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Abstract

The research presented in this thesis concerns the efficient application of the positive
dynamical systems theory to problems arising in pattern recognition and image analysis,
specifically, in the biometric security and plant pathology areas, providing both theoretical
and experimental results. Thus, a novel approach to this kind of problems has been investi-
gated. With this in mind, the principle contributions of this thesis can be summarised within
the context of the above overlapping lines of research. In the first part, an introduction to
the field of biometrics is given in order to present the concepts and primitives of perfor-
mance metrics due to their impact on secure biometric systems. Thus, has been presented
an overview to describe the main biometric traits along with their properties as well as
the various biometric system operating modalities. Finally, the criteria for performance
evaluation have been defined to determine the system accuracy and security which are
related to the applicability in real-world deployments. Secondly, it has been investigated
the feasibility of the proposed approach in biometrics. This study has led to the definition
of a unified method for line-like feature matching that relies on a recursive algorithm based
on a monotone dynamical system whose output converges either to zero, when a deep
mismatch exists between the samples to be compared, or to a high value, when a good
matching is observed, thus allowing the system to be employed in several applications,
including all possible vascular-based biometric security systems based on blood vessel
pattern matching. Thirdly, to consolidate the theoretical results, two examples of biometric
security systems have been developed. In particular, it has been considered the case of hand
palm-based human recognition first using the samples acquired in the visible spectrum
and then those acquired in the near-infrared spectrum. Indeed, in highly security sensitive
applications, vascular biometrics is more often used, since the involved patterns are consid-
ered to be very stable over time, difficult to forge, and false match rates are the lowest of
all biometric recognition methods. In this context, it has been applied the proposed unified
method, successfully testing carefully designed experiments to assess its performance, even
in adverse conditions (e.g., in presence of noise). In the second part, at first is given an
introduction to the field of phytopathology oriented to image-based diagnosis of plant
disease symptoms in order to present the concepts and primitives of performance metrics
due to their impact on such systems. Thus, an overview is provided to describe the main
grapevine pathogenic diseases along with their properties as well as the analysis of visual
symptoms used for the assessment of disease severity. Finally, the criteria for performance
evaluation have been defined to determine the system accuracy and reliability which are
related to the applicability in real-world deployments. After that, it has been investigated
the feasibility of the proposed approach in plant pathology. In the vineyard, symptoms are
visually most noticeable on leaves, which may include a detectable change in color, shape,
or function of the plant as it responds to the pathogen. Hence, to detect potential plant
pathogens as quickly as possible in order to reduce the likelihood of an infection spreading,
it has been proposed a unified method based on the positive dynamical systems theory



viii

that allows the detection and severity estimation of grape diseases regardless of disease
type. The idea behind the algorithm is to recursively spread the disease to fill the infected
regions of the leaf only if there are symptoms of the condition itself, otherwise the leaf will
not be affected by any changes. Lastly, to consolidate the theoretical results, an example
of grape leaf disease detection and severity estimation has been developed. In particular,
it has been considered the case of a specific disease-causing agent due to biotic factors
(i.e., those caused by living components such as pathogens). In this context, it has been
applied the proposed unified method and the experiments have assessed the system ability
to generalise symptoms beyond any previously seen conditions, also achieving promising
results, even in adverse conditions (e.g., in presence of noise). In both the proposed unified
methods, the main advantage rely in the robustness when dealing with low-resolution and
noisy images. Indeed, an essential issue related to digital image processing is to effectively
reduce noise from an image whilst keeping its features intact. The impact of noise (e.g.,
signal independent and uncorrelated noise) is effectively reduced and does not affect the
final result allowing the proposed systems to ensure a high accuracy and reliability.
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1
Introduction

The theory of positive systems is deep and elegant
– and yet pleasantly consistent with intuition.
[. . . ] It is for positive systems, therefore, that
dynamic systems theory assumes one of its most
potent forms.

David Luenberger, in Introduction to Dynamic
Systems, Wiley, 1979 [95].

Positive dynamical systems are an important class of systems that arise naturally in many
fields of science where the state-variables represent quantities that can only be positive
(or at least non-negative) in value at all times. The explicit definition of a positive system
is that its state and output are always non-negative for any non-negative initial state and
any non-negative input. This non-negative restriction on system variables provides some
remarkable outcomes that are available only for positive dynamical systems [13, 43, 133].

1.1 Thesis overview and contributions

Motivated by the importance of positivity in systems theory, this thesis presents a study
based on a dynamical system approach to address challenging pattern recognition and
image analysis tasks from both a theorethical and practical perspective, along with an
interesting application of this kind of systems to the biometrics and phytopathology areas1.
The purpose of this chapter is to provide an overview of the aferomentioned fields of study
in such a way so as to contextualise the contributions of this thesis, as well as equip the
reader with background information sufficient to understand the technical developments
of the succeeding chapters.
The central theme of this thesis is the efficient application of the positive dynamical systems
theory to problems arising in pattern recognition and image analysis, specifically, in the
biometric security and plant pathology areas. With this in mind, the principle contributions
of this thesis can be summarised within the context of the above overlapping lines of
research. Reflecting this twofold objective, the thesis is divided into two parts.

1Most of the works described in this thesis have been published in peer-reviewed conference or journal, or
are currently under review or in preparation, however, the corresponding publications are always referenced;
for the sake of completeness, almost all of the methods have been either reported or sketched in the thesis as
well.
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1. Biometrics

Biometric technologies refer to all processes used to recognise, authenticate, and
identify individuals based on their biological and/or behavioural characteristics.
Whether for security, access, or fraud prevention, biometrics come in many forms,
and the number of deployed biometrics solutions is evolving quickly, as well. The
global biometrics market is growing at a fast pace, initially due to the need to com-
bat the rising security challenges. Nowadays, with facial recognition and fingerprint
applications dripping down to consumer market through smartphones, broader ap-
plications of biometrics will be highly expected for the future digital world. Trends
indicate that existing applications will expand and new ones will emerge, meaning
that biometrics will become increasingly ubiquitous and powerful [56]. Accurate
authentication or identification is fundamental to physical security, cyber security,
financial transactions, contracts and employment, public services, criminal justice,
national security and more. The immense interest in the theory, technology, ap-
plications, and social implications of biometric systems has created an imperative
need for the systematic study of the use of biometrics in security and surveillance
infrastructures [18]. The approaches that have been proposed in literature depend
on the type and the number of the underlying biometric traits, which, in gen-
eral, cannot be easily transferred between people, and thereby represent a highly
secure unique identifier. Physical traits include the anatomical components and
physiological functioning of the human body, whilst behavioural traits describe
the way an individual reacts or moves within the environment. Biometric systems
are pattern recognition systems that automate the verification and identification
processes by capturing characteristics of individuals, extracting measurable features,
and comparing the data against the stored template of biometric datasets from a
prior enrollment procedure. Biometrics data is captured as digital images, known as
samples and converted to templates that can be mathematically compared to each
other by means of various biometric algorithms. In particular, in highly security
sensitive applications, vascular biometrics is more often used, since the involved
patterns are considered to be very stable over time, difficult to forge, and false match
rates are the lowest of all biometric identification methods. In this context, a novel
unified model for robust line-like feature matching, which can be employed in all
vascular-based biometric security applications, has been perfected testing carefully
studied experiments to assess its performance even in adverse conditions (e.g., in
presence of noise). This model relies on a recursive algorithm based on a monotone
dynamical system whose evolution depends on the two matrices representing the
templates to be compared. The main advantage of the proposed approach is its
robustness when dealing with low-resolution and noisy images. The impact of noise
(e.g., impulse noise) is effectively reduced. Moreover, the proposed method can
admit several extensions and applications (e.g., vascular-based biometric security
applications, line-like feature matching on aerial imagery, and so on). The unified
method described in Chapter 4 has been proposed in two versions, the first of
which has been applied to palm line features acquired in the visible electromagnetic
spectrum, whilst the enhanced version has been applied to subcutaneous palm
vascular patterns in the near-infrared spectrum, both operating in contact-less mode,
ensuring high user acceptability as well as hygienic conditions without discomfort,
also achieving state-of-the-art performance [15].
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2. Phytopathology

The demand for high level of safety and superior quality in agricultural products
is of prime concern. The introduction of new technologies for supporting crop
management allows the efficiency and quality of production to be improved and, at
the same time, reduces the environmental impact. Common strategies to disease
control are mainly oriented on spraying pesticides uniformly over cropping areas
at different times during the growth cycle. Even though these methodologies can
be effective, they present a negative impact in ecological and economic terms,
introducing new pests and elevating resistance of the pathogens [106]. Recent
technological developments have allowed useful tools to automatically detect the
symptoms that appear on the leaves and stem of a plant, thus helping in the
cultivation of healthy plants and improving their quality [104]. Severity estimation
of plant disease is an important procedure to measure the degree of disease and
thus can be used to recommend treatment and predict yield, helping to reduce
crop losses [14]. The studies of plant disease diagnosis refer to studying the
visually observable patterns (symptoms) of a specific plant. Since the first step
to detect when a plant has any type of deficiency, pest, or pathogenic disease
is to observe its stems, its grapes, and/or its leaves, the idea is that, once the
digital images are automatically acquired from the environment, e.g., by means
of a unmanned aerial vehicle (UAV), both image processing and soft computing
techniques are applied following a pattern recognition system scheme. Many of
these image-based assessment methods for plant diseases, indeed, rely on the
same basic procedure [9, 10]. Firstly, preprocessing techniques are employed for
background removal and segmentation of the lesion tissue of the infected plants.
Then, discriminative features are extracted for further analysis. At last, supervised
classification algorithms or unsupervised cluster algorithms are used to classify
features according to the specific task [141]. Studies using visible features imaged
with conventional RGB cameras have shown the ability for autometd systems to
recognise the presence of known plant disease using deep convolutional neural
network models [110]. Deep learning models rely on large neural networks that
typically require a very time-consuming training, moreover to accurately generalise
predictions (classification among different diseases) is needed a very large number
of verified images of diseased and healthy plants. However, the fine-grained disease
severity estimation is much more challenging, as there exist large intraclass similarity
and small interclass variance [152]. In this context, to detect potential plant
pathogens as quickly as possible in order to reduce the likelihood of an infection
spreading, a different and highly efficient unified method relying on a recursive
algorithm based on a monotone dynamical system has been presented, allowing
the automatic detection and severity estimation of pathogenic diseases regardless
of disease type (i.e., not suitable for disease classfication). The unified method
described in Chapter 6 does not require any training to automatically discover the
discriminative features for fine-grained estimation, which enables the end-to-end
pipeline for diagnosing plant disease severity. In Section 6.3, a fully automatic
plant disease detection and severity estimation system has been presented and the
proposed experimental setup has allowed to assess the system ability to generalise
symptoms beyond any previously seen conditions, also achieving excellent results,
even in adverse conditions (e.g., in presence of noise).
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1.2 Structure of the thesis

The thesis is articulated as illustrated in Figure 1.1 and described below.

Preliminaries
(chapt. 2)

Conclusions and
future work
(chapt. 7)

Ap
pe

nd
ix

Background
(chapt. 5)

A unified method for
disease severity estimation

Example of grape leaf
disease severity estimation

and its application
(chapt. 6)

Phytopathology (part II)

Background
(chapt. 3)

A unified method for line-like
feature matching

Examples of biometric
security systems and

their applications
(chapt. 4)

Biometrics (part I)

Introduction
(chapt. 1)

Figure 1.1: Structure of the thesis.

• Chapter 1 provides an overview of the study in order to contextualise the contribu-
tions of this thesis, as well as equip the reader with background information sufficient
to understand the technical developments of the succeeding chapters.

• Chapter 2 intruduces the terminology, the notation, and presents a brief introduction
to positive systems and monotonicity along with some basic properties of positive
matrices and Metzler matrices.

• Chapter 3 introduces the fundamental concepts, theory, design, and application
of biometric characterisation of human beings, including the main biometric traits
along with their properties and the various biometric system operating modalities,
as well as the primitives of performance metrics to determine the system accuracy
and security which are related to the applicability in real-world deployments.
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• Chapter 4 presents a noise-rejecting unified method for line-like feature matching,
which relies on a recursive algorithm based on a positive linear dynamical system
whose evolution is determined by the matching level between the two input images:
its output converges to zero when the two images have a deep mismatch, while it
reaches a high value in the case of good matching. The last part of this chapter
illustrates two examples of biometric recognition systems where the first one is based
on principal palm lines features acquired in the visible spectrum, whilst the second
one is based on subcutaneous palm vascular patterns acquired in the near-infrared
spectrum, proving the effectiveness and robustness of the proposed dynamical system
by means of a massive campaign of experiments.

• Chapter 5 introduces the fundamental concepts in the field of phytopathology
oriented to image-based diagnosis of plant disease symptoms, including the main
grapevine pathogenic diseases along with their properties and the analysis of visual
symptoms used for the assessment of disease severity, as well as the primitives of
performance metrics to determine the system accuracy and reliability which are
related to the applicability in real-world deployments.

• Chapter 6 presents a noise-rejecting unified method for automatic disease severity
estimation, which relies on a recursive algorithm based on a positive non-linear
dynamical system whose evolution is determined by the input image to be analysed:
the system recursively spread the disease to fill the infected regions only if there are
symptoms of the condition itself. The last part of this chapter illustrates an example
of disease severity estimation system to automatically detect the symptoms that
appear in the input image. To assess the performance and the effectiveness of the
proposed, extensive experiments have been carried out, even in noisy conditions.

• Chapter 7 concludes the thesis by discussing the main achievements of the presented
work and suggests ideas for future work.

Appendix

• A provides essential mathemathical notions, techniques, and transformations in
digital image processing and image analysis.

• B summarises the transformations between the CIE RGB, CIE XYZ, and CIE L*a*b*
colour spaces.

• C provides analysis of the main experimental results for the parameter optimisation
procedure relative to the system described in Chapter 4.





2
Preliminaries

In this chapter, we introduce terminology, positive systems, various other definitions, which
will be essentially used for proving our main results.

2.1 Notation

For better or worse, the notation found in dynamical systems and control theory, pattern
recognition, and image analysis tends to vary considerably from one field to another. A
consistent notation has been used throughout the thesis, even though at times this means
departing from some of the conventions used in the corresponding research literature.
Variables or symbols used within limited contexts are described within their context and
are not listed here.
Typically, lower case letters (e.g., x and y) will denote scalars, whilst vectors are denoted
by lower case bold-face letters (e.g., x and y) and all vectors are assumed to be column
vectors ( i.e., they post-multiply matrices) and where the i-th element of a vector x is
denoted by xi. Matrices are denoted by upper case bold-face letters (e.g., A and B), whilst
sets and sequences are denoted by either blackboard bold or upper case bold-face letters
(e.g., A or A, respectively) however, the meaning should be clear from the context. The i-th
row of a matrix is denoted by Ai,:, the j-th column of a matrix is denoted by A:,j, whilst
a single element (i, j, ) of a matrix is denoted as usual by Ai,j. A superscript ⊤ denotes
the transpose of a matrix or vector, so that x⊤ represents a row vector. The n× n identity
matrix is denoted In, which will be abbreviated to I where there is not ambiguity about
the dimensionality that is implied by context. Tensors are denoted by calligraphic bold-face
letters (e.g., A and B). Besides the standard mathematical conventions, the following
notations will be used throughout this thesis.

• The set of natural numbers, including 0, is represented by N; the set of integer
numbers is represented by Z; the set of real numbers is represented by R, whilst R+

(R++) is the set of non-negative (positive) real numbers.
• A n-square matrix A is called positive if Ai,j > 0 for i, j ∈ {0, 1, . . . ,n} and non-

negative if the strict inequality is replaced by a weak inequality.
• A square, diagonal matrix with diagonal entries given by a will be denoted by

diag(a).
• Given a square matrix A, det (A) is its determinant, tr (A) is its trace (sum of

diagonal elements), σ(A) is its spectrum (set of the eigenvalues).
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• If A and B are matrices (or vectors) of the same dimensions, then A > B, A ⩾ B,
A < B, A ⩽ B, have to be intended componentwise (Ai,j > Bi,j, Ai,j ⩾ Bi,j,
Ai,j < Bi,j, Ai,j ⩽ Bi,j, for all valid i and j).

• The symbols ≻ ⪰, ≺, and ⪯ denote order relations induced by definiteness prop-
erties. In the space of symmetric matrices Q ≻ P, Q ⪰ P, Q ≺ P, Q ⪯ P, denote
that P−Q is positive definite, positive semi-definite, negative definite, and negative
semi-definite.

With a slight abuse of notation, sometimes we refer to a function ψ whose argument is a
scalar but apply it to a vector, matrix or tensor ψ(x), ψ(X), ψ(X)), denoting the application
of the function to the array element-wise (e.g., if Y = ψ(X), then Yi,j,k = ψ(Xi,j,k), for all
valid i, j, and k).
The mathematical model of an image as a function of two real spatial parameters is
enormously useful in both describing images and defining operations on them. In equation
form, the representation of a w× h numerical array is

ψ(x,y) =

⎡⎢⎢⎢⎣
ψ(0, 0) ψ(0, 1) . . . ψ(0,w− 1)
ψ(1, 0) ψ(1, 1) . . . ψ(1,w− 1)

...
...

...
ψ(h− 1, 0) ψ(h− 1, 1) . . . ψ(h− 1,w− 1)

⎤⎥⎥⎥⎦
however, throughout the thesis, a more traditional matrix notation has been used to denote
a digital image and its elements

A =

⎡⎢⎢⎢⎣
A0,0 A0,1 . . . A0,w−1
A1,0 A1,1 . . . A1,w−1

...
...

...
Ah−1,0 Ah−1,1 . . . Ah−1,w−1

⎤⎥⎥⎥⎦ .

If the elements of the matrix are vectors, then will be used the tensor notation. If X

represnts an w × h digital image whose elements are represented by a triple of real
values, then Xi,j,k is the element (i, j,k) of X and X:,:,k is the two-dimensional slice of the
three-dimensional tensor X (i.e., the matrix represnting the monochrome channel k).

2.2 Metzler matrices

A class of matrices that is fundamental when dealing with monotone systems is known as
Metzler matrices.

Definition 1. A n-square matrix A is a Metzler matrix if it has non-negative off-diagonal
entries, i.e., Ai,j ⩾ 0,∀i ̸= j.

Definition 2. A n-square matrix A is a Metzler Hurwitz matrix if it is a Metzler matrix and
the real part of each element of the spectrum of A is negative.

It is worth noticing that any Metzler matrix A can be represented as:

A = A+ − λIn λ ∈ R, A+ ∈ Rn×n
+ (2.1)

As a consequence, since the spectrums of A and A+ are linked to each other through the
relation σ (A) = σ (A+) − λ, then Equation (2.1) defines a Metzler Hurwitz matrix if and
only if λ > λmax, where λmax is the Frobenius eigenvalue of A+.
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Some useful properties are listed in the following proposition1.

Proposition 1. Let A ∈ Rn×n
+ be a Metzler matrix, then the following statements are

equivalent:

1. the matrix A is a Metzler Hurwitz matrix;
2. the coefficients of the characteristic polynomial of A (i.e., ∆A(z)) are all positive;
3. A is non-singular and A−1 is a negative matrix, i.e., Ai,j < 0 for all valid i and j;
4. the matrix −A is a P-matrix, i.e., all its principal minors are positive;
5. A has all negative diagonal elements and there exists a positive diagonal matrix D

such that −D−1AD is strictly diagonally dominant;
6. there exist lower and upper triangular matrices L and U, with positive diagonals such

that A = −LU.

2.3 Positive systems

A positive system is a state-space model of the form

x(k+ 1) = Ax(k) + Bu(k)

y(k) = Cx(k) +Du(k)
(2.2)

where x ∈ Rn, u ∈ Rm, y ∈ Rp denote the state, input, and output, respectively. We
can distinguish between two different notions of positivity, namely external and internal
positivity [43].

Definition 3. A linear sistem Σ(A,B,C,D) is said to be externally positive iff for every non-
negative initial state and for every non-negative input its state and output are non-negative.

Definition 4. A linear sistem Σ(A,B,C,D) is said to be internally positive iff its state output
(i.e., the output corresponding to a zero initial state) is non-negative for every non-negative
input.

Let us consider the homogeneous LTI discrete-time dynamic system

x(k+ 1) = Ax(k) (2.3)

where A ∈ Rn×n, hence, the following theorem follows [13].

Definition 5. The system is said positive if

x(0) ⩾ 0 ⇒ x(k) ⩾ 0, ∀k > 0. (2.4)

where the inequalities above should be intended component-wise.

Theorem 1. A (homogeneous) discrete-time linear system is positive if and only if the state
matrix is non-negative (Metzler property of the state matrix in the continuous time case).

1See [11] for a more exhaustive characterisation of M-matrices (rom which it is possible to easily derive the
characterisation of Metzler Hurwitz matrices.
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As far as asymptotic stability is concerned, it is worth noticing that asymptotic stability
with respect to initial conditions in the positive orthant is equivalent to asymptotic stability
with respect to arbitrary initial conditions in Rn. Indeed, any initial state x(0) ∈ Rn can
be expressed as x(0) = x(1) − x(2) where x(1), x(2) ∈ R++. Hence, all the conditions for
asymptotic stability of linear systems are valid for positive systems. Nevertheless, positive
systems have some peculiar properties that are quite useful for the stability analysis, as
shown in the following proposition.

Proposition 2. Let A ∈ Rn×n
+ , then the following statements are equivalent:

1. all the eigenvalues λi of A have modulus less than 1, i.e., |λi| < 1, i = 1, 2, . . .n;
2. the matrix A− In is a Metzler Hurwitz matrix;
3. the coefficients of the characteristic polynomial of A − In (i.e., ∆A−In(z)) are all

positive.

A further property is the Perron-Frobenius theorem.

Theorem 2. The eigenvalue with the largest modulus (dominating eigenvalue, also denoted
as Frobenius eigenvalue) of a non-negative matrix is non-negative and real, that is, if we order
the eigenvalues by magnitude

λ1 = |λ1| ⩾ |λ2| ⩾ . . . ⩾ |λn|.

Moreover, if λ1 is strictly dominating and irreducible (see [13])

λ1 = |λ1| > |λ2| . . .

then the corresponding eigenvector (Frobenius eigenvector) has positive components.

Another property is that the origin of the homogeneous linear time-invariant system (2.2)
is globally asymptotically stable if and only if all eigenvalues of A have norm strictly less
than one; i.e. the spectral radius ρ(A) is less than one. In this, we call the matrix A stable
(or Schur stable).

2.3.1 Monotonicity

A monotone dynamical system is just a dynamical system on an ordered metric space which
has the property that ordered initial states lead to ordered subsequent states [133]. When
dealing with linear time-invariant systems, this is equivalent to the non-negativity (Metzler)
property of the state matrix [13], which is also equivalent to saying that the system is
monotone [133].
Denoting by x(k) = f(k,ω) the solution at time instant k of the initial value problem

x(k+ 1) = f(x(k))

x(0) = ω

then the system is monotone if

x(0) ⩾ y(0) ⇒ f(k, x(0)) ⩾ f(k,y(0)), ∀k ⩾ 0

and this is true if and only if the state matrix is non-negative (Metzler) [6, 12].
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3
Background

This chapter stands as an introduction to the field of biometrics. It is important to present
the concepts and primitives of performance metrics due to their impact on secure biometric
systems. Thus, a brief overview is given to describe the main biometric traits along with
their properties as well as the various biometric system operating modalities. Finally, the
criteria for performance evaluation have been defined to determine the system accuracy
and security which are related to the applicability in real-world deployments.

3.1 Taxonomy of biometric traits

With the rapid growth in demand for reliable and highly secure human authentication and
identification systems, the importance of technological solutions and algorithms in the bio-
metric field is growing along with security awareness [71]. In fact, traditional/conventional
authentication methods, consisting in token-based systems that make use of something you
have (e.g., ID card), and knowledge-based systems that make use of something you know
(e.g., personal identification number (PIN) or password), are unable to meet the needed
reliability and security requirements, while biometric systems make use of physiological
(intrinsic) and/or behavioural (extrinsic) traits of individuals, overcoming the security
issues affecting the conventional methods for personal authentication [122]. As a matter of
fact, various biometric modalities have been developed over the years making the biometric
technology landscape very vibrant. Prominent examples of physiological and behavioural
biometric charracteristics, which have been the purpose of major real-world applications,
are illustrated in Figure 3.2 and briefly described below.

Fingerprint

This trait appears as a series of dark lines
and white spaces, when captured from
device and it consists of set of ridges and
valleys (minutiae) located on the surface
tips of a human finger to uniquely distin-
guish individuals from each other [100].

Figure 3.1: Example
of a fingerprint im-
age.
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Biometric traits

Behavioural
features

Physiological/biological
features

Gait

Keystroke
dynamics

Mouse
dynamics

Mobile interactions

Voice Signature

Fingerprint Face

Ear acoustic

Hand Iris

ECG
(electrocardiogram) DNA

Vascular patterns

Figure 3.2: Examples of physiological/biological and behavioural traits applied in biometric
recognition applications.

Face

Facial features use the location and
shape (geometry) of the face, including
the distance between the eyes, the dis-
tance from the chin to the forehead, or
other measures that involve eyebrows,
nose, lips, and jaw line (just to name a
few) [157].

Figure 3.3: Example
of facial recognition.

Hand geometry

Hand geometry is based on the geomet-
ric characteristics of the hand such as the
length and width of fingers, their curva-
ture, and their relative position to other
features of the hand [128].

Figure 3.4: Example
of a recognition based
on hand geometry.

Iris

The iris is the colored part in the eye
that consists of thick, thread-like mus-
cles characterised by unique folds and
patterns that can be used to identify and
verify the identity of humans [33].

Figure 3.5: Example
of an iris image.
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Ear acoustic

An ear signature is generated by probing
the ear with an inaudible sound waves
which are reflected bouncing in different
directions and picked up by a small mi-
crophone. The shape of the pinna and the
ear canal determine the acoustic transfer
function which forms the basis of the sig-
nature [3].

Figure 3.6: Example
of ear acoustic.

Vascular patterns

Vascular biometrics is based on a type
of biometric trait based on the network
structure of blood vessels that can be
used to identify individuals ensuring con-
fidentiality and robustness to counterfeit-
ing [119].

Figure 3.7: Example
of a retina image.

ECG

The human heart and body anatomic fea-
tures form the shape of the ECG signal,
which reports the strength and timing of
the electrical activity of the heart [151].

Figure 3.8: Example
of an electrocardio-
gram (ECG) signal.

DNA

DNA matching is based on a common
molecular biology method named short
tandem repeat (STR) analysis, which is
used to compare allele repeats at specific
locations on a chromosome in DNA be-
tween two or more samples [73, 139].

Figure 3.9: Example
of deoxyribonucleic
acid (DNA) structure.

Gait

This characteristic may be changeable
over a large time span due to various rea-
sons such as weight gain [113]. Thus, it
can be used in low-security applications
for massive crowd surveillance as it can
quickly identify people from afar based
on their walking style [103].

Figure 3.10: Example
of gait recognition.
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Mobile interactions

It is based on the unique ways in which
users swipe, tap, pinch-zoom, type, or ap-
ply pressure on the touchscreen of mobile
devices like tablets and phones, thus pro-
viding characteristic patterns that may be
used to identify people [47].

Figure 3.11: Example
of phone in hand.

Voice

Voice biometric recognition allows to dis-
tinguish among humans’ voice for per-
sonal authentication as voice features in-
clude physical characteristics such as vo-
cal tracts, nasal cavities, mouth, and lar-
ynx [34].

Figure 3.12: Example
of voice signal and
fundamental fre-
quency estimation
over time.

Signature

Signature biometric features are ex-
tracted by analysing curves, edges, spa-
tial coordinates, pen pressure, and pen
stroke of the signature samples in both
off-line (static) and on-line (dynamic) ap-
plications [35].

Figure 3.13: Example
of signature (David
Bowie).

Keystroke dynamics

Keystroke dynamics include the tracking
of the rhythm used to type on a keyboard
or keypad analysing the variation of du-
ration between consecutive keystrokes,
placement of finger, pressure and dura-
tions of keystrokes [79].

Figure 3.14: Example
of keystroke dynam-
ics features from a di-
graphs sequence.

Mouse dynamics

Mouse dynamics makes use of patterns
in mouse or trackpad cursor movement
including clicks, paths, direction changes,
tracking speed, and the relationships
between them to authenticate individu-
als [129].

Figure 3.15: Example
of mouse dynamics
features.

3.2 Properties of biometric traits

The main requirements that should be satisfied before a trait can be characterised as
suitable for its applicability in a biometric recognition system, are briefly discussed as
follows [71].
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Universality
Every individual, or at least the most of them, accessing the biometric application
should possess the characteristic.

Distinctiveness
The given trait should be sufficiently different across individuals comprising the user
population. Otherwise, the proportion of times the biometric system grants access to
unauthorised individuals would be unacceptably high.

Permanence
The biometric trait of an individual should be sufficiently invariant (with respect to
the matching criterion) over a period of time. This implies that the given trait should
not change significantly over time otherwise the proportion of times the biometric
system denies access to authorised individuals would be unacceptably high.

Collectability
The biometric trait can be measured quantitatively with particular regard to the
easiness of obtaining the biometric data using suitable devices that do not cause
undue inconvenience to the user.

Even though any human characteristic can be used as a biometric trait as long as the
previous requirements are satisfied, in real-world biometric recognition applications there
are a number of other issues that should be considered, such as:

Performance
This is a property aimed at assessing the verification or identification accuracy, the
computational time required for a single recognition, as well as the operational and
environmental factors that may affect or not the recognition accuracy and speed.

Acceptability
It indicates the extent to which people are willing to accept the use of a specific
biometric application as well as their willingness to provide their biometric data.

Circumvention
This property reflects how easily the system can be deceived through potential
spoofing attacks. It refers to the ways in which an attacker can endeavor to bypass a
biometric system and finally attack the weakness spot of such a system in order to
gain unauthorised access.

Real-life biometric recognition systems ought to meet the requirements of accuracy, speed,
and resource constraints, be harmless to the users, be accepted by the intended population
as well as sufficiently robust to various fraudulent methods and attacks to the system [72].

3.3 Biometric system operating modes

A biometric system can provide two kinds of operating modes (identity management
functionalities), namely, verification and identification. Biometric systems can indeed
automatically authenticate1 or identify subjects in a reliable and fast way and are therefore
suitable to be used in a wide range of applications to face the risks of unauthorised
logical or physical access and identity theft, as well as new threats such as terrorism or
cybercrime [67]. Figure 3.16 provides a high-level view of a generic biometric recognition
system as well as all its basic building blocks.

