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On further properties of fully
zero-simple semihypergroups

Mario De Salvo∗ Domenico Freni† Giovanni Lo Faro‡

Abstract

Let F0 the class of fully zero-simple semihypergroups. In this paper
we study the main properties of residual semihypergroup (H+, ?) of a
semihypergroup (H, ◦) in F0. We prove that the quotient semigroup
H+/β

∗
H+

is a completely simple and periodic semigroup. Moreover, we
find the necessary and sufficient conditions for (H+, ?) to be a torsion
group and, in particular, an Abelian 2-group.

Keywords: semihypergroups, simple semihypergroups, fully semihypergroups.

Mathematics Subject Classification(2000): 20N20, 05A99.

1 Introduction

Algebraic hyperstructures are a suitable generalization of classical algebraic
structures. In a classical algebraic structure, the composition of two ele-
ments is an element, while in an algebraic hyperstructure, the composition
of two elements is a set. Many authors have been working on this field
and in [5] numerous applications are recalled on algebraic hyperstructures
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such as: geometry, hypergraphs, binary relations, lattices, fuzzy sets and
rough sets, automata, cryptography, codes, median algebras, relation alge-
bras, artificial intelligence, and probabilities. The semihypergroups are the
simplest algebraic hyperstructures which possess the properties of closure
and associativity. Nowadays some scholars have studied different aspects of
semihypergroups [2, 3, 10, 11, 14, 17, 18, 21, 22, 23] and interesting problems
arise in the study of their so called fundamental relations [1, 7, 8, 15, 20, 25],
which lead to analyze conditions for their transitivity, and minimal cardi-
nality problems. In particular, in [15] the fundamental relations in simple
or zero-simple semihypergroups are considered and in [9, 12] the authors
use the simple semihypergroups of size 3, whose relation β is not transi-
tive, to characterize the fully simple semihypergroups. In [10] the number
of isomorphism classes of fully simple semihypergroups of size n + 1 is de-
termined. This number is the (n + 1)-th term of sequence A000712 [24],
namely

∑n
k=0 p(k)p(n− k), where p(k) denotes the number of nonincreasing

partitions of integer k. Moreover, in [11, 13] the authors use the zero-simple
semihypergroups of size 3, whose relation β is not transitive, to characterize
the class of fully zero-simple semihypergroups (H, ◦) having all hyperprod-
ucts of size ≤ 2 and one of the following cases occurs:

1. the subset {0, x, y} as subsemihypergroup, for all pairs (x, y) of distinct
nonzero elements of H;

2. there exists an element 1 ∈ H −{0} such that {0, 1, x} is a subsemihy-
pergroup, for every element x ∈ H − {0, 1}.

This class of fully zero-simple semihypergroups consists of three sub-
classes, namely R0, L0 and G0. The semihypergroups (H, ◦) in R0 satisfy the
condition {y} ⊆ x ◦ y ⊆ {0, y}, for all x, y ∈ H, instead the semihypergroups
in L0 are such that {x} ⊆ x◦y ⊆ {0, x}. In this two cases (see [11]), if n ≥ 2
and |H| = n+1 then the number of isomorphism classes is the (n+1)-th term
of sequence A000070 [24], namely

∑n
k=0 p(k). The class G0 (see [13]) consists

of semihypergroups whose hyperproduct tables can be regarded as super-
position of the product table of a 0-semigroup and an elementary Abelian
2-group. The aim of the present paper is first, to analyze algebraic general
properties of fully zero-simple semihypergroups in which the product of two
elements can also have size greater than 2 ; in particular, after introducing
some basic definitions and notations to be used throughout the paper, we
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consider the quotient semigroups H/β∗, H+/β
∗
H+

of a fully zero-simple semi-
hypergroup (H, ◦) and of his residual semihypergroup (H+, ?). We prove
that H/β∗ is trivial, and we find that if (H+, ?) is a group then is a torsin
group. Moreover, we have that H+/β

∗
H+

is a periodic completely simple semi-
group. This property is very useful to determine non-trivial examples of fully
zero-simple semihypergroups that have hyperproducts of size ≥ 2, or fully
zero-simple semihypergroups (H, ◦) with |x ◦ y| ≤ 2, for all x, y ∈ H, which
do not belong to R0, L0 or G0. Finally, we find the necessary and sufficient
conditions for (H+, ?) to be a torsion group and, in particular, an Abelian
2-group.

