N of X = Ĝ is divisible, as the group G/N is torsion-free. 

Hence, X = N⊥ × Y for appropriate subgroup Y of X. Obviously, Y ∼= Ĝ/N⊥ ∼= N̂ . Therefore, X =
N⊥ × N̂ = Ĝ/N × N̂ ∼= ̂N ×G/N . Therefore, G ∼= ̂̂

G ∼= N ×G/N , i.e., N splits topologically in G.
For the last assertion take as the desired pro-p-subgroup Gp of G the set of all topologically p-torsion 

elements of G (i.e., the elements x ∈ G such that pnx → 0, [4]). This gives the desired presentation (see 
[4,15] for more details). �

Following [15], the subgroup Gp will be called pro-p-component or topological p-component.

2.2. Dimension and connectedness of compact groups

Fact 2.3. Let G be a locally compact group.

(a) [35] If N is a closed normal subgroup of the group G, then dimG = dimG/N + dimN . In particular, 
dimG = dim c(G).

(b) [7] If G is totally disconnected, then G is zero-dimensional (actually, G has linear topology, by a theorem 
of van Dantzig).

(c) [25] If G is totally disconnected and compact, then it is pro-finite, so can be described as in Lemma 2.2
in the abelian case.

(d) [15] If G is compact abelian with d = dimG, then there exists a continuous surjective homomorphism 
f : G → Td such that ker f is totally disconnected.

Definition 2.4. Call a totally disconnected compact abelian group K semi-standard, if for every prime p the 
p-group K̂p is semi-standard, where Kp is the pro-p-component of K (as in Lemma 2.2).

Here and in the sequel, the term simple used for a compact Lie group K means that K has no proper 
connected normal subgroups (but K may have non-trivial finite normal subgroups, e.g., a non-trivial finite 
centre). When K has no proper normal subgroups at all, we say that K is algebraically simple or centre-free.

According to Goto’s Theorem [26, Theorem 9.2], the commutator subgroup K ′ of a compact connected 
group K is closed, connected and every element of K ′ is a commutator. Following [26, Definition 9.5], call 
a compact connected group K semisimple, if K = K ′.

Fact 2.5. Let K be a compact connected group and let A = c(Z(K)).

(a) [26, Corollary 9.20] If K is semi-simple, then there is a family {Si : i ∈ I} of simple and simply 
connected compact connected Lie groups and a closed central subgroup N of L =

∏
i∈I Si such that 

K ∼= L/N and Z(K) = Z(L)/N .
(b) [26, Theorem 9.24] The closed subgroup A ∩ K ′ of K is totally disconnected and there is a family 

{Si : i ∈ I} as in item (a), such that with L as in item (a), there exists a closed totally disconnected 
subgroup N of A × Z(L) with N ∩ (A × {1}) = {1} and K ∼= (A × L)/N ; in particular, K = A ·K ′. 
Moreover, G/Z(K) ∼=

∏
i∈I Si/Z(Si) has trivial centre.

Furthermore, dimK ′ < ∞ if and only if K ′ is a (connected semi-simple) Lie group, while

dimK = dimZ(K) + dimK ′ and dimZ(K) = dimK/K ′. (3)

Consequently, K is metrizable when dimK < ∞.
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Remark 2.6. A few words are in order here related to the above fact.

(a) One can obtain the family {Si : i ∈ I} in the above fact by simply taking the quotient G/Z(K) which 
is isomorphic to a product 

∏
i∈I Li of compact connected algebraically simple Lie groups Li. Now the 

covering groups Si = L̃i form the desired family.
(b) We refer to the Lie groups Li appearing in the product K/Z(K) ∼=

∏
i∈I Li by simply calling them Lie 

components of K (although Li
∼= Si/Z(Si) is not necessarily isomorphic to a subgroup of K). There 

are only countably many pairwise non-isomorphic compact connected simple Lie groups. Therefore, in 
the product K/Z(K) ∼=

∏
i∈I Li there are at most countably many pairwise non-isomorphic groups. 

If {Ln : n ∈ N} is a complete list of all representatives of the isomorphism classes of the compact 
connected algebraically simple Lie groups, then one can rewrite the product (up to isomorphism) also 
in the form 

∏∞
n=1 L

κn
n . We call the cardinal number κn multiplicity of the Lie component Ln.

In the next lemma we show that every compact finite-dimensional group K contains a largest connected 
Lie subgroup λ(K) (i.e., λ(K) is a connected Lie subgroup of K and every connected Lie subgroup of K
is contained in λ(K)). We call λ(K) the Lie radical of K. Easy examples show that this property is not 
available in infinite-dimensional compact groups (even connected compact abelian groups may fail to posses 
such a subgroup λ(K), take for example K = TN).

Lemma 2.7. Every compact finite-dimensional group K contains a largest connected Lie subgroup λ(K). If 
f : K → H is a continuous homomorphism of compact finite-dimensional groups, then f(λ(K)) ≤ λ(H). In 
particular, λ(K) is a fully invariant subgroup of K.

Proof. Since every connected subgroup of K is contained in c(K), it is clear that we can assume without 
loss of generality that K is also connected.

Consider first the case when K is abelian. Then a connected Lie subgroup of K is necessarily a torus, so 
we have to show that the family T(K) of all tori in K has a largest torus. Note first that T(K) is directed, as 
for T1, T2 ∈ (K) the subgroup T1+T2 is a torus (being isomorphic to a quotient of the torus T1×T2). Hence, 
it suffices to see that T(K) contains a maximal torus (i.e., not properly contained in any other torus). It 
follows from Fact 2.3(a), that if T1, T2 ∈ T(K) with T1 ≤ T2, then either T1 = T2, or dimT2 > dimT1 (as 
T2/T1 is still a torus). Since K is finite-dimensional, there exists a torus Tmax of maximal dimension d. By 
the previous observation, Tmax is maximal.

In the general case, K ′ is a connected Lie group by Fact 2.5. On the other hand, K/K ′ is a connected 
finite-dimensional compact abelian group. So it has a largest torus λ(K/K ′). Let q : K → K/K ′ be the 
canonical homomorphism. Then B := q−1(λ(K/K ′)) is a closed subgroup of K containing the connected 
subgroup K ′ and such that B/K ′ ∼= λ(K/K ′) is a compact connected Lie group. Then B is a connected 
Lie group as well. Assume that L is a connected Lie subgroup of K. Then L ·K ′ is still a connected Lie 
subgroup of K. So, q(L ·K ′) = q(L) is a connected Lie subgroup of K/K ′. Hence, q(L) ≤ λ(K/K ′), and 
consequently, L ≤ q−1(L ·K ′) ≤ B. Therefore, B = λ(K) is the largest connected Lie subgroup of K. �
3. Topological entropy of continuous endomorphisms

Let us first briefly recall the definition of topological entropy following [1]. For a compact space X denote 
by cov(X) the family of all open covers of X and for U ∈ cov(X) put H(U) = min{log |V|: V a finite 
subcover of U}. For a continuous self-map ψ : X → X, n ∈ N+ and U ∈ cov(X) let

Cn(ψ,U) := {U0 ∩ ψ−1(U1) ∩ . . . ∩ ψ−n+1(Un−1) : Uk ∈ U , k = 0, 1, . . . , n− 1}.



346 D. Dikranjan, M. Sanchis / J. Math. Anal. Appl. 476 (2019) 337–366
The limit Htop(ψ, U) = limn→∞
H(Cn(ψ,U))

n exists by a folklore fact referred to as the Fekete Lemma. The 
topological entropy of ψ is

htop(ψ) = sup{Htop(ψ,U) : U ∈ cov(X)}.

Now we recall the definition of Bowen’s entropy in its more general form for uniform spaces from [27]. 
Let (X, U) be a uniform space and let α : X → X be a uniformly continuous map. For an entourage U ∈ U, 
a subset F of X is said to (n,U)-span a compact subset C of X if for every x ∈ C there is y ∈ F such 
that 

(
αj(x), αj(y)

)
∈ U for each 0 ≤ j < n. Let rn (U,C) be the smallest cardinality of a set F which 

(n,U)-spans C and let hB (α,C) = supU∈U{lim supn→∞
1
n log rn (U,C)}. The Bowen entropy hB (α) of α

with respect to the uniform structure U is defined as

hB (α) = sup {hB (α,C) : C ⊆ X, compact} . (4)

According to [17, Corollary 2.14], for a compact uniform space (X, U) every continuous self-map f : X → X

is uniformly continuous and hB (f) = htop (f). This is why from now on we only use h to briefly denote the 
Bowen entropy, keeping in mind that in the compact case it simply coincides with the topological entropy 
htop.

Some fundamental properties of the topological entropy in compact spaces are listed below (see [45,49]).

Fact 3.1.

(a) (Logarithmic Law) Let X be a compact space and ψ : X → X a continuous self-map. Then h(ψk) =
kh(ψ) for every k ∈ {0} ∪ N; if ψ : X → X is a homeomorphism, then h(ψ−1) = h(ψ), so h(ψk) =
|k|h(ψ) for every k ∈ Z.

(b) (Reduction to surjective self-maps) Let X be a compact space and ψ : X → X be a continuous self-
map. Then Eψ(X) :=

⋂
n∈N ψn(X) is closed and ψ-invariant, the map ψ �Eψ(X): Eψ(X) → Eψ(X) is 

surjective and h(ψ) = h(ψ �Eψ(X)).
(c) (“Continuity” w.r.t. inverse limits) Let (Xi, ϕij , I) be an inverse system of compact spaces Xi with 

surjective connecting maps ϕij, and canonical projections ϕi : X = lim←−−Xi → Xi. If ψi : Xi → Xi, 
i ∈ I, are continuous maps with ψi ◦ϕi,j = ϕi,j ◦ψj for j ≤ i in I, then for the unique continuous map 
ψ = lim←−−ψi : X → X with ϕi ◦ ψ = ψi ◦ ϕi for every i ∈ I, one has h(ψ) = supi∈I h(ψi).