1Throughout this thesis as in literature, the term authentication will be used as a synonym for verification.
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Figure 3.16: Basic building blocks of a generic biometric recognition system.

3.3.1 Authentication

In the authentication mode, the purpose of the biometric system is to verify whether a
individual’s claimed identity is genuine or not (binary classification). Thus, the captured
biometric data (query) is compared only with the biometric template(s) stored in the system
database and corresponding to the claimed identity (one-to-one or one-to-few comparison).

Definition 6. Given a claimed identity I and a query feature set xQ, the biometric system
has to categorise

(︁
I, xQ

)︁
into “genuine” or “impostor” class. Let xEI be the stored biometric

template corresponding to the identity I (i.e., the enrolled user with identity I). The similarity
measure between xQ and xEI gives, as a result, a matching score. Hence, the biometric system
applies the decision rule given by

(︁
I, xQ

)︁
∈

{︄
genuine, if s

(︁
xQ, xEI

)︁
⩾ ξ ,

impostor, otherwise ,
(3.1)

where s represents a similarity function and ξ represents a pre-defined threshold at which the
system is intended to operate.

The authentication mode is typically employed for positive recognition, where the aim is to
prevent multiple people from using the same identity [145].

3.3.2 Identification

In the identification mode, the purpose of the biometric system is to recognise an individual’s
identity by searching the templates of all the enrolled individuals in the system database
for a match (one-to-many comparison) without the subject having to claim an identity.
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Figure 3.17: Different operating modes of a biometric system: (a) enrollment mode, (b)
authentication mode (the dashed line is an optional operation aimed at updating a specific
user’s template), and (c) identification mode.
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This operating mode can be further splitted into negative and positive identification: in
the negative identification (also known as screening), the user is considered to be hiding
her/his true identity from the biometric system, whilst in the positive identification, the
user tries to positively identify herself/himself to the system without explicitly claiming an
identity.

Definition 7. Given a query feature set xQ, the biometric system has to determine the identity
Ik ∀k ∈ {1, 2, . . . ,n,n+ 1} where {I1, I2, . . . , In} are the identities of the enrolled users in the
system, whilst In+1 represents the failure case where no identity can be assigned for the given
query (open set identification). Hence, assuming that xEIk is the stored template corresponding
to the identity Ik, the biometric system applies the decision rule given by

xQ ∈

⎧⎨⎩ Ik, if max
k

{︂
s
(︁
xQ, xEIk

)︁}︂
⩾ ξ ,

In+1, otherwise ,
(3.2)

where s represents a similarity function and ξ represents a pre-defined threshold at which the
system is intended to operate.

The identification mode is typically employed for screening2, where the aim is to prevent a
single person from using multiple identities [145].

3.4 Criteria for performance evaluation

The reliability and validity of a biometric scheme as well as the selection of a certain bio-
metric trait for an application are determined by specific measures that are used to evaluate
the recognition accuracy and effectiveness as addressed in ISO/IEC Standards [69]. Accord-
ingly, in order to evaluate the accuracy of the proposed method based on a single-sample
approach for unimodal biometric systems, each sample in the database has undergone a
one-to-one matching test against every single stored sample. Hence, a comparison between
a subject with real identity Ir and a subject with claimed identity Ic is aimed at testing the
hypothesis:

H0 :
{︁
Ir = Ic

}︁
versus H1 :

{︁
Ir ̸= Ic

}︁
(3.3)

where H0 is the null hypothesis that the user is who s/he claims to be (genuine or intra-class
matching), whilst H1 is the alternative hypothesis that the user is not who s/he claims
to be (impostor or inter-class matching). To test the hypothesis in (3.3), it is required to
compute a similarity measure, s(Q, T) where large (respectively, small) values of s indicate
that the template T of the claimed identity Ic in the database and the biometric query Q of
a real user Ir are close to (far from) each other. Formally, the verification problem consists
of determining if a claimed identity I with biometric data Q belongs to the class H0 or not:

(I,Q) =

{︄
H0, if s(Q, T) ⩾ ξ ,
H1, otherwise.

(3.4)

2In some real scenario, such as latent palmprint matching, it is preferable to use a semi-automated approach
aimed at providing the top n identities that best match to the given template for further analysis by a human
expert. Alternatively, it is possible to consider all the identities whose corresponding match scores exceed the
threshold ξ in Equation (3.2), which leads to a challenging task in a quite large database (e.g., FBI’s Next
Generation Identification (NGI) system, which provides the world’s largest repository of biometric and criminal
history information [44]).
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In particular, given a threshold value, ξ, all matching values s lower (respectively, greater)
than ξ lead to the rejection (acceptance) of the null hypothesis H0 [32]. Therefore, whether
the hypothesis is accepted or rejected, the test is prone to two kinds of error:

1. false acceptance rate (FAR) that is the probability of accepting the null hypothesis
H0 when input is not valid (type-I error),

2. false rejection rate (FRR) that is the probability of rejecting the null hypothesis H0
when input is valid (type-II error).
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Figure 3.18: Examples of biometric system error rates: (a) FAR and FRR for a given
threshold ξ are displayed over the genuine and impostor score distributions and (b) typical
operating points of different biometric applications are displayed on a ROC curve aimed at
relating FAR and FRR at different threshold values.

Definition 8. Let H0 and H1 be the labels that denote the genuine and impostor classes,
respectively. Assume also that the p(s

⃓⃓
H0) and p(s

⃓⃓
H1) represent the probability density

functions of the genuine and impostor scores, respectively. Then the FAR and FRR distributions
are given by:

FAR(ξ) = p(s ⩾ ξ
⃓⃓
H1) =

∫︂+∞
ξ

p(s
⃓⃓
H1)ds, (3.5)

FRR(ξ) = p(s < ξ
⃓⃓
H0) =

∫︂ξ
−∞ p(s

⃓⃓
H0)ds. (3.6)

The false acceptance rate and false rejection rate are functions of the system threshold ξ
and are closely related because the increase of the one implies the decrease of the other.
Hence, for a given biometric system, it is not possible to decrease both these errors at the
same time by varying the threshold ξ [72]. The genuine acceptance rate (GAR) is instead
the probability of accepting the null hypothesis H0 when input is valid, hence it can be
used as an alternative to FRR:

GAR(ξ) = p(s ⩾ ξ
⃓⃓
H0) = 1 − FRR(ξ). (3.7)
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Depending on the security level required by the final application (i.e., forensics, surveillance
and homeland security, civilian, or high security applications), the same biometric system
may operate at different threshold values (ξ), as illustrated in Figure 3.18(b). Hence, in
order to evaluate the biometric system performance as a function of the threshold ξ, the
following curves can be considered:

• the receiver operating characteristic (ROC) is a graphical plot that illustrates the
trade-off between false acceptance rate and false rejection rate when the threshold
varies, whilst the intersection point for which rejection and acceptance errors are
equal is named equal error rate (EER). The curve is generated by plotting the genuine
acceptance rate against the false acceptance rate at various threshold settings,

• the detection error trade-off (DET) is another graphical plot that illustrates the false
rejection rate against the false acceptance rate at various threshold values. The two
axes are scaled non-linearly by their standard normal deviates3 or just by logarithmic
transformation.

Furthermore, the above-mentioned receiver operating characteristic and detection error
trade-off curves are threshold independent, allowing performance comparison of different
biometric systems under similar conditions.

Definition 9. Given a set of thresholds
{︁
ξi
}︁ ⃓⃓

smin ⩽ ξi ⩽ smax ∀i ∈
{︁

1, 2, . . . ,n
}︁

where
smin and smax are the minimum and maximum scores, respectively, in a given set of match
scores

{︁
si
}︁ ⃓⃓

0 ⩽ si ⩽ 1 ∀i ∈
{︁

1, 2, . . . ,n
}︁

. Then, it is possible to generate a ROC curve
computing the overall FAR and FRR for each threshold ξ as follows:

FAR =
1
N

N∑︂
k=1

FAR(ξ), (3.8)

FRR =
1
N

N∑︂
k=1

FRR(ξ), (3.9)

where N represents all identities being evaluated by the system and

FAR(ξ) =
number of FARs

number of impostor accesses
, (3.10)

FRR(ξ) =
number of FRRs

number of genuine accesses
. (3.11)

3In the normal deviate scale, the threshold values ξ correspond to linear multiples of standard deviation σ
of a Gaussian distribution. Thus, if the false acceptance rate and false rejection rate distributions are Gaussian,
the corresponding detection error trade-off curve would be linear [72].
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A unified method for line-like feature

matching
This chapter aimed at highlighting the main idea of the proposed unified method for
line-like feature matching, which relies on a recursive algorithm based on a positive
linear dynamical system whose evolution depends on the two matrices representing the
templates to be compared. Given two image templates1 (matrices of Boolean values)
X,Y ∈ {0, 1}w×h of equal dimensions, for authentication purposes, it may be convenient
adopting an operator of the form (︂

X̃, Ỹ
)︂
= Φ (X,Y) , (4.1)

which yields a pair of real matrices X̃, Ỹ ∈ Rw×h, having the same size as X and Y . For
the authentication, the operator Φ must be chosen to assess the “matching level” between
the two initial template images. To simply explain the idea, consider a simple (i.e., non
dynamic) mismatch function.
A simple option to assess the matching level of two images is to consider the conjunction
X̃ = Ỹ = X∧ Y , associated with the truth-functional operator of logical conjunction:

[X∧ Y ]i,j = ¬
(︁
¬Xi,j ∨ ¬Yi,j

)︁
= Xi,j ∧ Yi,j = min

(︁
Xi,j, Yi,j

)︁
. (4.2)

However, the approach based on this choice for the operator in (4.1) is clearly not noise-
rejecting, since it evaluates the correspondence between single points (isolated from their
context), which may be noisy. Conversely, to avoid a misleading recognition, noisy pixels
that are accidentally matching in the two images should not provide a positive contribution
to the matching score.
Thus, it has been pursued an approach that rejects noise and, to this aim, it has been taken
into account the following assumption.

Assumption 1. The matching of “isolated spots” is not as significant as the matching of cluster
of points, whether they are wide “stripes” or “island”, even if the number of matching isolated
spots is very high.

1The two image templates given to the dynamical system consist of Boolean matrices containing the
extracted line-like features.
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4.1 The dynamical system

The idea behind the algorithm is to recursively increase the value of a pixel i, j if in the
complementary neighbourhood (namely, the neighbourhood of the corresponding pixel i, j
in the comparison image) there are pixels with large values. Conversely, if the pixels in the
complementary neighbourhood have low values, the value of pixel i, j converges to zero.

X Y Z W

1 �

2 �

3 �

Figure 4.1: Desired matching behaviour for different patterns (active pixels in black) where
X and Y are the initial matrices, whilst Z = X̃ and W = Ỹ are the desired transformed
matrices. The first row illustrates an example of good matching, the second row presents
an example of partial matching, and the last one depicts an example of no matching.

Hence, the operator Φ described in Equation (4.1) must follows the behaviour illustrated
in Figure 4.1.

1. In the first example, two significant sets of active pixels2 are surrounded by 0 pixels
in both images X and Y , which show a good superposition or a good matching.
Actually, almost all of the active pixels should survive in the transformed images
Z = X̃ and W = Ỹ .

2. In the second example, there is a just partial superposition. Hence, in both of the
transformed images, the sets of active pixels should be partially eroded.

3. In the third example, there is a perfect superposition between isolated points. In this
case, the transformed images should be almost empty.

2By convention an active point has been represented in black, whilst a non-active point has been represented
in white.
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As is experimentally shown later, the behaviour illustrated in Figure 4.1 can be achieved by
means of the proposed unified method that involves a positive system, whose evolution
depends on the matching level between the two input images X and Y .

Remark 1. In view of the iterative nature of the algorithm, it is only necessary to emphasise
the presence of neighbourhoods in the comparison image, since in at most two steps this
indirectly emphasises neighbourhoods in the image itself.

Assumption 2. It is further assumed that the images X and Y , provided as inputs, have
already undergone a preliminary processing (thoroughly described in Section 4.4.2) and that
therefore contain the extracted line-like features.

Given the square neighbourhood of the generic point i, j within a “radius” δ of integer
amplitude grater than zero

Ni,j = {h, l : ∥h− i∥ ⩽ δ, ∥l− j∥ ⩽ δ, h, l ∈ Z} , (4.3)

then the two images are processed according to the iterations

Xi,j(k+ 1) = λXi,j(k) + µ
∑︂

h,l∈Ni,j

Yh,l(k) (4.4)

Yi,j(k+ 1) = λYi,j(k) + µ
∑︂

h,l∈Ni,j

Xh,l(k) (4.5)

where k = 0, 1, . . . ,K − 1, λ represents the fading factor, and µ is the coefficient of the
cross-matching part. At the K-th step, in order to achieve a Boolean image, pixels with
value smaller than 1 are set to zero whilst pixels with value greater than 1 are saturated to
1. The saturation function is defined as follows.

Definition 10. Let X and Y be the input real matrices of dimensions n×n, then the piecewise-
defined function Θ : R → {0, 1} given by

Θ (x)
.
=

{︄
1 if x ⩾ 1,
0 if x < 1,

(4.6)

generates the Boolean matrices X̃ and Ỹ , having the same size as X and Y , by means of the
following computation for all i, j

X̃i,j = Θ
(︁
Xi,j
)︁

, Ỹi,j = Θ
(︁
Xi,j
)︁

. (4.7)

The final score (or equivalently, the matching index) is performed on the number of pixels
with value 1 (active), which is compared to the initial number as described in the following
definition.

Definition 11. Let X,Y ∈ {0, 1}n×n be the input Boolean matrices and X̃, Ỹ ∈ {0, 1}n×n be
the output Boolean matrices. Denoting by Σ(X) and Σ(Y) the number of active pixels in the
initial matrices and by Σ(X̃) and Σ(Ỹ) the number of active pixels in the output matrices, then
the matching index between X and Y has been defined as

α(X,Y) =
γ(X,Y)

2

[︄
Σ(X̃)

Σ(X)
+
Σ(Ỹ)

Σ(Y)

]︄
. (4.8)
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The coefficient γ is lower when the difference of active pixels in the input matrices is higher

γ (X,Y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − logn

(︃
Σ (X)

Σ (Y)

)︃
if Σ (X) ⩾ Σ (Y),

1 + logn

(︃
Σ (X)

Σ (Y)

)︃
otherwise.

(4.9)

With this choice of γ, for large differences in the number of active pixels between the two initial
matrices, the coefficient quickly tends to a low value, thus reducing α (X,Y).

Hence, the resulting algorithm works as follows.

Algorithm Matching index computation
Input: Boolean images A and B.
Parameters: Number of steps K, positive constants λ < 1 and µ, integer neighbourhood
amplitude δ > 0 (which implies the size of the set N).
Outputs: Matching index α(A,B).

1. Set the initial conditions converting the two input images from Boolean into real
matrices X(0) := A and Y(0) := B.

2. for k = 0,k < K,k = k+ 1
compute the updated values for each pixel in both images according to
(4.4)–(4.5)

Xi,j(k+ 1) = λXi,j(k) + µ
∑︂

h,l∈Ni,j

Yh,l(k)

Yi,j(k+ 1) = λYi,j(k) + µ
∑︂

h,l∈Ni,j

Xh,l(k)

Set X(k) := X(k)⊙A, Y(k) := Y(k)⊙B, where ⊙ denotes the element-wise
(Hadamard) product

end for
3. Convert the matrices back to Boolean by means of the operator defined in (4.6):

for each point (i, j) do

Ãi,j = Θ
(︁
Xi,j,K

)︁
B̃i,j = Θ

(︁
Yi,j,K

)︁
end for

4. Compute the matching index α as in (4.8)

α(A,B) =
γ(A,B)

2

[︄
Σ(Ã)

Σ(A)
+
Σ(B̃)

Σ(B)

]︄
.

Note that the images are processed as real-valued matrices, in view of step 1. Due to the
element-wise (Hadamard) product at step 2, all the pixels that are initially zero remain
zero: the procedure can “inactivate” active pixels, but cannot “activate” inactive pixels. As
a consequence, the index α ∈ R is always a number 0 ⩽ α ⩽ 1.
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The rationale of step 2 (the core of the procedure) is the following.
Let X,Y ∈ {0, 1}n×n be the matrices to be compared, and assume that a pixel in a matrix
has no match on the other one (or equivalently, the cross-matching part is absent). Then,
the corresponding equations become

Xi,j(k+ 1) = λXi,j(k)

Yi,j(k+ 1) = λYi,j(k)

Hence, being λ < 1, the pixel values having no match on the other image, should asymptot-
ically converge to zero: typically, in few iterations Xi,j(k) and Yi,j(k) reach a value ϵ≪ 1.
Again, note that if a pixel has no match at the beginning, this status is preserved for all the
steps of the procedure, due to the element-wise product at step 2. Conversely, the value
of pixels having a large neighbourhood in the comparison image diverges. If the same
condition is true in the complementary neighbourhood, then we are in the presence of two
matching groups that “cooperate” by increasing each other. In this case, the pixel values
represented by Xi,j and Yi,j significantly increase in few iterations. The exponential con-
vergence/divergence of the procedure assures that, in few iterations, some pixels become
practically zero (eventually set to 0), and others achieve large values (eventually set to 1).
To exemplify the algorithm behaviour, suppose that the two input images A,B ∈ {0, 1}n×n

are those shown in Figures 4.2(a) and 4.2(b). Then, the result of the dynamic algorithm,
Ã = B̃ ∈ {0, 1}n×n, is shown in Figure 4.2(c). In both images, the algorithm has iteratively
eliminated points that do not have enough close neighbouring points in the comparison
image. Hence, the number of survived pixels is very limited, even when starting from
images having similar line-like features.

(a) (b)

(c)

Figure 4.2: Dynamic algorithm behaviour: (a), (b) similar line-like features provided as
input matrices, and (c) the resulting image from the application of the dynamic algorithm.
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4.1.1 Properties of the dynamical system

In this section has been analysed the algorithm based on the linear recursive Equations
(4.4) and (4.5), to better understand its behaviour.
First of all, the positive parameters λ and µ in the procedure need to be tuned bearing in
mind that:

• the fading parameter λ < 1 cancels “isolated pixels”;
• the emphasis parameter µ increases “surrounded pixels”.

Convergence conditions. Let A,B ∈ {0, 1}n×n be two Boolean matrices to be compared.
Consider a radius δ ∈ N of a generic neighbourhood N whose cardinality is given by m =
n (N) = (2δ+ 1)2, and assume that all the points in N are initially active (set to 1) in both
A and B. Then, their values should “blow up”. Given the updating equation for Xi,j,

Xi,j(k+ 1) = λXi,j(k) + µ
∑︂

h,l∈Ni,j

Yh,l(k)

and being all the pixels initially set to 1, a blow-up condition is

λ+ µm > 1. (4.10)

Let us now consider a partial superposition, in which only a percentage b < 1 of the pixels in
the neighbourhood are 1. It may be taken b as a threshold fraction, so that 1-pixels with less
than a fraction b of 1-pixels in the complementary neighbourhood tend to fade. This leads to
the criterion

λ+ bµm < 1. (4.11)

From the considerations above, at step k = 1, all the surrounded pixels reach a value greater
than 1; at step k = 2, the value becomes even bigger; and so on. The two constraints
determined by Equations (4.10) and (4.11) represent the lower and upper bounds in
Figure 4.3.

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1
Domain of convergence

Figure 4.3: Example of convergence domain delimited by the Equations (4.10) and (4.11)
with δ = 1, which implies m = 9, and b = 1

2 .
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Therefore, given the neighbourhood radius δ and the number of iterations K, a criterion to
choose the parameters λ and µ is the following:

1. fix λ based on the desired fading speed;
2. compute m, the neighbourhood size, in terms of pixels;
3. fix b, the desired threshold fraction;
4. compute µ which satisfies the constraints (4.10) and (4.11).

Property 1 (Decoupling)

Let A,B ∈ {0, 1}n×n be two Boolean matrices to be compared. Then, different regions
that are not connected in either A or B do not interact and have separate evolutions, as
illustrated in Figure 4.4. Hence, isolated spots and blobs3 can be analysed separately.

A Ã

�

B B̃

Figure 4.4: Example of two sets of pixels with separate evolutions.

Property 2 (Convergence/Divergence)

Let A,B ∈ {0, 1}n×n be two Boolean matrices to be compared. Then, two overlapping
clusters in A (containing q pixels) and in B (containing s pixels) give rise to a positive
linear system, as described next.
Let us group in a vector x(k) ∈ Rq the variables Xi,j of the cluster in A and in a vector
y(k) ∈ Rs the variables Yi,j of the cluster in B. Then, the system evolves as follows:[︃

x(k+ 1)
y(k+ 1)

]︃
=

[︃
λI µΩ

µΩ⊤ λI

]︃ [︃
x(k)
y(k)

]︃
(4.12)

where I is the identity matrix (of the proper dimension), λ and µ are the previously fixed
constants and Ω is a connection matrix defined as:

Ωi,j =

{︄
1 if pixel yj is in the neighbourhood of pixel xi,
0 otherwise.

(4.13)

3A blob is a subset of an image in which some properties are constant or approximately constant.
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Note that the non-negative matrix M ⪰ O appearing in Equation (4.12) is positive
semidefinite and symmetric

M =

[︃
λI µΩ

µΩ⊤ λI

]︃
.

In fact, if pixel yj is in the neighbourhood of pixel xi, also xi is in the neighbourhood of yj.
Furthermore, since the matrix M has non-negative off-diagonal entries Mi,j ⩾ 0 (∀i ̸= j),
it is also a Metzler matrix (i.e., M ∈ M). Then, the fading or the permanence of the two
connected spots is doomed by the convergence or divergence of the positive system (4.12).
The linear system converges (i.e., is stable) if and only if the spectral radius ρ (i.e., the
maximum among all the absolute values of each eigenvalue σi) of the Metzler matrix M is

ρ (M) = max
{︁
|σi|

}︁
= σmax < 1, ∀i. (4.14)

Conversely, the linear system diverges (i.e., is unstable) if and only if

ρ (M) = max
{︁
|σi|

}︁
= σmax > 1, ∀i. (4.15)

The significance of the expression is the following. The eigenvalues of matrix M are of the
form σk = λ+ µσ0

k, where σ0
k denote the eigenvalues of the cross-term matrix:[︃

0 Ω

Ω⊤ 0

]︃
.

Then, the dominant (Frobenius) eigenvalue is σmax = λ + µσ0
max. The term µσ0

max is
associated with the cross-term element size which amplify the variables x and y, while λ is
associated with the local decay.

4.2 An enhanced version of the dynamical system

The proposed enhancement consists of a slightly modified version of the previously de-
scribed positive dynamical system. Given two initial Boolean images X,Y ∈ {0, 1}n×n of
the same size, the recursive algorithm yields a pair of real matrices, X̃ and Ỹ , with the same
size as X and Y . The algorithm is initialised as X̃i,j(0) = Xi,j and Ỹi,j(0) = Yi,j where Xi,j
and Yi,j are the binary values of pixel i, j in the original images X and Y , converted to real
(floating point) values. The dynamical system also includes a term that initially increases
the value of a pixel if the pixels in a proper neighbourhood in the same image have large
values, and then vanishes with time; it has the effect of initially thickening the relevant
patterns. The two images are processed according to the iterations

Xi,j(k+ 1) = λXi,j(k) + µ
∑︂

h,l∈Ni,j

Yh,l(k)⏞ ⏟⏟ ⏞
cross-matching

+ νk
∑︂

h,l∈Ni,j

Xh,l(k)⏞ ⏟⏟ ⏞
initial expansion

(4.16)

Yi,j(k+ 1) = λYi,j(k) + µ
∑︂

h,l∈Ni,j

Xh,l(k)⏞ ⏟⏟ ⏞
cross-matching

+ νk
∑︂

h,l∈Ni,j

Yh,l(k)⏞ ⏟⏟ ⏞
initial expansion

(4.17)

where k = 0, 1, . . . ,K − 1, and Ni,j is a square neighbourhood of the pixel i, j of integer
amplitude δ > 0 as described in (4.3).
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Convergence conditions. Given the size δ of the neighbourhood Ni,j and denoting by
m = n(N) = (2δ+1)2 the corresponding number of pixels, the positive parameters λ, µ, ν are
selected based on the following constraints, which limit the search region for the optimisation
procedure within a bounded set: ⎧⎨⎩

0 < λ,µ,ν < 1 (4.18)

λ+ ν < 1 (4.19)

bµm < 1 − λ < µm (4.20)

Since we consider positive parameters, the requirement that λ,µ,ν < 1 in (4.18) is implied by
(4.19) and (4.20).

From the considerations above, the convergence conditions determined by Equations (4.18)–
(4.20) represent the bounded set illustrated in Figure 4.5.
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Figure 4.5: Example of domain of convergence of the system bounded by the constraints
reported in (4.18)–(4.20) with δ = 1, which implies m = 9, and b = 1
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The reasoning behind the introduced constraints can be explained as follows.
• Given (4.16) and (4.17) in the absence of cross-matching (µ = 0) and of initial

expansion terms (ν = 0), Xi,j(k) and Yi,j(k) should asymptotically converge to zero.

Proof. Given the following dynamical system

Xi,j(k+ 1) = λXi,j(k)

Yi,j(k+ 1) = λYi,j(k)

then, the inequality the λ < 1 easily proves that Xi,j(k) and Yi,j(k) asymptotically
converge to zero if and only if the constraint is satisifed.

• The expansion term initially augments Xi,j (resp. Yi,j) if the average value of the
pixels in the neighbourhood of Xi,j (resp. Yi,j) is large. This is due to the factor νk,
where the parameter ν has to satisfy the constraint (4.18), 0 < ν < 1, so that this
initial effect quickly vanishes with time. This is needed because, in the long run, the
persistence of this term would make all lines thicker and thicker, leading to false
positives.
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• The inequality in (4.19) needs to hold to ensure that, if there is an isolated pixel
Xi,j whose value is initially large, but there are no active pixels in both the neigh-
bourhoods of the image itself and the complementary image, then the pixel value
decreases from the very beginning of the iterations.

Proof. Let Xi,j be an isolated pixel with a high value which does not have active
pixels in both the neighbourhoods of the image itself and the complementary image.
Then, the updating equation for that point becomes

Xi,j(k+ 1) =
(︁
λ+ νk

)︁
Xi,j(k).

The inequality ν+ λ < 1 easily proves that such a pixel is therefore quickly cancelled.

• The cross-matching term increases Xi,j (resp. Yi,j) if the average value of the pixels
in the complementary neighbourhood is large.

Proof. If νk ≈ 0, which is ensured for large k in view of (4.18), the updating
equation becomes

Xi,j(k+ 1) = λXi,j(k) + µn(N)

average value⏟ ⏞⏞ ⏟∑︁
h,l∈Ni,j

Yh,l(k)

n(N)
. (4.21)

Hence, the first inequality in (4.20), bµn(N) + λ < 1 implies that, if the average
value in the complementary neighbourhood is around or below a fraction b of Xi,j(k),
then Xi,j gets smaller:

Xi,j(k+ 1) < Xi,j(k).

Conversely, the second inequality in (4.20), µn(N)+λ > 1, means that if the average
value is about or greater than Xi,j, the complementary region should be consider as
“populated” so Xi,j should get larger:

Xi,j(k+ 1) < Xi,j(k).

The same holds for Yi,j(k).

The resulting algorithm works as follows.

Algorithm Matching index computation

Input: Pair of Boolean images A,B ∈
{︁

0, 1
}︁n×n.

Parameters: Number of steps K, positive constants λ,µ,ν < 1, integer radius δ > 0.
Outputs: Matching index α(A,B).

1. Set the initial conditions X(0) := A and Y(0) := B, X,Y ∈ Rn×n.
2. for k = 0,k < K,k = k+ 1

update pixel values in both images according to (4.16)–(4.17)

Set X(k) := X(k)⊙A, Y(k) := Y(k)⊙ B (Hadamard product)
end for

3. Convert the matrices back to Boolean by means of the operator defined in (4.6)
4. Compute the matching index α as in (4.8)
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At the end of the iterations, given Xi,j(K) and Yi,j(K), the images X̃ and Ỹ are produced,
where some pixels are set to 0 and others to 1 according to the Boolean decision boundary
in (4.6). After that, the matching index α is computed as in (4.8). Similar images will
have a large number of surviving pixels, hence a large matching index α, whilst different
images will be left with a very small number of non-zero pixels, with α considerably small.
Since νk → 0 when k→ ∞, asymptotically the recursion becomes identical to that in the
dynamical system (4.4)–(4.5) achieving the same steady-state condition.
Therefore, it can be formally guaranteed that asymptotically the performance is at least as
good as with the early version of the system. Moreover, the enhanced dynamic algorithm
has noteworthy advantages.

• The term νk provides an initial burst that considerably increases the speed of
convergence. Its effect is that of initially enlarging the lines, which is beneficial and
very rapidly leads to a situation where the discrimination is possible.

• The benefits of the joint cross-matching and the initial expansion term are seen in
the first iterations, which allow to stop the algorithm at an early stage. Indeed, the
best results in terms of discrimination are achieved after few iterations, so waiting
any longer is useless (although it does not compromise performance in terms of the
matching index). Stopping the algorithm after few iterations drops the computational
time of an order of magnitude and still allows for very effective line-like feature
matching.

4.3 A remarkable example of noise robustness

Noise can be systematically introduced into digital images during image acquisition and/or
transmission [55]. An essential issue related to digital image processing is to effectively
reduce noise from an image whilst keeping its features intact. The nature of the problem
depends on the type of noise affecting the image. Mathematically, noise can be classified
into three kinds of models which can adequately represent most image noises:

• additive (signal independent), described as

T (i, j) = O(i, j) +N(i, j) (4.22)

• multiplicative (signal dependent), described as

T (i, j) = O(i, j) ·N(i, j) (4.23)

• impulsive (signal independent and uncorrelated).
In particular, the most frequent image noises are: additive Gaussian noise (introduced
during image acquisition) and impulse noise (introduced during image transmission) [51].
The second kind of noise raises more concerns for line-like feature matching purposes, as
the noise arisen during acquisition should be removed in the preprocessing stage.

Assumption 3. Throughout this chapter, it has been assumed that noise is independent of
spatial coordinates, and that it is uncorrelated with respect to the image itself (that is, there is
no correlation between the values of noise components and pixel values).