1.1 Basic definitions and results

Let H be a non-empty set and P ∗(H) be the set of all non-empty subsets
of H. A hyperoperation ◦ on H is a map from H × H to P ∗(H). For all
x, y ∈ H, the subset x ◦ y is called the hyperproduct of x and y. If A,B are
non-empty subsets of H then A ◦B =

⋃
x∈A,y∈B x ◦ y.

A semihypergroup is a non-empty set H endowed with an associative
hyperproduct ◦, that is, (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H.

A non-empty subset K of a semihypergroup (H, ◦) is called a subsemi-
hypergroup of (H, ◦) if it is closed with respect to multiplication, that is,
x ◦ y ⊆ K for all x, y ∈ K. If (H, ◦) is a semihypergroup, then the inter-
section

⋂
i∈I Si of a family {Si}i∈I of subsemihypergroups of (H, ◦), if it is

non-empty, is again a subsemihypergroup of (H, ◦). For every non-empty
subset A ⊆ H there is at least one subsemihypergroup of (H, ◦) containing
A, e.g., H itself. Hence the intersection of all subsemihypergroups of (H, ◦)
containing A is a subsemihypergroup. We denote it by Â, and note that it
is defined by two properties:

1. A ⊆ Â;

2. if S is a subsemihypergroup of H and A ⊆ S, then Â ⊆ S.

Furthermore, Â is characterized as the algebraic closure of A under the hyper-
product in (H, ◦), namely we have Â =

⋃
n≥1A

n. Moreover, if H is finite, the

set
{
r ∈ N− {0} |

⋃r
k=1A

k =
⋃r+1

k=1A
k
}

has minimum m ≤ |H| and then, it
is known that

Â =
m⋃
k=1

Ak =
m+1⋃
k=1

Ak = ... =

|H|⋃
k=1

Ak. (1)
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If x ∈ H, we suppose ◦x1 = {x} and ◦xn = x ◦ . . . ◦ x︸ ︷︷ ︸
n times

for all integer n > 1.

We refer to x̂ =
⋃

n≥1 ◦xn as the cyclic subsemihypergroup of (H, ◦) generated
by the element x. It is the smallest subsemihypergroup containing x.

If K is a subsemihypergroup of (H, ◦), it is said hypercyclic if there exists

a hyperproduct P of elements in K such that K = P̂ .
If (H, ◦) is a semihypergroup, an element 0 ∈ H such that x ◦ 0 = {0}

(resp., 0 ◦ x = {0}) for all x ∈ H is called right zero scalar element or right
absorbing element (resp., left zero scalar element or left absorbing element) of
(H, ◦). If 0 is both right and left scalar element, then 0 is called zero scalar
element or absorbing element.

A semihypergroup (H, ◦) is called simple if H ◦x ◦H = H, for all x ∈ H.
A semihypergroup (H, ◦) with an absorbing element 0 is called zero-simple

if H ◦ x ◦H = H, for all x ∈ H − {0} .

Given a semihypergroup (H, ◦), the relation β∗ of H is the transitive
closure of the relation β = ∪n≥1βn, where β1 is the diagonal relation in H
and, for every integer n > 1, βn is defined recursively as follows:

xβny ⇐⇒ ∃(z1, . . . , zn) ∈ Hn : {x, y} ⊆ z1 ◦ z2 ◦ . . . ◦ zn.

The relations β, β∗ are called fundamental relations on H [25]. Their rel-
evance in semihypergroup theory stems from the following facts [20]: The
quotient set H/β∗, equipped with the operation β∗(x) ⊗ β∗(y) = β∗(z) for
all x, y ∈ H and z ∈ x ◦ y, is a semigroup. Moreover, the relation β∗ is the
smallest strongly regular equivalence on H such that the quotient H/β∗ is a
semigroup.