3.1. Topological entropy of continuous endomorphisms of topological groups

The next remark, inspired by Bowen’s paper [6], shows that the computation of the topological entropy 
can be easier in locally compact groups considered in their (right) uniform structure.

Remark 3.2. Let ψ be a continuous endomorphism of a locally compact group G, equipped with a right Haar 
measure μ. According to [10, §4.5], hB(ψ) can be obtained as follows. Let C(G) be the family of all compact 
neighbourhoods of eG in G and for n ∈ N and U ∈ C(G) let Cn(ψ, U) = U ∩ψ−1(U) ∩ · · · ∩ψ−n+1(U). Let

k(ψ,U) = lim sup
n→∞

− logμ(Cn(ψ,U))
n

(5)

(the limit does not depend on the choice of μ). Then hB(ψ) = sup{k(ψ, U) : U ∈ C(G)}. If G is compact, 
then (5) is a limit.
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If f : G → G is a continuous endomorphism of a topological group G and N is a closed normal subgroup 
of G, we say that N is f -invariant if f(N) ≤ N . In such a case f induces a continuous endomorphism of the 
quotient group G/N that we denote by f/N . We shall often make use of the so called Addition Theorem 
for entropy:

Fact 3.3. [6, Theorem 19] Let f : K → K be a continuous endomorphism of a compact group K and let N
be a closed normal f -invariant subgroup of K. Then

h(f) = h(f �N ) + h(f/N). (6)

Remark 3.4. The case when G is locally compact and splits into a direct product G = N × K, with K
compact, then (6) holds true. This can be proved by using Remark 3.2.

(a) The Addition Theorem was proved in [53] in the case of compact metrizable groups. The general cases 
can be obtained from this particular case, as shown in [2, Theorem 8.3].

(b) It is not known whether the Addition Theorem holds true for locally compact abelian groups (see [17]). 
Nevertheless, it remains true when G is arbitrary and N is open; as h(f) = h(f �N ) and h(f/N) = 0 in 
such a case (see [17, Corollary 4.17]). For zero-dimensional locally compact groups (6) was proved for 
some special cases in [23].

Now, we explicitly summarize properties related to the endomorphism mG
k for the sake of easy reference.

Fact 3.5. Let k be an integer, let G be a topological abelian group and let H be a subgroup of G. Then:

(a) H is mG
k -invariant, mH

k = mG
k �H and mG

k /H = m
G/H
k ;

(b) if G is compact and H is closed, then h(mG
k ) = h(mH

k ) + h(mG/H
k );

(c) ([6, Theorem 15], [54]) h(mRn

k ) = h(mTn

k ) = h(mKn

k ) = n log k for every k ∈ N.

For use in the next subsection now we provide sufficient conditions for vanishing of the entropy.

Proposition 3.6. If α : G → G is a continuous endomorphism of a topological abelian group having a local 
base of neighbourhoods {Ui : i ∈ I} of the neutral element of G with α(Ui) ⊆ Ui for all i ∈ I. Then α is 
continuous and h(α) = 0.

Proof. Fix a compact set C in G, i ∈ I and n ∈ N. By the compactness of C there exists a finite set 
F ⊆ G such that C ⊆

⋃
x∈F (x + Ui). To see that C is (n, Ui)-spanned by F pick y ∈ C and find x ∈ F

such that y − x ∈ Ui. Then αj(y) − αj(x) = αj(y − x) ∈ Ui for every j ∈ N. Thus rn(Ui, C) ≤ |F | and 
limn

log rn(Ui,C)
n = 0. Therefore, h(α) = 0. �

The next corollary directly follows from Proposition 3.6. Recall that a subgroup H of G is said to be 
fully invariant, if α(H) ⊆ H for every endomorphism of G.

Corollary 3.7. Let G be a topological abelian group having a linear topology τ . Then:

(a) h(mG
k ) = 0 for every integer k;

(b) if τ has a local base formed by fully invariant subgroups of G, then every endomorphism of G is 
τ -continuous and has zero entropy.
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Proof. (a) Follows from Proposition 3.6 and the fact that the open subgroups of the base of G are obviously
mG

k -invariant.
(b) Follows from Proposition 3.6 and (a). �

3.2. First properties of the classes E<∞ and E0

First we recall some results from [2]:

Lemma 3.8. (a) ([2, Lemma 8.4]) If every compact subset of a uniform space (X, U) is finite, then h(α) = 0
for each uniformly continuous self-map α of (X, U). In particular, if X is a topological group without infinite 
compact subsets, then X ∈ E0.

(b) ([2, Corollary 8.1]) If α : X → X is a uniformly continuous self-map of the uniform space (X, U) and 
Y is an α-invariant subspace, then h(α�Y ) ≤ h(α). In particular, if G is a topological group and α : G → G

is a continuous endomorphism, then h(α) ≤ h(α̃).
(c) ([2, Corollary 8.5]) Let G be a topological group with G̃ ∈ E<∞, then also G ∈ E<∞.

Proposition 3.6 and its corollaries allow us to provide series of topological groups in E0.

Proposition 3.9. E0 contains the class O of all Orsatti groups.

Proof. As mentioned in the introduction, a group G ∈ O has as basic neighbourhoods of 0 all subgroups 
of G of the form nG, n > 0. Since the subgroups nG are obviously fully invariant, Corollary 3.7 yields 
G ∈ E0. �

The topology used in the above proof is called Z-topology. Orsatti [36] characterized O as the class of 
abelian groups whose Z-topology is compact.

Recall that a selfmap f of a metric space (X, d) is called non-expanding, if d(f(x)), f(y)) ≤ d(x, y) for 
all x, y ∈ X.

Corollary 3.10. Let (G, d) be a metric abelian group with invariant metric d. Then every non-expanding 
endomorphism of G is continuous and has zero entropy.

Proof. Let α be a non-expanding endomorphism of G and let Un denote the 1/n-ball around 0 for every 
natural n. Then {Un : n ∈ N} form a base of neighbourhoods of the neutral element of G with α(Un) ⊆ Un, 
hence Proposition 3.6 can be applied again. �
Corollary 3.11. Let G be a zero-dimensional abelian group that is either locally compact or pseudocompact. 
Then h(mG

k ) = 0 for every integer k.

Proof. Follows from Corollary 3.7 (a) as in both cases the zero-dimensional group G has a local base at 0 
consisting of open subgroups (in the former case this follows from Fact 2.3 (b), for the latter case see [8]). �

The above corollary holds, in particular, for all compact abelian groups.
It is easy to see that the class O (see Definition 1.1) is closed under taking closed subgroup, quotients 

and extensions (so in particular, finite products). The larger classes of compact groups in E<∞ and E0 are 
closed under taking topological direct summands:

Lemma 3.12. Let K1, K2 be compact groups. If K1 × K2 ∈ E<∞, then K1, K2 ∈ E<∞. The same holds 
for E0.
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It easily follows from the Logarithmic Law 3.1 that if Gω ∈ E<∞, then G ∈ E0.
We are not aware whether the classes E<∞ and E0 are stable under taking finite products, and more 

generally, under taking extensions (see Question 7.3). However, one can see that this property is available 
when the extension is taken with respect to a closed fully invariant subgroup:

Proposition 3.13. Let K be a compact group and let N be a closed fully invariant subgroup of K. If both 
N, K/N ∈ E<∞ (resp., E0), then K ∈ E<∞ (resp., K ∈ E0).

Proof. If α is a continuous endomorphism of K, then N is α-invariant and h(α�N ) < ∞ (resp., h(α�N ) = 0) 
by hypothesis. Since K/N ∈ E<∞ (resp., E0), one has also h(α/N) < ∞ (resp., h(α/N) = 0). Now the 
Addition Theorem gives h(α) < ∞ (resp., h(α) = 0). �

This proposition will be applied in the following prominent cases:

(a) N = c(K) is the connected component of K;
(b) N = K ′ is the closure of the commutator subgroup of K;
(c) N = λ(K) is the Lie radical of K in case dimK < ∞ (see Lemma 2.7).

3.3. Connection to Lehmer problem and algebraic entropy

Let n be a positive integer, let f(t) = stn + an−1t
n−1 + . . . + a0 ∈ Z[t] be a non-constant polynomial 

with integer coefficients, s > 0, and let λ1, . . . , λn be all complex roots of f(t) taken with their multiplicity; 
so that f(t) = s ·

∏n
i=1(t − λi). The Mahler measure of f(t) was defined by Mahler [34] as

M(f) = exp

⎛
⎝ 1∫

0

log |f(e2πit|dt

⎞
⎠ ,

but appeared earlier in Lehmer’s paper [29] as M(f) = s 
∏

|λi|≥1 |λi| (an immediate application of Jensen’s 
formula shows that these two values coincide). We are going to use here the logarithmic Mahler measure of 
f(t)

m(f) := logM(f) = log s +
∑

|λi|>1

log |λi|.

The polynomials f(t) with zero Mahler measure are known by a classical theorem due to Kronecker [28]. 
Namely, these are of the form f(t) = tkh(t), where h(t) is a cyclotomic polynomial, i.e., all its roots are 
root of unity. The following problem posed by Lehmer in 1933 is still open:

Problem 3.14 (Lehmer Problem). Is the lower bound of all positive Mahler measures still positive?