Based on the assumptions in the previous section, the spatial noise descriptor with which
we shall be concerned is the statistical behaviour of the intensity values in the noise
component of the impulse noise model characterised by a specific probability density
function (PDF) [120].
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Definition 12. The impulse noise model is always independent, randomly distributed, and
uncorrelated with the images. This is also called data drop noise because statistically its drop
the original data values.

The probability density function is given by

p(z) =

⎧⎪⎨⎪⎩
Pa for z = a
Pb for z = b
0 otherwise.

(4.24)

If b > a, the intensity level b will appear as a
bright spot in the image. Conversely, the inten-
sity level a will appear as a dead spot. If either
Pa or Pb is zero, the impulse noise is called
unipolar. If neither probability is zero, and
especially if they are approximately equal, im-
pulse noise values will resemble salt-and-pepper
grains randomly distributed over the image.
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Figure 4.6: PDF of the noise.

A considerable advantage of the proposed unified method for line-like feature matching
is its robustness with respect to such a noise. Indeed, images corrupted by noise (e.g.,
salt-and-pepper) are easily recognised, whilst an image randomly generated is rejected
even if compared with itself.

(a) (b) (c) (d)

Figure 4.7: Example of salt-and-pepper noisy image comparison: (a)–(b) matrices A and
B containing the same impulse noise (A = B) with probability p = 20%, and (c)–(d) the
resulting matrices Ã and B̃ (Ã = B̃) from the application of the dynamic algorithm.

Example 1. Salt-and-pepper noise. To explain a peculiar feature of the system, it has been
compared a salt-and-pepper noisy image with itself (see Figure 4.7). The algorithm eliminates
almost all of the pixels and the resulting matching index is extremely low.

Definition 13. Let U and V be two disjoint sets, then a bipartite graph is defined as G =
⟨U,V,E⟩ where E connects every node in U with all nodes in V.

Let us now consider a family of bipartite graphs, whose nodes are the active pixels in the
two matrices A and B to be compared. An arc connects each pair of active pixels that
occupy neighbouring positions in the two images. In this way, clusters of active pixels are
formed.



4.3. A remarkable example of noise robustness 35

A cluster is preserved only if it includes enough pixels, otherwise it fades away. In the case
of perfect matching of two images with isolated points (as in Figure 4.8(a)), there are
just isolated pairs of nodes, which disappear when the dynamical system evolves (local
stability and convergence to 0). Conversely, in the presence of partially matching blobs (as
in Figure 4.8(b)), the clusters of nodes are numerous enough to survive (local instability
with saturation to 1). Furthermore, as can be easily seen from the matrix form of the
dynamical system [︃

x(k+ 1)
y(k+ 1)

]︃
=

[︃(︁
λ+ νk

)︁
I µΩ

µΩ⊤ (︁
λ+ νk

)︁
I

]︃
⏞ ⏟⏟ ⏞

matrix M

[︃
x(k)
y(k)

]︃
(4.25)

it presents a non-negative matrix M with a dominant eigenvalue σmax that is real and
positive. Moreover, σmax is an increasing function of parameters λ,ν,µ, and increases if the
number of 1 entries in matrix Ω increases. This explains why the pair of identical images
containing only a reasonable amount of noise leads to a poor matching index: even if there
is actually a good (or perfect) matching between the two images, there are not enough
connections between the active pixels of one image and the active pixels of the other.
Finallly, to discriminate whether the complementary neighbourhood has to be considered
“populated” or “unpopulated”, it is reccommended to choose the empirical threshold fraction
b ≈ 1/2 since in the average, half of the pixels in the complementary neighbourhood are
inactive. Then, in view of (4.10) and (4.11), this leads to the conditions:

1
2
<

1 − λ

µm
< 1. (4.26)

(a)

(b)

Figure 4.8: Dynamic algorithm example: (a) pairs of isolated points and (b) clusters of
points. Points in the same positions are connected through solid lines, whereas points in
different positions but close enough (radius ν = 1) are connected through dashed lines.
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4.4 Example I: a robust palmprint-based biometric recognition
system for personal identification

Palmprint recognition, a relatively novel but promising biometric technology, has recently
received considerable interest, mostly for its importance in forensics4 [24] and for several
potential civil applications [80]. Compared with the other physical biometric characteristics,
palmprint-based personal authentication has several advantages: low-resolution imaging,
low-intrusiveness, stable line features, and low-cost capturing device. Indeed, since the
principal lines and wrinkles can be observed under low-resolution images (e.g., 100 dpi or
lower), palmprint systems do not require high resolution capturing devices [105]. However,
palmprint recognition techniques based on both low- and high-resolution features are
proposed in the literature; such methods use as local features, respectively, principal lines
and ridges (see Figure 4.9).

Figure 4.9: The distinctive features of a palmprint: principal lines, wrinkles, and ridges.
The minutiae are the points where the ridges changed such as bifurcation and endpoint.

The approach discussed in this thesis is based on low-resolution features, since it uses
as local features the principal lines of the palm, which are very important physiological
characteristics to distinguish between different individuals because of their stability and
uniqueness. Compared with ridges and wrinkles, principal lines are usually the consequence
of genetic effects: therefore, they are the most significant features in palmprint images
and have good permanence [20, 90]. However, principal lines may be similar in different
individuals, which makes their distinctiveness relatively low; for this reason, palmprint
recognition is a challenging problem [155].

4The evidential value of palmprints in forensics is clear as about 30% of the latents recovered from crime
scenes are from palms [70].
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To address this challenge, it has been proposed a method consisting of the following: (i)
a ROI extraction phase, which follows the sequence of steps used in [140, 155], to face
different issues mainly due to non-linear distortion, such as rotation and translation of
the palm with respect to the image and non-uniform illumination; (ii) an unconventional
feature extraction phase based on the principal lines of the palm; (iii) a novel approach
to palmprint matching based on a dynamic algorithm as described in Section 4.1. The
results obtained by means of this novel algorithm are promising, and comparable to existing
state-of-the-art palmprint recognition algorithms.

4.4.1 Related work

Most authors focus on palm lines when analysing low-resolution palmprint images, in
particular, in line-based approaches, the extracted palm lines are either matched directly or
represented in other formats through some feature transformations for matching. Zhang
and Shu [154] used the datum point invariant property and the line feature matching
technique to conduct the verification process via the palmprint features. This approach,
in which the authors inked the palmprints on to paper and then scanned them to obtain
images, is not suitable for many on-line security systems. Wu et al. [149] used the
Canny’s operator [23] to detect palm lines and the orientations of the edge points are
passed into four membership functions representing four directions. For each direction
the energy is compute and normalised. Finally, Euclidean distance is used for matching.
Another study by Wu et al. [150] also proposed an algorithm based on the hidden Markov
model (HMM). This approach uses Sobel masks to compute the magnitude of palm lines,
then the projections along both x and y directions are used to obtain the inputs of the
HMMs. A third approach proposed by Wu et al. [148] is based on the design of two masks
which compute the vertical first- and second-order derivatives obtained by rotating the two
standard masks. They identify the edge points and corresponding directions by using the
zero-crossing of the first-order derivative, then the modulus of the corresponding second-
order derivative is considered as the magnitude of the lines. The feature vector, consisting
of the weighted sum of the local directional magnitude, is then normalised. Finally, as
in [149], Euclidean distance is used for matching. Boles et al. [16] used Sobel masks and
thresholds to build binary edge images and then the Hough transform to detect the palm
features as approximated straight lines for matching. Huang et al. [66] and Jia et al. [74]
used the modified finite Radon transform (MFRAT) to extract the principal lines, then a
matching algorithm based on pixel-to-area comparison measures the similarity between two
palmprint images. Fei et al. [46] used a double half-orientation-based method for feature
extraction and palmprint recognition, whilst in [45] they proposed a double-orientation
code (DOC) algorithm to represent the orientation of palmprint features, evaluating the
similarity between the DOC through a non-linear angular matching scheme. Gao and
Leung [50] and Leung et al. [91] made use of Sobel masks to extract line-like features from
the palmprints and then of line segment Hausdorff distance to compare two palmprints.
Han et al. [58] employed Sobel and morphological operations to extract line-like features
from palmprint images, and then a correlation function to measure the similarity between
the two feature vectors. Similarly, for verification, Kumar et al. [86] used other directional
masks to extract line-like features from the palmprints captured using a digital camera,
then a normalised correlation for matching is used. Diaz et al. [37] used Sobel masks
and morphologic operator as two separated feature extractors to obtain the gradient of
the images, which are then classified by neural networks. Kung et al. [88] designed



38 Chapter 4. A unified method for line-like feature matching

a decision-based neural network (DBNN) classifier and applied it to face recognition
and to palmprint verification. Other approaches based on low-resolution features are
named subspace-based approaches, which usally adopt principal component analysis (PCA),
linear discriminant analysis (LDA), and independent component analysis (ICA). Zhang et
al. [155] used 2D Gabor filters to extract texture features from low-resolution palmprint
images captured using a charge-coupled device (CCD) camera: two palmprint images
are compared in terms of their Hamming distance. Connie et al. [29] made use of PCA
and ICA to extract the palmprint texture features, then palmprints are compared based
on three types of classifiers: Euclidean distance, cosine measure, and probabilistic neural
network (PNN) methods. Ekinci and Aykut [38] proposed a wavelet-based kernel PCA
method by integrating the Daubechies wavelet representation of palm images and the
kernel PCA method for palmprint recognition; similarity measurement is accomplished
by using a weighted Euclidean linear distance-based nearest neighbour (NN) classifier.
Raghavendra et al. [124] proposed the use of kernel direct discriminant analysis (KDDA) as
final classification on texture features obtained using log Gabor transform and concatenated
to form a fused feature vector after the use of particle swarm optimisation (PSO) to reduce
the dimension of this vector. Kumar and Zhang [85] made use of the product of sum rule on
texture-, line-, and appearance-based features using Gabor filters, line detectors, and PCA
respectively. The approach proposed by Wincy and Chandran [146] used phase-correlation
function (PCF) and speeded up robust features (SURF) for palmprint identification. The
PCF is a matching technique that uses the phase components in 2D discrete Fourier
transforms (DFTs) of given palmprint images, whilst the SURF is applied to extract the key
points by using a Hessian detector, then an orientation invariant descriptor is constructed
for each key point. Krishneswari et al. [83] proposed instead a PSO-based fusion technique
to combine the two Gabor and line feature vectors into a single feature vector without
concatenation, then the resulting vector is reduced using PCA and finally the NN classifier
is applied.

4.4.2 Hand palm image processing

The overall block diagram of palmprint image processing is shown in the figure below.

Raw image
of the hand Noise reduction Local adaptive

segmentation
ROI coordinate

construction

ROI extraction

Hand shape
detection

Preprocessing phase

NegativeLinear contrast
enhancement

Binarisation and
noise cleaning

Principal
lines

Feature extraction phase

Normalisation

Sharpening

Figure 4.10: Block diagram of the hand palm image processing for palmprint recognition.
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Preprocessing

Before the feature extraction step, a preprocessing elaboration is required to extract the
central ROI from the captured palmprint image. In fact, usually palmprint images can
have different orientation and size, and are also subject to noise. Moreover, the region
of not-interest (e.g., fingers, wrist, and image background) may affect the accuracy in
processing and verification performance. As outlined in the Figure 4.10, the major steps
involved in the preprocessing of raw images are: 1. noise reduction by means of proper filter,
2. local adaptive segmentation, 3. hand shape detection, 4. ROI coordinate construction and
extraction, and 5. normalisation to have a specific mean and variance for all images [117].

Noise reduction A noise typically corrupting digital images is the impulse noise [51, 96].
This kind of noise is independent, randomly distributed, and uncorrelated with the image,
since it can affect all pixels in the image with the same probability. Hence, a common
non-linear spatial filter, i.e., median filter, can be used to remove unwanted information
from noisy palmprint images preserving details. In our experiments, the kernel size has
been set to 5 × 5 pixels.

Segmentation This step consists of a local adaptive clustering-based image thresholding
used to reduce the input grey level palmprint image I(x,y) to a binary image B(x,y),
where the hand is the foreground and the rest is the background. After partitioning the
image I(x,y) into non-overlapping sub-blocks of size N × N, for each sub-block a local
thresholding can be applied by using Otsu’s method [116] (see Appendix A.1 for further
details): the image pixels are split into two classes (background and object), and the best
threshold value t is obtained based on the maximum value of the variance between the two
classes [42]. Then, for each sub-block, a global thresholding has been applied as follows:

Bx,y =

{︄
255 if Ix,y ⩾ t,
0 otherwise,

(4.27)

so that a pixel is shown in white when it has a value greater than the threshold, in black
otherwise. Figure 4.11 illustrates the result of this operation.
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Figure 4.11: Local adaptive binarisation: (a) original palmprint image divided in four
blocks, (b) the statistical relationship between the grey levels of each sub-image and the
frequency, and (c) output of the binarisation step.
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Hand shape detection In order to detect the edge of the hand, the segmented binary
image is filtered by using the Canny’s operator [23]. This edge detector ensures good
noise immunity and at the same time detect true edge points with minimum error [42]. A
practical approximation of the Canny filter is the following (see Appendix A.2 for further
details).

• Convolve the input image I(x,y) with a two-dimensional Gaussian filter G(x,y):

H(x,y) = (I ∗G) (x,y) (4.28)

where the Gaussian function is defined as

G(x,y) = c exp

(︄
−
(x− x0)

2 + (y− y0)
2

2σ2

)︄
(4.29)

with c = 1, x0 = 0, and y0 = 0.
In order to reduce the computational cost, a convolution with a two-dimensional
Gaussian can be separated into two convolutions with one-dimensional Gaussians.

• Apply the gradient operator and calculate the gradient magnitude M and orientation
Θ as follows:

Hx(x,y) =
∂G(x,y)
∂x

Hy(x,y) =
∂G(x,y)
∂y

(4.30)

m(x,y) =
√︂
H2

x(x,y) +H2
y(x,y) (4.31)

Θ(x,y) = arctan
(︃
My(x,y)
Mx(x,y)

)︃
. (4.32)

• Apply the non-maximum suppression algorithm that removes the non-maximum pix-
els, while preserving the connectivity of the contours, as follows: for each pixel (x,y),
if one of the neighbouring pixels in the orthogonal directions to edge orientation is
greater than the current pixel, then discard it.

• The last step consists of the hysteresis thresholding, which uses a high threshold tH
and a low threshold tL such that: if any pixel (x,y) in the image has a value greater
than tH (less than tL) is presumed (is not presumed) to be an edge pixel, and is
marked as such immediately. Then, any pixel that is connected to this edge pixel and
that has a value greater than tL is also selected as edge pixel, and is marked too. The
marking of neighbours can be done recursively, as it is in the function hysteresis, or
by performing multiple passes through the image. The relationship between the two
threshold values is tL = tH/2 where tH is calculated with the Otsu’s algorithm [42].

ROI extraction In a palmprint image, palm location and rotation angle will affect the
ROI segmentation and the feature extraction of the palmprint may be compromised. To
reduce the influence of non-linear factors (e.g., non-uniform illumination) as well as
affine transformations, such as rotation, translation, and homothety5 of the palm (see
Appendix A.5), a standard reference system is used to align all the palm images in a
standard pose, hence, it is possible to locate the peak and valley points of the palm tracking
the distance between the barycentric coordinates of the segmented hand image and the
contours of the hand shape.

5This is true for a special case that happens when the homotetic centre S coincides with the origin O of the
vector space (S ≡ O), then every homothety is equivalent to an isotropic scaling (the homothety becomes a
linear transformation).
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Step 1 let the input image I(x,y) be the output binary image of the previous step. Then,
it is possible to compute the barycentric coordinates of the hand through the following
equations:

x0 =

∑︁
x

∑︁
y I(x,y) x

S
y0 =

∑︁
x

∑︁
y I(x,y) y

S
(4.33)

where p0 = (x0,y0) is the centroid, and

S =
∑︂
x

∑︂
y

I(x,y) (4.34)

is the total amount of boundary points of the hand.

Step 2 in order to extract the central parts of the palmprint images (ROI), this step
detects the three key points between fingers. The first and the last of them are used to
construct a reference line segment for aligning the different palmprint images, and the
midpoint between them is used to determine the central position of the ROI.

Definition 14. For points p,q, and z, with coordinates (x,y), (s, t), and (v,w), respectively,
D is a distance function if

1. D (p,q) ⩾ 0 (D (p,q) = 0 ⇐⇒ p ≡ q),
2. D (p,q) = D (q,p),
3. D (p, z) ⩽ D (p,q) +D (q, z).

The Euclidean distance between the points p and q is defined as

D(x,y) =
[︂
(p− q)⊤ (p− q)

]︂ 1
2

=

√︂
(x− s)2 + (y− t)2.

(4.35)

For this distance measure, the points having a distance less than or equal to some value ν from
(x,y) are the points contained in a disk of radius ν centred at (x,y).

The key points are detected by analysing the first derivative of the distance vector d, which
contains all the distance measures between the barycentre and the contour of the hand, to
find the three local minima corresponding to the key points (see Figure 4.13).

(a) (b) (c)

Figure 4.12: Direction notation: (a) 8-connectivity, (b) pixel neighbourhood search se-
quence in 8-connectivity, and (c) boundary tracing in 8-connectivity (dashed lines show
pixels tested during the border tracing).
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Definition 15. Let the domain X be a metric space, then the function d is said to have a local
minimum point in x0 ∈ X if ∃ϵ > 0 | (∀x ∈ X)D (x, x0) < ϵ =⇒ d (x0) ⩽ d (x).

Algorithm Key points detection
Input: Image I(x,y) (with centroid).
Output: Image I(x,y).

1. Search from the centroid down until a pixel of the hand outline is found, then mark
this point as starting pixel s0 of the region border. Define a variable dir which stores
the direction of the previous move along the border and assign for the first direction
dir = 2 as shown in Figure 4.12(a).

2. Compute the distance between the border points pi and the centroid p0 as in (4.35).
3. Search the 3 × 3 neighbourhood of the current pixel in a clockwise direction,

beginning from the pixel positioned in the direction (see Figure 4.12(a)):

(dir+ 1) mod 8 if dir is even, (4.36)

(dir+ 2) mod 8 if dir is odd. (4.37)

The first pixel found with the same value as the current pixel is a new bounday
element. Update the dir variable.

4. if the current pixel (x,y) has the same coordinate x of the initial pixel then
stop

else
goto step 2

end if

Step 3 with this last step, we have to define a new coordinate system from the current
one in order to align the palmprint image to a standard position and rotation. The line
segment AC, where A(xa,ya) and C(xc,yc) are the first and the last detected key points,
defines the current coordinate system, then the square ROI can be extracted. The reference
line equation can be calculated as follows:

(xc − xa) · (y− ya) − (yc − ya) · (x− xa) = 0 (4.38)

with xa ̸= xc and ya ̸= yc, finally we can explicit the reference line as:

y =

(︃
yc − ya
xc − xa

)︃
⏞ ⏟⏟ ⏞

m

x+

(︃
ya − xa

yc − ya
xc − xa

)︃
⏞ ⏟⏟ ⏞

q

. (4.39)

The midpoint m(xm,ym) is defined as:

xm =
1
2
(xa + xc) , ym =

1
2
(ya + yc) . (4.40)

Once the key points and reference line are defined, the proposed algorithm normalises the
palmprint position by taking the middle point m(xm,ym) as the centre of rotation to rotate
the palmprint clockwise with an angle6 φ.

6The angle between the reference line and the vertical axis is computed as φ = arctan (m) − π/2.
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Figure 4.13: Key points detection: (a) the distance function D(x,y) and (b) the key points
detected using the algorithm.

In order to do this, let φ be the angle between the reference line and the vertical axis, then
the rotation and scale of the palmprint image is done as follows:[︃

x ′

y ′

]︃
=

1
s

[︃
cos(φ) − sin(φ)
sin(φ) cos(φ)

]︃ [︃
xt
yt

]︃
+

[︃
xm
ym

]︃
(4.41)

where xt and yt are the translated points with respect to the midpoint m(xm,ym), x ′ and
y ′ are the points in the new coordinate system and s is a scaling factor defined as:

s = 1 +
N−

√︂
(xc − xa)

2 + (yc − ya)
2

N
(4.42)

where (xa,ya) and (xc,yc) are the coordinates of the key points and N is the fixed size of
the square ROI to be extracted and centred in (Cx,Cy) (see Figure 4.14).

Normalisation In order to have a pre-specified mean and variance for all palmprint
images, the extracted ROI images are normalised to reduce the possible non-uniform
illumination and noise.
Let the grey level value at pixel (x,y) of the ROI image be represented by I(x,y), µ and
σ2 denote the mean and variance of the image, respectively, then the normalised image
I ′(x,y) is defined as follows:

I ′(x,y) =

{︄
µn + k if I(x,y) > σ2

µn − k if I(x,y) ⩽ σ2 (4.43)

where

k =

√︄
σ2
n (I(x,y) − µ)2

σ2 . (4.44)
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(a) (b)

Figure 4.14: ROI extraction: (a) detection of the positions of the three key points, including
the midpoint, and (b) rotation and scaling of the image and ROI detection.

The values µn and σ2
n are the desired values for mean and variance, respectively, which

are pre-tuned according to the image characteristics7.
Figure 4.15 shows some examples of ROI extraction and normalisation.

Feature extraction

Once the central part (ROI) is segmented, features can be extracted for matching.
As described in Section 4.4, there are many features exhibited in a palm, such as the three
principal lines caused by flexing hand and wrist in the palm, which are denominated as
heart line, head line, and life line, respectively.

Principal lines are among the most stable features in palmprints, considering natural ageing
processes and changes in acquisition conditions. For this reason, it is of great interest to
detect them accurately.

Actually, there were previous attempts to detect principal lines [75], as they can be used in
several ways to improve palmprint recognition.

However, the extraction of principal palm lines is a challenging task, since palmprint images
acquired by a camera (or a scanner) are low contrast images and palm lines are irregular
and have different directions, depth, and shape even in the same palm.

The feature extraction stage illustrated in Figure 4.10, consists of the following steps:
1. conversion to a negative image;
2. sharpening of the image with Top-Hat filter and gradient magnitude computation;
3. linear contrast enhancement (LCE);
4. binarization with Otsu’s method;
5. noise cleaning with median filter.

7In this work, the normalisation is the same suggested in [118], thus both the values of mean and variance
have been set to 100.
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(a) (b) (c)

Figure 4.15: Some results of ROI extraction and normalisation: (a) the input images, (b)
the extracted ROI, and (c) the normalised images.
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Figure 4.16: Negative transformation.

I(x,y) is converted to its negative8. The
negative of an image with intensity levels
in the range [0,L− 1] is obtained by using
the negative transformation as follows:

I ′(x,y) = sI(x,y) + (L− 1). (4.45)

Scaling by s = −1 flips the histogram,
whilst the additive offset L−1 is required in
order to have all values of the result falling
in the allowable grey-scale range. This type
of processing is particularly suited for en-
hancing white detail embedded in dark re-
gions, in this way, the principal lines of the
palm have high intensity.

8Reversing the intensity levels of the image in this way produces the equivalent of a photographic negative.
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Sharpening To correct uneven illumination it has been adopted a Top-Hat transform
followed by a contrast enhancement to the output image. The Top-Hat transform enables
the system to extract small bright objects from a varying background and is defined as
the difference between the input image and its morphological opening by using a defined
structuring element ρ (see Appendix A.4 for further details).
The opening of I(x,y) by ρ is obtained by the erosion of I(x,y) by ρ, followed by dilation
of the resulting image by ρ:

I ◦ ρ = (I⊖ ρ)⊕ ρ =
⋃︂

I(x,y)⊂ρ

I(x,y) (4.46)

Hence, the opening of I(x,y) by ρ is the union of all sets I(x,y) contained in ρ. Then, the
opening Top-Hat transformation of image I, denoted by TH, is given by

TH = I− (I ◦ ρ) (4.47)

which represents the difference set of the domain of I(x,y) and the opening domain of
I(x,y). After the morphological operations, the gradient magnitude is computed as:

J(x,y) = ∇I (x,y) =
[︃
Hx(x,y)
Hy(x,y)

]︃
=

⎡⎢⎣
∂I(x,y)
∂x

∂I(x,y)
∂y

⎤⎥⎦
M (x,y) = ∥∇I(x,y)∥

=
√︂
H2

x(x,y) +H2
y(x,y) ≈

(︃⃓⃓⃓⃓
∂I(x,y)
∂x

⃓⃓⃓⃓
+

⃓⃓⃓⃓
∂I(x,y)
∂y

⃓⃓⃓⃓)︃
(4.48)

This sharpening operation returns the bright spots of the image that are smaller than the
structuring element.

Contrast enhancement In order to improve the contrast of the image, a LCE consisting
of a minimum-maximum contrast transformation9 is applied. This transformation involves
the identification of the lower and upper bounds from the histogram, which coincide with
the minimum and maximum brightness values in the image. Then, it is possible to apply
the transformation to stretch this range to fill the entire dynamic range (0, 255).

Definition 16. An image histogram is a grey-scale value distribution showing the frequency
of occurrence of each grey level value. Hence, the histogram of a digital image I(x,y) with
intensity levels in the range [0,L− 1] consists of a discrete function h (rk) = nk where rk is
the k-th intensity value and nk is the number of pixels in the image with intensity rk.

Let the variable r denote the intensities of a digital image to be processed assuming that
r ∈ [0,L − 1], with r = L − 1 representing white and r = 0 representing black. The
transformation will be in the form s = T(r), with 0 ⩽ r ⩽ L− 1.
This transformation produces an output intensity level s for every pixel in the input image
having intensity r. Assumed that T(r) is a monotonically increasing function in the interval
[0,L− 1], and 0 ⩽ T(r) ⩽ L− 1 ∀r ∈ [0,L− 1].

9LCE is best applied to images with near-Gaussian histograms, i.e., when all the brightness values fall within
a single, relatively narrow range of the histogram and only one mode is apparent.
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Let min (h(r)) and max (h(r)) be the lower and the upper limits of the histogram respec-
tively, then each pixel of the image is scaled to the range (0,qk) according to the equation:

I ′(x,y) =
(︃

I(x,y) − min (h(rk))

max (h(rk)) − min (h(x))

)︃
qk. (4.49)

where I(x,y) is the original input brightness value, I ′(x,y) is the output brightness value,
and qk is the maximum value of the output dynamic range.

Global binarisation A global thresholding is applied at the grey-scale image resulting
from the previous sharpening filter and contrast enhancement. The threshold is calculated
with Otsu’s method [116], whose details are given in Appendix A.1.

Noise cleaning As a last step, a common order-statistic filter10 (e.g., median filter) is
used to remove noise and trivial lines from the image.

(a) (b) (c)

Figure 4.17: Some results of palm line extraction on CASIA (upper row) and PolyU (lower
row) databases: (a) original ROI images, (b) boolean matrices representing the palm lines,
and (c) original ROI images overlapped with the extracted palm lines.

4.4.3 Dynamic algorithm

The dynamic algorithm used for matching consists of the early version of the proposed
system, which is deeply described in Section 4.1 and whose updating equations are

Xi,j(k+ 1) = λXi,j(k) + µ
∑︂

h,l∈Ni,j

Yh,l(k)

Yi,j(k+ 1) = λYi,j(k) + µ
∑︂

h,l∈Ni,j

Xh,l(k)

For further details, please refer to the Section 4.1 and the references therein.
10Order-statistic filters are non-linear spatial filter whose response is based on ranking the pixels contained

by the kernel, and then replacing the value of the center pixel with the value determined by the ranking result.
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4.4.4 Experimental results

Extensive experiments carried out to assess the performance and the effectiveness of the
proposed algorithm are described in this section, with particular regard to the databases
used in the experiments and experimental setup, parameter optimisation, performance
assessment, noise-rejection property, and computational efficiency of the algorithm.

Dataset and experimental setup

The performance of the proposed palmprint verification system has been tested upon
two databases that have been worldwide shared for research purposes: CASIA Palmprint
Database [28] and PolyU Palmprint Database II [63].
The first dataset contains 5 502 palmprint images with 8 bit grey level of size 640 × 480
pixels at 96 dpi resolution captured from 312 subjects by a low resolution CCD-based device
operating in contactless mode. For each subject there are palmprint images from both left
and right hand captured eight times at different times from people of different ages. The
second dataset, which has a lower resolution, contains 7 752 palmprint images with 8 bit
grey level of size 384 × 284 pixels at 75 dpi resolution captured from 386 palms of 193
subjects: these palmprint images have been collected in two sessions with the average
interval over two months, where about 10 samples have been captured from each palm for
each session. Figure 4.18, illustrates some examples of images from both the databases.

(a)

(b)

Figure 4.18: Some examples of raw left and right hand palm images: (a) from CASIA
database and (b) from PolyU database (lower resolution).

As reported in Table 4.1, the experiments have been performed by taking
1. 16 sample palmprint images of the left and right hand (eight images for hand) of

all 312 subjects, for a total of 4 992 images, from the CASIA Palmprint Database,
2. 10 sample palmprint images of 380 individuals related to the first and second

sessions, for a total of 7 600 images, from the PolyU Palmprint Database II.
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CASIA PolyU

Subjects 312 (624) 380
Samples for subject 16 (8) 20
Total samples 4 992 7 600
Hand holder No Yes
Dimensions (px) 640 × 480 384 × 284
dpi 96 75
Bit depth 8 8

Table 4.1: Specifications of the PolyU and CASIA palmprint databases used in the experi-
ments.

Without loss of generality, it is possible to consider the left and right hand palm images of
the same person as belonging to different individuals. This setup constitutes a total number
of experiments equal to

1.
(︁4992

2

)︁
= 12 457 536, including 624×

(︁8
2

)︁
= 17 472 genuine experiments (the others

are impostor experiments), for the CASIA palmprint database,
2.
(︁7600

2

)︁
= 29 104 200, including 380 ×

(︁20
2

)︁
= 72 200 genuine experiments, for the

PolyU palmprint database.

CASIA PolyU

Genuine experiments 17 472 72 200
Impostor experiments 12 440 064 29 032 000
Total experiments 12 457 536 29 104 200

Table 4.2: Experimetns carried out on the CASIA and PolyU palmprint databases to assess
the performance of the proposed system.