The interested reader can find all relevant definitions, many properties
and applications of fundamental relations, even in more abstract contexts,
also in [4, 5, 6, 16, 20, 25].

A semihypergroup (H, ◦) is said to be fully zero-simple if it fulfills the
following conditions:

1. All subsemihypergroups of (H, ◦) ((H, ◦) itself included) are zero-simple.

2. The relation β in (H, ◦) and the relation βK in all subsemihypergroups
K ⊂ H of size ≥ 3 are not transitive.

4



Since in all semihypergroups of size ≤ 2 the relation β is transitive, it
follows that every fully zero-simple semihypergroup has size ≥ 3.

We denote by F0 the class of fully zero-simple semihypergroups. We use
0 to denote the zero scalar element of each semihypergroup (H, ◦) ∈ F0.
Moreover, we use the notation H+ to indicate the set of nonzero elements in
H, that is, H+ = H − {0}. Finally, for reader’s convenience, we collect in
the following lemma some preliminary results from [11].

Lemma 1.1. Let (H, ◦) ∈ F0 then we have:

1. H ◦H = H;

2. if S is a subsemihypergroup of H such that 0 6∈ S, then |S| = 1. More-
over, if |S| ≥ 2 then the zero element of S is 0;

3. there exist x, y ∈ H+ such that 0 ∈ x ◦ y;

4. for every sequence z1, . . . , zn of elements in H+ we have
∏n

i=1 zi 6= {0};

5. the set H+ equipped with hyperproduct a ? b = (a ◦ b) ∩ H+, for all
a, b ∈ H+, is a semihypergroup.

By points 2. and 4. of Lemma 1.1 we deduce the following result:

Corollary 1.1. Let S be a subsemihypergroup of H ∈ F0, then we have:

1. if 0 6∈ S then there exists a ∈ H+ such that S = {a} and a ◦ a = {a};

2. if |S| = 2 then there exists a ∈ H+ such that S = {a, 0} and {a} ⊆
a ◦ a ⊆ {0, a}.

2 Properties of semihypergroup (H+, ?)

From point 5. of Lemma 1.1, we know that the set of nonzero element H+ of
a fully 0-simple semihypergroup (H, ◦) is a simple semihypergroup equipped
with hyperoperation a ? b = (a ◦ b) ∩H+, for all a, b ∈ H+. This semihyper-
group is called residual semihypergroup of (H, ◦).

In this section we show some properties of the quotient semigroups H/β∗

and H+/β
∗
H+

. We prove that the quotient semigroup H/β∗ is trivial, and
we find that the semigroup H+/β

∗
H+

is a periodic completely simple semi-
group. Moreover, as a consequence of this result, we prove that the class of
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fully zero-simple semihypergroups (H, ◦) such that the set S = {0, x, y} is a
subsemihypergroup, for all pairs (x, y) of distinct elements in H+, consists
of three subclasses, namely R0, L0 and G0(3). The semihypergroups (H, ◦)
in R0 satisfy the condition {y} ⊆ x ◦ y ⊆ {0, y}, for all x, y ∈ H. The
semihypergroups in L0 are such that {x} ⊆ x ◦ y ⊆ {0, x}, and finally the
class G0(3) consists of fully zero-simple semihypergroups of size 3 such that
(H+, ?) is isomorphic to group Z2.

Theorem 2.1. Let (H, ◦) ∈ F0. For all x ∈ H, we have (x, 0) ∈ β. Moreover
H/β∗ is trivial.