Lehmer conjectured that such a positive lower bound exists and produced the reciprocal polynomial

L(t) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1

with the smallest known positive Mahler measure to date, (m(L) = log λ, where λ = 1.17628 . . .). Further 
detail on this highly challenging problem can be found in [5,20,44].

For an endomorphism ψ : Qn → Qn define the Mahler measure of ψ by m(ψ) = m(f), where f(t)
is the primitive polynomial with integer coefficients obtained from the characteristic polynomial of ψ after 
elimination of the denominators. More generally, if X is a rank n subgroup of Qn, then every endomorphism 
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ψ : X → X admits a unique extension ψ̃ : Qn → Qn. We let m(ψ) := m(ψ̃). In case X = Zn, the polynomial 
m(ψ) is monic. Finally, one can define the Mahler measure of a continuous endomorphism ϕ of Kn or Tn

(or more generally, any finite-dimensional compact connected abelian group K), by letting m(ϕ) := m(ϕ̂)
(note that K̂ is a finite-rank torsion-free abelian group and ϕ̂ is a continuous endomorphism of K̂).

The next theorem combines together the Kolmogorov-Sinai Formula and the Yuzvinski Formula (see 
[54]) giving the value of the topological entropy of a continuous endomorphism of Tn or Kn as its Mahler 
measure.

Theorem 3.15. Let n ∈ N and let ϕ be a continuous endomorphism of Tn or Kn. Then h(ϕ) = m(ϕ).

This equality can be used to show that the infimum in (1) is attained in 
⋃

n∈N Etop(Kn), hence the 
inequality (1) is equivalent to Lehmer’s problem (see [31], also [12,14] for the dual version of (1) about 
the algebraic entropy). For the relation of the entropy of Zn-actions with the multi-dimensional Mahler 
measure, see the paper [32] by Lind, Schmidt and Ward or the excellent book [42].

Example 3.16. Theorem 3.15 implies that Tn ∈ E∞ and Kn ∈ E∞ for every n ∈ N.

Following [1], for an endomorphism φ : G → G of an abelian group G, a finite subgroup F of G and 
n ∈ N, let Tn(φ, F ) := F + φ(F ) + . . . + φn−1(F ). The limit

H(φ, F ) := lim
n→+∞

log |Tn(φ, F )|
n

, (7)

exists by Fekete Lemma. The algebraic entropy of φ is

ent(φ) = sup{H(φ, F ) : F is a finite subgroup of G}. (8)

The notation ent(φ) was suggested in [13], in order to distinguish from entropies defined later by Peters 
[39] (and more recently in [10–12]).

Theorem 3.17 (Bridge Theorem). [51] Let G be a torsion abelian group and φ : G → G a continuous 
endomorphism. Then

ent(φ) = h(φ̂).

A Bridge Theorem for automorphisms of countable (not necessarily torsion) abelian group was proved 
by Peters [39]; the general case, for arbitrary endomorphisms of abelian groups, can be found in [11].

Algebraic entropy can be defined also in locally compact groups [40,47].

4. Proof of Theorems A, B and C

4.1. Proof of Theorem A

Before starting the proof of (2) from Theorem A, that is, the equality h(mG
k ) = dimG · log k for every 

integer k > 1 where G is a topological abelian group that is either locally compact or ω-bounded, we note 
that the implication (b) ⇒ (c) is trivial. The implication (a) ⇒ (b) follows from Corollary 3.11 and the fact 
that the totally disconnected ω-bounded or locally compact groups are zero-dimensional (see [8] and [25], 
resp.). This will be used in the proof of (2). On the other hand, we can use the formula (2) to deduce the 
implication (c) ⇒ (a), since the conjunction of (c) and (2) entails dimG = 0, hence total disconnectedness 
of G. The rest of the proof is dedicated to the verification of (2).
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(A) Consider first the case when G is compact.

Assume dimG is infinite. By Lemma 2.3(d), there exists a continuous surjective homomorphism f : G →
Tω. In particular, for every n ∈ N there exists a continuous surjective homomorphism fn : G → Tn. By 
Fact 3.5 (b) applied to G and its quotient Tn, along with Fact 3.5 (c), h(mG

k ) ≥ n log k for every n ∈ N. 
Therefore, h(mG

k ) = ∞. This proves (2) when dimG is infinite.
Assume from now on that d = dimG < ∞. By Lemma 2.3(d), there exists a continuous surjective 

homomorphism f : G → Td. Since the discrete dual group Ĝ has free rank d, the divisible hull D of Ĝ is 
isomorphic to Qd ×D1, where D1 is a divisible torsion abelian group. Hence N = D̂1 is a compact totally 
disconnected abelian group and D̂ ∼= H := Kd×N . Taking the dual homomorphism of the inclusion Ĝ ↪→ D

and composing with the isomorphism ̂̂G ∼= G, we obtain a continuous surjective homomorphism l : H → G. 
By Fact 3.5

h(mH
k ) ≥ h(mG

k ) ≥ h(mTd

k ) = d · log k.

So it suffices to prove that the formula (2) holds true also for the group H, i.e., h(mH
k ) = d · log k. Note that 

mH
k is the Cartesian product of d copies of mK

k : K → K and the endomorphism mN
k : N → N . Since N

is totally disconnected, h(mN
k ) = 0, by the implication (a) ⇒ (b) proved above. By the Addition Theorem 

and Fact 3.5 (c), we have

h(mH
k ) = h(mKd

k ) = h(mK
k × . . .×mK

k︸ ︷︷ ︸
d

) = d · h(mK
k ) = d · log k.

(B) Now assume that G is ω-bounded and let K denote the compact completion of G. Then dimG =
dimK, as G is pseudocompact [46]. Let d = dimG in case dimG < ∞, and d = ω if dimG = ∞. In order 
to unify these two cases in the sequel, we adopt, by abus de language, the harmless and obvious convention, 
that ω log k = ∞, as log k > 0. According to Lemma 3.8 and case (A), h(mG

k ) ≤ h(mK
k ) = d log k. If we 

prove that there exists a compact subgroup N of G with dimN ≥ d, then h(mG
k ) ≥ h(mN

k ) ≥ d log k and 
we are done.

Since dimK = d, there exists a surjective continuous homomorphism f : K → Td, by Lemma 2.3(d). 
Next we note that f(G) is an ω-bounded subgroup of the metrizable group Td, so f(G) is compact. On 
the other hand, f(G) is a dense in Td, by the density of G in K. Hence, f(G) = Td, i.e., the restriction 
f �G: G → Td of f to G is a surjective continuous homomorphism. Let D be a dense cyclic subgroup 
of Td and let D1 be a cyclic subgroup of G such that f(D1) = D. Then the closure N of D1 in K is a 
compact subgroup of K contained in G (by the ω-compactness of G), and f(N) is a compact subgroup of 
Td containing the dense subgroup D. Thus f(N) = Td, and the compactness of N allows us to claim that 
N has a quotient isomorphic to Td. Therefore, dimN ≥ d and this proves our claim.

(C) Now assume that G is locally compact. Then G = Rn × G0, where G0 contains an open compact 
subgroup K. Let H = Rn×K. Then H is an open subgroup of G, thus G/H is discrete. Hence the additivity 
theorem can be applied here, according to Remark 3.4, i.e., h(mG

k ) = h(mH
k ). A further application of that 

theorem (possible since K is compact, see Remark 3.4) and item (A) gives

h(mH
k ) = n log k + h(mK

k ) = n log k + dimK log k = (n + dimK) log k = dimG · log k.

To prove the last assertion assume that dimG = ∞. Then h(mG
2 ) = dimG · log 2 = ∞, by (2). Hence, 

G /∈ E∞. This concludes the proof of Theorem A. �
Let us mention that (2) remains true for also k = 1 as long as G is finite-dimensional, since h(idG) = 0.
In the pseudocompact case we have the following:
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Corollary 4.1. Let G be a pseudocompact abelian group. Then h(mG
k ) ≤ dimG · log k for every integer k > 1.

Proof. Let K be the compact completion of G. Then dimK = dimG ([46]), so h(mG
k ) ≤ h(mK

k ) ≤ dimK ·
log k by (2) and Lemma 3.8. �

The corollary remains true, with the same proof, for locally pseudocompact groups which share similar 
properties with pseudocompact groups (see [46]). On the other hand, as the next example shows, equality 
cannot be achieved in this corollary even for countably compact groups.

We show in Example 4.2 that the hypothesis in Theorem A cannot be weakened to “countably compact” 
even for connected torsion-free abelian groups.

Example 4.2. In [18] a forcing model of ZFC was built, such that every torsion-free abelian group G with 
c ≤ |G| ≤ 2c admits a connected countably compact group topology having no infinite compact subsets. 
Then, G ∈ E0 by Lemma 3.8(a). Moreover, since G is not metrizable, we deduce that G̃ is not metrizable 
either. As connected finite-dimensional compact groups are metrizable, we deduce that dimG = dim G̃ = ∞. 
So h(mG

k ) = 0 (while h(m̃G
k ) = ∞) for every k > 1 and the equality (2) fails for G.

4.2. Proof of Theorems B and C

For the proof of Theorem B we need to check that compact semi-simple Lie groups belong to E0.

Lemma 4.3. If L is a compact semi-simple Lie group, then L ∈ E0.

Proof. Let us first check that L ∈ E0 under the stronger assumption that L is simple and centre-free. It 
is known that for a continuous automorphism ψ of a simple Lie group L some finite power ψn must be an 
inner continuous automorphism ([52]), and consequently, has zero entropy (see Example 1b in [1]). Hence, 
also ψ has zero entropy by the Logarithmic Law 3.1. This proves that L ∈ E0.

