In-Peptide Synthesis of Di-Oxazolidinone and Dehydroamino Acid-Oxazolidinone Motives as β-Turns Inducers *Supporting Information*

Rossella De Marco, Arianna Greco, Sebastiano Rupiani, Alessandra Tolomelli, Claudia Tomasini, Silvia Pieraccini, Luca Gentilucci*

Dept. of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna Italy * E-mail: luca.gentilucci@unibo.it; Phone: +39 0512099570; Fax: +39 0512099456

Constraining a peptide in a snap: linear peptides 1 give rise in a single step to sequences Oxd^2-Oxd^3 (2) or ΔAbu^2-Oxd^3 (3); these scaffolds adopt well defined extended or folded conformations, in particular normal or inverse β -turns of type I or II.

Table of contents

¹ H-NMR of $2a,c,d$, and $3b,c$ in 8:2 DMSO-d ₆ /H ₂ O	p. 2
TableS1. Selected ¹ H-NMR chemical shifts of 2a,c,d, and 3b,c in different solvents	p. 3
Figure S1. Amide NH FT-IR of 2a, 2d, 2c, and 3b	p. 4
Figure S2. NH chemical shift of $2a$ and $3c$ in CDCl ₃ /DMSO-d ₆ 0-8%	p. 4
Tables S2-6. Non-obvious ROESY cross-peaks observed for 2a,c,d, and 3b,c	p. 5
Figure S3. Structure of the intermediate anion A of Scheme 1	p. 7
Table S7. Angles ϕ and ψ of the residues <i>i</i> +1, <i>i</i> +2 observed for 2a , c , d , and 3b , c	p. 8
Figure S43. ECD spectra of 2a , 2d , and 3b in DCM and MeOH	p. 8
Figures S5-11. ¹ H and ¹³ C-NMR of compounds 2 and 3.	p. 9

¹H-NMR characterization of the model compounds **2a,c,d**, and **3b,c** at 400 MHz in 8:2 DMSO-d₆/H₂O.

Ts-Ala-(5'Me-Oxd²)-(5'Me-Oxd³)-PheOMe (**2a**). ¹H-NMR δ: 1.18 (d, J=6.7 Hz, 3H, AlaMe), 1.44-1-47 (m, 6H, Oxd³Me+Oxd²Me), 2.37 (s, 3H, TsMe), 2.94 (dd, J=8.4, 13.9 Hz, 1H, PheHβ), 3.01 (dd, J=5.7, 13.9 Hz, 1H, PheHβ), 3.56 (s, 3H, OMe), 4.48-4.52 (m, 2H, PheHα+Oxd³H₅), 4.57 (d, J=1.9 Hz, 1H, Oxd³H₄), 4.66 (dq, J=2.0, 7.0 Hz, 1H, Oxd²H₅), 5.02 (dq, J=6.7, 8.5 Hz, 1H, AlaHα), 5.17 (d, J=2.0 Hz, 1H, Oxd²H₄), 7.11 (d, J=7.6 Hz, 2H, PheArH), 7.14-7.26 (m, 3H, PheArH) 7.37 (d, J=8.0 Hz, 2H, TsArH), 7.63 (d, J=8.0 Hz, 2H, TsArH), 8.36 (d, J=8.5 Hz, 1H, AlaNH), 8.98 (d, J=7.0 Hz, 1H, PheNH).