Parameter optimisation

Since the verification rate of the system varies depending on the values of λ and µ in the
dynamic algorithm, these parameters need to be properly set, as discussed in Section 4.1.
Thus, given the set Ni,j of neighbouring points of the generic point p(i, j) we can choose
the “fading factor” 0 < λ < 1 and the coefficient µ > 0. Figure 4.19 depicts the region
of convergence of the system according to Eqq. (4.10) and (4.11), which represent the
upper and lower bounds of the region, respectively. Moreover, since the thickness of the
palm lines consists of a few pixels, it is reasonable to consider a square matrix with radius
ν = 2 (which amounts to considering a number of neighbouring pixels equal to m = 25)
for a perfect coverage of a palm line avoiding excessive overlaps with other palm lines – or
background – contained in the image to be compared. Therefore, to determine the value
of the parameters that guarantees the best performance, a test over a subset of the CASIA
palmprint database for many different values of the parameter pairs has been performed.
In this phase, it has been verified every test pair for each of the palmprint images in the
database and for each pair of the parameter values. The subset of the CASIA palmprint
database consists of 360 palmprint images and the number of parameter pairs (λ,µ) inside
the region of convergence is equal to 70, thus the amount of tests performed is 4 523 400.
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Figure 4.19: Region of convergence of the system delimited by (4.10) and (4.11) (with
m = 25 and b = 1

2), and values of the parameter pairs (λ,µ). Best results have been
obtained by the highlighted pair of values.

As a result of these tests, the parameter pair that provides the best verficiation performance
is given by: {︄

λ = 465 · 10−3,
µ = 42 · 10−3.

(4.50)

These values have been used in the experiments for both the databases in order to test
the performance of the proposed method, even without parameter re-tuning for the PolyU
database. It is also important to choose a fixed number of iterations, after which we can
rely on convergence of the dynamic system. From Figure 4.20 it is clear that, after few
iterations, the reached matching value can be considered good enough with respect to the
highest value achieved. Thus, to save computation time, the number of iterations for all
the tests has been fixed to 50.
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Figure 4.20: Average score against number of iterations in the case of true positive (genuine)
recognition and true negative (impostor) recognition for palm line matching.
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Performance assessment and comparison

The performance results of the developed palmprint recognition system are here compared
with other algorithms by using the datasets as previously described. Hence, for comparison
purposes, some of the representative techniques mentioned in Section 4.4.1 are used.

Method CASIA PolyU

CompCode [81] 0.0201 0.0122
PalmCode [155] 0.0367 0.0432
OrdiCode [137] 0.0175 0.0150
MFRAT [66] – 0.0180
DOC [45] – 0.0092
Proposed method [118] 0.0123 0.0071

Table 4.3: Comparison of verification results in terms of EER for several published meth-
ods [46, 114].

Table 4.3 lists the verification results, expressed in terms of EER, for different approaches,
on databases that contain palmprints captured through touch-based (PolyU) and touch-less
(CASIA) devices. From the results, it is clear that the CASIA database is more challenging
than the PolyU database in terms of palmprint verification. However, the proposed method
achieved good results outperforming the other approaches.
To better illustrate the verification performances, the ROC curves11 of some of the above-
mentioned methods and the proposed algorithm are illustrated in Figure 4.21. In particular,
the dynamic algorithm has achieved: a GAR2 that is almost 100% and a GAR3 that is greater
than 97% on the PolyU dataset, whilst for the CASIA dataset the system has obtained a
GAR2 equal to 98.5% and a GAR3 that is similar to the result obtained on the other dataset.

0 0.05 0.1 0.15 0.2
False Acceptance Rate

0.85

0.9

0.95

1

G
en

ui
ne

 A
cc

ep
ta

nc
e 

R
at

e

EER

proposed approach
DOC [10]
CompCode [23]
MFRAT [16]
PalmCode [41]
OrdiCode [36]

(a)

0 0.05 0.1 0.15 0.2
False Acceptance Rate

0.85

0.9

0.95

1

G
en

ui
ne

 A
cc

ep
ta

nc
e 

R
at

e

EER

proposed approach
PCA+PSO [21]
POS [24]
KDDA [35]
Gabor [41]

(b)

Figure 4.21: Comparative genuine acceptance rate against false acceptance rate graphs,
for the proposed approach and for other state-of-the-art methods on (a) PolyU Palmprint
Database and (b) CASIA palmprint database.

11The receiver operating characteristic curves are obtained by plotting GAR against FAR.
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Noise immunity

To conduct experiments on noisy palmprints and demonstrate the robustness of the dynamic
algorithm with respect to noise, the system has been tested by comparing palmprints
corrupted by AWGN against normal palmprints.

Figure 4.22 depicts an example of the dynamic algorithm behaviour: it can be seen from the
output image that the subject is easily recognised, validating the noise-rejection property
described in Section 4.3.

(a) (b) (c)

Figure 4.22: Dynamic algorithm behaviour on different principal line images from the same
subject: (a) image affected by statistical noise having zero-mean Gaussian distribution and
variance equal to 0.05, (b) image to be compared, and (c) surviving points after the system
evolution.

Table 4.4 reports the result of noise-rejection experiments12 and shows that the performance
of the system is not that much degraded: even in presence of noise, the GAR1 is greater
than 98.6% in both the databases. However, we have obtained better results on the PolyU
database achieving a GAR of 97.8% with an EER equal to 0.022 against a GAR of 96.9%
with an EER equal to 0.031 on the CASIA database.

Therefore, the experiments demonstrate that the proposed algorithm can recognise people
by their palmprint even in presence of a reasonable amount of noise.

Database

CASIA CASIAAWGN PolyU PolyUAWGN

EER 0.0123 0.0311 0.0071 0.0219
GAR 0.9877 0.9689 0.9929 0.9781
GAR1 1.0000 0.9863 1.0000 1.0000
GAR2 0.9863 0.9475 0.9982 0.9625
GAR3 0.9685 0.9107 0.9711 0.9113

Table 4.4: Numerical results comparison considering both the databases in normal condi-
tions (e.g., normal palmprint images) and in presence of AWGN with µ = 0 and σ2 = 0.05.

12The experiments are carried out by corrupting the images with a statistical noise having zero-mean
Gaussian distribution and variance σ2 as ∼ N (0, 0.05).
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Computational efficiency

The experiments for the proposed approach have been conducted on a virtual machine
equipped with two dedicated processors and 2048 MB RAM hosted on an Intel Core i7-
4510U CPU (2.6 GHz), 8 GB RAM running a 32-bit Microsoft Windows 10. The code has
been implemented using Matlab 8.0 and to get the following results each part of code
has been performed for 200 times, then the average time has been considered. Thus,
the computational times required for preprocessing, palm line extraction, and palmprint
matching are 376 ms, 49 ms, and 295 ms, respectively, thus the average response time for
verification is about 0.72 s.

4.5 Example II: a robust palm vascular-based biometric recog-
nition system for personal identification

Vascular pattern features such as palm veins [25, 153, 156, 160], finger veins [30], hand
veins [87], and hand dorsal veins [93], are an emerging biometric trait that has recently
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Figure 4.23: A cross-sectional anatomy of
the human skin in which different light wave-
lengths will penetrate to different layers [52].

received considerable interest from both
the research community and indus-
tries [108]. In recent years, the use of
palm veins as a trait for automated secure
personal authentication has been largely
investigated due to their advantages over
other biological features. In fact, the sub-
cutaneous vascular pattern of the human
body is unique to every individual, even be-
tween identical twins [87], does not vary
during the course of a person’s life, and
lies underneath the human skin ensuring
confidentiality and robustness to counter-
feiting, as opposed to other intrinsic and
extrinsic biometric traits that are more vul-
nerable to spoofing, thus leading to impor-
tant security and privacy concerns [76]. In
addition, since vascular patterns are typi-
cally acquired by touch-less devices, they
allow for a secure authentication method
ensuring high user acceptability without
discomfort. Veins are part of the network
structure of blood vessels underneath the
human skin and are almost invisible in nor-
mal lighting conditions [158]. However,
it is possible to identify the vascular pat-
tern through NIR illumination with wave-
length in the range from 750 nm up to
2000 nm13.

13In the course of this study, it has also been designed and developed a hand-based multispectral image
acquisition system which will be used in a future work.
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The incident light in the near-infrared spectrum penetrates into the human biological
tissues up to 3-4 mm detecting the vascular pattern underneath the skin [143]. Veins
can be distinguished from arteries because arteries carry oxygenated blood that contains
oxyhemoglobin, whilst veins carry deoxygenated blood that contains deoxyhemoglobin,
which has a different absorbency rate under near-infrared radiations: deoxyhemoglobin
absorbs a higher level of near-infrared radiations, which allows to detect and isolate vein
patterns. As a result of the acquisition in presence of near-infrared illumination, vascular
patterns in raw images appear much darker than all other tissues, which facilitates the
feature extraction step for matching.

4.5.1 Related work

Various methods for human authentication through palm vascular pattern matching have
been proposed in literature. Among them, the work of Zhou and Kumar [160] presented
a neighbourhood matching Radon transform (NMRT)-based method aimed at extracting
line-like palm vascular features and a Hessian phase-based method to extract palm vein
features analysing the eigenvalues of Hessian matrix of the input image. The matching score
is computed making use of the Hamming distance. Khan et al. [78] used multidirectional
representation derived from the non-subsampled contourlet transform, which is binarised
into a hash table. Finally, a L0-norm approach is used for matching. In another study,
Sun and Abdulla [136] introduced an algorithm based on curvelet transform to obtain
curve-like features, whilst Hamming distance is used for matching. The work of Al-juboori
et al. [4] proposed the use of bank of Gabor filters to extract the vein features, followed
by a dimensionality reduction using the Fisher discriminated analysis (FDA) method, and
finally the use of the nearest neighbours technique for matching. The study of Kang
and Wu [76], instead, utilised an improved local binary pattern (LBP) method based
on mutual foreground for feature extraction and an improved χ2 distance for matching,
whilst the approach proposed in [142] by Wang et al., made use of the discriminative LBP
algorithm for palm vein feature extraction and an improved χ2 distance for verification.
Another approach proposed by Kang et al. [77], used a local invariant feature extraction
technique based on the square root of the scale invariant feature transform (RootSIFT).
The work of Ma et al. [97] presented an adaptive two-dimensional Gabor filter for feature
extraction, which are compared using the minimum normalised Hamming distance method,
whilst Ahmad et al. [2] introduced the use of the wave atom transform (WAT) method
for feature extraction and the normalised Hamming distance to compute the matching
score. Hong et al. [60] made use of a hierarchical classifier based on the fusion of the block
dominant orientation code (BDOC) and block-based histogram of oriented gradient (BHOG)
features from different spectrum bands (red, green, blue and NIR). Finally, Elnasir et
al. [39] suggested a combined approach based on wavelet scattering (WS) and spectral
regression kernel discriminant analysis (SRKDA) for dimensionality reduction to enhance
the discrimination, since the dimension of WS generated features is quite large.
All these techniques can be grouped in three main categories based on the nature of the
features used for matching [80]: 1. holistic approaches based on multilinear subspace
learning: dimensionality reduction techniques are used to project palm vascular images
into subspaces aimed at capturing the main features of the palm; 2. line/curve matching
using vessel extraction based on line-like feature extraction techniques that involve spatial
domain filters for line/curve extraction; 3. texture based codes, which make use of the
orientation of lines as features.
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4.5.2 Hand palm image processing

Usually, palmprint images in the near-infrared band contain not only the blood vessels
used to authenticate a person, but also a region of not-interest (e.g., shades, wrist, image
background). Moreover, they have different size and orientation and could also be cor-
rupted by noise. All these factors may affect the accuracy in processing and verification
performance [159]. Thus, a preprocessing of all palmprint images is required to enable
the feature extraction phase. Figure 4.24 outlines the preprocessing and feature extraction
phases illustrating all the main steps involved in the vascular pattern extraction from a raw
NIR-based hand palm image.

Raw image
of the hand Noise reduction Local adaptive

segmentation
ROI coordinate

construction

ROI extraction

Hand shape
detection

Preprocessing phase
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Laplacian of
Gaussian
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Vascular
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Figure 4.24: Block diagram of the hand palm image processing for palm vascular patterns
recognition.

Preprocessing

The preprocessing elaboration is required to extract the central region of interest from
the input image, as illustrated in Figure 4.25. As outlined in Figure 4.24, the major
steps involved in the preprocessing of raw images are the same as those reported in the
Section 4.4.2, except the last one:

1. noise reduction by means of a non-linear spatial filter,
2. local adaptive clustering-based image segmentation,
3. hand shape detection,
4. standard hand palm coordinate construction,
5. ROI extraction.

Feature extraction

Since the features are used for matching, feature extraction plays a key role in biometric
identification and authentication systems. The proposed feature extraction stage makes
use of the following steps14:

1. highlighting blood vessels by enhancing contrast and sharpness,
2. Laplacian of Gaussian,
3. morphological operations aimed at cleaning the noise in the final image.

14Before diving into each step details, the reader is invited to take a look at the Appendices A.3 and A.4 in
order to better understand the following sections.
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(a) (b) (c)

(d) (e) (f)

Figure 4.25: Major steps involved in the preprocessing of raw palm images: (a) original
NIR hand image, (b) noise reduction, local adaptive clustering-based image segmentation,
and barycentric coordinates computation, (c) hand shape extraction, key points detection,
and computation of angle ϕ used to build a new coordinate system, (d) image scaling and
alignment in a standard pose, (e) detection and extraction of the ROI, and (f) final result.

Blood vessel enhancement This step is aimed at highlighting the blood vessels so that
they are easily distinguishable from the background. To correct uneven illumination and to
enhance the contrast it has been combined the Top-Hat and Bottom-Hat transforms, used
to detect bright (dark) objects from a varying dark (bright) background.
The Top-Hat transform is defined as the difference between the input image I(x,y) and its
morphological opening by a cross shaped structuring element ρ ⊆ Z2:

ρ =

⎡⎣0 1 0
1 1 1
0 1 0

⎤⎦ (4.51)

TH = I− (I ◦ ρ) = I− ((I⊖ ρ)⊕ s) (4.52)

whilst the Bottom-Hat transform is defined as the difference between the closing of the
input image I(x,y) by the structuring element ρ and the input image itself:

BH = (I • ρ) − I = ((I⊕ ρ)⊖ ρ) − I (4.53)

where the opening is obtained by the erosion of I(x,y) by ρ followed by dilation of the
resulting image by ρ, and the closing is obtained by the dilation of I(x,y) by ρ followed by
erosion of the resulting image by ρ.
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Then, to remove the bright objects and enhance the black ones that represent the blood
vessels, it has been adopted the Top-Hat and Bottom-Hat transforms as follows:

Ie = I− TH− BH

= I− (I− (I ◦ ρ)) − ((I • ρ) − I)
(4.54)

After this operation, a normalisation [61] is applied to preset the values of mean and
variance for all palm images:

In(x,y) =

{︄
µn + k if Ie(x,y) > σ2

µn − k if Ie(x,y) ⩽ σ2 (4.55)

where

k =

√︄
σ2
n (Ie(x,y) − µ)

2

σ2 (4.56)

with µn = 128 and σn = 40, determined experimentally [119].

Laplacian of Gaussian The Laplacian is a two-dimensional isotropic operator used to
estimate the second spatial derivative of an image and is commonly used to extract line-like
features, since can preserve the pattern suppressing the noise at the same time [136].
In fact, to decrease its sensitivity to noise the operator is applied to an image already
smoothed by a two-dimensional Gaussian operator, whose expression is given by

G(x,y) =
1

2πσ2 exp
(︃
−
x2 + y2

2σ2

)︃
. (4.57)

Since convolution and differentiation are the only linear operators involved, it is possible
to interchange them:

∇2 (︁G(x,y) ∗ In(x,y))︁⏞ ⏟⏟ ⏞
Gaussian smoothing

= In(x,y) ∗ ∇2(︁G(x,y))︁. (4.58)

Hence, the Laplacian of Gaussian can be precomputed as:

∇2G(x,y) = ∇2
{︃

1
2πσ2 exp

(︃
−
x2 + y2

2σ2

)︃}︃
= −

1
πσ4

(︃
1 −

x2 + y2

2σ2

)︃
exp

(︃
−
x2 + y2

2σ2

)︃
=
x2 + y2 − 2σ2

σ4 G(x,y).

(4.59)

Morphological operations They are aimed at cleaning the vascular pattern image from
small objects and noise such as random bright spots on black background and black holes
on bright components. To accomplish this goal we use a morphological filter composed of
an opening followed by a dilation through a structuring element ρ as follows:

F = (I ◦ ρ) • ρ. (4.60)

Finally, an iterative thinning transformation is applied to reduce a foreground object to a
minimal connected stroke preserving the topology [89], since the final vascular pattern
image is homotopically equivalent to the input image. Figure 4.26 exemplifies the vascular
pattern extraction method.
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(a) (b) (c)

Figure 4.26: Results of the proposed vascular pattern extraction method on PolyU (upper
row) and CASIA (lower row) databases: (a) original ROI images, (b) boolean vascular
pattern matrices, and (c) original ROI images overlapped with the extracted vascular
patterns.

4.5.3 Dynamic algorithm

The dynamic algorithm used for matching consists of the enhanced version of the proposed
system, which is deeply described in Section 4.2 and whose updating equations are

Xi,j(k+ 1) = λXi,j(k) + µ
∑︂

h,l∈Ni,j

Yh,l(k)⏞ ⏟⏟ ⏞
cross-matching

+ νk
∑︂

h,l∈Ni,j

Xh,l(k)⏞ ⏟⏟ ⏞
initial expansion

Yi,j(k+ 1) = λYi,j(k) + µ
∑︂

h,l∈Ni,j

Xh,l(k)⏞ ⏟⏟ ⏞
cross-matching

+ νk
∑︂

h,l∈Ni,j

Yh,l(k)⏞ ⏟⏟ ⏞
initial expansion

Remark 2. We recall that
lim
k→∞νk = 0

since 0 ⩽ ν ⩽ 1 − λ, in view of the constraints (4.18) and (4.19). Hence, asymptotically
the recursion becomes identical to that in the dynamical system (4.12) achieving the same
steady-state condition.

For further details, please refer to the Section 4.2 and the references therein.
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4.5.4 Experimental results

The performance of the proposed palm vascular pattern authentication system has been
tested upon the PolyU multispectral palmprint database [62] and the CASIA multispectral
palmprint database [27], which are worldwide shared for research purposes and whose
details are given in Table 4.5.

Dataset and experimental setup

The first database consists of 6 000 palmprint images for each electromagnetic spectrum,
captured from 250 subjects, including 195 males and 55 females, by a CCD-based device.
Samples have been collected in two separate sessions, in each of which every individual
has provided 6 images for each palm. Therefore, 24 images of each illumination from
2 palms have been collected from each subject. All images are 8 bit grey-scale of size
352 × 288 pixels at 96 dots per inch (dpi) resolution. The second database consists of
1 200 palmprint images for each electromagnetic spectrum, captured from 100 subjects
by a CCD-based device. Samples have been collected in two separate sessions, in each of
which every individual has provided 3 images for each palm. Between two samples, it has
been allowed a certain degree of variations of hand postures in order to increase diversity
of intra-class samples and simulate practical use. All images are 8 bit grey-scale of size
768 × 576 pixels at 96 dpi resolution.
Even though in both databases, for each subject there are palmprint images from both left
and right hands captured from people of different ages at different times, it is possible to
consider the left and right hand palm images of the same person as belonging to different
individuals, without loss of generality.

PolyU CASIA

Subjects 250 100
Samples for subject 24 12
Total samples for each spectrum 6000 1200
Hand holder yes no
Dimensions (px) 352 × 288 768 × 576
dpi 96 75
Bit depth 8 8
Spectrum bands 4 6
Wavelengths [nm] 470, 525, 660, 880 460, 630, 700, 850,

940, WHT

Table 4.5: Specifications of the PolyU and CASIA multispectral palmprint databases used in
the experiments.

In the following experiments, tests have been performed by taking 12 samples in the
NIR spectrum at 880 nm of the left and right hands of all the subjects from the PolyU
multispectral palmprint database and 6 samples in the NIR spectrum at 850 nm of the left
and right hands of all the subjects from the CASIA multispectral palmprint database, for a
total of 6 000 and 1 200 samples, respectively. Furthermore, in order to increase the amount
of intra-class tests and to comparatively assess the performance from various approaches,
both hands have been considered to belong to different subjects [2, 4, 77, 97, 136, 142].
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As a matter of fact this setup constitutes a total number of experiments equal to:

1.
(︁6 000

2

)︁
= 17 997 000, including 2 × 250 ×

(︁12
2

)︁
= 33 000 intra-class experiments for

the PolyU database,
2.
(︁1 200

2

)︁
= 719 400, including 2 × 100 ×

(︁6
2

)︁
= 3 000 intra-class experiments for the

CASIA database.

CASIA PolyU

Genuine experiments 3 000 33 000
Impostor experiments 716 400 17 964 000
Total experiments 719 400 17 997 000

Table 4.6: Experimetns carried out on the CASIA and PolyU multispectral palmprint
databases to assess the performance of the proposed system.

Parameter optimisation

Since the proposed approach for matching is based on a linear parameter-dependent
system, it is very important to set its internal parameters in order to maximise the system
performance. Hence, in this phase we have carried out a one-time parameter tuning
procedure which consists of a massive experiment to estimate the values of the parameters
λ, µ, and ν that maximise the accuracy of the system. Thus, given the set N of nearby
points of a generic point p(x,y), it is convenient to set the parameters in accordance with
the criteria (4.18)–(4.20). To define the set N, it is reasonable to consider a small radius as
δ = 2, since the thickness of blood vessels typically amounts at most to a couple of pixels15.
This choice allows a perfect coverage of a blood vessel and avoids excessive unwanted
overlaps with other blood vessels in the comparison image.
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Figure 4.27: Convergence domain of the system bounded by the hard constraints (4.18)–
(4.20) (with n(N) = 25 and b = 1/2), and valid Monte Carlo samples (λ,µ,ν).

15A radius equal to 2 means that the cardinality of N is equal to n(N) = 25.
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Parameter set

1st 2nd 3rd 4th 5th 6th 7th

EER 0.002 0.019 0.014 0.032 0.008 0.029 0.021
GAR1 1.000 0.995 0.995 0.983 0.998 0.989 0.994
GAR2 0.995 0.974 0.985 0.957 0.994 0.958 0.975
GAR3 0.993 0.944 0.958 0.895 0.983 0.906 0.952
GAR4 0.988 0.882 0.922 0.814 0.969 0.844 0.900

Table 4.7: Comparative analysis of the performance in terms of equal error rate and
genuine acceptance rate using the subset of the CASIA database considering the near-
infrared spectrum band at 940 nm (detailed values have been highlighted in Appendix C).

The suitable parameter values, in terms of accuracy and convergence speed, have been
found by means of a one-time experiment, conducted over a subset of the CASIA multispec-
tral palmprint database. Since it is not possible to thoroughly invesitgate in the convergence
domain to find the optimal parameter values, the candidate parameters have been chosen
using a Monte Carlo sampling-based approach, generating a large number of pseudo-
random points in the space, selecting the only points within the convergence domain, and
using the candidate parameters to test the behaviour of the system. Figure 4.27 depicts the
convergence domain of the system according to the hard constraints argued in Chapter 4.
The subset of the database considers half of the right hand samples of all the subjects
acquired in the spectrum band at 940 nm, whilst the number of parameter sets (λ,µ,ν)
generated by the Monte Carlo sampling and belonging to the convergence domain is equal
to 176. Hence, the amount of the tests performed is 176 ×

(︁300
2

)︁
= 7 893 600.

Figure 4.28 illustrates a comparative analysis of the performance by plotting the genuine
acceptance rate against the false acceptance rate for several different parameter sets
(λ,µ,ν), whilst Table 4.7 presents detailed results in terms of equal error rate and genuine
acceptance rate achieved by each parameter set (see Appendix C for a more comprehensive
overview about the parameter optimisation experiment results).
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Figure 4.28: Comparative graph of several receiver operating characteristic curves gener-
ated by plotting the genuine acceptance rate against false acceptance rate obtained using
different parameter configurations.
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It is worth of note that to verify the effectiveness and robustness of this system, the param-
eters obtained from the test conducted using images acquired under 940 nm wavelength
illumination have been used for the verification experiments on both the testing databases
using different wavelength illumination images without parameter re-tuning. Thus, the
best parameter values resulting from the simulation are:⎧⎪⎨⎪⎩

λ = 631 × 10−3

µ = 295 × 10−4

ν = 292 × 10−3.

(4.61)

To limit the computational cost of the matching process, it is important to set a priori the
number of iterations after which we can consider the response of the dynamical system
close enough to its steady-state condition.
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Figure 4.29: Average score against number of iterations in the case of true positive (genuine)
recognition and true negative (impostor) recognition for palm vascular matching.

Figure 4.29 clearly shows that, within a few iterations, the achieved matching score can
be considered close enough to the convergence value of the dynamical system in the
steady-state condition. These results consistently suggests that this unified approach
achieves significantly improved performance over the one used in the palmprint recognition
system [118], ensuring also greater reliability thanks to its higher discriminating power.
Hence, to save computation time, the number of iterations for the tests has been set to 15,
as highlighted by the vertical dashed line in the above-mentioned figure.

Performance assessment and comparison

In order to evaluate the accuracy of the proposed authentication method based on a single-
sample approach for single biometric systems, each sample in the database has undergone
a one-to-one matching test against every single stored sample. Figure 4.30(a) outline the
trade-off between the FRR and the FAR curves when the threshold varies, whilst the two
EERs identified by the intersection point between the curves are 2.341 · 10−5 for the PolyU
database and 1.081 · 10−3 for the CASIA database. Figure 4.30(b) instead, illustrate the
genuine (intra-class) and impostor (inter-class) distributions for both the databases.
The two distributions (or classes) are clearly separated in both the databases, indicating the
ability of the system to distinguish the genuine user samples from those of the impostors.
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Figure 4.30: Performance assessment from PolyU (first coloumn) and CASIA (second
coloumn) databases: (a) false acceptance rate and false rejection rate curves and (b) the
genuine (intra-class) and impostor (inter-class) distributions.

Indeed, the separation also provides a hint on the threshold point that maximises the
variance between the two classes in order to correctly mark a user sample image as
authentic or impostor. To assess the performance of the proposed dynamic palm vein
matching (DPVM) system with respect to several other approaches present in literature,
comparison of the detection error trade-off curves has been presented in Figure 4.31, where
each curve has been drawn by plotting FRR against FAR. As the FRR indicates the number
of match errors, the closer the curve is to the bottom of the graph, the better the biometric
performance of the system. Hence, from Figure 4.31 it is clear that the dynamic palm
vein matching algorithm has achieved better performance with regard to all the other
methods, obtaining a GAR6 equal to 9.99 × 10−1 and 9.78 × 10−1 for the PolyU and CASIA
databases, respectively. Table 4.8 presents a summary of the performance in terms of EER
of different approaches in literature.
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In particular, the proposed system has achieved a zero false acceptance rate (ZeroFAR) and
a zero false rejection rate (ZeroFRR), which represent the FRR (resp. FAR) value when
FAR (resp. FRR) is zero, equal to 5.57 × 10−5 and 3.03 × 10−5 for the PolyU database,
and 1.96 × 10−3 and 4.27 × 10−2 for the CASIA database, respectively. Thus, these results
show that the unified method outperforms all the other approaches with an EER reduced
at least by 50% with respect to the listed techniques, demonstrating the effectiveness of
the proposed system.
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Figure 4.31: Comparison of detection error trade-off curves between the proposed system
and other algorithms using (a) CASIA database and (b) PolyU database.

Noise immunity

To demonstrate the robustness of the dynamic algorithm against noise, further experiments
have been carried out to compare normal images and images highly corrupted by random
impulse noise. The model of this noise is always independent, randomly distributed, and
uncorrelated with the images and can be described as follows:

In(x,y) =

{︄
28 − 1 with probability p ,
I(x,y) with probability 1 − p .

(4.62)

Furthermore, the system robustness has also been tested performing impostor matching
experiments by adding the same random impulse noise to the user sample images. These
experiments lead to low matching scores because there are not enough connections be-
tween the active points of both the images to be compared (i.e., half of the points in the
complementary neighbourhood are not active), though the pixels affected by noise are
the same. As a result, the amount of survived points after the algorithm evolution is very
limited. Figure 4.32 illustrates the dynamic algorithm behaviour in presence of random
impulse noise with probability p equal to 20%. In particular the first column shows the
user sample images to compare, the second column shows the user sample images of
the claimed identity, and the last column shows the remaining points after the algorithm
evolution.
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(a)

(b)

(c)

(d)

Figure 4.32: Dynamic algorithm behaviour in presence of random impulse noise with
probability p = 20%: a) true positive match with one image corrupted by noise, b) true
negative match with one image corrupted by noise, c) true positive match with both images
corrupted by noise, and d) true negative match with both images corrupted by identical
noise (i.e., the same corrupted pixels).
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Four most significant examples have been reported, testing the following conditions: a) TP
match with the user sample image corrupted by noise, b) TN match with the user sample
image corrupted by noise, c) TP match with both the images corrupted by noise, and d) TN
match with both the images corrupted by identical noise (i.e., the same corrupted pixels).
These tests demonstrate that the system is able to recognise a subject with ease even if the
samples are highly affected by noise.

Computational efficiency

The experiments have been performed making use of a virtual machine configured with two
dedicated processors and 4096 MB RAM hosted on an Intel Core i5-7200U CPU (2.5 GHz)
with 8192 MB RAM running a 64-bit Microsoft Windows 10 operating system. The code
has been implemented using Matlab R2016b; to estimate the computation time, each part
of the code has been performed 500 times, then it has been considered the mean time.
As a result, the average computation times required for preprocessing, feature extraction,
and matching of the proposed algorithm are 81 ms, 28 ms, 126 ms respectively. Hence,
the mean response time for verification is about 0.235 s, making this approach suitable
to be used in a real-time biometric authentication or identification system. The template
consists of a square Boolean matrix of dimensions 128 × 128 pixels, hence the total size for
each template is 2048 bytes. In terms of algorithm particularities and user friendliness the
system is computationally simple as it only requires one image as an enrollment template,
making the algorithm well suited even for systems with limited resources.