Now we prove that L ∈ E0 in the general case. Every endomorphism α of L is continuous by van der 
Waerden’s theorem [48]. According to Lemma 3.8(b), Eα(L) =

⋂
m∈N αm(L) is α-invariant, α′ := α �Eα(L):

Eα(L) → Eα(L) is surjective and h(α) = h(α �Eα(L)). The decreasing chain

L ⊇ α(L) ⊇ α2(L) ⊇ . . . ⊇ αk(L) ⊇ . . .

stabilises, as each member αk(L) is a connected Lie group, so each proper inclusion corresponds to a proper 
decrease of dimension. In particular, Eα(L) =

⋂
m∈N αm(L) coincides with some αm(L), so it is a connected 

compact semi-simple Lie group in its own turn. This shows that in order to check h(α) = 0, we may simply 
assume that α is surjective from the very beginning. Then the centre Z(L) is α-invariant, hence the induced 
endomorphism ᾱ := α/Z(L) of L∗ = L/Z(L) is surjective. Since Z(L) is finite, h(α �Z(L)) = 0. Hence, the 
Addition theorem implies that

h(α) = h(ᾱ). (9)

Since L∗ is centre-free, L∗ =
∏m

n=1 Sn, where each Sn is a simple centre-free Lie group. Therefore, the 
only closed normal subgroups of L∗ are the subproducts of the form 

∏t
i=1 Sni

for appropriate indexes 
1 ≤ n1 < n2 < . . . < nt ≤ m. In particular, ᾱ(Sk) = Snk

for each k ∈ I := {1, 2, . . . , m} and an appropriate 
nk ∈ I. Since every non-trivial product of this form has positive dimension and ᾱ is surjective, we deduce, 
with Fact 2.3(a), that ker ᾱ is trivial. Hence, ᾱ is an automorphism. Therefore, k �→ nk defines a permutation 
σ of the index set I. There exists s > 0 with σs = idI , then ᾱs(Sk) = Sk for every k ∈ I, so ᾱ is a direct 
product of automorphisms of the single components Sn. Since each of these automorphisms has entropy 
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zero by item (a), we conclude that h(ᾱs) = 0, by the Addition theorem. From the Logarithmic Law we get 
h(ᾱ) = 0, so (9) implies h(α) = 0. Therefore, L ∈ E0. �

Another ingredient of the proof of Theorem B is the following:

Proposition 4.4. Let G be a connected pseudocompact group. If G is finite-dimensional, then G is compact 
and G ∈ E<∞.

Proof. Assume that G is finite-dimensional. Then its completion G̃ is connected and dimG = dim G̃ = n <
∞. Since finite-dimensional compact connected groups are metrizable, we deduce that G = G̃ is a compact 
metrizable group.

Consider first the case when G is abelian. Then there exists a continuous surjective homomorphism 
l : Kn → G. Indeed, since dimG = n, the free rank of the Pontryagin dual X = Ĝ is n, hence X is 
isomorphic to a subgroup of the group Qn. Assume without loss of generality that it is actually a subgroup 
of Qn and let i : X ↪→ Qn be the inclusion homomorphism. Taking the dual of i we obtain the desired l. 
Let α : G → G be a continuous endomorphism of G. Its dual is a group homomorphism α̂ : X → X. Since 
X is a subgroup of Qn and the latter group is divisible, there exists an extension s : Qn → Qn of α̂. Now 
consider ŝ : Kn → Kn. Since s · i = i · α̂, it follows that l · ŝ = α · l. By (6), applied to Kn, ̂s and ker ŝ, we 
deduce that h(α) ≤ h(ŝ). Now it remains to recall that h(ŝ) < ∞ as Kn ∈ E<∞, according to Example 3.16.

Consider now the general case. Denote by Z(G) the centre of G and let A = c(Z(G)). Then G = A ·G′. 
Since dimG′ < ∞, we deduce that G′ is a semi-simple Lie group (Fact 2.5). According to Lemma 4.3, 
G′ ∈ E0. Since G′ is closed, Proposition 3.13(b) implies that G ∈ E<∞ if and only if G/G′ ∈ E<∞. As G/G′

is a compact connected abelian group with dimG/G′ ≤ dimG < ∞, we have G/G′ ∈ E<∞ by the above 
argument. �

According to Proposition 4.4, every continuous endomorphism of a finite-dimensional compact connected 
abelian group K has finite entropy. Example 6.8 shows the converse need not be true in the non-abelian 
case.

Now we show that for connected abelian groups G close to being compact, G ∈ E<∞ if and only if 
dimG < ∞.

Corollary 4.5. A connected abelian group G that is either ω-bounded or locally compact admits a continuous 
endomorphism of infinite entropy if and only if G is infinite-dimensional.

Proof. Follows from Corollary 4.1 and Proposition 4.4. �
Example 4.2 shows that the hypothesis “ω-bounded” in the above corollary cannot be weakened to 

“countably compact”.

Proof of Theorem B. We have to prove that for a compact abelian group K:

(a) if dimK < ∞ and K/c(K) ∈ E<∞, then also K ∈ E<∞.
(b) K ∈ E0 if and only if K is totally disconnected and K =

∏
p∈P Gp, where Gp ∈ E0 is a pro-p-group for 

every prime p.

(a) Assume that dimK < ∞ and K/c(K) ∈ E<∞. By Proposition 4.4, c(K) ∈ E<∞, as dim c(K) < ∞. 
Since c(K) is a fully invariant subgroup of K and K/c(K) ∈ E<∞, we can apply Proposition 3.13 to conclude 
that K ∈ E<∞.
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(b) Assume that K ∈ E0, then dimG = 0, by Theorem A. By Lemma 2.2, K =
∏

p∈P Gp where each Gp

is a pro-p-group. By Lemma 3.12, Gp ∈ E0.
Vice versa, assume that K is totally disconnected of the above form and Gp ∈ E0 for every p. Pick a 

continuous endomorphism f : K → K. Then each Gp is fully invariant, hence f(Gp) ≤ Gp. Let fp = f �Gp
. 

By our hypothesis, h(fp) = 0 for all p. By the Addition Theorem, applied the restriction f(n) of f to the 
product Pn of the first n members of K =

∏
p∈P Gp, h(f(n)) = 0. By the continuity of entropy with respect 

to inverse limits (Fact 3.1(c)), h(f) = limn h(f(n)) = 0. Therefore, K ∈ E0. �
Lemma 4.6. Suppose that for a connected group G the subgroup Z(G′) has finite exponent.

(a) If G ∈ E<∞, then dimZ(G) < ∞;
(b) If G ∈ E0, then G = G′.

Proof. Let A := c(Z(G)) and L be as in Fact 2.5 (a). Let η : A × L → G the continuous surjective 
homomorphism with kernel N ≤ A × Z(L), as in Fact 2.5 (b). By hypothesis, exp(Z(L)) < ∞. Let k =
2 exp(Z(L)) and consider the endomorphism f = (mk

A×oL) of A ×L, where ker oL = L. Since its restriction 
to A ×Z(L) coincides with mk

A×Z(L) and the latter endomorphism of A ×Z(L) leaves invariant all subgroups 
of A × Z(L), we have f(N) ≤ N . Therefore, f induces a continuous endomorphism f : G → G. Since the 
restriction of f to η(A) coincides with mk

η(A), one has:

dimA · log k = h(mk
A) = h(mk

η(A)) ≤ h(f̄). (10)

(a) Suppose that G ∈ E<∞. Then h(f) < ∞, so (10) yields dimA · log k < ∞. Since k > 1, this yields 
dimA < ∞.

(b) Assume now that G ∈ E0. Similarly, from h(f) = 0 and (10) we deduce that dimA · log k = 0 and 
dimA = 0, as k > 1. This yields A = {0} by Theorem B(b), hence G = G′. �
Proposition 4.7. If L is a compact connected Lie group, then G ∈ E<∞ for every closed subgroup G of L
(i.e., L ∈ S(E<∞)). Moreover, L ∈ E0 if and only if Z(L) is finite.

Proof. As a closed subgroup of a Lie group, the group G is a Lie group itself. Then c(G) is an open fully 
invariant finite-index subgroup of G, so G/c(G) ∈ E0, being finite. According to Proposition 3.13, it suffices 
to show that c(G) ∈ E<∞ (or c(G) ∈ E0, in case Z(G) is finite). In other words, we can replace G by the 
group L itself and prove that L ∈ E<∞ (resp., L ∈ E0, in case Z(L) is finite).

Since L′ is a semi-simple Lie group, L′ ∈ E0, by Lemma 4.3. As L = L′ · Z(L), it suffices to note that 
L/L′ ∼= Z(L)/(Z(L) ∩L′) ∈ E<∞, being a finite-dimensional connected abelian Lie group (i.e., a torus), by 
Example 3.16. Now Proposition 3.13 applies again.

If Z(L) is finite, then L ∈ E0, by Proposition 3.13. Hence, L = L′ by Lemma 4.6. Since L is a Lie group, 
L = L′ means that L is semi-simple, i.e., Z(L) is finite. �
Proof of Theorem C. We have to prove that for a compact connected group K with dimK ′ < ∞:

(a) K ∈ E<∞ if and only if dimK < ∞;
(b) K ∈ E0 if and only if K = K ′ (if and only if dimZ(K) = 0 if and only if Z(K) is finite).