Ts-Ala-ΔAbu-(5'Me-Oxd)-PheOMe (**3b**). ¹H-NMR δ: 1.03 (d, J=7.2 Hz, 3H, AlaMe), 1.36 (d, J=6.2 Hz, 3H, OxdMe), 1.66 (d, J=7.2 Hz, 3H, ΔAbuMe), 2.40 (s, 3H, TsMe), 2.98 (dd, J=7.2, 14.0 Hz, 1H, PheHβ), 3.04 (dd, J=6.0, 14.0 Hz, 1H, PheHβ), 3.59 (s, 3H, OMe), 3.90 (quint, J=6.4 Hz, 1H, AlaHα), 4.33 (dq, J=2.8, 6.2 Hz, 1H, OxdH₅), 4.42 (d, J=2.8 Hz, 1H, OxdH₄), 4.54 (q, J=7.4 Hz, 1H, PheHα), 5.71 (q, J=7.2 Hz, 1H, ΔAbuHβ), 7.18-7.25 (m, 3H, PheArH), 7.31 (t, J=7.4 Hz, 2H, PheArH), 7.38 (d, J=8.1 Hz, 2H, TsArH), 7.68 (d, J=8.1 Hz, 2H, TsArH), 7.94 (d, J=7.6 Hz, 1H, AlaNH), 8.78 (d, J=7.2 Hz, 1H, PheNH), 9.53 (s, 1H, ΔAbuNH).

Ts-Ala-(5'Me-Oxd²)-D-(5'Me-Oxd³)-Phe-OMe (**2c**). ¹H-NMR δ: 1.17 (d, J=6.8 Hz, 3H, AlaMe), 1.35 (d, J=6.2 Hz, 3H, Oxd²Me), 1.39 (d, J=6.4 Hz, 3H, Oxd³Me), 2.36 (s, 3H, TsMe), 2.83 (dd, J=8.1, 13.8 Hz, 1H, PheHβ), 3.11 (dd, J=8.1, 13.8 Hz, 1H, PheHβ), 3.63 (s, 3H, OMe), 3.84 (quint, J=5.6 Hz, 1H, Oxd³H₅), 4.36 (d, J=4.8 Hz, 1H, Oxd³H₄), 4.51 (dq, J=8.1, 9.6 Hz, 1H, PheHα), 4.95-5.03 (m, 2H, Oxd²H₄+AlaHα), 5.06 (q, 1H, J=6.2 Hz, Oxd²H₅), 7.17 (d, J=6.8 Hz, 2H, PheArH), 7.19-7.30 (m, 3H, PheArH), 7.37 (d, J=8.2 Hz, 2H, TsArH), 7.62 (d, J=8.2 Hz, 2H, TsArH), 8.42 (d, J=9.2 Hz, 1H, AlaNH), 8.94 (d, J=8.1 Hz, 1H, PheNH).

Ts-Ala-ΔAbu-D-(5'MeOxd)-PheOMe (**3c**). ¹H-NMR δ: 1.03 (d, J=7.2 Hz, 3H, AlaMe), 1.20 (d, J=6.0 Hz, 3H, OxdMe), 1.67 (d, J=7.2 Hz, 3H, ΔAbuMe), 2.36 (s, 3H, TsMe), 2.85 (dd, J=10.4, 13.5 Hz, 1H, PheHβ), 3.12 (dd, J=4.8, 13.5 Hz, 1H, PheHβ), 3.58-3.69 (m, 4H, OxdH₅+OMe), 3.99 (quint, J=7.1 Hz, 1H, AlaHα), 4.25 (d, J=2.0 Hz, 1H, OxdH₄), 4.58 (m, 1H, PheHα), 5.65 (q, J=6.8 Hz, 1H, ΔAbuHβ), 7.13-7.24 (m, 2H, PheArH), 7.28 (t, J=7.0 Hz, 2H, PheArH), 7.35 (d, J=6.6 Hz, 2H, TsArH), 7.65 (d, J=6.6 Hz, 2H, TsArH), 7.93 (d, J=8.4 Hz, 1H, AlaNH), 8.85 (d, J=8.4 Hz, 1H, PheNH), 9.73 (s, 1H, ΔAbuNH).