4.6 Remarks

The unified method described in Chapter 4 has been proposed in two versions, the first
of which has been applied to palm line features acquired in the visible electromagnetic
spectrum, whilst the enhanced version has been applied to subcutaneous palm vascular
pattern in the near-infrared spectrum.
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Figure 4.33: Comparison between the early and the enhanced versions of the proposed
approach in terms of discriminating power: (a) mean true positive and true negative rates
and (b) difference between the mean values of the true positive and true negative rates.
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To better illustrate the behaviour of the system in terms of accuracy with respect to the early
version of the algorithm, same tests have been performed executing the algorithms with a
large number of iterations, thus allowing the systems to reach the steady-state condition.
Thus, the results from the experiments obtained by means of the unified approach for
line-like features and its early version, have been used to graph their behaviours in terms
of discriminating power.
Figure 4.33 illustrates the difference between the mean values of the true positive (TP) and
true negative (TN) rates against the number of iterations, demonstrating the effectiveness
of the enhanced system which has achieved significantly improved performance over
the earlier version of the system ensuring also greater reliability thanks to its higher
discriminating power within a very short span of time. Asymptotically, the performance of
the enhanced system is at least as good as its early version, as formally proved in Section 4.2
(cf. Figure 4.33(b)).
Furthermore, the proposed unified method for line-like feature matching, which relies on a
recursive algorithm based on a monotone dynamical system, can admit several extensions
and applications.
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5
Background

This chapter stands as an introduction to the field of phytopathology oriented to image-
based diagnosis of plant disease symptoms. It is important to present the concepts and
primitives of performance metrics due to their impact on such systems. Thus, a brief
overview is given to describe the main grapevine pathogenic diseases along with their
properties as well as the analysis of visual symptoms used for the assessment of disease
severity. Finally, the criteria for performance evaluation have been defined to determine
the system accuracy and reliability which are related to the applicability in real-world
deployments.

5.1 Fundamental concepts of disease in plants

Phytopathology (or plant pathology) is a science that studies plant diseases and attempts
to improve the chances for survival of plants when they are faced with unfavorable
environmental conditions and parasitic microorganisms that cause disease [1].
A plant is said to be healthy, or normal, when it is able to carry out its physiological
functions to the best of its genetic potential. When this ability of the plant is continuously
disturbed by either a pathogenic organism or an adverse environmental factor results in
an abnormal physiological process that inhibits the normal activities of the plant. This
interference with an essential physiological or biochemical system of the plant induces
characteristic symptoms or pathological conditions. Initially, the infection is specifically
confined to a few plant cells and is not visible. Soon, however, the reaction becomes
widespread and affected parts of the plant develop visible or otherwise measurable adverse
changes (symptoms), which reflect the amount of disease in the plant [94].
Plant diseases can be broadly classified according to the nature of their primary causal
agent, either biotic (infectious) or abiotic (non-infectious). As illustrated in Figure 5.1,
the range of phytopathogenic (infectious or parasitic) organisms that attack plants is
diverse and includes viruses, mycoplasma, bacteria, fungi, nematodes, protozoa, and
parasites, each of which has a unique mode of pathogenicity, whilst non-infectious (non-
parasitic) organisms include unfavorable environmental conditions, nutrient deficiencies,
disadvantageous relationships between moisture and oxygen, and the presence of toxic
chemicals in air or soil [135]. Most known human and animal diseases are caused by
viruses and bacteria. Conversely, plants are more commonly affected by fungi and viruses.
This difference in the importance of particular groups of microorganisms can be explained
partly as follows.
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Bacteria generally prefer warm, alkaline conditions with high nitrogen levels. Because
bacteria are unicellular their spread within the host is enhanced by a circulatory system.
Filamentous fungi are more effective parasites of higher plants as their requirements are
generally in direct contrast to those of bacteria [94]. A plant that has to contend with a
nutritional deficiency or an imbalance between oxygen and soil moisture is often prone to
infection by phytopathogens, and a plant infected by one of them is often more susceptible
to invasion by secondary phytopathogens that make the disease complex, thus a plant
may be affected by more than one disease-causing agent at a time. Moreover, infectious
agents are capable of reproducing within or on its host and spreading from one susceptible
host to another whilst, conversely, non-infectious causal agents are not organisms capable
of reproducing within a host, and thus they are not transmissible, less dangerous, and
are mostly avoidable. For all those reasons, the main consideration has been focused on
infectious (biotic) diseases in plants that are caused by pathogenic microbes as described
above.

Main causes of plant diseases

Abiotic factors
(non-infectious)

Biotic factors
(infectious)

Extreme weather
conditions

 Nutrient deficiencies

 Lack or excess of
soil moisture

Pesticide exposure

Air pollution

Fungi

Viruses and
viroids

Parasitic
higher plants

Bacteria and
mollicutes

Nematode

Figure 5.1: Classification of the major plant disease-causing agents, either due to biotic
factors (i.e., those caused by living components such as pathogens and parasitic plants) or
abiotic factors (i.e., those caused by non-living components such as nutritional deficiencies,
extreme weather conditions, etc.).

Throughout this thesis, the term pathogen has been used to describe microbial disease
agents, with particular regard to fungi, bacteria and viruses. It refers to the ability of an
organism to cause disease. The allied term pathogenesis describes the complete process of
disease development in the host, from initial infection to production of symptoms [94].
Plant phenotyping, instead, is the identification of effects on the phenotype (i.e., the plant
appearance and performance) as a result of genotype differences (i.e., differences in the
genetic code) and the environmental conditions to which a plant has been exposed [65,
107]. The aboveground plant phenotypes can be grouped into three categories [31]:

1. physiological phenotypes, which refer to traits that affect plant processes regulating
growth and metabolism,

2. structural phenotypes, which are related to the morphological attributes of the plants,
3. temporal phenotypes, which consider the analysis of a sequence of images of a group

of plants (belonging to different genotypes).



5.2. Diagnosis of grapevine pathogenic diseases 73

5.2 Diagnosis of grapevine pathogenic diseases

The occurrence of plant diseases cause severe threats to global food security and signif-
icant economic losses in yeld and quality as well as affecting agricultural industry all
around the world [92]. As a consequence, an effective diagnosis of plant diseases before
proper control measures can be suggested, it can give rise to a substantial improvement
in product quality [14]. Common strategies to disease control are mainly oriented on
spraying pesticides uniformly over cropping areas at different times during the growth
cycle. Even though these methodologies can be effective, they present a negative impact
in ecological and economic terms, introducing new pests and elevating resistance of the
plant pathogens [106]. Traditionally, diseases detection and diagnosis has been mostly
performed by human, indeed visual inspection in vineyards is still the main approach to
determine if plants have already been infected presenting various symptoms, which can
often be divided in: (i) underdevelopment of tissues or organs (e.g., lack of chlorophyll,
leaf malformation), (ii) overdevelopment of tissues or organs, (iii) necrosis of plant parts
(leaf spots, leaf blights, wilts), (iv) alternations like mosaic patterns and altered coloration
in leaves. The most common way to determine if disease symptoms are present is to
seek their presence on leaves, stems, or other plant parts. However, this method relies
on experienced professionals performing continuous monitoring of plants, which might
be time-consuming, prohibitively expensive in large vineyards, as well as prone to consid-
erable risk of error. Plant pathogen detection conventionally relies on molecular assays,
including nucleic acid-based and immunological technologies. Various approaches such
as fluorescence imaging [84], immunofluorescence techniques [144], thermography [99],
chain reactions [22], DNA- or RNA-based affinity biosensor [40], have been often used for
quality evaluation of leaves. However, the problems with these techniques lie in the fact
that are complicated, time-consuming, and constrained to centralised laboratories [92].
Alongside the remarkable development of new technologies and practices in the agriculture,
the world of wine is heading towards a transformation enabling precision agriculture (PA)
applied to vineyard performance optimisation, also known as precision viticulture, with
the aim of maximising grape yield and overall quality whilst reducing the environmental
footprint and risk. Precision viticulture thus seeks to exploit the available observations to
provide recommendations to improve management efficiency in terms of quality, production,
and sustainability. Therefore, consideration for new automatic and accurate along with
inexpensive and efficient techniques to detect and estimate pathogenic disease symptoms is
of great realistic significance [36]. As a result, digital image processing and image analysis
have a vital role in biology and agricultural sectors with a great perspective especially in
the plant protection field, which ultimately leads to crops management [5, 126].

5.2.1 Common grapevine pathogenic diseases

Grapevine (Vitis vinifera1) plantings are vulnerable to several different types of diseases
caused by agents which are the same or very similar to those causing diseases in humans
and animals. These diseases, significantly affect the growth of the grape crops and thus
effective detection at an early stage may increase productivity. In the vineyard, symptoms
are visually most noticeable on leaves, which may include a detectable change in color,
shape, or function of the plant as it responds to the pathogen.

1Vitis vinifera belongs to order Vitales and its sole family, Vitaceae (grape family). It is a species of Vitis,
native to many regions, including the Mediterranean, central Europe, and southwestern Asia.
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Among the potential pathogens, phytoplasmas, viruses, bacteria, fungi, and nematodes can
attack grapevine with different infection mechanisms and evasion strategies [7].
Common signs and symptoms that appear on the leaves of the grapevine plant, caused by a
few relevant pathogenic diseases, are illustrated in Figure 5.2 and described below.

Black rot (Guignardia bidwellii)

Black rot of grape is probably the most serious disease of grapes where it occurs. In
favorable weather, the crop may be destroyed completely, either through direct rotting of
the berries or through blasting of the blossom clusters [1].
Symptoms
The symptoms of this disease begin as numerous small circular red necrotic spots on the
leaf surface, and then, as the spots enlarge, they appear brown, bordered by a narrow
band of dark tissue. On the upper side of the spot, within the dark border, black dot-
like pycnidia2 are rapidly formed and their dispersal through wind and rainfalls favours
secondary infections.
Pathogen
The fungus Guignardia bidwellii (anamorph Phyllostica ampelicida) survives in infected
vines, tendrils, fallen leaves, and mummified berries on vines or in the soil. Warm and
moist climate with extended periods of rain and cloudy weather favours the development
of the disease.

Leaf blight (Pseudocercospora vitis)

Pseudocercospora leaf spot, also called isariopsis leaf spot or leaf blight, occurs primarily
after harvest, when spraying is discontinued.
Symptoms
Symptoms first appear on the lower, more shaded leaves as brown angular spots that
eventually darken and become brittle. The spots are often surrounded by a clearly defined
border on upper leaf surfaces and a more diffuse margin on lower leaf surfaces. Dark
bristle-like fruiting bodies can appear on the leaf undersides. Premature defoliation may
occur in wet seasons.
Pathogen
Pseudocercospora vitis (anamorph Mycosphaerella personata) is a fungal plant pathogen
whose infection is favoured by high humidity and therefore the disease constitutes a
potential problem for grapevine in the specific cropping areas where it is grown.

Esca (Phaeomoniella spp.)

The disease develops slowly in the host until the plant exhibits a sudden decline, finally
killing the grapevine within a few days [54].
Symptoms
More recent research has created a clearer understanding of the relationship between symp-
toms and causative pathogens of Esca. Foliar symptoms are shown to be commonly caused
by the vascular fungi Phaeomoniella chlamydosporum and Phaeoacremonium aleophilum.
The symptoms first appear as chlorotic spots that subsequently coalesce, turning dark red
in some cultivars, and finally becoming necrotic. Often they extend to the interveinal areas
of the foliar blade, leaving a narrow strip of unaffected tissue along the main veins.

2A pycnidium is defined as a small flask-shaped structure containing spores that occurs in certain fungi.
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Pathogen
Esca, also called apoplexy or black measles, is a complex trunk disease associated with
a number of different fungal species, specifically Phaeomoniella chlamydosporum and
Phaeoacremonium aleophilum but also with the presence of Botryosphaeria spp., Eutypa lata,
Phomopsis viticola, Cylindrocarpon and others in infected vines [112], which obstruct the
vascular system. The disease is most prevalent in areas with high summer temperatures.

Downy mildew (Plasmopara viticola)

Downy mildew is a serious foliage and fruit disease. Severe infections can cause losses to
current season crops by reducing the sugar accumulation in fruit and the fruit yield [111].
Symptoms
The causal fungus attacks all green parts of the vine as well as fruit. Leaf lesions generally
appear as irregular bright yellow spots on the upper leaf surface which gradually turn
reddish brown and angular, often limited by the leaf veins, and the surface directly beneath
these lesions appears almost fluffy with white mycelial growth. Severely infected leaves
often drop prematurely.
Pathogen
Plasmopara viticola, an obligate biotrophic oomycete (parasite), is the causal organism of
downy mildew on grape. The fungus overwinters mainly in the fallen leaves which are the
source of primary infection. Secondary infection occurs by motile zoospores by splashing
rain. The most serious outbreaks have been found to occur when a wet winter is followed
by a wet spring and a warm summer with intermittent rains.

(a) (b)

(c) (d)

Figure 5.2: Examples of lesions on grape leaf caused by various infectionus diseases:
(a) Black rot (Guignardia bidwellii), (b) Leaf blight (Pseudocercospora vitis), (c) Esca
(Phaeomoniella spp.), and (d) Downy mildew (Plasmopara viticola).
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5.3 Criteria for performance evaluation

Plant disease symptoms can be estimated or measured in various ways that quantify the
intensity, prevalence, incidence, or severity of disease. Even though disease severity is the
only measure considered in this thesis, the following relate to the way in which disease
symptoms are quantified [115]:

• disease intensity is a general term used to describe the amount of disease present in
a population;

• disease prevalence is the proportion of fields, counties, states, etc. where the disease
is detected, and reveals disease at a grander scale than incidence;

• disease incidence is the proportion of plants (or plant units, leaves, branches, etc.)
diseased out of a total number assessed;

• disease severity is the area (relative or absolute) expressed as a percentage of the
sampling unit (leaf, fruit, etc.) showing symptoms of disease.

The reliability and validity of a proposed scheme are determined by common measures that
are used to evaluate the classification accuracy and effectiveness.
In the experimental results presented in Section 6.3.5, each disease has been treated
separately leading thus to a dichotomous binary classification problem, where the labels
are P (healthy) and N (diseased) and the predictions of a classifier are summarised in a
2 × 2 contingency table known as confusion matrix [123] (expanded in Table 5.1):

M =

[︃
TP FN

FP TN

]︃
(5.1)

which completely describes the outcome of the classification task. This contingency table
may be expressed using raw counts of the number of records from class times each predicted
label is associated with each actual class.
Hence, given an input leaf image X, the classifier is aimed at testing the null hypothesis

H0 : {X = P} (5.2)

that is, the test consists of the classification of the leaf as healthy or diseased.

Predicted class

P N Total

Actual class
P TP FP (Type-I error) TP+FP

N FN (Type-II error) TN FN+TN

Total TP+FN FP+TN

Table 5.1: Example of confusion matrix for a dichotomous binary classification problem.

As illustrated in Table 5.1, the confusion matrix reports the number of:

1. true positive (TP), the probability of correctly accepting the null hypothesis;
2. true negative (TN), the probability of correctly rejecting the null hypothesis;
3. false positive (FP), the probability of falsely rejecting the null hypothesis;
4. false negative (FN), the probability of falsely accepting the null hypothesis.
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Based on the entries in the confusion matrix, the total number of correct prediction carried
out by the model is TP + TN, whilst the number of incorrect prediction is FP + FN [49].
Therefore, if

M =

[︃
n+ 0
0 n−

]︃
(5.3)

where obviously n+ = TP + FN and n− = FP + TN, then the classification has been
perfectly done. Conversely, if the confusion matrix is as follows

M =

[︃
0 n+

n− 0

]︃
(5.4)

it represents the worst case (perfect misclassification).
Several measures have been defined to assess the quality of a prediction [26], aimed at
conveying into a single figure the structure of M. The most used functions are briefly
described as follows.

Definition 17. Precision (also known as positive predictive value (PPV)) counts the true
positives, how many samples are properly classified within the same cluster (closeness of the
measurements to each other)

PPV =
TP

TP + FP
. (5.5)

Definition 18. Recall (also known as sensitivity or true positive rate (TPR)) evaluates the
proportion of elements that are properly included in the same cluster

TPR =
TP

TP + FN
= 1 − FNR. (5.6)

Definition 19. F-measure combines precision and recall in a single metric, indeed, it is the
harmonic mean of precision and sensitivity and as a function of M, has the following form:

F1 = 2
PPV · TPR
PPV + TPR

=
TP

TP +
1
2
(FN+ FP)

(5.7)

where the worst case (F1 = 0) is achieved for TP = 0, whilst the best case(F1 = 1) is reached
for FN = FP = 0.

Definition 20. Accuracy represents the ratio between the correctly predicted instances and all
the instances in the dataset, whose range is between 0 (worst case) and 1 (best case):

ACC =
TP + TN

TP + TN+ FP + FN
. (5.8)

Definition 21. Matthews correlation coefficient is the measure of the quality of binary (two-
class) classifications:

MCC =
TP · TN− FP · FN√︁

(TP + FP)(TP + FN)(TN+ FP)(TN+ FN)
(5.9)

it is a correlation coefficient between the actual and predicted binary classifications and it
returns a value in the range -1 (worst case) and 1 (best case).





6
A unified method for disease severity

estimation
This chapter aimed at highlighting the main idea of the proposed unified method for
automatic disease severity estimation, which relies on a recursive algorithm based on
a positive non-linear dynamical system whose evolution depends on the input tensor
representing the leaf image to be analysed. Given an input tensor1 template X ∈ Rn×n×3

+ ,
it may be convenient adopting an operator of the form

X̃ = Φ (X) , (6.1)

which yields a Boolean matrix X̃ ∈ {0, 1}n×n representing the affected area of the leaf
image. Hence, the operator Φ must be chosen to assess the presence of a specific disease in
the initial template image. To simply explain the idea, consider a simple (i.e., non dynamic)
thresholding function.
A simple option to seek the presence of visible signs and symptoms of the infectious disease
is to consider a thresholding-based segmentation method in order to approximate the area
of the diseased leaf on the basis of the different intensities or colours in the image:

X̃ =

{︄
1 if ∥tL∥ ⩽

⃦⃦
Xi,j,:

⃦⃦
⩽ ∥tH∥, t ∈ R3

+

0 otherwise
(6.2)

where the threshold value is calculated according to a specific function. However, the
approach based on this choice for the operator in (6.1) is clearly not noise-rejecting,
since noise inhibits the localisation of the threshold value. Indeed, to avoid a misleading
diagnosis, noisy pixels that are present on the leaf region of the image should not provide a
positive contribution to the severity estimation.
Thus, it has been pursued an approach that rejects noise and, to this aim, it has been taken
into account the following assumption.

Assumption 4. The disease severity due to “isolated spots” is not as significant as that of
cluster of points, whether they are wide “stripes” or “island”, even if the number of isolated
spots is very high.

1A tensor is a multi-dimensional array that for the specific case it represents a three-dimensional matrix
which constitutes the inpu RGB image.
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6.1 The dynamical system

The idea behind the algorithm is to recursively spread the disease to fill the infected regions
of the leaf only if there are symptoms of the condition itself, otherwise the leaf will not be
affected by any changes.

X Y

1 �

2 �

3 �

Figure 6.1: Desired behaviour in different situations (active pixels in black) where X is the
initial image and Y is the desired output matrix. The first two rows examplify the correct
detection when the input is a leaf image with disease symptoms upon pathogen infection
(in the second row the input image has been corrupted by impulse noise), whilst the last
one depicts an example of no detection when the input is a leaf image in healthy condition.
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Hence, the operator Φ described in Equation (6.1) must follows the behaviour illustrated
in Figure 6.1.

1. In the first example, a leaf image with disease symptoms upon pathogen infection
has been provided as input. The output consists of a matrix with some sets of active
pixels2 representing the diseased regions of the leaf. Actually, almost all of the
active points in the output matrix Y = X̃ should be superimposable to the visible
symptoms presented in X.

2. The second example follows the same behaviour presented in the previous example
with the only exception of the input image, which has been corrupted by adding a
random impulse noise with probability p = 10%. The rsulting output matrix Y = X̃

should be similar to that of the previous example (i.e., the noise does not affect the
accuracy of the disease severity estimation).

3. In the third example, a leaf image in healty condition has been provided as input.
Inthis case, the output matrix Y = X̃ should be almost empty.

As is experimentally shown later, the behaviour illustrated in Figure 6.1 can be achieved by
means of the proposed unified method that involves a positive system, whose evolution
depends on the presence of disease symptoms in the input RGB image X.

Remark 3. In view of the iterative nature of the algorithm, it is only necessary to emphasise
the presence of cluster points in diseased regions that differ in colour from those present in
healthy regions.

Assumption 5. The image X, provided as input, has already undergone a preliminary
processing (thoroughly described in Section 6.3.2) and that therefore contains the extracted
region of interest.

Assumption 6. It is further assumed the knowledge of the two vectors xd and xh (reported
in Section 6.3.2) that represent the average colour components of the diseased and healthy
conditions, respectively.

Definition 22. Let Ni,j be the square neighbourhood of the generic point i, j within a “radius”
δ of integer amplitude grater than zero

Ni,j = {h, l : ∥h− i∥ ⩽ δ, ∥l− j∥ ⩽ δ, h, l ∈ Z} , (6.3)

then, given a varying (i.e., tunable) tolerance ξ ∈ R++ such that ξ < 1, the criterion used to
determine whether a point x ∈ R3

+ is subject to the diseased condition is defined as follows⃦⃦⃦⃦[︃
x

∥x∥
−

xd
∥xd∥

]︃⃦⃦⃦⃦
⩽ ξ (6.4)

where x represents the average of the RGB component vectors in the neighbourhood Ni,j of the
observed point (i, j) at time instant k

x =
1

n(N)

∑︂
h,l∈Ni,j

Xh,l,:(k), (6.5)

whilst xd ∈ R3
+ identifies the average colour components of the diseased condition.

2By convention an active point has been represented in black, whilst a non-active point has been represented
in white.
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Once the diseased condition is met, the image is processed according to the updating
equation

Xi,j,:(k+ 1) = Xi,j,:(k) + τ ρi,j
(︁
xd − Xi,j,:(k)

)︁
(6.6)

where Xi,j,:(k) ∈ R3
+ ∀k ∈ {0, 1, . . . ,K− 1} represents the RGB vector of the observed point

at the specific time instant k, the sampling time is defined by τ, and ρ governs the speed of
convergence as described in the following definition.

Definition 23. Let (α,p) ∈ R++ be two scalar coefficients, then the function ρ is defined as
follows:

ρ
.
=

1
1 + ανp

(6.7)

where

ν
.
=

⃦⃦⃦⃦[︃
x

∥x∥
−

xd
∥xd∥

]︃⃦⃦⃦⃦
. (6.8)

Remark 4. The function ρ represents a measure of how quickly the infectious disease can
spread through the leaf and depends on the colour discrepancy between the vectors x and xd
(i.e., how far the observed point is from the disease condition) measured by the Equation (6.8).
Furthermore, the two coefficients (α,p) ∈ R++ need to be set appropriately in order to meet
the desired rate of convergence in (6.7).

At the K-th step, to achieve a Boolean image as illustrated in Figure 6.1, all pixels that have
been affected by changes are set to one (i.e., all the labeled pixels) whilst pixels that have
not been modified in any way are set to zero.
The saturation function is defined as follows.

Definition 24. Let X̃ be the resulting real-valued tensor having the same size as X, then the
piecewise-defined function Θ : R3 → {0, 1} is called saturation function and is defined as

Θ (x)
.
=

{︄
1 if x has been modified,
0 otherwise.

(6.9)

Thus, through the function defined above, it is possible to generate the Boolean matrix X̃

of dimensions n× n, by means of the following computation for all i, j

X̃i,j = Θ
(︁
Xi,j,:

)︁
. (6.10)

Disease severity (DS) is the area (relative or absolute) of the sampling unit (leaf) showing
symptoms of disease and is most often expressed as a percentage or proportion [14, 115]
of affected leaf area. Hence, the final score is performed on the number of pixels with
value 1 (active), which is compared to the total amount of points within the leaf area, as
described in the following definition.

Remark 5. Given the Assumption (5), it is very easy to compute the leaf area from the
segmented RGB image X ∈ Rn×n×3

+ . Indeed, using the Boolean matrix S ∈ {0, 1}n×n

representing the mask used to remove the background part from each channel of the initial
RGB image, the leaf area can be calculated as

A =
∑︂
i,j

Si,j. (6.11)
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Definition 25. Let S ∈ {0, 1}n×n be the Boolean matrix described above and X̃ ∈ {0, 1}n×n

be the output Boolean matrix. Denoting by Σ(S) and Σ(X̃) the number of active points in the
respectively matrices, then the disease severity is defined as

DS (X) =
Σ(X̃)

Σ(S)
. (6.12)

Hence, the resulting algorithm works as follows.

Algorithm Disease severity estimation
Input: leaf image X in RGB color space.
Parameters: Number of steps K, positive real constants ξ < 1, τ, α, and p, vectors xd and
xh, integer neighbourhood amplitude δ > 0 (which implies the size of the set N).
Outputs: Disease severity estimation DS (X).

1. Set the initial condition X(0) := X

2. for k = 0,k < K,k = k+ 1
for each point (i, j) belonging to the leaf area do

compute the average of the RGB component vectors in the neighbour-
hood Ni,j according to (6.5)

x =
1

n(N)

∑︂
h,l∈Ni,j

Xh,l,:(k)

if the Criterion (6.4)
⃦⃦⃦⃦[︃

x

∥x∥
−

xd
∥xd∥

]︃⃦⃦⃦⃦
⩽ ξ is satisfied then

compute the speed of spreading disease according to (6.8)–(6.7)

ν =

⃦⃦⃦⃦[︃
x

∥x∥
−

xd
∥xd∥

]︃⃦⃦⃦⃦
ρ =

1
1 + ανp

compute the updated value according to (6.6)

Xi,j,:(k+ 1) = Xi,j,:(k) + τ ρi,j
(︁
xd − Xi,j,:(k)

)︁
end if

end for
end for

3. Convert the real-valued matrix to Boolean by means of the operator defined in (6.9):
for each point (i, j) do

X̃i,j = Θ
(︁
Xi,j,:

)︁
end for

4. Compute the disease severity as in (6.12) DS (X) = Σ(X̃)/Σ(S), where S represents
the mask used to remove the background part from each channel of the initial RGB
image X.



84 Chapter 6. A unified method for disease severity estimation

The rationale of step 2 (the core of the procedure) is the following. Let X be the input RGB
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Figure 6.2: Maximal closed cone defined by
the vector xd and a tolerance ξ = 0.1.

image and assume that it represents a dis-
eased leaf, hence in correspondence of a
visible symptom, the Criterion (6.4) would
be satisfied if the discrepancy between the
normalised vectors x and xd is less than or
equal to the tolerance ξ. Figure 6.2, illus-
trates the maximal closed cone containing
all accepted vectors in the normalised RGB
colour space. Actually, this is valid not
only in correspondence of a visible symp-
tom, but also in the nearest proximity of a
visible symptom due to the mean filtering
described in Equation (6.5), which reduces
the amount of intensity variation between
neighbouring points depending on the size
of the square neighbourhood N defined
through an integer radius δ > 0. Note that,
even though the average of the RGB component vectors in the neighbourhood has been
considered to test the diseased condition criterion, no point in the image has been replaced
by this value, thus preserving image details.
Then, assuming that the Criterion (6.4) is satisfied, the speed of spreding disease can be
computed by means of the Equations (6.8)–(6.7). In particular the Equation (6.8) measures
the colour discrepancy between the observed point x (not to be confused with x, which is
the average of the RGB component vectors in the specific neighbourhood of the observed
point) and xd, which represents the colour of the disease condition. Hence, through the
Equation (6.7) it is possible to calculate the function ρ that affect the extent to which the
observed three-dimensional vector x converges to that representing the disease condition xd.
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Figure 6.3: Representation of the vectors xd,
x, and xh in the normalised RGB colour space.

Note that, in view of the two aforemen-
tioned equations, the greater the differ-
ence between the RGB vectors of the ob-
served point and the healthy condition, the
faster the convergence of the observed
point to the disease condition. Indeed, this
behaviour is ensured by the dynamic Equa-
tion (6.6), which enables the vector x to
asymptotically converge towards xd, usu-
ally in few iterations. The depiction in
Figure 6.3 illustrates this important as-
pect showing the three-dimensional vec-
tors xd, x, and xh in the normalised RGB
colour space as well as the direction to-
wards which the vector x converges. Once
the system has reached the steady-state
condition (i.e., the condition in which the

state variable is constant in spite of ongoing procedures that strive to change it) it is
possible to estimate the disease severity through the Equations (6.10)–(6.12) as reported
in steps 3–4, respectively.
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To exemplify the algorithm behaviour, suppose that the input image X ∈ Rn×n×3
+ is that

shown in Figure 6.4(a). Then, the result of the dynamic algorithm after the transformation
to Boolean by means of the operator defined in (6.1), which leads to the matrix X̃ ∈
{0, 1}n×n, is shown in Figure 6.4(c). In this example, the system has estimated a disease
severity equal to DS (X) = Σ(X̃)/Σ(S) = 0.0768.

(a)

(b)

(c)

Figure 6.4: Dynamic algorithm behaviour: (a) input image representing a real leaf affected
by Black Rot disease, (b) the resulting image from the application of the dynamic algorithm
(representation of the pixels modified by the iterative procedure during the transient state
until the steady-state condition has been reached), and (c) final result after binarisation.
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6.2 Properties of the system

In this section has been analysed the algorithm based on the recursive Equation (6.6),
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Figure 6.5: Representation of the vectors v1
and v2 in the normalised RGB colour space.

to better understand its behaviour. First
of all, the positive parameters α and p in
the procedure need to be tuned to define
appropriately how the function ρ should
behave. Let v1, v2 ∈ R3

+ be two vectors to
be compared, then it is possible to deter-
mine a metric defined on the normalised
RGB colour space in order to find out the
maximum differences along any coordi-
nate dimension between two vectors (i.e.,
the maximum distance).
Figure 6.5 illustrates a plot of two vectors
in the normalised RGB colour space

v1 =

⎡⎣0
0
1

⎤⎦ v2 =

⎡⎣1
1
0

⎤⎦
where the Euclidean distance between those points is the length of the dashed, straight
line between the two points.

Definition 26. Given a vector space X, for x ∈ X a non-negative function ∥x∥, which represents
the norm of the vector x, is defined such that

• ∥x∥ ⩾ 0 and ∥x∥ = 0 ⇐⇒ x = 0 (being positive definite),
• ∥λx∥ = |λ|∥x∥ for any scalar λ (being absolutely scalable),
• ∥x+ y∥ ⩽ ∥x∥+ ∥y∥ (satisfying the triangle inequality).