By dimK ′ < ∞ and Remark 2.6, we deduce that K ′ is a connected semi-simple Lie group. In particular, 
K ′ ∈ E0, by Proposition 4.7.
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(a) Let A := c(Z(K)). As dim(A ∩K ′) = 0, we deduce, with Fact 2.3, that dim[K/(A ∩K ′)] = dimK

and dim[A/(A ∩K ′)] = dimA. On the other hand, the equality K = A ·K ′ yields

K/(A ∩K ′) ∼= [A/(A ∩K ′)] × [K ′/(A ∩K ′)].

Hence,

dimK = dim[A/(A ∩K ′)] + dim[K ′/(A ∩K ′)] = dimA + dimK ′.

Therefore, the hypothesis dimK ′ < ∞ allows us to claim that dimK < ∞ precisely when dimA =
dimZ(K) < ∞.

In view of K ′ ∈ E0, K ∈ E<∞ if K/K ′ ∼= A/(A ∩ K ′) ∈ E<∞, according to Proposition 3.13. By 
Theorem B, this is equivalent to dim[A/(A ∩K ′)] = dimA < ∞. This proves the implication “⇐” in (a). 
To prove the remaining implication assume that K ∈ E<∞. As noted above, K ′ is a connected semi-simple 
Lie group, hence Z(K ′) is finite. Hence, we can apply Lemma 4.6 to deduce that dimZ(K) < ∞. As noted 
above, this yields dimK < ∞. This concludes the proof of item (a).

(b) As K ′ ∈ E0 by Lemma 4.3(b), K ∈ E0 if K/K ′ ∼= A/(A ∩K ′) ∈ E0, according to Proposition 3.13. 
By Theorem B, this is equivalent to K = K ′.

Now suppose that K ∈ E0. As mentioned above, our hypothesis about K ′ allows us to apply Lemma 4.6
to deduce that K = K ′.

Finally, note that K = K ′ yields |Z(K)| < ∞ (so, dimZ(K) = 0), as K ′ is a Lie group. On the other 
hand, dimZ(K) = 0 yields K = K ′, by Fact 2.5. �
5. Compact abelian groups with continuous endomorphisms of infinite entropy

This section leads us out of the class E<∞ of groups without continuous endomorphisms of infinite entropy. 
It was proved in [2, Theorem 8.4] that for every infinite discrete abelian group G the Bohr compactification 
bG has this property, i.e., bG /∈ E<∞. We provide some simpler examples below:

Example 5.1. Let K be a compact group. The (left) Bernoulli shift βK : KN → KN is defined by

βK(x1, x2, x3, . . .) = (x2, x3, x4, . . .).

Its entropy can be computed by the formula h(β) = log |K|, where log |K| for an infinite K is intended 
as ∞. This fact, beyond Lemma 3.12, yields that Kκ ∈ E<∞ for a compact group K implies either κ < ω

or |K| < ∞.

Lemma 5.2. Let p be a prime.

(a) Z(pk)κ /∈ E<∞ for every integer k > 0 and every infinite cardinal κ;
(b) G =

∏
n∈N Z(pkn) /∈ E<∞ for every sequence (kn)n of natural numbers.

Proof. (a) Since κ is infinite, the group H = Z(pk)κ satisfies H ∼= HN . Therefore, H /∈ E<∞ as H is infinite, 
according to Example 5.1.

(b) Consider first the case when (kn)n is a strictly increasing sequence. Define α : G → G as follows:

α((x1, x2, . . . , xn, xn+1, . . .)) = (pk2−k1x2, p
k3−k2x3, . . . , p

kn+1−knxn+1, . . .).

For arbitrarily n ∈ N, let pn : G → Z(pkn)N be the surjective homomorphism defined by
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pn(x1, x2, . . .) = (xn, p
kn+1−knxn+1, . . . , p

km−knxm, . . .) ∈ Z(pkn)N

for any (x1, x2, . . .) ∈ G. As pn is continuous and pn◦α = βZ(pkn )◦pn, we conclude that h(α) ≥ h(βZ(pkn )) =
kn log p, by the monotonicity of h. Hence, h(α) = ∞ = supn kn.

In the general case we apply Lemma 3.12, so it suffices to note that G has a direct summand that is 
either of the form Z(pk)N or 

∏
p∈P Z(pkn) where k ∈ N and (kn)n is a strictly increasing sequence. Now 

(a) and the above argument apply. �
As we saw above, for a group G as in item (b), {0, ∞} ⊆ Etop(G). Yet the argument gives no clue as 

to whether one has an equality here. We prove in Theorem D, that Etop(G) = {0, ∞} precisely when the 
sequence (kn)n is finitely many-to-one.

5.1. Proof of Theorems D and E

Proof of Theorem D. We have to prove the equivalence of the following conditions for an infinite totally 
disconnected compact abelian group K:

(a) Etop(K) � {0, ∞}, i.e., 0 < h(f) < ∞ for some continuous endomorphism f : K → K;
(b) K is not semi-standard;
(c) K has a direct summand of the form Z(pn)N for some n ∈ N and some prime p;
(d) Etop(K) ⊇ {∞} ∪ {mn log p : m ∈ N} for some prime p and n ∈ N.

The implication (d) ⇒ (a) is trivial. For the implication (c) ⇒ (d) apply Lemma 3.12 and Example 5.2
(a) to deduce that G /∈ E0, i.e., ∞ ∈ Etop(K). The remaining part of (d) follows from Example 5.1, by 
making use of the powers βm

K , for K = Z(pn)N .
For the remaining two implications (a) ⇒ (b) ⇒ (c) involving (b), we shall assume, for the sake of 

simplicity, that K is a pro-p-group. Indeed, this can safely be done, since both conditions (b) and (c) are 
verified “locally”, for every pro-p-component. As far as the implication (a) ⇒ (b) is concerned, first write 
(according to Lemma 2.2) the totally disconnected compact group K in the form K =

∏
p∈P Kp, where each 

Kp is a pro-p-group. Now note that if (a) holds, then there exists a prime p with Etop(Kp) � {0, ∞}. Indeed, 
if we assume that Etop(Kp) ⊆ {0, ∞} for all p, then also Etop(K) ⊆ {0, ∞} (by the Addition Theorem and 
Fact 3.1), contrary to our hypothesis (a).

Accordingly, from now on we assume that K = Kp is a pro-p-group and we shall denote by fn the 
Ulm-Kaplanski invariants of its Pontryagin dual K̂. In these terms (b) reads: some of the Ulm-Kaplanski 
invariants fn of K̂ are infinite.

The implication (b) ⇒ (c) easily follows from Fact 2.1. Indeed, by Fact 2.1, Z(pn)(fn) is a direct summand 
of K̂ for every n ∈ N. Pontryagin duality preserves direct summands, Z(pn)fn is a topological direct 
summand of K. Since fn is infinite, we deduce that K has a direct summand of the form Z(pn)N for some 
n ∈ N and some prime p.

The final part of the proof is dedicated to show the remaining implication (a) ⇒ (b).
By our hypothesis, there exists a continuous endomorphism f : K → K with 0 < h(f) < ∞. As K is a 

pro-p-group, G = K̂ is a p-group. For the dual endomorphism φ = f̂ : G → G the algebraic entropy ent(φ), 
as defined in §2, satisfies ent(φ) = h(f), by Theorem 3.17. So, 0 < ent(φ) < ∞. We adopt in the sequel the 
idea and the line of the proof of [13, Theorem 1.16], although we redesign the proof to make it accessible.

The hypothesis ent(φ) > 0 entails ent(φ �X[p]) > 0 by [13]. So there exists a non-zero element x ∈ G[p]
such that the orbit T (〈x〉, φ) :=

⋃
n∈N Tn(φ, 〈x〉) is infinite.

Let Sk = pkG ∩ T (〈x〉, φ) for every k ∈ {0} ∪N. Then

T (〈x〉, φ) = S0 ⊇ S1 ⊇ . . . ⊇ Sn ⊇ . . . .
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First we prove that Sm = 0 for every m. Indeed, assume that Sm 	= 0 for some m and pick 0 	= z ∈ Sm. There 
exists y ∈ G with z = pmy, so o(y) = pm+1. Let H be the subgroup of G generated by {φk(y) : 0 ≤ k < ∞}. 
Since T (〈x〉, φ) =

⊕∞
k=0〈φk(x)〉, one has H =

⊕∞
k=0〈φk(y)〉. Moreover, since φ �T (〈x〉,φ) acts as a Bernoulli 

shift, φ �H acts as a Bernoulli shift on the subgroup H. Then ent(φ �H) = (m + 1) log p. Therefore, the 
assumption Sm 	= 0 yields ent(φ) > m log p. Since ent(φ) < ∞ we conclude that Sm = 0 for some m.

For 0 ≤ k < m split Sk = Sk+1 ⊕ S′
k for an appropriate subgroup S′

k of Sk. This gives

S0 = S′
0 ⊕ S′

1 ⊕ S′
2 ⊕ . . .⊕ S′

m−2 ⊕ Sm−1.

Since S0 is infinite, either Sm−1 is infinite, or there exists k < m − 1 such that S′
k is infinite. In the latter 

case, from S′
k ∩ Sk+1 = {0}, Sk+1 ⊆ pk+1G[p] and S′

k ⊆ pkG[p], we conclude that S′
k ↪→ pkG[p]/pk+1G[p]. 

Indeed,

S′
k ∩ pk+1G[p] = S′

k ∩ T (〈x〉, φ) ∩ pk+1G[p] = S′
k ∩ Sk+1 = {0}.