Ts-Ala-(5'Me-Oxd²)-D-(5'Me-Oxd³)-D-PheOMe (**2d**). ¹H-NMR δ: 1.15 (d, J=6.6 Hz, 3H, AlaMe), 1.40 (d, J=6.2 Hz, 3H, Oxd²Me), 1.46 (d, J=6.0 Hz, 3H, Oxd³Me), 2.37 (s, 3H, TsMe), 2.97 (d, J=6.8 Hz, 2H, PheHβ), 3.58 (s, 3H, OMe), 4.46-4.52 (m, 3H, PheHα+Oxd³H_{4,5}), 5.02 (m, 1H, AlaHα), 5.03 (d, J=1.6 Hz, 1H, Oxd²H₄), 5.10 (dq, J=1.6, 6.2 Hz, 1H, Oxd²H₅), 7.18 (d, J=6.7 Hz, 2H, PheArH), 7.19-7.23 (m, 3H, PheArH), 7.37 (d, J=8.2 Hz, 2H, TsArH), 7.62 (d, J=8.2 Hz, 2H, TsArH), 8.41 (d, J=9.6 Hz, 1H, AlaNH), 8.89 (d, J=7.6 Hz, 1H, PheNH).

TableS1. Selected ¹H-NMR chemical shifts (δ) of the model compds **2a**, **2c**, **2d**, and **3b**, **3c**; solvents: S1 = CDCl₃; S2 = 8:2 DMSO-d₆/H₂O; amino acid stereochemistry has been omitted.

	2a		2c		2d		3 b		3c	
	S 1	S2	S1	S2	S1	S2	S 1	S2	S1	S2
Ala ¹ NH	5.39	8.36	5.44	8.42	5.61	8.41	5.92	7.94	5.66	7.93
Ala ¹ Ha	5.22	5.02	5.11	5.0	5.16	5.02	3.85	3.90	3.87	3.99
Oxd ² H4	5.26	5.17	5.24	5.0	5.42	5.03	-	-	-	-
Oxd ² H5	4.58	4.66	4.53	5.06	4.58	5.10	-	-	-	-
ΔAbuNH	-	-	-	-	-	-	8.66	9.53	8.28	9.73
ΔAbuHβ	-	-	-	-	-	-	6.04	5.71	6.27	5.65
Oxd ³ H4	4.26	4.57	4.29	4.36	4.3	4.5	4.38	4.42	4.4	4.25
Oxd ³ H5	4.75	4.5	4.64	3.84	4.3	4.5	4.4	4.33	4.6	3.6
Phe ⁴ NH	6.28	8.98	6.55	8.94	6.63	8.89	7.64	8.78	7.98	8.85
$Phe^4H\alpha$	4.85	4.5	4.82	4.51	4.88	4.5	4.84	4.54	4.79	4.58

Figure S1. Amide NH stretching regions of the IR absorption spectra for samples of tetrapeptides **2a**, **2d** and **3b** (3 mM in DCM) at room temperature.

Figure S2. Variation of NH proton chemical shift (p.p.m.) of **2a**, **2c**, **2d** and **3b** as a function of increasing percentages of DMSO-d₆ to the CDCl₃ solution (v/v).

Cross-peak	intensity	Cross-peak	intensity
PheNH-Oxd ³ Me	W	PheNH-PheHβ(up)	8
PheNH-PheHβ(dw)	m	PheNH-PheHa	m
PheNH-Oxd ³ H4	S	PheNH-Oxd ³ H5	m
PheNH-Oxd ² H5	W	PheNH-PheArH	m
AlaNH-AlaMe	VS	AlaNH-AlaHα	S
AlaNH-TsArH2,6	S	TsArH2,6-AlaMe	W
TsArH2,6-Oxd ² Me	W	TsArH2,6-AlaHα	m
TsArH3,5-Oxd ² Me	S	TsArH3,5- Oxd ² H4	W
PheArH-PheHa	S	Oxd ² H4-Oxd ³ H4	W
Oxd ² H4-AlaHα	W	AlaHα-Oxd ² H5	W
Oxd ² H5-Oxd ³ H5	W	COOMe-PheHa	W

Table S2. Non-obvious ROESY cross-peaks observed for 2a.^a

^a Stereochemistry has been omitted; ^b up = upfield, dw = downfield; ^c vs = very strong, s = strong, m = medium, w = weak.