-0.5 0.5

-0.5

0.5

Figure 6.6: Illustrations of unit circles in
different Lp norms (every vector from the
origin to the unit circle has a length of one).

Let p ⩾ 1 be a real number, then the Lp norm
of a vector x = (x1, x2, . . . xn) is defined as

∥x∥p
.
= p

⌜⃓⃓⎷(︄ n∑︂
i=1

|x|p

)︄
. (6.13)

As illustrated in the figure on the left, for p = 1
we get the L1 norm or Manhattan distance,
where the distance between two points is the
sum of the absolute differences of their Carte-
sian coordinates, whilst for p = 2 we get the
L2 norm or Euclidean distance, where the dis-
tance between two points is the length of a line
segment between the two points, and as p ap-
proaches ∞ we get the L∞ norm or maximum
norm which is equivalent to

∥x∥∞ .
= max

i
{|xi|} .
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Since the normalised RGB colour space is described by treating the component values as
ordinary Cartesian coordinates in a Euclidean space that represents a cube of non-negative
values such that xi ∈ R+ : xi ⩽ 1 for i = {1, 2, 3}, it is convenient to consider a L2 norm.
Hence, the real-valued function ν (6.8) is positive and bounded above

√
3.

Remark 6. Let u, v ∈ R3
+ be two unit vectors to be compared in the normalised RGB colour

space. Then, ν is non-negative being a norm and equal to 0 if the two vectors to be compared
are identical, that is, ui = vi for i = {1, 2, 3}. Conversely, if u ̸= v the distance (L2 norm)
between u and v is

∥u− v∥ =

√︂
(u1 − v1)

2 + (u2 − v2)
2 + (u3 − v3)

2 ⩽
√

3.

The upper bound
√

3 is a maximum: it can be reached if we take two complementary vectors,
for instance: u =

[︁
1 0 0

]︁⊤ and v =
[︁
0 1 1

]︁⊤.

Property of convergence/divergence. Let us now consider just a point of a segmented RGB
image X ∈ Rn×n×3

+ representing a symptomatic leaf. Then the presence of diseased regions in
the image give rise to a monotone system, as described next. Let us group in a vector x(k) ∈ R3

the RGB component values Xi,j,: of the (diseased) point (i, j) in the image X. Then, the system
evolves as follows:

x(k+ 1) = x(k) + τρ (xd − x(k)) (6.14)

where
ρ =

1
1 + ανp

and xd identifies the average colour components of the diseased condition.

As an example, consider the situation illustrated in Figure 6.7. Then, the vector x might be
attracted towards the vector xd, and as such the dynamics of the system might lead to the
filling of all diseased regions by acting on all the vectors that satisfy the criterion expressed
in the Equation (6.4).
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Figure 6.7: Dynamic algorithm example: a few steps of the dynamical system evolution.
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Assumption 7. The parameter τ representing the sampling time is chosen so as to guarantee
that 1 − τρ ⩾ 0, ∀ ρ ∈ R+ : ρ ⩽ 1.

Definition 27. If A ∈ Sn with all the entries outside the main diagonal are all zero, i.e.,
Ai,j = 0 whenever i ̸= j, then A is called diagonal.

Let us consider the previous updating Equation (6.14) in the following form⎡⎣x1(k+ 1)
x2(k+ 1)
x3(k+ 1)

⎤⎦ =

⎡⎣1 − τρ 0 0
0 1 − τρ 0
0 0 1 − τρ

⎤⎦
⏞ ⏟⏟ ⏞

matrix P

⎡⎣x1(k)
x2(k)
x3(k)

⎤⎦+ τρ

⎡⎣xd1
xd2
xd3

⎤⎦ . (6.15)

Hence, it can be easily seen that the non-negative matrix P ⪰ O appearing in the equation
above is positive semidefinite and diagonal, which implies that the matrix is also symmetric
(i.e., P = P⊤). Therefore, P is obviously a scalar matrix3 which can be viewed as a scalar
multiple of an identity matrix, that is, (1 − τρ) I3. Note that multiplication by the identity
matrix is equivalent to (scalar) multiplication by 1, and that multiplication by a scalar
matrix (1 − τρ) I3 is equivalent to multiplication by the scalar (1 − τρ) [57].
Moreover, since the matrix P has non-negative off-diagonal entries Pi,j ⩾ 0 (∀i ̸= j), it is
also a Metzler matrix (i.e., P ∈ M). If the Assumption (7) holds, then the matrix P ∈ S3

++

is called Schur stable4, since all its eigenvalues lie inside the unit circle, or equivalently its
spectral radius ρ (i.e., the eigenvalue with maximum modulus) is non-negative, real, and
equal to ρ(P) = 1 − τρ.

Remark 7. Given the Assumption (7), the term 1 − τρ serves to inhibit potential instability of
the system because as x approaches xd, 1 − τρ approaches 0, ensuring thus a unique steady
state that is globally asymptotically stable (monostability).
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Figure 6.8: Transient behaviour: (a) a vector x (healthy) converges in norm to xd (diseased)
and (b) distance between the two vectors represented by the norm of their difference.

3Scalar matrices are a special class of diagonal matrices whose elements along the diagonal are all the same.
4This property is mostly referred as convergence of matrices [64].
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6.3 Example: automatic detection and severity estimation of
grape diseases for enhanced precision agriculture

Effective and accurate plant disease detection and diagnosis at an early stage are essential
in plant production, as they can lead to a reduction in both qualitative and quantitative
losses in crop yield. Pathologists usually focus on pathogenic diseases appearing in various
parts of the plant like roots, stem, and leaf, however, as discussed earlier, the present
work concentrates particularly on leaves. Indeed, on this part of the plant, a large amount
of information is available allowing an effective diagnosis [8, 53]. Major advances and
technological developments in recent decades have allowed image analysis-based systems
to automatically detect the symptoms that appear on the leaves and stem of a plant, thus
helping in the cultivation of healthy plants and improving their quality [104]. These
kind of systems may be trated as pattern recognition systems that automate the detection
and severity estimation of pathogenic diseases through the analysis of digital images
following a common scheme. In this regard, a large number of researches have been
reported in the literature that employed machine learning-based techniques for plant
disease detection [125]. This approach can aid typical steps of image analysis including
segmentation and feature extraction, which are fundamentals to determine the applicability
of a machine learning model which detection and severity estimation are generally based
on [109]. Deep learning algorithms, such as methods based on convolutional neural
network (CNN), allow to automatically extract the features directly from the input images
bypassing the segmentation and feature extraction steps as well as providing more accurate
results compared with traditional methods [121]. These approaches are remarkably
powerful for solving classification problems but not all problems can be represented in this
form. The major drawback is to choose the right (very large) set of data to train the models,
but in practical terms that is not always possible. Moreover, it is extremely expensive to
train due to complex data models and the strategies learnt by deep learning may be more
superficial than they appear [101]. In this thesis, to identify potential plant pathogens as
quickly as possible to reduce the likelihood of an infection spreading, it has been proposed
a novel approach based on the dynamical systems theory that allows the detection and
severity estimation of grape diseases regardless of disease type, even in adverse conditions.

6.3.1 Dataset used in simulation

The dataset used to assess the performance of the proposed system, is based on the
unmodified colour version of grape leaf images in the PlantVillage dataset [68], which is
worldwide shared for research purposes and whose details are given in Table 6.1. The
dataset consists of images of single leaves removed from their plants with inoculated
or naturally occurring disease. The subset of grape images contains 4 063 samples, of
which 3 640 are diseased leaf images exhibiting three different conditions and 423 healthy
leaves, with their conditions classified by expert plant pathologists by means of standard
phenotyping approaches. Hence, only expertly identified leaves are present in the dataset.
Leaf images have been captured through a twenty-megapixel camera (Sony DSC - Rx100/13
20.2 Mpx) using the automatic mode and collecting from four to seven different orientations
to compensate for directional lighting variation. Indeed, all the images have been taken
outside under nautral light in several different conditions (e.g., sunny, mostly/partly sunny,
cloudy, and mostly/partly cloudy). The version of the dataset used in this study has been
scaled down to 256 × 256 pixels and rotations of the same leaf have been removed [147].
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6.3.2 Methodology

Figure 6.9 illustrates the overall block diagram of the proposed disease severity estimation
system that follows a typical pattern recognition architecture. Hence, the main steps
involved in such a system are: image acquisition of the grape leaf, preprocessing of the raw
image, feature extraction, and disease detection through the dynamical system.

Raw image
of the leaf Noise reduction Conversion to CIE

L*a*b* space
Morphological

operations
k-means
clustering

Preprocessing phase

Dynamical
system

Preliminary
analysis

Image
segmentation

xd

xh

_

_

x Disease severity
classification (index)
Disease severity estimation
(percentage)

Disease detection (yes/no)

Figure 6.9: Block diagram of the proposed system.

6.3.3 Image acquisition

The primary source of data used in this thesis have been images from the unmodified colour
version of grape leaves in the PlantVillage dataset [68], where all the images have been
taken outside under natural light with a standard point and shoot digital camera in auto-

(a)

(b)

Figure 6.10: Photon wavelength and
frequency of the electromagnetic spec-
trum [134]: (a) electromagnetic spectrum
and (b) wavelengths of the visible spectrum.

matic mode, as described in Section 6.3.1.
Data from visible light bands (the range of
wavelengths humans can perceive) are com-
posited in their respective red, green, and
blue channels. The established wavelength
range of visible light is approximately 380-
740 nm [134], which equates to a fre-
quency range of 789-405 THz, respectively,
as illustrated in Figure 6.10. This range
of wavelengths, frequencies, and energies
manifests as a range of colours in the vi-
sual systems of humans [48]. The various
colour ranges indicated in Figure 6.10(b)
are an approximation: indeed, the spec-
trum is continuous with no clear bound-
aries between one colour and the next [21].
Figure 6.11 illustrates an example of leaf
affected by Black rot (Guignardia bidwellii)
disease along with the grey-scale represen-
tation of every channel, each of which corre-
sponds to a range of wavelengths and con-
tains different spectroscopic information.
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(a)

(b) (c) (d)

Figure 6.11: Example of RGB image representing a grape leaf affected by Black rot disease:
(a) original RGB image, (b) red channel (625 nm ⩽ λR ⩽ 740 nm), (c) green channel
(520 nm ⩽ λG ⩽ 565 nm), and (d) blue channel (435 nm ⩽ λB ⩽ 500 nm).

Preprocessing

The preprocessing elaboration is required to extract the region of interest from the input
image removing the background. As outlined in the Figure 6.9, the major steps involved in
the preprocessing of raw images are:

1. noise reduction by means of a non-linear spatial filter,
2. conversion to CIE L*a*b* space and normalisation
3. classification of background and foreground
4. ROI extraction.

Noise reduction As described in Section 4.3, noise can be systematically introduced into
images during acquisition and transmission. [51, 96]. This kind of noise is independent,
randomly distributed, and uncorrelated with the image, since it is charactesized by replacing
a portion of the original pixel values of the image with intensity values drawn from some
distribution, usually a uniform distribution over the intensity range. Hence, a common
order-statistic (non-linear) spatial filter, i.e., median filter, can be used to remove unwanted
information from noisy palmprint images preserving details. In our experiments, the kernel
size has been set to 5 × 5 pixels.
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Conversion to CIE L*a*b* space and normalisation Firstly, the RGB image is converted
into the CIE L*a*b* colour space (see Appendix B for the details about the transformation)

Figure 6.12: The CIE L*a*b* colour
space [82].

which consists of a three-dimensional
model able to decoupling the lightness
of the colour and the chromaticity com-
ponents a* and b* which represent the
red/green channel and yellow/blue chan-
nel, respectively. On the colour space dia-
gram illustrated in Figure 6.12, L* is repre-
sented on a vertical axis with values from
0 (total absorption) to 100 (diffuse white),
whilst the centre of the sphere is neutral
or achromatic. Changing from Cartesian
coordinates to polar coordinates we get the
CIELCh colour space, where the distance
from the central axis represents the chroma
(C*), or relative saturation of the colour,
whilst the angle on the chromaticity axes
(angle of the hue in the CIELAB color plane)
represents the hue (h0). The lightness L*
remains unchanged. The conversion of the
chromaticity components a* and b* (Carte-
sian coordinates) to C* and h0 (polar coordinates) is performed as follows:

C∗ =

√︂
(a∗)2 + (b∗)2, h0 = arctan

(︃
b∗

a∗

)︃
. (6.16)

Conversely, the conversion from polar to Cartesian coordinates is given by:

a∗ = C∗ cos
(︁
h0)︁ , b∗ = C∗ sin

(︁
h0)︁ . (6.17)

(a) (b) (c)

Figure 6.13: Example of RGB image representing a grape leaf affected by Black rot disease:
(a) L* channel, (b) a* channel, and (c) b* channel.
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Classification of background and foreground The goal of this step is that to classify the
background and foreground in the a*b* two-dimensional data space using the k-means
clustering in order to correctly identify the leaf. This method is a form of unsupervised
learning whereby a set of data points is partitioned into clusters of patterns so that the
similarity measure between any pair of observations assigned to each cluster minimises an
objective function, turning the clustering task into an optimisation problem5.
Thus, given a set {xi}

N
i=1 of multidimensional data to be partitioned into K clusters, where

K < n, it is possible to iteratively find the closest centroid in the set {ci}
K
i=1 minimising the

following objective function:

J
(︁
xj, ci

)︁
=

K∑︂
i=1

∑︂
xj∈Ci

⃦⃦
xj − ci

⃦⃦2 (6.18)

where
⃦⃦
xj − ci

⃦⃦2 is a chosen distance measure between a data point and the cluster centre.
Then, the algorithm assigns each observation to exactly one cluster, i.e., it assigns each
observation to the cluster with the closest centroid, as follows:

Ci =

{︃
xj :

⃦⃦
xj − ci

⃦⃦2
= min

k

⃦⃦
xj − ck

⃦⃦2 ∀k ∈ N : 1 ⩽ k ⩽ K

}︃
. (6.19)

and recomputing the centroids (means) for observations assigned to each cluster as:

1
Ci

∑︂
xj∈Ci

xj. (6.20)

Figure 6.14 illustrates the k-means clustering results used to partition the two-dimensional
data space observations into k = 2 clusters, background and foreground, respectively.
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Figure 6.14: Example of k-means clustering results: (a) the two clusters along with their
centroids and (b) resulting silhouette graph.

5Although it can be proved that the algorithm will always terminate, the k-means algorithm does not
necessarily find the optimal configuration, corresponding to the global objective function minimum [59, 98].
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On the right hand, is present a so-called silhouette graph, which is based on the comparison
of its tightness and separation. Precisely, it shows which objects lie well within their cluster,
and which ones are not distinctly in one cluster or another. This measure ranges from 1
(indicating points that are very distant from neighbouring clusters) through 0 (points that
are merely somewhere in between clusters) to -1 (points that are probably assigned to the
wrong cluster) [127]. Figure 6.14(b) clearly shows that most points in both clusters have a
large silhouette value, indicating that those points are well-separated from neighbouring
clusters. However, each cluster also contains a few points with low silhouette values,
indicating that they are nearby to points from other clusters. The resulting Boolean matrix
B ∈ {0, 1}n×n then undergoes a morphological filtering operation consisting in the closing
of the matrix B by a cross shaped structuring element ϖ ⊂ Z2:

ϖ =

⎡⎣0 1 0
1 1 1
0 1 0

⎤⎦ . (6.21)

Thus, the morphological closing of the set B (Boolean matrix) by ϖ is given by the erosion
of the dilation of that set (see Appendix A.4 for further details):

B •ϖ = (B⊕ϖ)⊖ϖ. (6.22)

However, due to the duality property of the morphological primitives and since the structur-
ing element is symmetric with respect to its origin (the centre of ϖ), the Equation (6.22)
can be expressed as

B •ϖ = Bc ◦ ϖ̂ = (Bc ⊖ ϖ̂)⊕ ϖ̂

= (B⊖ ϖ̂)⏞ ⏟⏟ ⏞
Ω

c ⊕ ϖ̂ = (Ω⊖ϖ)c (6.23)

where Bc is the complement of B and ϖ̂ represents the reflection of ϖ. The proof of
Equation (6.23) is given in Appendix A.4.

(a) (b) (c)

Figure 6.15: Example of leaf segmentation: (a) input image X representing a real leaf
affected by Black Rot disease, (b) final Boolean mask S, and (c) resulting image after
segmentation by applying the mask S on each channel of the image X.
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6.3.4 Preliminary analysis

To carry out a histogram analysis, we shall describe the brightness variation in an image
using its histogram.

Definition 28. The histogram of a digital image A ∈ Nw×h with intensity levels in [0,K− 1],
is a one-dimensional discrete function such that hA(k) = nk, where k is the kth intensity
value and nk is the number of pixels in the image with intensity k, that is, the histogram
represents the frequency of occurrence of each gray level in A.

Thus, analysing the samples in Figure 6.16 by means of the histogram analysis method,
it can be seen that each channel does not present a bimodal distribution thanks to the
segmentation process, and obviously, the peak shown in k = 0 represents the background.
Performing the analysis directly on the segmented image, it helps us to decide which values
best suit the RGB triple to represent the diseased condition used to test the Criterion (6.4).
However, as the shape of these histograms is not the same in different infectious diseases,
several signatures corresponding to different pathological conditions should be defined
a-priori. However, this method may produce misleading results due to non-uniform
illumination and non-linear distorsion. Considering the green channel and the blue channel
from the curves in Figure 6.16(a)–6.16(c) (bottom row), it can be found that they vary with
the distribution of disease lesions. This is consistent with the process of disease appeared,
which represents the evolution of pathological changes of the leaf from green to brown.
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Figure 6.16: Examples of grape leaves with varying severity of Black Rot disease along with
their histogram analysis: (a) healthy leaf, (b) diseased leaf with an estimated severity of
2.3%, and (c) diseased leaf with an estimated severity of 8.1%.
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Figure 6.17: Histogram analysis of several grape leaves affected by infectious disease and
relative disease severity estimation: (first row) segmented RGB image, (second row) his-
togram analysis of the three RGB channels, (third row) grey-scale version of the segmented
image, and (last row) histogram analysis of the monochromatic image.
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In Figure 6.17 has been reported the histogram analysis of several different grape leaves
with disease symptoms upon pathogen infection.

The vector xd that better approximates the desired one, which would be used to test the
diseased condition of a point (i, j) in proximity of xd as illustrated in Section 6.1, should
be set considering the distributions of healthy and diseased regions of several digital leaf
images and calculating common statistical parameters, e.g., mean, variance, and median.

However this approach may be time-consuming and unfeasible due to the lack of samples.
From that, it follows that it is possible to find experimentally the most suitable value for
each spot-based disease via grey histogram analysis. Indeed, the proposed approach relies
on the identification of some diseased regions in order to compute the RGB vector we are
looking for.

Firstly, to accomplish this goal, we consider the average grey level from the grey-scale leaf
image G ∈ Rn×n. Hence, let A ⊂ Z2 be the set of points belonging to the leaf area, then

g =
1

n(A)

∑︂
i,j∈A

Gi,j. (6.24)

Thus, the points that their gray level deviates from g by more than a threshold t, are
assumed to be lesion spots.

Remark 8. We stress that this kind of approach is not suitable to find all the lesions on the
leaf surface. Indeed, this aspect is not required at all, since we are only interested in finding
a suitable RGB vector that represents well enough the diseased condition. Hence, the precise
values of the vector components are not critical if we consider an RGB triple far enough away
from the colour representing the healthy condition in direction of that of the diseased condition.

For instance, selecting the marked points p̃ defined by their corresponding ones in the grey
image G under the following condition:

p̃ = Xi,j,: ⇐⇒ Gi,j ⩽ g− t (6.25)

has worked satisfactorily for all the tested cases6.

Note that the value of the green channel does not follow the frequency distribution of that
reported in Figure 6.17 (second row), this is consistent with theoretical expectations as in
symptomatic (diseased) regions the contribution in the green spectrum (520 nm ⩽ λG ⩽
565 nm) is far below with respect to that present in healthy regions.

6.3.5 Experimental results

Extensive experiments have been carried out to assess the performance and the effectiveness
of the proposed algorithm, which are described in this section with particular regard to
the dataset used in the experiments and the experimental setup, parameter optimisation,
performance assessment, noise-rejection property, and computational efficiency of the
algorithm.

6Note that this is the case of dark lesions over the leaf surface, in case of brigth lesions is required to negate
the sign in front of the threshold.
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Black rot Esca Leaf blight Healthy

Figure 6.18: Several examples of grape leaf image affected by different pathogenic diseases.
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Dataset and experimental setup

The dataset used to evaluate the perfomrance of the proposed system consists of a subset
of that described in Section 6.3.1. In particular, Table 6.2 summarises the subset of grape
images used to test the system in disease detection configuration. Precisely, the subset
consits of 4 063 samples, of which 3 640 are diseased leaf images exhibiting three different
conditions and 423 healthy leaves. Figure 6.18 illustrates several examples of grape leaf
images used in the experiments.

Symptomatic

Black rot Esca Leaf blight Healthy

1 180 1 384 1 076 423

Total 3 640 423

Table 6.2: Dataset used in the experiments.

Hence, every single sample in the subset as defined in Table 6.2, has undergone the test
procedure of the system which calculate the percentage of infection over the leaf surface as
in the Equation (6.12). Finally, the decision with respect to the estimated severity of the
disease is as follows.

Definition 29. Given a set of disease severity estimations x, the system has to determine if the
input leaf belong to the healthy group or not. Formally, the classification problem consists of
determining if a disease severity estimation xi belongs to the class of the null hypothesis H0 or
not:

(xi,ψ) =

{︄
H0 if xi > ψ,
H1 otherwise.

(6.26)

Parameter optimisation

Since the proposed approach for matching is based on a non-linear parameter-dependent
system, it is very important to set its internal parameters in order to maximise the system
performance. The parametrs to be fixed are: α, ρ, and ξ. Firstly, we recall that the
parameter ρ is calculated as

ν =

⃦⃦⃦⃦[︃
x

∥x∥
−

xd
∥xd∥

]︃⃦⃦⃦⃦
,

ρ =
1

1 + ανp
.

We proved in Section 6.2 that the parameter ν spans all the real values in the closed set
[0,

√
3]. Thus, it is possible to test the behaviour of the function ρ ∈ R+ : 0 ⩽ ρ ⩽ 1

described in (6.7) based on different values of the parameter pair (α,p) ∈ R++, however,
it should consider that greater the colour discrepancy between the vectors x and xd (i.e.,
the observed point is far away from the disease condition), smaller the value of ρ, and vice
versa. Indeed, since this is a strictly positive function and bounded from above by 1, the
hiegher values should be achieved when the observed point is in proximity of diseased
region.
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Conversely, when a deep mismatch between the two vectors is observed, the function
should achieve a low (strictly positive) value, whilst in between the two cases the function
should behave as an inverse S-shaped softening function with the point of inflection to be
in the middle of the domain. Hence, the desired behaviour is ensured for α > 1.

Remark 9. Let us consider the following function

ρ =
1

1 + ανp

where ν : R++ → [0,
√

3], thus the problem is to find a parameter pair (α,p) ∈ R++ such
that when ν =

√
3

2 we get ρ = 1
2 . Hence, by substitution we obtain

1
2
=

1

1 + α
√

3
p ⇒ log√

3
2
α−1 = p

and fixing the numerical value of the constant α > 1 therefore defines the other one in the
proper way. In fact, considering the last equation, if 0 < α < 1 we get negative values for p
which yields curves that rise rather than fall.

The desired behaviour of the monotonic function is illustrated in Figure 6.19.

=0.5
=1
=1.5
=2
=3
=5
=10

Figure 6.19: Example of several curves of the monotonic function ρ using several different
parameters.

As described in section 6.1, the choice of the parameter ξ has to do with the Criterion (6.4),
indeed the criterion would be satisfied if the discrepancy between the normalised vectors
x (observed point) and xd (diseased condition) is less than or equal to the tolerance ξ.
Hence, for high values of ξ the system will be prone to considerable risk of type-I error.
Conversely, for low values of ξ the system will be prone to considerable risk of type-II
error. Experimentally, we have fonud that an efficient range of tolerances to choose from is
1

10 ⩽ ξ ⩽ 1
4 . Precisely, in our experiments, the best choice of tolerance it turns out to be

ξ = 1
7 .
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Performance assessment

In order to investigate and to assess the performance of the proposed detection method
that is agnostic to the type of disease, the dataset has been split into three different disease-
healthy binary subsets, each one considering only one specific disease. Figure 6.20 reports
the confusion matrices for the proposed disease detection method.

Remark 10. Testing the proposed system with several variations of the original dataset do not
affect the results, since the proposed algorithm is invariant to rotation and translation.
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(c) Pathogen: Pseudocercospora vitis

Figure 6.20: Confusion matrices for the proposed disease detection method.

Accuracy and F-score computed on confusion matrices have been (and still are) among
the most popular adopted metrics in binary classification tasks. However, these statistical
measures can dangerously show overoptimistic inflated results, especially on imbalanced
datasets [26]. Hence, among of all the parameters described in Section 5.3, Matthews
correlation coefficient (MCC) is the only one that takes into account true and false positives
and negatives and is generally regarded as a balanced measure which can be used even if
the classes are of very different sizes [17]. However, for the sake of completeness, we have
summarised in Table 6.3 all the main measures described in Section 5.3.
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Actually, the results indicate that the algorithm performs incredibly well in localising
symptomatic regions for disease detection achieving an average accuracy of 99.36% and
thus demonstrating the effectiveness of the proposed system.

Performance metrics

Disease Accuracy Precision Recall F1-measure MCC

Black Rot 0.9962 1.0000 0.9658 0.9829 0.9806
Esca 0.9987 0.9858 1.0000 0.9929 0.9922
Leaf Blight 0.9860 0.9929 0.8974 0.9428 0.9364

Table 6.3: Summary of disease detection performance of the proposed system.

Despite the inability to ground-truth boundaries due to subjectivity, the proposed algorithm
has been consistently robust quantifying disease lesion from symptomatic leaf images.
Figure 6.21 presents a statistical comparison between the three diseases in terms of severity,
whilst the Table 6.4 lists the statistics of disease severity for each grape disease dataset.
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Figure 6.21: Disease severity statistical analysis through the boxplot of data results from
each grape disease dataset.

Disease severity statistics

Disease Mean Standard deviation Median Maximum Minimum

Black Rot 0.0345 0.0239 0.0281 0.1510 0.0000
Esca 0.0680 0.0371 0.0618 0.2287 0.0015
Leaf Blight 0.0305 0.0231 0.0253 0.1373 0.0000

Table 6.4: Summary of the disease severity statistics for each grape disease dataset.
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Noise immunity

To conduct experiments on noisy leaf images and demonstrate the robustness of the
dynamic algorithm with respect to noise, the system has been tested in noisy conditions.

Figure 6.22: Example of
healthy leaf image affected by
impulse noise with p = 15%.

As argued in Section 4.3, impulse noise is a kind of noise
which can have many different origins, often due to trans-
mission errors, faulty memory locations, or timing errors
in analog-to-digital conversion. The impulse noise model
has been defined through the probability density func-
tion (4.24) in the same section and, in the case of the
RGB colour space, it is always independent, randomly
distributed, and uncorrelated with respect to each colour
component. We can distinguish two cases, (i) the first one
arises when the image affected by the noise represents a
diseased leaf and (ii) the second one considers the case of
an image with no diseased regions (healthy leaf). However,
the second case is more challenging with respect to the
first one, since the presence of noise in a healthy leaf image
may lead to a type-I error (false positive) in the detection
of the disease, whilst this is not a problem at all in the case
of a symptomatic leaf image. Thus, the experiments to test the noise robustness of the
system have been conducted considering only the dataset containing healthy leaves.

Performance metrics

Noise probability Accuracy TP FP Error rate

p = 5% 0.9740 412 11 0.0260
p = 10% 0.9409 398 25 0.0591
p = 15% 0.9149 387 36 0.0851

Table 6.5: Summary of the disease severity statistics for each grape disease dataset.

Table 6.5 reports the result of noise-rejection experiments and shows that the performance
of the system is not that much degraded: even in presence of noise, the system is able to
correctly detect a healthy leaf with an accuracy equal to 97.4%, 94.1%, and 91.5% for
p = 5%, p = 10%, and p = 15%, respectively.

6.4 Remarks

In Section 6.1 has been proposed a novel unified method based on the dynamical systems
theory that allows the detection and severity estimation of pathogenic diseases regardless
of disease type. The system does not require any training and the proposed experimental
setup has allowed to assess the system ability to generalise symptoms beyond any previously
seen conditions, also achieving excellent results, even in presence of significant noise. Even
though this study is a first step towards a fully automatic diagnosis of plant disease severity,
the preliminary results are very promising also allowing the potential to provide new
applications for infectious disease screening that can be remotely assessed in a precision
agriculture context.





7
Conclusions and outline

This final chapter summarises the principal findings of this thesis.

The first part opens with the Chapter 3 which presents an introduction to the fundamental
concepts, theory, design, and application of biometric characterisation of human beings,
including the main biometric traits along with their properties and the various biometric
system operating modalities, as well as the primitives of performance metrics to determine
the system accuracy and security which are related to the applicability in real-world
deployments. The operational objectives of biometric security applications are just as
variable as the technologies: some systems seek for known (or unknown) individuals; some
verify a claimed (or unclaimed) identity; and some verify that the individual is not present
at all in the system. To conduct the experiments presented in the Chapter 4, the chosen
operational modality is the authentication mode, although there is no difference in using
one of the other.