Hence, the canonical homomorphism q : pkG[p] → pkG[p]/pk+1G[p] when restricted to S′
k induces the 

desired monomorphism S′
k ↪→ pkG[p]/pk+1G[p]. Therefore, we conclude that the Ulm-Kaplanski invariant 

fk is infinite. In case Sm−1 is infinite, we use the fact that Sm = {0} and we deduce, as before, that 
Sm−1 ↪→ pm−1G[p]/pmG[p] and conclude that the Ulm-Kaplanski invariant fm is infinite. �
Proof of Theorem E. To prove (a) we have to show that if K ∈ E<∞ is totally disconnected, compact and 
abelian, then w(K) ≤ c. By Lemma 2.3, K is a direct product of its pro-p-components. So, we can assume 
without loss of generality that K is a pro-p-group. Then our hypothesis G ∈ E<∞ and Theorem D imply 
that the Pontryagin dual X of K is semi-standard. Write X = X1 ⊕ D, where D = Z(p∞)(λ) is divisible 
and X1 is reduced (i.e., contains no non-trivial divisible subgroups). Then K ∼= X̂1 × Zλ

p . Since K ∈ E<∞, 
we conclude that λ < ∞. Hence it suffices to prove that |X1| = w(X̂1) = w(K1) ≤ c. Since the reduced 
p-group, X1 is semi-standard, we conclude that |X1| ≤ c, by [22].

(b) By Theorem 5.4 of [13] there exists a family of 2c many pairwise non-isomorphic semi-standard 
p-groups {Ai : i ∈ I} such that for each i ∈ I

(i) Ai has length ω, i.e., 
⋂∞

n=1 p
nAi = {0};

(ii) ent(φ) = 0 for all endomorphisms φ of Ai.

According to the Bridge Theorem 3.17, the property (ii) implies that Gi = Âi ∈ E0 for every i ∈ I. To check 
that for all i ∈ I t(Gi) is dense in Gi we have to see that the annihilator t(Gi)⊥ of t(Gi) in Ai is trivial. 
This is clear since t(Gi) =

⋃∞
n=1 Gi[pn] and Gi[pn]⊥ = pnAi, so t(Gi)⊥ =

⋂∞
n=1 p

nAi = {0}. �
Remark 5.3. We proved in Theorem E that a totally disconnected G ∈ E<∞ is semi-standard and this leads 
to w(G) ≤ c. Let us note that semi-standard totally disconnected compact groups need not necessarily belong 
to E<∞. Indeed, this is easy to see when the group is just a product of cyclic p-groups (see Lemma 5.2). 
Actually, the group K =

∏
n∈N Z(pn) has e-spectrum {0, ∞}.

6. Proof of Theorem F

For an isomorphism closed class P of topological groups let Q(P) (S(P), resp.) denote the class of all 
groups G such that all quotients (closed subgroups, resp.) of G belong to P. Clearly, Q(P) (S(P), resp.) is 
the largest subclass of P stable under taking quotients (subgroups, resp.). In these terms, we characterize 
here the compact groups in Q(E<∞) and S(E<∞) in two cases: abelian groups (in §6.1) and connected 
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groups (in §6.2). This explains the blanket condition dimK < ∞ (necessary for K ∈ S(E<∞) according 
to Theorem A) implicitly present in §6.1. In §6.2, where commutativity is “traded” for connectedness, this 
condition plays a different role (see Theorems 6.7 and 6.9).

6.1. Abelian case: the class Oc and its characterization via O, E<∞ and E0

Definition 6.1. We denote by Oc the class of all compact finite-dimensional abelian groups K such that 
K/c(K) ∈ O.

In other words, this class is obtained by extending connected compact finite-dimensional abelian groups 
by Orsatti groups. We shall see below (Theorem 6.4) that they can also be obtained in the other way 
round: namely as extensions of Orsatti groups by means of connected compact finite-dimensional abelian 
groups. Indeed, if N ∈ O is a closed subgroup of a compact abelian group K such that K/N is a connected 
finite-dimensional group, then the canonical homomorphism K → K/N takes c(K) onto K/N , hence K =
c(K) + N . Therefore, K/c(K) ∼= N/(N ∩ c(K)) so K ∈ Oc as O is stable under taking quotients.

The groups of the class Oc are metrizable, since the finite-dimensional compact connected groups, as well 
as the groups in O, are all metrizable.

Proposition 6.2. For every compact finite-dimensional abelian group K the following statements are equiv-
alent:

(a) K ∈ Oc;
(b) K/pK is finite for every prime p;
(c) there exists a closed subgroup K1 of K containing c(K), such that K = K1×

∏
p∈P Z

np
p and K1/c(K) ∼=∏

p∈P Fp, where np is a non-negative integer and Fp is a finite p-group for every p ∈ P .

Proof. The implication (c) ⇒ (b) trivially follows from the definition of K1, O, the isomorphisms

K/c(K) ∼= (K1/c(K)) ×
∏
p∈P

Znp
p

∼=

⎛
⎝∏

p∈P
Fp

⎞
⎠×

⎛
⎝∏

p∈P
Znp

p

⎞
⎠ ∼=

∏
p∈P

(
Znp

p × Fp

)
,

and the fact that K/pK is a quotient of K/c(K). To check the implication (b) ⇒ (a) assume that |K/pK| <
∞ for every prime p. Since c(K) ≤ pK for every prime p, the group H = K/c(K) satisfies H/pH < ∞ for 
every prime p as well. According to Lemma 2.2, H =

∏
p∈P Hp as a product of pro-p-groups. Then H/pH ∼=

Hp/pHp for all p ∈ P . For Xp = Ĥp one has X[p] ∼= Hp/pHp [15], so rp(Xp) < ∞. Hence Xp
∼= Z(p∞)np×Fp

for some np ∈ N and some finite p-group Fp. Then Hp
∼= Z

np
p ×Fp, so K/c(K) = H ∼=

∏
p∈P (Znp

p ×Fp) ∈ O. 
This proves K/c(K) ∈ O, so K ∈ Oc.

We are left now with the proof of the missing implication (a) ⇒ (c). The hypothesis K/c(K) ∈ O yields 
K/c(K) ∼=

∏
p∈P (Znp

p × Fp), with np ∈ N and finite p-groups Fp for every prime p. Let N =
∏

p∈P Fp and 
consider the canonical homomorphism f : K → K/c(K). Set K1 = f−1(N), so that K1/c(K) ∼=

∏
p∈P Fp

and K/K1 ∼=
∏

p∈P Z
np
p . According to Lemma 2.2, K1 splits topologically in K, i.e., K = K1×

∏
p∈P Z

np
p . �

Lemma 6.3. The classes O and Oc are stable under taking closed subgroup, quotients and extensions.

Proof. The stability of O under taking closed subgroup, quotients and extensions is clear.
The stability of Oc under taking quotients easily follows from item (b) of the above proposition and 

the fact that if f : K → K1 is a continuous surjective homomorphism of compact groups, then K1/pK1 is 
isomorphic to a quotient of K/pK. The stability of Oc under extension is equally easy to check.
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To prove that Oc is stable under taking closed subgroups take K ∈ Oc and a closed subgroup N of K.
Case 1. K is connected. Let n = dimK. Then there exists a continuous surjective homomorphism f : Kn →
K such that H = ker f is totally disconnected [15].

Subcase 1.1. Assume first that N is totally disconnected. Since H is totally disconnected, L = f−1(N) is 
a closed totally disconnected subgroup of Kn containing H. According to [15], there exists a closed subgroup 
H ∼=

∏
p∈P Zn

p of Kn such that Kn/H ∼= Tn. Let q : Kn → Kn/H ∼= Tn be the canonical homomorphism. 
Then q(L) is a closed totally disconnected subgroup of Tn. As Tn is a Lie group, this yields that q(L) is 
finite. Let m = |q(L)|. Then mq(L) = 0, so mL ⊆ H, thus L ∼= mL =

∏
p∈P Z

kp
p for appropriate kp ≤ n for 

each p (see Lemma 2.2). Thus, L ∈ O and consequently, N = f(L) ∈ O.
Subcase 1.2. General case for N . The previous argument applied to the group K/c(N) in place of K, and 

its subgroup N/c(N), in place of N , gives N/c(N) ∈ O. Since dim c(N) ≤ dimK < ∞, we conclude that 
N ∈ Oc.
Case 2. General case for K. The closed subgroup N1 := N ∩ c(K) of N obviously contains c(N). Moreover, 
N/N1 ∼= (N+c(K))/c(K) is isomorphic to a closed subgroup of K/c(K) ∈ O. Therefore, N/N1 ∈ O. On the 
other hand, N1/c(N) ∈ O as a closed totally disconnected subgroup of c(K)/c(N), by Subcase 1.1. Hence, 
the totally disconnected group N/c(N) is an extension of two Orsatti groups, so N/c(N) ∈ O. Therefore, 
N ∈ Oc. �

We can briefly resume subcase 1.1 as follows: a closed totally disconnected subgroup of a finite-dimensional 
connected compact abelian group is an Orsatti group.

Theorem 6.4. A compact abelian group K belongs to Oc if and only if there exists a closed subgroup N ∈ O

of K such that K/N is connected with dimK/N < ∞.