Proof. Let [0]H = {a ∈ H | (a, 0) ∈ β}. Clearly we have 0 ∈ [0]H and, by
points 3. and 4. of Lemma 1.1, we obtain [0]H 6= {0}. Now, let a ∈ [0]H−{0}.
Since H is zero-simple, we have H ◦ a ◦H = H. Hence, for all x ∈ H, there
exist y, z ∈ H such that x ∈ y ◦ a ◦ z. Moreover, since (a, 0) ∈ β, there exists
a hyperproduct P of elements in H+ such that {0, a} ⊆ P and we deduce

{x, 0} ⊆ y ◦ a ◦ z ∪ {0} = y ◦ a ◦ z ∪ y ◦ 0 ◦ z = y ◦ {a, 0} ◦ z ⊆ y ◦ P ◦ z.

Hence we have (x, 0) ∈ β, for every x ∈ H. Obviously, |H/β∗| = 1. �

Now we premise an easy lemma:

Lemma 2.1. Let A,B be two non-empty subsets of (H, ◦) ∈ F0 different
from the singleton {0}. We have:

1. (A− {0}) ? (B − {0}) = A ◦B − {0}.

2. If (A, ◦) is a subsemihypergroup of (H, ◦) then (A − {0}, ?) is a sub-
semihypergroup of (H+, ?).

3. If 0 ∈ A and (A−{0}, ?) is a subsemihypergroup of (H+, ?) then (A, ◦)
is a subsemihypergroup of (H, ◦).

4. If A+ = A−{0} and (Â, ◦), (Â+, ?) are the subsemihypergroups of (H, ◦)
and (H+, ?) generated from A and A+ respectively, then Â+ = Â−{0}.

Proof. 1. If x ∈ (A − {0}) ? (B − {0}), there exist a ∈ A − {0} and
b ∈ B −{0} such that x ∈ a ? b. Obviously x 6= 0 because a ? b = a ◦ b−{0},
hence x ∈ A ◦ B − {0}. Conversely, if x ∈ A ◦ B − {0} then there exist
a ∈ A and b ∈ B such that x ∈ a ◦ b. If a = 0 or b = 0, we have x = 0,
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against the hypothesis. Therefore a, b, x ∈ H+ and x ∈ a ◦ b− {0} = a ? b ⊆
(A− {0}) ? (B − {0}).

Points 2. and 3. are immediate consequences of the previous point.

4) It follows from item (1). In fact, if we put ?(A+)n = A+ ? . . . ? A+︸ ︷︷ ︸
n times

and

◦An = A ◦ . . . ◦ A︸ ︷︷ ︸
n times

then we have ?(A+)n = ◦An − {0} and so

Â+ =
⋃
n≥1

?(A+)n =
⋃
n≥1

(◦An − {0}) = Â− {0}. �

Remark 2.1. We note that if (H, ◦) ∈ F0 then for every x ∈ H − {0}
such that x ◦ x 6= {x}, the cyclic semihypergroup x̂ =

⋃
n≥1 ◦xn generated

by x has size ≥ 2, by point 2. of Lemma 1.1. Therefore it is a zero-simple
subsemihypergroup of (H, ◦), with 0 as zero scalar element. Moreover x̂◦ x̂ =
x̂ and x̂ ◦ x ◦ x̂ = x̂.

Before the next result we recall some notions that are typical of the semigroup
theory. Let E(S) be the set of idempotent elements in a semigroup S. If
E(S) 6= ∅ then it can be partially ordered in a natural way, by means of the
relation defined by the following rule: e ≤ f ⇔ ef = fe = e.
If S is a semigroup with zero, the zero element of S is the unique minimum
idempotent. The idempotents which are minimal in the poset (E(S)−{0},≤)
of non-zero idempotents are called primitive. Thus a primitive idempotent f
has the property that for all e ∈ E(S)− {0} we have e ≤ f ⇔ e = f .
If S is a semigroup without zero and E(S) 6= ∅, an idempotent f is primitive
if and only if it is minimal, that is, e ≤ f ⇔ e = f .
If a simple semigroup S owns at least a primitive element then it is said to
be completely simple and every idempotent of S is minimal [19].

Proposition 2.1. Let (H+, ?) the residual semihypergroup of (H, ◦) ∈ F0

and [0, 0]H = {(a, b) ∈ H ×H | a = 0 or b = 0}. Then we have:

1. βH+ = β − [0, 0]H ;

2. H+/β
∗
H+

is a periodic semigroup;

3. H+/β
∗
H+

is a completely simple semigroup.
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Proof.