The Chapter 4 presents a noise-rejecting unified method for line-like feature matching,
which relies on a recursive algorithm based on a monotone dynamical system whose
output converges either to zero, when a deep mismatch exists between the samples to
be compared, or to a high value, when a good matching is observed. The idea that
characterises the algorithm is to recursively increase the value of a pixel i, j if in the
complementary neighbourhood (namely, the neighbourhood of the corresponding pixel i, j
in the comparison image) there are pixels with large values. Conversely, if the pixels in the
complementary neighbourhood have low values, the value of pixel i, j converges to zero.
In the enhanced version, instead, the dynamical system also includes a term that initially
increases the value of a pixel if the pixels in a proper neighbourhood in the same image
have large values, and then vanishes with time; it has the effect of initially thickening the
relevant patterns. A considerable advantage of the proposed unified method for line-like
feature matching is its robustness with respect to such a noise. Indeed, images corrupted
by noise (e.g., impulse noise) are easily recognised, whilst an image randomly generated
is rejected even if compared with itself. To consolidate the theorethical results presented
above, Sections 4.4 and 4.5 illustrate two examples of biometric recognition systems where
the first one is based on principal palm lines features acquired in the visible spectrum,
whilst the second one is based on subcutaneous palm vascular patterns acquired in the
near-infrared spectrum. The images provided as an input to the dynamic algorithm have
undergone an image processing based on two phases: the first involving preprocessing
operations to make the system invariant to rotation and translation of the palm with respect
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to the image and the second consisting of a sequence of robust feature extraction steps
that allow to detect the principal lines of the palm without introducing noise. Extensive
experiments have been conducted to evaluate the performance of the system and the results
obtained from the tests clearly demonstrate the effectivenes of the proposed technique,
which is able to produce results in line with the state-of-the-art results in the current
literature. It is worth of note to highlight that the system has undergone a parameter tuning
step which is required only once and there is no need to perform this phase again, even
using different databases with different wavelength illumination images, which proves the
effectiveness and robustness of the proposed system. As a further work, it is possible to
employ the system using different biometric traits (e.g., retina, dorsal veins, and finger
veins) or even in other contexts.

The second part starts with the Chapter 5 which introduces the fundamental concepts in
the field of phytopathology oriented to image-based diagnosis of plant disease symptoms,
including the main grapevine pathogenic diseases along with their properties and the
analysis of visual symptoms used for the assessment of disease severity, as well as the
primitives of performance metrics to determine the system accuracy and reliability which
are related to the applicability in real-world deployments. In particular, in the vineyard,
symptoms are visually most noticeable on leaves, which may include a detectable change
in color, shape, or function of the plant as it responds to the pathogen. Among the potential
pathogens, phytoplasmas, viruses, bacteria, fungi, and nematodes can attack grapevine
with different infection mechanisms and evasion strategies. An in-depth description of
common signs and symptoms that appear on the leaves of the grapevine plant, caused by a
few relevant pathogenic diseases, is also provided in this Chapter.

The Chapter 6 aimed at presenting a noise-rejecting unified method based on the dynamical
systems theory that allows the detection and severity estimation of pathogenic diseases
regardless of disease type. The system relies on a recursive algorithm based on a positive
non-linear dynamical system whose evolution depends on the input tensor representing
the leaf image to be analysed. In particular, the idea that characterises the algorithm is
to recursively spread the disease to fill the infected regions of the leaf only if there are
symptoms of the condition itself, otherwise the leaf will not be affected by any changes.
Furthermore, the system does not require any training and the proposed experimental setup
has allowed to assess the system ability to generalise symptoms beyond any previously
seen conditions, also achieving excellent results, even in presence of significant noise.
Even though this study is a first step towards a fully automatic diagnosis of plant disease
severity, the model has proven to be highly accurate and robust and the experimental results
are very promising also allowing the potential to provide new applications for infectious
disease screening that can be remotely assessed in a precision agriculture context. Possible
improvements from the research conducted in this thesis may be used in the future to
further improve the model performances, also integrating the possibility of classifying the
diseases detected on the basis of the symptoms analysis.

As argued in the relative Chapters, both the proposed unified methods, present a main
advantage that relies in the robustness when dealing with low-resolution and noisy images.
Indeed, an essential issue related to digital image processing is to effectively reduce
noise from an image whilst keeping its features intact. The impact of noise (e.g., signal
independent and uncorrelated noise) is effectively reduced and does not affect the final
result allowing the proposed systems to ensure a high accuracy and reliability.
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Mathematics in digital image

processing
A.1 Optimum global thresholding using Otsu’s method

Suppose that i ∈ [0,L− 1] is the range of grey-scale of an image I(x,y) with N pixels and
the number of pixels with grey level i is denoted by h(i), then the probability of grey level
i is given by

p(i) =
h(i)

N
, p(i) ⩾ 0,

L−1∑︂
i=0

p(i) = 1. (A.1)

Now suppose that there is a threshold value t ∈ [0,L− 1] such that the pixels of the image
are dichotomised into two classes, C1 with grey levels [0, . . . , t] and C2 with grey levels
[t+ 1, . . . ,L− 1], then the probabilities of occurrence ω and mean µ of each class are:

ω1 =

t∑︂
i=0

p(i) = ω(t) (A.2)

ω2 =

L−1∑︂
i=t+1

p(i) = 1 −ω(t) (A.3)

and

µ1 =

t∑︂
i=0

i
p(i)

ω1
=
µ(t)

ω(t)
(A.4)

µ2 =

L−1∑︂
i=t+1

i
p(i)

ω2
=
µT − µ(t)

1 −ω(t)
(A.5)

where

ω(t) =

t∑︂
i=0

p(i), µ(t) =

t∑︂
i=0

ip(i) (A.6)

are respectively the zero order and the first order cumulative moments of the histogram up
to the threshold, and

µT = µ(L) =

L−1∑︂
i=0

ip(i) (A.7)

is the mean for the whole image.
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Obviously, by summing the parts, it is easy to show that:

ω1µ1 +ω2µ2 = µT , ω1 +ω2 = 1 (A.8)

and it is clear that the total sum of the probabilities is always equal to one.
The class variances are given by

σ2
1 =

t∑︂
i=0

(i− µ1)
2p(i)

ω1
(A.9)

σ2
2 =

L−1∑︂
i=t+1

(i− µ2)
2p(i)

ω2
. (A.10)

As stated in [116], the within-class variance σ2
W , the between-class variance σ2

B and the
total variance σ2

T of grey levels are defined as follows

σ2
W = ω1σ

2
1 +ω2σ

2
2 (A.11)

σ2
B = ω1(µ1 − µT )

2 +ω2(µ2 − µT )
2

= ω1ω2(µ1 − µ2)
2 (A.12)

σ2
T =

L−1∑︂
i=0

(i− µT )
2p(i). (A.13)

Hence, the relationship between σ2
T , σ2

B, and σ2
W , can be expressed as

σ2
T =

t∑︂
i=0

(i− µ1)
2p(i) +

L−1∑︂
i=t+1

(i− µ2)
2p(i)+

+ (µ1 − µT )
2ω1 + (µ2 − µT )

2ω2

=
[︁
ω0σ

2
0 +ω1σ

2
1
]︁
+
[︁
(µ0 − µT )

2ω0 + (µ1 − µT )
2ω1

]︁
= σ2

W + σ2
B

(A.14)

The optimal threshold can be determined by maximising one of the following equivalent
discriminant criterion with respect to t

λ =
σ2
B

σ2
W

, κ =
σ2
T

σ2
W

, η =
σ2
B

σ2
T

(A.15)

where, by using the Equation [A.14], κ and η can be written as

κ =
σ2
W + σ2

B

σ2
W

= 1 +
σ2
B

σ2
W

= 1 + λ (A.16)

η =
σ2
B

σ2
W + σ2

B

=
σ2
B

σ2
W

1

1 +
σ2
B

σ2
W

=
λ

1 + λ
. (A.17)

As criterion we use η, and the optimal threshold t∗ that maximises η (or equivalently
maximises σ2

B) is such that
σ2
B(t

∗) = max
0⩽t<L

σ2
B(t). (A.18)
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A.2 Canny’s edge detector operator

This edge detector consists of three steps, whose details are given below.

Step 1

There are three criteria relevant to edge detector performance:
• good detection – it is important that edges that occur in the image should not be

missed and that there be no spurious responses;
• good localisation – the distance between the edge pixels marked by the edge detector

and the “center" of the actual edge should be as small as possible;
• one response to one edge – the edge detector should not identify multiple edge pixels

where only a single edge exists.
The problem is to identify a filter that optimises the three edge detection criteria. To
facilitate the analysis, it has been considered a one-dimensional edge profile assuming an
ideal step edge Au−1(x) affected by additive white Gaussian noise n(x) (see Figures A.1(a)
and A.1(b)), therefore the input signal G(x) can be represented by the step:

G(x) = Au−1(x) + n(x) (A.19)

where A is the amplitude of the step, the variance of the input white noise is n2
0 such that{︁

n2
0 =

⟨︁
n2(x)

⟩︁
∀x

}︁
and u−1(x) is the first derivative of the Dirac delta function

u−1(x) =

{︄
1 if x ⩾ 0,
0 if x < 0.

(A.20)

Then the signal G(x) is convolved with a filter whose impulse response and the output are
illustrated in Figure A.1(c) and A.1(d). In one dimension, the response of the antisymmetric
spatial filter f(x) to the edge G(x) is given by a convolution integral:

H =

+W∫︂
−W

G(−x)f(x)dx (A.21)

assuming the filter has a finite impulse response (FIR) bounded by [−W,+W] and is zero
outside this range. The true root mean square (RMS) value of the response to the noise
n(x) is

Hn = n0

⌜⃓⃓⃓
⎷+W∫︂

−W

f2(x)dx (A.22)

where n2
0 represents the noise power spectral density (PSD).

Mathematically, the three edge detection criteria to be optimised are expressed as follows.
1. The first criterion corresponds to maximising signal-to-noise ratio (SNR), which is

defined as:

SNR =
H

Hn
=
A

n0
·

⃓⃓⃓⃓
⃓ 0∫︁
−W

f(x)dx

⃓⃓⃓⃓
⃓√︄

+W∫︁
−W

f2(x)dx

=
A

n0
· Σ(f) (A.23)

then, the goal is to find the impulse response f(x) wich maximises Σ.
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Figure A.1: Edge detector application: (a) ideal step and (b) ideal step affected by Gaussian
noise, (c) first derivative of Gaussian operator, and (d) result of the convolution.

2. The second criterion corresponds to minimising the variance σ2 of the zero-crossing
position or maximising the localisation criterion LCZ that represents the reciprocal
of σ which is the distance between the located edge and the true edge:

LCZ =

⃓⃓⃓⃓
⃓+W∫︁
−W

G ′(−x)f ′(x)dx

⃓⃓⃓⃓
⃓

n0

√︄
+W∫︁
−W

f ′2(x)dx

=
A

n0
·

|f ′(0)|√︄
+W∫︁
−W

f ′2(x)dx

=
A

n0
·Λ(f ′) (A.24)

then, the goal is to find the impulse response f(x) wich maximises Λ.
3. The last criterion correspond to limit the number of peaks in the response to a single

edge, so there will be a low probability of declaring more than one edge, where xzc
represents a constraint that is the mean distance between zero-crossings of f(x), in
other words implies that there should be no multiple responses to the same edge in
a small region.

xzc(f) = π

⎛⎜⎜⎜⎝
+∞∫︁
−∞ f ′2(x)dx
+∞∫︁
−∞ f ′′2(x)dx

⎞⎟⎟⎟⎠
1
2

. (A.25)
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The solution of these problems is to maximise the product of ((A.23)) and ((A.24)) (invari-
ant under changes of scale or amplitude) under the multiple response constraint ((A.25)).
An efficient approximation turns out to be the first derivative of a Gaussian function, so the
first step of the Canny’s operator is to process the input image with Gaussian convolution,
and obtain the gradient image through differential operation to the smoothly image.
In order to do this, suppose to convolve the input image I(x,y) with an operator Gn(x,y)
which is the first derivative of a two-dimensional Gaussian G(x,y) in some direction n:

G(x,y) =
1

2πσ2 exp
(︃
−
x2 + y2

2σ2

)︃
(A.26)

and

Gn(x,y) =
∂G(x,y)
∂n

= n · ∇G (A.27)

where n is oriented normal to the direction of an edge to be detected and can be estimated
by the following:

n =
∇ (G ∗ I)
|∇ (G ∗ I)|

. (A.28)

Making use of Gaussian function’s separability, the two convolutions can be decomposed to
two one-dimensional filters as follows:

Gx =
∂G(x,y)
∂x

= −
x

σ2G(x,y) (A.29)

Gy =
∂G(x,y)
∂y

= −
y

σ2G(x,y). (A.30)

In order to reduce the computational cost, we use the separability property of the Gaussian
variables G(x,y) = G(x)G(y) wich allows to filter the input image with a sequence of
convolutions with one-dimensional mask as follows:

Gx = −
x

2πσ4 exp
(︃
−
x2

2σ2

)︃
exp

(︃
−
y2

2σ2

)︃
(A.31)

Gy = −
y

2πσ4 exp
(︃
−
x2

2σ2

)︃
exp

(︃
−
y2

2σ2

)︃
. (A.32)

Then, after convoluting the input image I(x,y) using the Equations ((A.31)) and ((A.32)),
respectively, we obtain the partial derivatives of I(x,y) in both directions x and y:

Mx(x,y) =
∂

∂x
(G(x,y) ∗ I(x,y)) (A.33)

My(x,y) =
∂

∂y
(G(x,y) ∗ I(x,y)) (A.34)

at such an edge point, the edge strength will be M(x,y) that is:

M(x,y) = |∇ (G ∗ I)| =
√︂
M2

x(x,y) +M2
y(x,y). (A.35)
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Figure A.2: The first order partial derivatives of the Gaussian function: (a) derivative with
respect to x and (b) derivative with respect to y.

Step 2 – Due to the multiple response, edge magnitude M(x,y) may contain wide ridges
around the local maxima; what must be done is to threshold the image based partly on the
direction of the gradient at each pixel using the “non-maximum suppression” algorithm,
that removes the non-maximum pixels preserving the connectivity of the contours.

The basic idea is that edge pixels have a direction associated with them; the magnitude of
the gradient at an edge pixel should be greater than the magnitude of the gradient of the
pixels on each side of the edge.

The gradient direction is obtained by the follow computation:

Θ(x,y) = arctan
(︃
My(x,y)
Mx(x,y)

)︃
. (A.36)

Algorithm Non-maximum suppression
Input: Images M(x,y) and Θ(x,y).
Output: Image NMS(x,y).

1. Copy the gradient magnitude image M(x,y) into the output image NMS(x,y).
2. From each postion (x,y), step in the two orthogonal directions to edge orientation
Θ(x,y) (see Figure A.3).

3. Denote the initial pixel (x,y) by Ω, the two neighbouring pixels in the orthogonal
directions by Ψ and Φ.

4. if (M(Ψ) > M(Ω)) ∨ (M(Φ) > M(Ω)) then
discard the pixel (x,y) by setting NMS(x,y) = 0.

end if
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Figure A.3: Non-maximum suppression: adjacency pixels relationship.

Step 3 – The last image still contains noisy local maxima and needs to be thresholded to
determine which pixels are edge pixels and which are not.
The study reported in [23] suggests thresholding using hysteresis rather than simply
selecting a threshold value to apply everywhere.
The algorithm uses a high threshold th and a low threshold tl such that: if any pixel (x,y)
in the image has a value greater than th is presumed to be an edge pixel, and is marked as
such immediately. Then, any pixel that is connected to this edge pixel and that has a value
greater than tlow is also selected as edge pixel, and is marked too.
The marking of neighbours can be done recursively, as it is in the function hysteresis, or by
performing multiple passes through the image.
The relationship between the two threshold values is tl = th/2 where th is calculated with
the Otsu’s algorithm [42].

Algorithm Hysteresis thresolding
Input: Image NMS(x,y).
Output: Image Y(x,y).

1. Copy the non-maximum suppression image NMS(x,y) into the output image
Y(x,y).

2. for each postion (x,y) do
if the pixel (x,y) has a value less than tl then

discard the pixel value
else if the pixel (x,y) has a value greater than th then

save the pixel value in the output image Y(x,y)
else if the pixel (x,y) is a candidate then

follow the chain of connected local maxima in both directions along
the edge, as long as NMS(x,y) > tl
if the starting candidate pixel (x,y) is connected to a strong pixel then

save the candidate pixel in the output image
else

do not save the candidate pixel.
end if

end if
end for
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A.3 Laplacian of Gaussian

The Laplacian of Gaussian filter is based on the second-order derivative of the Gaussian
function and is invariant to rotation, meaning that it is insensitive to the direction in which
the discontinuities (e.g., edge and corner-like image structures) run.
Considering a one-dimensional case, the zero-mean Gaussian function is defines as:

G(x) =
1√
2πσ

exp
(︃
−
x2

2σ2

)︃
(A.37)

and its first and second derivatives, whose behaviours are depicted in Figure A.4, are given
by

dG(x)

dx
= −

x√
2πσ3

exp
(︃
−
x2

2σ2

)︃
= −

x

σ2G (x) (A.38)

d2G(x)

dx2 =
x2 − σ2
√

2πσ5
exp

(︃
−
x2

2σ2

)︃
=
x2 − σ2

σ4 G (x) . (A.39)
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Figure A.4: Representation of a one-dimensional Gaussian function with zero mean and
unit variance in blue, its first derivative in orange, and its second derivative in green.

Definition 30. The Laplacian operator of a continuous, two-dimensional function f(x,y) is
defined as the divergence of the gradient of the function or, equivalently, the sum of the second
partial derivatives of the function with respect to each independent variable (unmixed second
partial derivatives):

∇2f(x,y) = ∇ · ∇f(x,y)

=
∂2f(x,y)
∂x2 +

∂2f(x,y)
∂y2

(A.40)

where the result, unlike the gradient, is not a vector but a scalar quantity. This operator has
the property of being isotropic, hence its value is invariant with respect to rotations of the
coordinate system.
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By applying the Laplacian operator to a rotationally symmetric two-dimensional Gaussian
function

G(x,y) =
1

2πσ2 exp
(︃
−
x2 + y2

2σ2

)︃
(A.41)

with zero mean and unit variance in both directions. Analogously to the previous one-
dimensional case, it is possible to find an expression for the Laplacian of the Gaussian
performing the following differentiations:

∇2G(x,y) = ∇ · ∇f(x,y)

=
∂2G(x,y)
∂x2 +

∂2G(x,y)
∂y2

=
∂

∂x

[︃
−x

2πσ4 exp
(︃
−
x2 + y2

2σ2

)︃]︃
+
∂

∂y

[︃
−y

2πσ4 exp
(︃
−
x2 + y2

2σ2

)︃]︃
=

(︃
x2 − σ2

2πσ6

)︃
exp

(︃
−
x2 + y2

2σ2

)︃
+

(︃
y2 − σ2

2πσ6

)︃
exp

(︃
−
x2 + y2

2σ2

)︃
=

(︃
x2 + y2 − 2σ2

2πσ6

)︃
exp

(︃
−
x2 + y2

2σ2

)︃
=

[︃
x2 + y2 − 2σ2

σ4

]︃
G (x,y) .

(A.42)

The final expression is named Laplacian of Gaussian (LoG) and is illustrated in Figure A.5.
Furthermore, the continuous Laplacian of Gaussian function in Equation (A.42) has the
absolute value integral ∫︂+∞

−∞
∫︂+∞
−∞
⃓⃓
∇2G(x,y)

⃓⃓
dxdy =

4
σ2e

(A.43)

and zero mean, that is, ∫︂+∞
−∞

∫︂+∞
−∞ ∇2G(x,y)dxdy = 0. (A.44)
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Figure A.5: Cross section of LoG function as defined in Equation (A.42) for different σ.
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Note that in the cross section of the two-dimensional LoG function illustrated in Figure A.5,
the zero crossings occur at x2 + y2 = 2σ2, thus defining a circle of radius

√
2σ centred on

the origin. Figure A.6 illustrates a three-dimensional plot and the relative image of the
negative of the LoG function1.

(a) (b)

Figure A.6: LoG function as defined in Equation (A.42) with unit variance: 3D plot of the
negative of the LoG, an (b) negative of the LoG displayed as an image.

LoG-approximation by the Difference of Gaussians (DoG)

The Marr-Hildreth algorithm [102] consists of convolving the Laplacian of Gaussian filter
with an input image I(x,y)

H(x,y) =
[︁
∇2G(x,y)

]︁
∗ I(x,y) (A.45)

and then finding the zero crossings of H(x,y to determine the locations of edges in I(x,y).
Because convolution and differentiation are the only linear operators involved, it is possible
to interchange them2:

H(x,y) = ∇2 (︁G(x,y) ∗ I(x,y))︁⏞ ⏟⏟ ⏞
Gaussian smoothing

= I(x,y) ∗ ∇2(︁G(x,y))︁. (A.46)

hence, it is possible to smooth the image first using a Gaussian filter and then apply the
Laplacian operator to the result. The Marr-Hildreth edge-detection algorithm may be
summarized as follows [55]:

1. smooth the input image I(x,y) with a Gaussian lowpass filter G(x,y),
2. compute the Laplacian of the result as described in the Equations (A.45)-(A.46),
3. eventually, find the zero crossings of the resulting image from the previous step.

1Because of the shape illustrated in Figure A.6(a), the Laplacian of Gaussian function sometimes is called
the Mexican hat operator.

2The LoG is a symmetric filter, so spatial filtering using correlation or convolution yields the same result.
Moreover, although this expression is implemented in the spatial domain, it can be implemented also in the
frequency domain.
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A useful approximation of the LoG filter in Equation (A.42) has been found to be repre-
sented by the Difference of Gaussians (DoG) of widths σ1 and σ2

Dσ1,σ2(x,y) =
1

2πσ2
2

exp
(︃
−
x2 + y2

2σ2
2

)︃
−

1
2πσ2

1
exp

(︃
−
x2 + y2

2σ2
1

)︃
(A.47)

with σ2 > σ1. Even though Marr and Hildreth [102] suggested that using the ratio
1.6 preserves the basic characteristics of these observations and also provides a closer
“engineering” approximation to the LoG function [55], this value does not yield a satisfactory
approximation (possibly that value refers to the ratio of the variances and not of standard
deviations). The LoG function in Equation (A.42) has a (negative) peak at the origin equal
to

L(0, 0) =
[︃
x2 + y2 − 2σ2

σ4

]︃
G (x,y)

⃓⃓⃓⃓
⃓
0,0

= −
1
πσ4 (A.48)

conversely, the DoG function has a peak value of

Dσ1,σ2(0, 0) =
1

2πσ2
2

exp
(︃
−
x2 + y2

2σ2
2

)︃
−

1
2πσ2

1
exp

(︃
−
x2 + y2

2σ2
1

)︃ ⃓⃓⃓⃓
⃓
0,0

=
1

2π

(︃
σ2

1 − σ
2
2

σ2
1σ

2
2

)︃
.

(A.49)
Let k = σ2

σ1
> 1 denote the standard deviation ratio, then the DoG function is as follows

Dσ,k(x,y) = Gkσ(x,y) −Gσ(x,y)

=
1

2πk2σ2 exp
(︃
−
x2 + y2

2k2σ2

)︃
−

1
2πσ2 exp

(︃
−
x2 + y2

2σ2

)︃
.

(A.50)

Hence, by scaling the DoG function to match the centre peak value of the LoG function, i.e.,
L(0, 0) = λDσ,k(0, 0), the Equation (A.42) can be approximated by the DoG in the form

L(x,y) ≈ 2k2

σ2 (k2 − 1)
Dσ,k(x,y). (A.51)
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Figure A.7: LoG-approximation by the Difference of Gaussians (DoG): (a) the two original
Gaussians using a ratio k2 = 1.6 and standard deviation σ = 1, and (b) LoG in comparison
to the DoG function, which has been scaled to match the magnitude of the LoG function.
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A.4 Elements of mathematical morphology

Mathematical morphology is area of image-analysis that uses operators developed by means
of the set theory [131]. In mathematical morphology we process images according to
shape, by treating both as sets of points. In this way, morphological operators define local
transformations that change pixel values that are represented as sets.
In binary images, the sets in question are subsets of the two-dimensional integer space Z2,
where points are represented by a pair of integers that give coordinates with respect to the
two axes. A morphological transformation is given by the relation between the image and
the structuring element.
The reflection of a set X, denoted by X̂, is as follows

X̂ = {w|w = −x, for x ∈ X} (A.52)

where X̂ represents the set of points in X whose (x,y) coordinates have been replaced by
(−x,−y).
The translation of a set X by a point z = (z1, z2), denoted by (X)z, is as follows

(X)z = {c|c = b+ z, for x ∈ X} (A.53)

where (X)z represents the set of points in X whose (x,y) coordinates have been replaced
by (x+ z1,y+ z2).

Binary dilation and erosion

The primary morphological operations are dilation and erosion (primitive operations), and
from those two, more complex morphological operations can be derived.

Dilation

The morphological transformation dilation ⊕ combines two sets X and B in Z2 as follows

X⊕ B = {z|(B)z ∩ X ̸= ∅} (A.54)

which means that this equation is based on reflecting B about its origin,and shifting this
reflection by z. The dilation of X by B thus is the set of all displacements, such that X and
B overlap by at least one element. Equivalently, the Equation (A.54) can be written as:

X⊕ B = {z| [(B)z ∩ X] ⊆ X} . (A.55)

Example 2.

X = {(1, 0), (1, 1), (1, 2), (2, 2), (0, 3), (0, 4)},

B = {(0, 0), (1, 0)},

X⊕ B = {(1, 0), (1, 1), (1, 2), (2, 2), (0, 3), (0, 4),

(2, 0), (2, 1), (2, 2), (3, 2), (1, 3), (1, 4)}.
Figure A.8: Example of morphologi-
cal transformation dilation.
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The dilation operation is commutative

X⊕ B = B⊕ X (A.56)

and is also associative
X⊕ (B⊕D) = (X⊕ B)⊕D. (A.57)

This morphological operation may also be expressed as a union of shifted point sets

X⊕ B =
⋃︂
b∈B

Xb (A.58)

and is invariant to translation
Xh ⊕ B = (X⊕ B)h. (A.59)

Moreover, dilation is an increasing transformation

X⊕ B ⊆ Y ⊕ B ⇐⇒ X ⊆ Y (A.60)

Erosion

The morphological transformation erosion ⊖ combines two sets X and B in Z2 as follows

X⊖ B = {z|(B)z ⊆ X} (A.61)

which means that this equation indicates that the erosion of X by B is the set of all points z
such that B translated by z is contained in X and is the dual of the dilation. Equivalently,
the Equation (A.61) can be written as:

X⊖ B = {z|(B)z ∩ Xc = ∅} (A.62)

where Xc is the complement of X and ∅ is the empty set. Neither dilation nor erosion is an
invertible transformation.
However, an image X eroded by a structuring element B can be expressed as an intersection
of all translations of the image X by the vector −b ∈ B

X⊕ B =
⋂︂
b∈B

X−b. (A.63)

Erosion is also invariant to translation

Xh ⊖ B = (X⊖ B)h, (A.64)

X⊖ Bh = (X⊖ B)−h, (A.65)

and, as the dilation operation, is an increasing transformation

X⊖ B ⊆ Y ⊖ B ⇐⇒ X ⊆ Y. (A.66)

Example 3.

X = {(1, 0), (1, 1), (1, 2), (0, 3), (1, 3), (2, 3),

(3, 3), (1, 4)},

B = {(0, 0), (1, 0)},

X⊖ B = {(0, 3), (1, 3), (2, 3)}.
Figure A.9: Example of morphologi-
cal transformation erosion.
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Duality

As mentioned above, erosion and dilation are duals of each other with respect to set
complementation and reflection

(X⊕ B)c = Xc ⊖ B̂ (A.67)

and
(X⊖ B)c = Xc ⊕ B̂ (A.68)

where the second equation indicates that the erosion of X by the structuring element
B is the complement of the dilation of Xc by B, and vice versa. This property is useful
particularly when the structuring element is symmetric with respect to its origin.

Proof. Let us consider the definition of erosion in Equation A.61, then it follows that

(X⊖ B)c = {z|(B)z ⊆ X}c.

If set (B)z is contained in X, then (B)z ∩ Xc = ∅, in which case the preceding expression
becomes

(X⊖ B)c = {z|(B)z ∩ Xc = ∅}c.

But the complement of the set of z’s that satisfy (B)z ∩ Xc = ∅ is the set of z’s such that
(B)z ∩ Xc = ∅. Therefore,

(X⊖ B)c = {z|(B)z ∩ Xc ̸= ∅}

= Xc ⊕ B̂

where the last step follows from Equations (A.54) and (A.55).

Binary opening and closing

Dilation and erosion are not reversible transformations (once an image is has been eroded
and then dilated, the result is not equivalent to the original image). Closing operation
smoothes the contour of an object, fuses narrow breaks and long thin gulfs, eliminates
small holes, and fills gaps in the contour. Opening also tends to smooth sections of contours
and it generally eliminates thin protrusions [55].
The opening of a set X by the structuring element B is denoted by X ◦ B and is defined as

X ◦ B = (X⊖ B)⊕ B. (A.69)

Hence, this operation consists of an erosion of X by B, followed by a dilation of the result
by B.
Similarly, the closing of a set X by the structuring element B is denoted by X • B and is
defined as

X • B = (X⊕ B)⊖ B. (A.70)

Hence, this operation consists of a dilation of X by B, followed by an erosion of the result
by B.
Unlike erosion and dilation, closing and opening are invariant to translation of the struc-
turing element. In view of the Equations (A.60) and (A.66), both closing and opening
are increasing transformations. Closing is extensive (X ⊆ X • B)and opening is anti-
extensive (X ◦ B ⊆ X). Moreover, like erosion and dilation, opening and closing are dual
transformations:

(X • B)c = Xc ◦ B̂. (A.71)
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A.5 Affine transformations

An affine transform is an automorphism of an affine space, that is, a functional mapping
between an affine space onto itself which preserves points, straight and parallel lines as
well as ratios between points (but not necessarily distances and angles). Transformation in
Cartesian coordinates are known as similarity transforms since they do not change angle
values. They define rotations, changes in scale, and translations.
Affine transforms3 enable basic image transformation, including translation, scaling, ho-
mothety, similarity, reflection, rotation, shear mapping, and compositions of them in any
combination and sequence. Since translation is not a linear transform, to represent all of
the affine transforms by matrices it is possible to use homogeneous coordinates:⎡⎣x2

y2
1

⎤⎦ =

⎡⎣h1,1 h1,2 h1,3
h2,1 h2,2 h2,3
h3,1 h3,2 h3,3

⎤⎦⎡⎣x1
y1
1

⎤⎦ . (A.72)

Affine tranformations based on Equation (A.72) are as follows.