Proof. The sufficiency follows from the stability of Oc under taking extensions. Assume that K ∈ Oc

and present K = c(K) + N , where N is a closed totally disconnected subgroup of G. Then K/c(K) ∼=
N/(c(K) ∩N) ∈ O. On the other hand, N ∩ c(K) ∈ O by Subcase 1.1 of the above proof. Since O is stable 
under extensions and N ∩ c(K), as well as N/(c(K) ∩N) belong to O, we deduce that N ∈ O. �

The next theorem describes the compact abelian groups K ∈ S(E<∞) and shows that they coincide with 
the compact abelian groups K ∈ Q(E<∞):

Theorem 6.5. For every compact abelian group K the following statements are equivalent:

(i) K ∈ Oc;
(ii) K is finite-dimensional and K/pK ∈ E<∞ for every prime p;
(iii) K ∈ Q(E<∞), i.e., every Hausdorff quotient of K belongs to E<∞.
(iv) K ∈ S(E<∞), i.e., every closed subgroup of K belongs to E<∞.

In case these conditions hold, K is metrizable.

Proof. The implication (iii) ⇒ (ii) easily follows from Theorem B. The implication (ii) ⇒ (i) follows from 
Lemma 5.2(a) and the equivalence (a) ⇔ (b) in Proposition 6.2, since K/pK ∼= Z(p)κ for κ = w(K/pK).

Since the class Oc is stable under taking quotients and closed subgroups, to check the implications (i) ⇒
(iii) and (i) ⇒ (iv) it suffices to notice that the class Oc is contained in E<∞. This follows from Theorem B, 
Proposition 3.9 and Proposition 3.13.

To prove the implication (iv) ⇒ (i) we show first that a totally disconnected compact group N satisfying 
(iv) must be an Orsatti group. Indeed, as the class O is defined locally, so we can assume without loss of 
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generality that N is a pro-p-group for some prime p. Our hypothesis gives N [p] ∈ E<∞. As N [p] ∼= Z(p)σ for 
some σ, N [p] is finite by Example 5.1. Therefore the torsion subgroup of N is finite (as N is reduced). Hence 
there exists n ∈ N such that N [pn] coincides with the torsion subgroup of N . Since the closed subgroup 
pnK of K is obviously torsion-free, it must be isomorphic to Zκ

p for some κ. In other words, N/N [pn] ∼= Zκ
p

and consequently N ∼= N [pn] × Zκ
p . Now N ∈ E<∞ implies κ < ω, hence N ∈ O.

Assume (iv) holds true and pick a totally disconnected subgroup N of H such that K = c(K) +N . Then 
N ∈ O by the above argument. Hence, K/c(K) ∼= N/(N ∩ c(K)) ∈ O. This proves (iv) ⇒ (i). �

Here we specify Theorem 6.5 in the totally disconnected case (so taking c(G) = {0} in that theorem), 
collecting all equivalent conditions from Theorem 6.5 and Proposition 6.2 in order to obtain a description 
of S(E0) and Q(E0):

Corollary 6.6. For every totally disconnected compact abelian group K the following statements are equiva-
lent:

(a) K ∈ Q(E<∞), i.e., every quotient of K belongs to E<∞;
(b) K ∈ Q(E0), i.e., every quotient of K belongs to E0;
(c) K/pK ∈ E0 (equivalently, K/pK ∈ E<∞) for every prime p;
(d) K ∈ O;
(e) K ∈ S(E0), i.e., every closed subgroup of K belongs E0;
(f) K[p] ∈ E0 (equivalently, K[p] ∈ E<∞) for every prime p.

In particular, S(E0) ∩ {compact abelian groups} = Q(E0) ∩ {compact abelian groups} = O.

6.2. Non-abelian case: characterization of dimension via stabilities of E<∞

The next theorem, covering item (b1) of Theorem F, characterizes the finite-dimensional compact con-
nected groups as the compact connected groups having all closed subgroups in E<∞, i.e., as the intersection 
{compact connected groups} ∩ S(E<∞).

Theorem 6.7. For every compact connected group K the following statements are equivalent:

(i) dimK < ∞;
(ii) K ∈ S(E<∞), i.e., every closed subgroup of K belongs to E<∞.

In case these conditions hold, K is metrizable and K ∈ Q(E<∞).

Proof. (i) ⇒ (ii) Let N be a closed subgroup of K. We need to prove that N ∈ E<∞.
According to Fact 2.5, our hypothesis dimK ′ < ∞ (a consequence of dimK < ∞), implies that K ′ is a 

Lie group. Hence, its closed subgroup N0 := N ∩K ′ is a Lie group as well. Let us note that N/N0 ∈ Oc as 
N/N0 is isomorphic to a subgroup of the compact connected finite-dimensional abelian group K/K ′ ∈ Oc

and Oc is stable under taking closed subgroups, by Lemma 6.3.
The subgroup λ(N) of N is fully invariant and λ(N) ∈ E<∞, by Lemma 4.7. So, to get N ∈ E<∞ it 

suffices to check that N1 := N/λ(N) ∈ E<∞, according to Proposition 3.13(c).
To check that N1 ∈ E<∞ put L := N0λ(N) and consider the normal subgroup

F := L/λ(N) ∼= N0/(N0 ∩ λ(N))
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of N1. Since L is a compact Lie group, the subgroup c(L) = λ(N) is open with [L : λ(N)] < ∞. Therefore, 
F is finite.

On the other hand, N1/F ∼= N/L is isomorphic to a quotient of the group N/N0 ∈ Oc, hence N1/F ∈ Oc. 
In particular, N1/F is abelian, so F contains the commutator subgroup N ′

1 of N1.
The finite subgroup N ′

1 of N1 is fully invariant and N ′
1 ∈ E<∞. By Proposition 3.13(b), this yields 

N1 ∈ E<∞, provided we check that N1/N
′
1 ∈ E<∞. The compact abelian group N1/N

′
1 has a finite subgroup 

F/N ′
1 such that (N1/N

′
1)/(F/N ′

1) ∼= N1/F ∈ Oc, as mentioned above. Hence, N1/N
′
1 ∈ Oc and consequently, 

N1/N
′
1 ∈ E<∞. This proves that N1 ∈ E<∞.

To prove the implication (ii) ⇒ (i) it suffices to check that dimZ(K) < ∞ and dimK ′ < ∞, in view of 
(3). The former inequality follows from Z(K) ∈ E<∞ (as Z(K) is a closed subgroup of K ∈ S(E<∞)) and 
Theorem A.

To prove the inequality dimK ′ < ∞, argue by contradiction. According to Remark 2.6, the hypothesis 
dimK ′ = ∞ provides an infinite product 

∏
i∈I Li of compact connected simple Lie groups Li such that 

K ′/Z(K ′) ∼=
∏

i∈I Li. For every i ∈ I let Si := L̃i be the covering group of Li and let Ti
∼= T be a closed 

subgroup of Si. Then the subgroup T =
∏

i∈I Ti of L =
∏

i∈I Si is isomorphic to T I . So dimT I = ∞. By 
Fact 2.5, there is a closed central subgroup N of L with dimN = 0 such that G′ ∼= L/N , let f : L → G′ be 
the quotient map and put C = f(T ). As dimN = 0, we conclude, with Fact 2.3, that dimC = dimT = ∞, 
so, C /∈ E<∞, by Theorem A. As C is a closed subgroup of K, we deduce that K /∈ E<∞, a contradiction. �

The above proof combined with Lemmas 2.5, 4.6 and Lemma 4.3(b), shows also that K ∈ Q(E0) for a 
compact connected group K if and only if K = K ′ is finite-dimensional.

Example 6.8 shows that the implication in the last assertion of Theorem 6.7 cannot be inverted. More 
precisely, E0 contains an infinite-dimensional compact semi-simple connected group K along with all quo-
tients of K. In terms of the theorem, this means that K ∈ Q(E0), yet K /∈ S(E<∞). This should be compared 
with Theorem 6.5 establishing coincidence of S(E<∞) and Q(E<∞) in the realm of compact abelian groups.

Example 6.8. Take K =
∏∞

n=1 Ln, where Ln are pairwise non-isomorphic compact connected simple Lie 
groups. Then K is a compact infinite-dimensional connected group. We show that every continuous endo-
morphism of K has zero topological entropy, i.e., K ∈ E0.

(a) For simplicity, we take Ln = SO2n+1(R) for n ≥ 1 (see item (b) for the general case). Assume 
f : K → K is a continuous endomorphism. In case f is not surjective, f need not be a product of continuous 
endomorphisms of each component Ln (in the surjective case, one necessarily has f(Ln) = Lmn

for some 
mn, so necessarily mn = n in this case, see [16] for more detail). Let

Nm :=
m∏

n=1
Ln, Km =

∞∏
n=m+1

Ln and Sm =
∞⊕

n=m+1
Ln, (11)

so that K = Nm ×Km and Km = Sm for every m ∈ N. In the sequel we identify, when necessary, Ln with 
the respective coordinate subgroup in the product K. Using the fact that dimLi < dimLn for all every 
i < n, we conclude that natural projection pi : K → Li sends f(Ln) to {e}, since f(Ln) is either trivial, or 
isomorphic to Ln. Thus, f(Lm) ≤ Kn for all m > n. Hence, f(Sm) ≤ Km and consequently f(Km) ≤ Km, 
as Km = Sm. Denote by fm the continuous endomorphism of Nm

∼= K/Km induced by f (notice that this 
makes sense as Km is f -invariant, even if Nm need not be f -invariant, i.e., fm is not a restriction of f in 
general). Denoting by ϕm : Nm+1 → Nm the natural projection, we obtain an inverse system (Nm, ϕm)
with inverse limit K ∼= lim←−−Nm such that the canonical projections πm : K → Nm satisfy fm ◦ πm = πm ◦ f , 
so f ∼= lim←−− fm. By Fact 3.1, we have h(f) = limm h(fm). To conclude, it suffices to note that h(fm) = 0, by 
Lemma 4.3, as each Hm is a semisimple Lie group. Therefore, h(f) = 0.
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(b) In the general case the proof follows the line of the argument from item (a), using the fact that for 
every m ∈ N there are at most finitely many groups Ln with dimLn ≤ m. Following this line, define the 
counterpart of (11), namely the subgroups

Nm =
∏

{Ln : dimLn ≤ m} and Km =
∏

{Ln : dimLn > m} ,

with K = Nm ×Km and f(Km) ≤ Km as above. The proof can be concluded exactly as in (a) (for more 
detail and for more general results see [16]).