Table S3. Non-obvious ROESY c	cross-peaks observed for 2c. ^a
-------------------------------	---

Cross-peak	intensity	Cross-peak	intensity
PheNH-PheArH	W	PheNH-PheHa	m
PheNH-Oxd ³ H4	VS	PheNH-Oxd ³ H5	W
PheNH-PheH β (dw)	W	PheNH-PheH $\beta(up)$	S
PheNH-Oxd ³ Me	W	PheNH-COOMe	W
AlaNH-TsArH2,6	m	AlaNH-AlaHα	m
AlaNH-AlaMe	S	TsArH2,6-AlaMe	W
TsArH2,6-Oxd ² Me	W	TsArH2,6-AlaHα	m
TsArH3,5-Oxd ² Me	W	TsArH3,5-AlaHα	W
PheArH2,4,6- Oxd ³ Me	W	PheArH2,4,6- PheHβ(up)	S
PheArH2,4,6- PheHβ(dw)	S	PheArH2,4,6- AlaMe	W
PheArH2,4,6- PheHα	m	PheArH2,4,6-COOMe	W
PheArH2,4,6-Oxd ³ H5	W	Oxd ² H4-Oxd ³ H5	W
Oxd ² H4-Oxd ³ H4	W	Oxd ² H5-Oxd ³ H4	W
Oxd ² H5-PheHa	W	AlaHa-PheHa	W
PheH α -PheH β (dw)	S	PheH α -PheH $\beta(up)$	m
PheHa-COOMe	W	PheHα- Oxd ³ H5	W
PheHa-Oxd ³ H4	W	$Oxd^{3}H5$ -PheH $\beta(dw)$	W
COOMe-AlaMe	m	COOMe-TsMe	W
$COOMe$ -PheH $\beta(dw)$	m	$COOMe$ -PheH $\beta(up)$	m
TsMe- Oxd ² Me	W		

^a Stereochemistry has been omitted; ^b up = upfield, dw = downfield; ^c vs = very strong, s = strong, m = medium, w = weak.

Cross-peak	intensity	Cross-peak	intensity
PheNH-AlaMe	W	PheNH-Oxd ³ Me	W
PheNH-PheHβ	VS	PheNH-COOMe	W
PheNH-PheHa	m	PheNH-Oxd ³ H4	m
PheNH-Oxd ³ H5	W	PheNH-PheArH	S
AlaNH-AlaMe	S	AlaNH-COOMe	W
AlaNH-AlaHα	S	AlaNH-TsArH2,6	S
AlaNH-TsArH3,5	W	TsArH2,6-AlaMe	m
TsArH2,6-Oxd ² Me	W	TsArH2,6-AlaHα	S
TsArH2,6-OxdH4	W	TsArH3,5-Oxd ² Me	S
TsArH3,5-AlaHα	m	PheArH3,5-AlaMe	m
PheArH3,5-COOMe	W	PheArH3,5-PheHa	m
PheArH-Oxd ³ Me	W	PheArH-COOMe	S
Oxd ² H4-TsMe	m	PheHα-AlaMe	W
COOMe-AlaMe	W	COOMe-PheHβ	S
PheHβ-AlaMe	m	TsMe-AlaMe	W
Oxd ² Me-AlaMe	W		

Table S4. Non-obvious ROESY cross-peaks observed for 2d.^a

^a Stereochemistry has been omitted; ^b up = upfield, dw = downfield; ^c vs = very strong, s = strong, m = medium, w = weak.

Table S5. Non-	obvious ROESY	cross-peaks	observed	for 3b. ^a

Cross-peak	intensity	Cross-peak	intensity
∆AbuNH-AlaMe	m	∆AbuNH-∆AbuMe	S
$\Delta AbuNH$ -AlaH α	VS	∆AbuNH-AlaNH	S
∆AbuNH-PheNH	W	∆AbuNH-TsArH2,6	W
PheNH-Oxd ³ H5	W	PheNH-PheHβ	VS
PheNH-Oxd ³ H4	VS	PheNH-PheHa	S
PheNH-PheArH	m	PheNH-AlaNH	W
AlaNH-AlaMe	VS	AlaNH-AlaHα	S
AlaNH-TsArH2,6	W	TsArH2,6-AlaMe	W
TsArH2,6-AlaHα	m	PheArH-COOMe	W
PheArH-PheHβ	VS	PheArH-PheHa	S
PheArH-Oxd ³ H5	W	∆AbuHb-Oxd ³ H4	W
COOMe-PheHβ	m	COOMe-PheHa	W
PheHβ-Oxd ³ H4	W	COOMe-Oxd ³ Me	W
∆AbuMe-TsMe	W	∆AbuMe-AlaMe	S
$\Delta AbuMe-Oxd^3Me$	W		