Transformation Affine matrix Coordinate equations

Identity

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ x2 = x1
y2 = y1

Scaling

⎡⎣cx 0 0
0 cy 0
0 0 1

⎤⎦ x2 = cxx1
y2 = cyy1

Rotation

⎡⎣ cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

⎤⎦ x2 = x1 cos(θ) − y1 sin(θ)
y2 = x1 cos(θ) + y1 sin(θ)

Translation

⎡⎣ 1 0 0
0 1 0
tx ty 1

⎤⎦ x2 = x1 + tx
y2 = y1 + ty

Shear (vertical)

⎡⎣ 1 0 0
sv 1 0
0 0 1

⎤⎦ x2 = x1 + svy1
y2 = y1

Shear (vertical)

⎡⎣1 sh 0
0 1 0
0 0 1

⎤⎦ x2 = x1
y2 = shx1 + y1

Table A.1: Affine transformations.

3Note that a similarity transform is a special case of an affine transform and that an affine transform is a
special case of a homography, therefore, similarity and affine transforms can be expressed as homographies.





B
Colour space transformations

This section summarises the transformations between the CIE RGB, CIE XYZ, and CIE
L*a*b* colour spaces.
According to the tri-stimulus theory [132], all the possible colours that human perceive
can be defined in a three-dimensional linear space. That is, if [c1c2c3]

⊤ define colour
components (or weights) and [A1A2A3]

⊤] some base colours (or primaries), then a colour
is defined by the colorimetric equation as follows:

C = c1A1 + c2A2 + c3A3 (B.1)

where the superposition is expressed as an algebraic sum according to the Grassmann’s law
of linearity. The equation describes the idea that three stimuli combined by superposition
of lights re-create the perception of the colour C = [c1c2c3]

⊤.
Conversion of RGB image pixel values to the CIE XYZ tri-stimulus values can be achieved
using a two stage process. While the CIE RGB model uses visible physical colours, the CIE
XYZ uses imaginary colours that only provide a theoretical basis with better descriptive
properties.

B.1 CIE RGB to CIE XYZ transformation

The colour components in the XYZ model are obtained from the components of the RGB
model by a linear transformation as follows [19, 41]:⎡⎣XY

Z

⎤⎦ =
1

0.17697

⎡⎣0.49000 0.31000 0.20000
0.17697 0.81240 0.01063
0.00000 0.01000 0.99000

⎤⎦
⏞ ⏟⏟ ⏞

M

⎡⎣RG
B

⎤⎦ (B.2)

where M is a non-singular 3 × 3 matrix. While the above matrix is exact, with the number
of digits specified in CIE standards. With this version of the matrix M, the Y value
corresponding to pure red is 1, however, a more commonly used form is to omit the leading
fraction, so that the second row adds up to one, i.e., the RGB triplet (1, 1, 1) maps to a Y
value of 1 [138]. Dividing each component XYZ by the sum of their values, we obtain the
chromaticity coordinates

x =
X

X+ Y + Z
, y =

Y

X+ Y + Z
, z =

Z

X+ Y + Z
(B.3)

which eventually sum up to one.



126 Appendix B. Colour space transformations

B.2 CIE XYZ to CIE RGB transformation

The mapping from the XYZ colour model to the RGB is given by using the inverse of the
matrix M, that is not exactly specified, but is approximately [130]:⎡⎣XY

Z

⎤⎦ = 0.17697

⎡⎣ 2.36468 −0.89656 −0.46811
−0.51527 1.42645 0.08882
0.00520 −0.01441 1.00920

⎤⎦
⏞ ⏟⏟ ⏞

M−1

⎡⎣RG
B

⎤⎦ . (B.4)

B.3 CIE L*a*b* to CIE XYZ transformation

Because the response of the human visual system is roughly logarithmic the CIE defined
a non-linear re-mapping of the XYZ space called CIE L*a*b* [138]. The lightness, or L*
component, is defined as follows:

L∗ = 116f
(︃
Y

Yref

)︃
− 16 (B.5)

where Yref is the luminance value of the reference white point and

f(ξ) =

⎧⎨⎩ ξ1/3 if ξ > δ3,
ξ

3δ2 +
2δ
3

otherwise.
(B.6)

In a similar fashion, the chromaticity components a* and b* are defined as:

a∗ = 500
[︃
f

(︃
X

Xref

)︃
− f

(︃
Y

Yref

)︃]︃
b∗ = 200

[︃
f

(︃
Y

Yref

)︃
− f

(︃
Z

Zref

)︃]︃
(B.7)

where (Xref, Yref,Zref) are the values of the reference white point and δ = 6/29.

B.4 CIE XYZ to CIE L*a*b* transformation

To calculate (X, Y,Z) from given CIE L*a*b* colour coordinates

Y = Yreff
−1 (︁L ′)︁ , X = Xreff

−1
(︃
L ′ +

a∗

500

)︃
, Z = Zreff

−1
(︃
L ′ +

b∗

200

)︃
, (B.8)

where

L ′ =
L∗ + 16

116
, f−1(ξ) =

⎧⎨⎩ ξ3 if ξ > δ

3δ2
(︃
ξ−

2δ
3

)︃
otherwise

(B.9)

where δ = 6/29. Note that the division of the domain of the f function into two parts has
been done to prevent an infinite slope at ξ = 0.
For Standard Illuminant D65, the reference white point assumes the following values:

Xref = 95.0489, Yref = 100, Zref = 108.8840. (B.10)



C
Parameter optimisation experiments

In the following table, a performance comparative analysis of the results for the parameter
optimisation of the palm vascular patterns recognition system has been reported. The
subset of the database used to perform the experiments, considers half of the right hand
samples of all the subjects in the CASIA database acquired in the near-infrared spectrum
band at 940 nm.

GAR at specific value of FAR Paramter values

id EER GAR1 GAR2 GAR3 GAR4 GAR5 GAR6 λ µ ν

1 0.002 1.000 0.995 0.993 0.988 0.978 0.953 0.631 2 0.029 5 0.292 0
2 0.003 0.999 0.994 0.993 0.989 0.974 0.946 0.548 7 0.034 6 0.423 0
3 0.003 0.998 0.994 0.990 0.983 0.972 0.940 0.254 0 0.049 6 0.676 1
4 0.004 0.999 0.994 0.990 0.988 0.972 0.938 0.229 8 0.055 8 0.637 0
5 0.004 1.000 0.994 0.993 0.988 0.963 0.936 0.429 8 0.042 4 0.464 3
6 0.005 0.999 0.994 0.992 0.987 0.969 0.935 0.094 8 0.070 2 0.635 3
7 0.006 0.999 0.994 0.991 0.985 0.961 0.935 0.287 4 0.049 5 0.604 9
8 0.006 0.999 0.994 0.990 0.983 0.938 0.912 0.471 4 0.033 4 0.520 0
9 0.007 0.996 0.994 0.991 0.983 0.972 0.951 0.387 3 0.048 9 0.602 7

10 0.007 0.998 0.994 0.990 0.988 0.971 0.945 0.279 6 0.052 9 0.618 4
11 0.007 0.998 0.994 0.993 0.986 0.943 0.935 0.266 7 0.056 9 0.479 0
12 0.007 0.999 0.994 0.992 0.983 0.950 0.910 0.323 4 0.040 4 0.624 1
13 0.007 0.998 0.994 0.989 0.983 0.942 0.903 0.381 1 0.044 6 0.468 7
14 0.007 0.999 0.993 0.990 0.983 0.950 0.899 0.138 9 0.051 9 0.704 2
15 0.007 0.998 0.993 0.992 0.982 0.932 0.898 0.096 1 0.070 0 0.510 8
16 0.007 0.998 0.995 0.992 0.980 0.929 0.893 0.067 7 0.073 6 0.481 6
17 0.007 0.998 0.995 0.986 0.975 0.905 0.867 0.430 7 0.043 8 0.326 1
18 0.008 0.996 0.993 0.988 0.978 0.956 0.932 0.177 4 0.044 2 0.765 4
19 0.008 0.996 0.993 0.988 0.975 0.953 0.926 0.108 5 0.058 8 0.752 1
20 0.008 0.998 0.994 0.983 0.969 0.887 0.854 0.184 4 0.061 0 0.465 8
21 0.009 0.997 0.993 0.988 0.977 0.954 0.927 0.151 4 0.046 9 0.767 9
22 0.009 0.998 0.993 0.983 0.968 0.903 0.842 0.069 9 0.057 3 0.684 5
23 0.009 0.998 0.993 0.981 0.968 0.866 0.839 0.062 3 0.064 8 0.603 1
24 0.009 0.999 0.993 0.976 0.955 0.858 0.837 0.367 2 0.048 3 0.244 1
25 0.010 0.995 0.991 0.986 0.973 0.943 0.917 0.203 1 0.045 8 0.762 1
26 0.010 0.998 0.990 0.981 0.963 0.888 0.836 0.177 5 0.061 8 0.441 1
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GAR at specific value of FAR Paramter values

id EER GAR1 GAR2 GAR3 GAR4 GAR5 GAR6 λ µ ν

27 0.011 0.996 0.991 0.973 0.951 0.849 0.807 0.114 8 0.070 2 0.279 7
28 0.012 0.996 0.989 0.975 0.953 0.865 0.803 0.126 2 0.049 2 0.685 3
29 0.013 0.995 0.988 0.968 0.945 0.813 0.795 0.174 0 0.053 5 0.580 0
30 0.013 0.997 0.988 0.972 0.939 0.833 0.775 0.437 9 0.036 2 0.455 9
31 0.013 0.998 0.986 0.968 0.933 0.833 0.733 0.624 3 0.024 3 0.327 0
32 0.014 0.995 0.985 0.958 0.922 0.772 0.742 0.538 7 0.032 7 0.284 5
33 0.016 0.994 0.984 0.960 0.926 0.776 0.748 0.232 7 0.045 6 0.060 3
34 0.016 0.995 0.983 0.958 0.923 0.816 0.717 0.483 5 0.039 5 0.194 0
35 0.017 0.996 0.977 0.957 0.908 0.825 0.748 0.102 8 0.039 3 0.373 2
36 0.018 0.997 0.974 0.957 0.901 0.830 0.764 0.184 5 0.037 3 0.673 8
37 0.018 0.994 0.980 0.961 0.917 0.829 0.734 0.254 4 0.049 5 0.500 8
38 0.018 0.994 0.978 0.956 0.902 0.753 0.718 0.344 1 0.048 9 0.282 8
39 0.019 0.994 0.980 0.945 0.902 0.748 0.717 0.381 1 0.048 2 0.169 1
40 0.019 0.995 0.974 0.944 0.882 0.759 0.622 0.807 6 0.014 0 0.100 4
41 0.021 0.993 0.971 0.952 0.895 0.786 0.698 0.097 9 0.069 7 0.244 1
42 0.021 0.994 0.975 0.952 0.900 0.787 0.669 0.256 8 0.033 8 0.687 3
43 0.027 0.992 0.964 0.910 0.841 0.718 0.623 0.255 7 0.040 6 0.058 4
44 0.029 0.989 0.958 0.906 0.844 0.665 0.622 0.432 5 0.039 7 0.297 9
45 0.029 0.990 0.955 0.893 0.808 0.680 0.602 0.095 0 0.043 4 0.062 1
46 0.030 0.990 0.962 0.929 0.849 0.737 0.688 0.098 7 0.059 9 0.532 8
47 0.030 0.988 0.962 0.912 0.821 0.673 0.567 0.034 9 0.046 4 0.739 3
48 0.032 0.983 0.957 0.895 0.814 0.686 0.602 0.135 6 0.068 5 0.037 6
49 0.033 0.987 0.955 0.898 0.826 0.703 0.614 0.056 1 0.071 8 0.205 0
50 0.033 0.985 0.952 0.903 0.807 0.714 0.595 0.089 9 0.070 6 0.114 7
51 0.037 0.981 0.942 0.869 0.790 0.658 0.582 0.004 8 0.074 8 0.234 1
52 0.037 0.983 0.947 0.868 0.758 0.649 0.552 0.205 2 0.055 7 0.366 8
53 0.037 0.984 0.940 0.880 0.743 0.579 0.493 0.502 5 0.037 9 0.088 9
54 0.037 0.990 0.946 0.838 0.728 0.602 0.429 0.052 6 0.048 0 0.298 9
55 0.039 0.981 0.938 0.861 0.758 0.623 0.531 0.076 1 0.065 7 0.379 9
56 0.039 0.980 0.934 0.854 0.738 0.634 0.529 0.213 5 0.057 5 0.256 9
57 0.040 0.980 0.934 0.848 0.729 0.627 0.520 0.169 2 0.053 7 0.502 2
58 0.044 0.975 0.922 0.833 0.719 0.602 0.491 0.026 8 0.069 7 0.360 7
59 0.044 0.973 0.923 0.830 0.704 0.598 0.487 0.455 2 0.023 9 0.355 3
60 0.044 0.971 0.923 0.826 0.689 0.594 0.482 0.138 7 0.057 9 0.449 1
61 0.045 0.981 0.920 0.805 0.673 0.542 0.398 0.505 6 0.034 0 0.236 5
62 0.046 0.972 0.917 0.826 0.701 0.575 0.470 0.067 8 0.068 2 0.266 0
63 0.048 0.968 0.911 0.792 0.658 0.554 0.444 0.158 6 0.061 8 0.206 7
64 0.048 0.968 0.907 0.818 0.652 0.505 0.399 0.216 4 0.033 2 0.698 7
65 0.049 0.972 0.923 0.844 0.780 0.668 0.607 0.017 7 0.040 8 0.441 3
66 0.050 0.968 0.907 0.813 0.664 0.559 0.437 0.218 1 0.054 6 0.325 9
67 0.052 0.968 0.904 0.782 0.678 0.537 0.423 0.142 9 0.065 3 0.070 1
68 0.053 0.970 0.880 0.772 0.574 0.470 0.279 0.479 6 0.028 6 0.459 4
69 0.054 0.970 0.892 0.785 0.631 0.533 0.403 0.182 8 0.060 9 0.134 6
70 0.054 0.980 0.889 0.686 0.511 0.293 0.140 0.079 5 0.044 9 0.355 6
71 0.058 0.965 0.891 0.728 0.602 0.477 0.308 0.230 6 0.040 2 0.617 3
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id EER GAR1 GAR2 GAR3 GAR4 GAR5 GAR6 λ µ ν

72 0.058 0.978 0.833 0.655 0.379 0.216 0.143 0.061 2 0.045 1 0.157 1
73 0.058 0.978 0.833 0.655 0.379 0.216 0.143 0.162 3 0.044 7 0.210 6
74 0.059 0.958 0.896 0.792 0.691 0.492 0.407 0.117 6 0.055 5 0.823 4
75 0.060 0.968 0.792 0.512 0.340 0.120 0.089 0.345 3 0.028 7 0.382 8
76 0.061 0.972 0.852 0.687 0.487 0.305 0.162 0.334 3 0.032 0 0.343 8
77 0.061 1.000 1.000 0.904 0.808 0.808 0.086 0.198 5 0.035 6 0.532 7
78 0.062 0.960 0.837 0.546 0.288 0.090 0.068 0.080 2 0.054 3 0.009 3
79 0.062 0.446 0.200 0.178 0.167 0.157 0.136 0.158 0 0.043 0 0.411 5
80 0.063 0.960 0.837 0.704 0.636 0.578 0.470 0.596 4 0.025 3 0.148 2
81 0.063 0.958 0.870 0.656 0.453 0.292 0.210 0.648 6 0.024 2 0.125 5
82 0.069 0.948 0.863 0.713 0.570 0.460 0.348 0.046 5 0.068 7 0.233 4
83 0.069 0.945 0.838 0.706 0.550 0.421 0.280 0.184 7 0.059 6 0.149 2
84 0.070 0.947 0.871 0.727 0.607 0.462 0.368 0.009 5 0.057 1 0.838 3
85 0.070 0.952 0.828 0.697 0.508 0.354 0.195 0.362 5 0.037 0 0.473 2
86 0.070 0.968 0.801 0.597 0.434 0.236 0.094 0.155 4 0.043 2 0.113 3
87 0.072 0.949 0.806 0.639 0.451 0.302 0.193 0.431 4 0.026 7 0.385 6
88 0.073 0.949 0.758 0.551 0.354 0.133 0.081 0.611 6 0.018 4 0.135 9
89 0.075 0.958 0.766 0.539 0.281 0.118 0.071 0.363 9 0.032 4 0.398 6
90 0.076 0.933 0.807 0.643 0.531 0.379 0.278 0.010 8 0.066 2 0.437 5
91 0.076 0.949 0.811 0.643 0.447 0.284 0.172 0.326 6 0.048 5 0.135 5
92 0.076 0.960 0.777 0.561 0.353 0.223 0.135 0.449 3 0.022 1 0.277 3
93 0.077 0.954 0.789 0.597 0.402 0.254 0.159 0.248 6 0.036 5 0.359 4
94 0.077 0.948 0.800 0.633 0.450 0.285 0.183 0.340 6 0.028 0 0.193 7
95 0.078 0.946 0.771 0.574 0.381 0.265 0.161 0.013 4 0.041 9 0.672 7
96 0.079 0.965 0.793 0.621 0.449 0.277 0.135 0.097 2 0.040 6 0.651 7
97 0.080 0.948 0.770 0.515 0.290 0.168 0.083 0.218 0 0.039 3 0.455 5
98 0.080 0.963 0.758 0.515 0.340 0.203 0.071 0.141 4 0.043 0 0.428 2
99 0.081 0.442 0.229 0.196 0.145 0.108 0.071 0.076 4 0.039 1 0.565 4

100 0.082 0.932 0.791 0.554 0.405 0.231 0.106 0.932 0 0.003 3 0.032 5
101 0.082 0.951 0.782 0.534 0.306 0.180 0.072 0.050 6 0.038 3 0.185 2
102 0.083 0.935 0.767 0.595 0.397 0.227 0.143 0.040 2 0.059 7 0.127 3
103 0.083 0.932 0.773 0.580 0.410 0.237 0.132 0.396 0 0.042 2 0.164 8
104 0.084 0.935 0.748 0.553 0.353 0.192 0.098 0.584 7 0.021 3 0.401 9
105 0.087 0.937 0.778 0.563 0.348 0.179 0.139 0.683 7 0.017 2 0.282 0
106 0.087 0.938 0.756 0.418 0.226 0.082 0.047 0.130 8 0.040 6 0.510 2
107 0.090 0.944 0.712 0.519 0.294 0.144 0.071 0.064 9 0.039 5 0.233 8
108 0.091 0.932 0.732 0.397 0.213 0.067 0.043 0.550 5 0.019 6 0.212 9
109 0.092 0.927 0.740 0.404 0.222 0.078 0.034 0.283 9 0.042 1 0.051 0
110 0.095 0.926 0.723 0.556 0.392 0.252 0.162 0.054 6 0.065 7 0.257 9
111 0.101 0.925 0.723 0.445 0.232 0.095 0.049 0.272 0 0.030 5 0.410 3
112 0.102 0.911 0.683 0.475 0.296 0.127 0.106 0.553 8 0.032 2 0.040 8
113 0.102 0.927 0.738 0.511 0.338 0.162 0.074 0.384 1 0.033 0 0.493 4
114 0.103 0.921 0.732 0.538 0.353 0.189 0.101 0.138 5 0.040 4 0.676 5
115 0.105 0.899 0.663 0.475 0.252 0.113 0.088 0.714 0 0.019 4 0.067 2
116 0.106 0.901 0.709 0.461 0.268 0.126 0.056 0.129 3 0.043 7 0.520 0
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GAR at specific value of FAR Paramter values

id EER GAR1 GAR2 GAR3 GAR4 GAR5 GAR6 λ µ ν

117 0.106 0.901 0.709 0.461 0.268 0.126 0.056 0.771 9 0.012 1 0.095 0
118 0.109 0.912 0.663 0.421 0.193 0.055 0.033 0.709 2 0.017 9 0.044 9
119 0.115 0.883 0.680 0.492 0.334 0.193 0.121 0.067 5 0.063 3 0.293 1
120 0.116 0.883 0.678 0.493 0.329 0.189 0.118 0.078 1 0.060 8 0.370 8
121 0.117 0.884 0.675 0.488 0.326 0.183 0.118 0.028 2 0.054 9 0.613 8
122 0.119 0.893 0.655 0.440 0.216 0.114 0.069 0.478 1 0.033 3 0.234 3
123 0.122 0.848 0.644 0.345 0.197 0.058 0.029 0.236 3 0.035 4 0.380 6
124 0.123 0.843 0.511 0.309 0.207 0.120 0.003 0.329 7 0.041 0 0.175 2
125 0.126 0.898 0.651 0.434 0.269 0.139 0.048 0.205 0 0.034 1 0.673 6
126 0.133 0.858 0.630 0.417 0.265 0.161 0.090 0.126 1 0.062 5 0.048 6
127 0.134 0.847 0.660 0.405 0.262 0.144 0.058 0.051 5 0.040 9 0.723 9
128 0.135 0.847 0.466 0.269 0.087 0.015 0.015 0.126 3 0.067 1 0.836 9
129 0.138 0.873 0.626 0.395 0.223 0.135 0.072 0.207 5 0.056 3 0.052 9
130 0.145 0.869 0.580 0.340 0.203 0.118 0.037 0.240 2 0.039 2 0.570 0
131 0.146 0.861 0.615 0.396 0.236 0.151 0.064 0.047 7 0.046 7 0.437 6
132 0.150 0.821 0.551 0.354 0.208 0.066 0.038 0.385 2 0.040 2 0.199 7
133 0.152 0.725 0.499 0.262 0.106 0.028 0.007 0.341 6 0.033 8 0.263 6
134 0.155 0.733 0.517 0.524 0.212 0.056 0.037 0.377 0 0.029 2 0.012 3
135 0.158 0.832 0.606 0.351 0.180 0.096 0.038 0.229 6 0.042 9 0.509 9
136 0.159 0.818 0.585 0.334 0.168 0.083 0.043 0.272 8 0.045 5 0.333 6
137 0.159 0.833 0.574 0.371 0.194 0.083 0.028 0.576 4 0.023 6 0.175 4
138 0.160 0.792 0.512 0.272 0.162 0.045 0.030 0.583 1 0.023 2 0.289 2
139 0.163 0.860 0.782 0.546 0.288 0.126 0.096 0.743 8 0.012 5 0.049 7
140 0.163 0.822 0.539 0.331 0.148 0.058 0.028 0.391 4 0.042 3 0.046 8
141 0.165 0.829 0.595 0.387 0.190 0.078 0.048 0.194 2 0.033 1 0.334 0
142 0.170 0.810 0.519 0.338 0.176 0.071 0.039 0.151 9 0.042 9 0.612 5
143 0.173 0.811 0.533 0.305 0.123 0.032 0.014 0.169 9 0.042 3 0.502 3
144 0.182 0.775 0.495 0.215 0.092 0.022 0.007 0.455 4 0.038 0 0.007 5
145 0.185 0.756 0.496 0.226 0.108 0.032 0.017 0.398 2 0.037 5 0.233 1
146 0.186 0.758 0.518 0.297 0.156 0.066 0.032 0.071 0 0.061 3 0.233 4
147 0.187 0.740 0.487 0.222 0.107 0.034 0.012 0.366 6 0.041 6 0.130 3
148 0.188 0.779 0.511 0.275 0.125 0.049 0.022 0.190 3 0.053 8 0.160 4
149 0.193 0.732 0.475 0.213 0.097 0.028 0.013 0.365 4 0.037 5 0.328 6
150 0.202 0.733 0.421 0.233 0.087 0.022 0.011 0.217 3 0.039 9 0.555 0
151 0.205 0.710 0.410 0.197 0.101 0.029 0.010 0.170 1 0.054 0 0.183 0
152 0.206 0.657 0.358 0.096 0.033 0.005 0.002 0.623 0 0.020 6 0.208 7
153 0.213 0.680 0.385 0.176 0.081 0.024 0.009 0.117 0 0.052 2 0.427 0
154 0.232 0.616 0.305 0.159 0.050 0.014 0.004 0.032 5 0.039 6 0.717 2
155 0.271 0.637 0.472 0.307 0.142 0.097 0.041 0.255 6 0.031 0 0.612 7
156 0.273 0.467 0.270 0.198 0.092 0.049 0.016 0.234 4 0.034 6 0.362 3
157 0.289 0.462 0.261 0.197 0.162 0.134 0.070 0.141 2 0.037 5 0.204 5
158 0.304 0.457 0.253 0.197 0.185 0.144 0.110 0.272 1 0.032 2 0.173 4
159 0.306 0.438 0.169 0.169 0.169 0.169 0.169 0.022 6 0.059 0 0.874 7
160 0.309 0.507 0.313 0.231 0.165 0.147 0.107 0.225 4 0.041 6 0.023 6
161 0.313 0.445 0.273 0.207 0.181 0.173 0.122 0.081 6 0.050 7 0.882 4
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id EER GAR1 GAR2 GAR3 GAR4 GAR5 GAR6 λ µ ν

162 0.317 0.595 0.502 0.449 0.369 0.296 0.223 0.059 0 0.072 5 0.926 1
163 0.320 0.452 0.245 0.197 0.205 0.156 0.113 0.195 4 0.036 4 0.420 7
164 0.336 0.447 0.237 0.197 0.145 0.114 0.080 0.310 9 0.029 5 0.064 4
165 0.356 0.491 0.296 0.206 0.139 0.118 0.085 0.393 0 0.030 5 0.426 3
166 0.403 0.475 0.278 0.180 0.113 0.089 0.063 0.281 0 0.037 1 0.030 0
167 0.410 0.437 0.220 0.196 0.140 0.121 0.095 0.619 7 0.015 3 0.092 7
168 0.414 0.432 0.212 0.193 0.157 0.124 0.092 0.400 1 0.025 4 0.233 8
169 0.420 0.392 0.147 0.117 0.087 0.057 0.028 0.050 9 0.050 4 0.910 7
170 0.430 0.397 0.155 0.126 0.097 0.068 0.039 0.008 0 0.073 2 0.899 7
171 0.432 0.402 0.163 0.135 0.107 0.079 0.051 0.021 4 0.042 3 0.890 6
172 0.436 0.422 0.196 0.171 0.146 0.121 0.096 0.214 4 0.039 7 0.418 8
173 0.441 0.427 0.204 0.178 0.152 0.126 0.100 0.099 0 0.052 9 0.331 4
174 0.445 0.407 0.171 0.144 0.117 0.089 0.062 0.261 4 0.043 5 0.129 3
175 0.447 0.417 0.188 0.162 0.136 0.110 0.085 0.622 2 0.017 6 0.293 3
176 0.458 0.412 0.179 0.153 0.126 0.100 0.073 0.073 6 0.054 4 0.360 5

Table C.1: Performance comparative analysis of the results for the parameter optimisation
of the palm vascular patterns recognition system.
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A threshold mechanism ensures minimum-path flow in lightning
discharge
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threshold mechanism ensures minimum-path flow in lightning discharge”, Scientific
Reports (Nature), 11, 280 (2021)
doi: 10.1038/s41598-020-79463-z

Abstract A well-known property of linear resistive electrical networks is that the current
distribution minimizes the total dissipated power. When the circuit includes resistors with
nonlinear monotonic characteristic, the current distribution minimizes in general a different
functional. We show that, if the nonlinear characteristic is a threshold-like function and the
current generator is concentrated in a single point, as in the case of lightning or dielectric
discharge, then the current flow is concentrated along a single path, which is a minimum
path to the ground with respect to the threshold. We also propose a dynamic model that
explains and qualitatively reproduces the lightning transient behavior: initial generation of
several plasma branches and subsequent dismissal of all branches but the one reaching the
ground first, which is the optimal one.

A dynamic biometric authentication algorithm for near-infrared
palm vascular patterns

D. Palma, F. Blanchini, G. Giordano, and P. L. Montessoro, “A dynamic biometric
authentication algorithm for near-infrared palm vascular patterns”, IEEE Access, vol. 8,
pp. 118978–118988, 2020.
doi: 10.1109/ACCESS.2020.3005460

Abstract In this paper we apply a novel approach to near-infrared subcutaneous palm
vascular pattern authentication. The proposed method relies on a recursive algorithm
based on a positive linear dynamical system whose evolution depends on the two matrices
representing the vein patterns to be compared. The output of the system reaches a high
value when a good matching between the two matrices is observed, otherwise it converges
rapidly to zero, even in presence of noise. With respect to another algorithm we recently
introduced, this approach achieves not only a better authentication performance but also a
drastic reduction in terms of computation time. These improvements are demonstrated by
means of extensive experiments conducted on challenging datasets.
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Biometric palmprint verification: A dynamical system approach

D. Palma, P. L. Montessoro, G. Giordano, and F. Blanchini, “Biometric palmprint
verification: A dynamical system approach”, IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 49, no. 12, pp. 2676–2687, 2019.
doi: 10.1109/tsmc.2017.2771232

Abstract Most of the existing techniques for palmprint recognition rely on metrics, typi-
cally based on static functions, which evaluate the distance between a pair of features. In
this paper, we propose a new technique for palmprint verification based on a dynamical
system approach for principal palm lines matching. The proposed dynamic algorithm is
recursive and involves a positive linear dynamical system, whose evolution depends on the
matching level between the two input images. In a preprocessing phase, the procedure
iteratively erodes both of the images to be compared, by eliminating points in each image
that do not have enough close neighboring points both in the image itself and the com-
parison image. As a result of the iterations, only the points that have enough neighboring
points in both the image itself and in the comparison image can survive. Thus, the output
of the dynamical system converges either to zero, when a deep mis- match exists between
the two images, or to a high value, when a good matching is observed. The results, in
terms of verification, are in line with the state-of-the-art results in the current literature.
The main advantage of the approach is its robustness when dealing with low-resolution
and noisy images. The impact of noise (e.g., salt and pepper noise) is effectively reduced:
images corrupted with such noise are easily recognized, while a randomly generated image
is rejected even when compared with itself.

A dynamic algorithm for palmprint recognition

D. Palma, P. L. Montessoro, G. Giordano, and F. Blanchini, “A dynamic algorithm
for palmprint recognition”, IEEE Conference on Communications and Network Security
(CNS), pp. 659–662, 2015.
doi: 10.1109/cns.2015.7346883

Abstract Most of the existing techniques for palmprint recognition are based on metrics
that evaluate the distance between a pair of features. These metrics are typically based
on static functions. In this paper we propose a new technique for palmprint recognition
based on a dynamical system approach, focusing on preliminary experimental results.
The essential idea is that the procedure iteratively eliminates points in both images to be
compared which do not have enough close neighboring points in the image itself and in the
comparison image. As a result of the iteration, in each image the surviving points are those
having enough neighboring points in the comparison image. Our preliminary experimental
results show that the proposed dynamic algorithm is competitive and slightly outperforms
some state–of– the–art methods by achieving a higher genuine acceptance rate.
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