Finally, a standard argument shows that every closed normal subgroup N of K is simply a subproduct 
N =

∏
n∈J Ln, J ⊆ N. Hence, the quotient K/N has the form 

∏
n∈N\J Ln. Therefore, K/N ∈ E0 by the 

above proof. This proves that K ∈ Q(E0).

Now we prove item (b2) of Theorem F.

Theorem 6.9. For every compact connected group K the following statements are equivalent:

(i) dimZ(K) < ∞ and K has no Lie components of infinite multiplicity;
(ii) K ∈ Q(E<∞), i.e., every quotient subgroup of K belongs to E<∞.

In case these conditions hold, K is metrizable.

Proof. For the sake of brevity, put A = c(Z(K)). To prove the implication (ii) ⇒ (i) deduce from the 
equality K = A ·K ′ that

K/K ′ ∼= A/(A ∩K ′) ∈ Q(E<∞). (12)

So (12) implies dimZ(K) = dimA = dimA/(A ∩K ′) < ∞ in view of dim(A ∩K ′) = 0 and Theorem B, as 
A/(A ∩K ′) is abelian.

To prove the second assertion, note that K/Z(K) ∈ E<∞. As K/Z(K) ∼=
∏

i∈I Li, none of these Lie 
groups Li has infinite multiplicity by Example 5.1, as otherwise K/Z(K) will have a direct summand that 
is an infinite power of an infinite compact group.

To prove the implication (i) ⇒ (ii) assume that dimZ(K) < ∞ and K has no Lie components of infinite 
multiplicity. We check first that all quotients of K still satisfy (i).

Let K/N be a quotient of K with respect to a closed normal subgroup N of K. First we see that the 
quotient map q : K → K/N satisfies

Z(K/N) = q(Z(N)). (13)

Indeed, as q is surjective, one obviously has q(Z(K)) ≤ Z(K/N). In order to prove that these two subgroups 
coincide consider the surjective canonical homomorphism f : K/N → (K/N)/q(Z(K)) =: H. It suffices to 
check that the image of Z(K/N) under this homomorphism is trivial. Since this image must be obviously 
contained in the centre of H, it suffices to see that H is centre-free. This follows in turn from the fact that H is 
isomorphic to the quotient of the group K/Z(K) with respect to its normal subgroup L := (Z(K)N)/Z(K). 
According to Fact 2.5(b), K/Z(K) ∼=

∏
i∈I Si for a family of simple centre-free connected Lie groups Si. 

Then the normal subgroup L of K/Z(K) will correspond, under this isomorphism, to a subproduct 
∏

i∈I′ Si. 
Consequently,

H = (K/N)/q(Z(K)) ∼= K/Z(K)N ∼= (K/Z(K))/L
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is isomorphic to the quotient 
∏

i∈I Si/ 
∏

i∈I′ Si
∼=

∏
i∈I\I′ Si. Therefore, H has trivial centre. This proves 

(13).
The equality (13) and the monotonicity of dimension imply dimZ(K/N) < ∞. To prove that K/N

satisfies also the second half of (i) note that by virtue of (13), q induces a surjective homomorphism 
K/Z(K) → (K/N)/Z(K/N). Since these groups are products of centre-free groups, the components of 
(K/N)/Z(K/N) appear as components of K/Z(K). In particular, K/N has no Lie components of infinite 
multiplicity.

We proved in this way that if K satisfies (i), then all quotients of K satisfy (i). Hence, it remains to see 
that a group K satisfying (i) belongs to E<∞.

To this end we prove first that K ′ ∈ E0. Its centre Z(K ′) = A ∩ K ′ is a characteristic subgroup and 
Z(K ′) ∈ E0, as Z(K ′) coincides with the zero-dimensional (by Fact 2.5(b)) subgroup A ∩K ′ of the finite 
dimensional connected abelian group A. So, by Proposition 3.13 it remains to see that K ′/Z(K ′) ∈ E0. 
Since K ′/Z(K ′) is centre-free, it is isomorphic to a product 

∏
i∈I Li of simple Lie groups (by Fact 2.5(b)). 

Moreover, by the second part of our hypothesis each Lie group appears with finite multiplicity in this 
product (in particular, the product is countable). Now Example 6.8 (b) implies that K ′/Z(K ′) ∈ E0.

Hence, our hypothesis dimZ(K) < ∞ yields dimK/K ′ < ∞, as dimK/K ′ = dimZ(K), by (3). Accord-
ing to Theorem B, K/K ′ ∈ E<∞, since K/K ′ is abelian. As K ′ ∈ E0 is fully invariant, this yields E<∞, by 
Proposition 3.13(b). This proves the implication (i) ⇒ (ii).

Finally, we note that a group K satisfying (i) is metrizable. Indeed, as K = A ·K ′ it suffices to check that 
both A and K ′ are metrizable. The former group is metrizable, being a connected finite-dimensional abelian 
group. To see that K ′ is metrizable, it suffices to note that K ′ is an extension of the metrizable normal 
subgroup Z(K ′) = A ∩K ′ by the group K ′/Z(K ′) ∼=

∏
i∈I Li. This product of Lie groups is metrizable, as 

the second hypothesis in (i) yields that the product is countable. �
An easy modification of the above proof allows us to deduce that K ∈ Q(E0) for a compact connected 

group K if and only if K = K ′ and has no Lie components of infinite multiplicity. Hence, the class 
Q(E0) ∩ {connected compact groups} properly contains S(E0) ∩ {connected compact groups}, unlike the 
case of abelian groups (see Corollary 6.6).

7. Final remarks and open questions

One can replace endomorphisms by automorphisms and consider the bigger classes A<∞ and A0 defined 
with respect to automorphisms, namely:

• A<∞ – the class of topological groups G that have no continuous automorphism of infinite entropy; and
• A0 – the class of topological groups G that such that every continuous automorphism of G has zero 

entropy.

Now the use of the endomorphisms mG
k (with k > 1) has a limited range, since they need not be 

automorphisms in general. Obviously, E<∞ ⊆ A<∞ and E0 ⊆ A0. Easy examples show that these inclusions, 
as well as the inclusion A0 ⊆ A<∞, are proper.

We see in the next example that E<∞ � A0.

Example 7.1. An abelian group G is called self-rigid, if End(G) = {mG
k : k ∈ Z}. Clearly, Aut(G) = {±idG}

for a self-rigid group G, thus the only continuous automorphisms of K = Ĝ are ±idK . Therefore, K ∈ A0. 
On the other hand, self-rigid groups of arbitrarily large size were built by De Groot [24], Fuchs [21] and 
Shelah [43]. In particular, if G is an uncountable self-rigid group, then G has infinite rank, so K = Ĝ is an 
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infinite-dimensional compact connected abelian group. Thus, Etop(K) = {0, ∞}, in virtue of Theorem A. 
Therefore, K /∈ E<∞, while K ∈ A0.

Question 7.2. Describe the classes A0 and A<∞ within

(i) the class of all compact abelian groups;
(ii) the class of all compact connected groups.

Question 7.3. Does K ∈ E<∞ for a compact abelian group K imply K/c(K) ∈ E<∞?

Item (a) of Theorem B along with a positive answer to Question 7.3 will completely reduce the study 
of the compact abelian groups in the class E<∞ to those compact abelian groups of E<∞ that are totally 
disconnected.

Using the Bridge Theorem from [11] one may try to negatively answer this question by looking for a 
(discrete) abelian group G, with G ∈ E<∞, but t(G) /∈ E<∞. A similar example to the effects of the 
entropy ent was given in [13, Example 5.5]. Namely, a group G such that t(G) /∈ E<∞ and every continuous 
endomorphism f of G has ent(f) = 0. Unfortunately, this example does not fit our question, since mG

k has 
infinite algebraic entropy, as the free-rank of G is c.

We are not aware if the condition K ∈ E<∞ alone for a compact connected abelian group K may imply 
any of the two properties in item (a) of Theorem 6.9.

The general problem of when a compact abelian group belongs to E<∞ or A<∞ remains open.

Question 7.4. Are the classes (of compact abelian groups in) E<∞ and E0 closed with respect to:

(i) taking finite products;
(ii) taking extensions?

We do not know whether either of the two conditions in item (i) of Theorem 6.9 is necessary for a 
connected compact group K to satisfy K ∈ E<∞. In other words:

Question 7.5. Does there exist a connected compact group K ∈ E<∞ such that either dimZ(K) = ∞ or K
has some Lie component of infinite multiplicity?

Note that a negative answer to this question would imply that for connected compact groups K ∈ E<∞
is equivalent to K ∈ Q(E<∞) (in striking contrast with the abelian case Corollary 6.6).

We believe that the following, somewhat weaker and “asymmetric”, conjecture holds true:

Conjecture 7.6. If a connected compact group K satisfies dimK < ∞, then K ∈ E<∞ if and only if every 
Lie component of K has finite multiplicity.

Actually, modulo Theorem 6.9, what is missing is only a proof that if dimK < ∞ and K ∈ E<∞ then 
every Lie component of K has finite multiplicity.
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