^a Stereochemistry has been omitted; ^b up = upfield, dw = downfield; ^c vs = very strong, s = strong, m = medium, w = weak.

Cross-peak	intensity	Cross-peak	intensity
∆AbuNH-AlaMe	m	∆AbuNH-∆AbuMe	S
∆AbuNH-Oxd ³ Me	W	∆AbuNH-AlaNH	VS
$\Delta AbuNH-\Delta AbuH\beta$	W	∆AbuNH-TsArH2,6	W
∆AbuNH-PheNH	W	PheNH-PheArH	m
PheNH-PheH $\beta(up)$	S	PheNH-PheHβ(dw)	W
PheNH-Oxd ³ H5	m	PheNH-Oxd ³ H4	S
PheNH-PheHa	S	PheNH-PheArH	m
AlaNH-AlaMe	m	AlaNH-AlaHα	m
TsArH2,6-AlaMe	m	TsArH2,6-AlaHα	S
TsArH2,6-AlaNH	m	TsArH3,5-AlaNH	W
PheArH3,5-Oxd ³ Me	W	PheArH3,5-PheHβ(up)	W
PheArH3,5-PheHa	W	PheArH2,6-Oxd ³ Me	W
PheArH2,6-PheHβ(up)	VS	PheArH2,6-PheHB(dw)	VS
PheArH2,6-Oxd ³ H5	W	PheArH2,6-PheHa	S
PheH α -PheH $\beta(dw)$	VS	PheH α -PheH $\beta(up)$	S
Oxd3H5-PheHβ(up)	W	COOMe-PheNH	W
COOMe-PheHa	m	$COOMe$ -PheH $\beta(dw)$	W
COOMe-PheHβ(up)	W		

Table S6. Non-obvious ROESY cross-peaks observed for 3c.^a

^a Stereochemistry has been omitted; ^b up = upfield, dw = downfield; ^c vs = very strong, s = strong, m = medium, w = weak.

Figure S3. Top (left) and side (right) view of the intermediate anion **A** of Scheme 1, calculated for the cyclization of the model peptide Ts-Ala-Ser-NH₂ with DSC and DIPEA, employing ab initio molecular orbital (MO) theory. A systematic conformational analysis for the structures was done at the HF/6-31G* level. The conformers were re-optimized at the HF/6-31G** level. Backbones are rendered in balls-and-cylinders, hydrogen atoms in sticks. Optimization was performed by conjugate gradient algorithm, convergence at 0.001; energies are expressed in Kcal mol⁻¹. DIPEAH⁺ was included in the computations, but is not visualized for clarity.

compd	ϕ_{i+1}	Ψ_{i+1}	χ <i>i</i> +1	\$ <i>i</i> +2	Ψ <i>i</i> +2	χ <i>i</i> +2
2a (A)	-73	158	-114	-81	76	-115
2a (B)	-104	-179	-90	-40	-50	-140
2c (C)	-45	129	-122	69	-86	118
2c (D)	-51	144	-117	77	-27	110
2d	-55	139	-117	77	-29	113
3b	-38	-59	-2	-96	29	-114
3c (E)	61	55	2	93	-2	117
3c (F)	37	63	0	81	-36	113
Ι	-60	-30	-	-90	0	-
II	-60	120	-	80	0	-

Table S7. Angles ϕ and ψ of the residues *i*+1, *i*+2 observed for the compounds analyzed and ideal values.

Figure S4. ECD spectra of 2a, 3b, and 2d; 1 mM in DCM or MeOH, path length 0.1 cm.

13