1. It follows immediately from the fact that ?
∏n

i=1 zi = ◦
∏n

i=1 zi − {0},
for every z1, z2, ..., zn ∈ H+.

2. For every x ∈ H+, we have that x ◦ x = {x} or the cyclic subsemi-
hypergroup x̂ of (H, ◦) has size ≥ 2. In both cases, by Remark 2.1,
there exists an integer n ≥ 2 such that x ∈ ◦xn. Therefore we have
x ∈ ?xn. If ϕ : H+ → H+/β

∗
H+

is the canonical projection, we ob-
tain that ϕ(x) = ⊗(ϕ(x))n. Thus every element in H+/β

∗
H+

has finite
period, hence H+/β

∗
H+

is periodic.

3. We begin to observe that the quotient semigroup H+/β
∗
H+ is simple.

In fact, for every x ∈ H+ we have:

H+/β
∗
H+

= ϕ(H+) = ϕ(H+ ? x ? H+)

= ϕ(H+)⊗ ϕ(x)⊗ ϕ(H+)

= H+/β
∗
H+
⊗ ϕ(x)⊗H+/β

∗
H+
.

Moreover, for item (2) and Proposition 1.2.3 in [19], the set E(H+/β
∗
H+

)
of idempotent elements in H+/β

∗
H+

is non-empty. If H+/β
∗
H+

owns a
zero element, obviously |H+/β

∗
H+
| = 1 and H+/β

∗
H+

is completely sim-
ple. Therefore, we suppose that H+/β

∗
H+

does not own a zero element

and let a, b two distinct elements in H+ such that a = ϕ(a), b = ϕ(b) are
idempotents and a ≤ b. By definition, we have that a⊗ b = b⊗ a = a.
Moreover, the sets h = β∗H+

(a) and k = β∗H+
(b) are subsemihypergroups

of H+, since a, b are idempotents in H+/β
∗
H+

. Now, for every x ∈ h
and y ∈ k, we obtain:

ϕ(x ? y) = ϕ(x)⊗ ϕ(y) = a⊗ b = a = ϕ(a);

ϕ(y ? x) = ϕ(y)⊗ ϕ(x) = b⊗ a = a = ϕ(a).

Therefore h ? k ∪ k ? h ⊆ h and

(h ∪ k) ? (h ∪ k) = h ? h ∪ h ? k ∪ k ? h ∪ k ? k ⊆ h ∪ k,

hence h ∪ k is a subsemihypergroup of H+. For item (3) of Lemma
2.1, h ∪ k ∪ {0} is a subsemihypergroup of H of size ≥ 3, because
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a 6= b. Moreover, since (H, ◦) ∈ F0, also (h ∪ k ∪ {0} , ◦) ∈ F0, and in
consequence:

h ∪ k ∪ {0} = (h ∪ k ∪ {0}) ◦ h ◦ (h ∪ k ∪ {0})
= h ◦ h ◦ h ∪ h ◦ h ◦ k ∪ k ◦ h ◦ h ∪ k ◦ h ◦ k ∪ {0}
⊆ h ∪ {0} .

Thus, we have that h∪ k ⊆ h since 0 6∈ h∪ k. Therefore β∗H+
(b) = k ⊆

h = β∗H+
(a) and a = b, that is H+/β

∗
H+

is completely simple. �

The following result is a consequence of the previous proposition.

Corollary 2.1. Let (H+, ?) be the residual semihypergroup of (H, ◦) ∈ F0.
If (H+, ?) is a group then it is a torsion group.

Proof. By hypothesis the residual semihypergroup (H+, ?) is a group,
hence β∗H+

is the identity relation and H+/β
∗
H+

is isomorphic to (H+, ?).
Finally, from Proposition 2.1 (2), (H+, ?) is a torsion group. �

Remark 2.2. Let (G, ·) be a group of size ≥ 2 and 0 6∈ G. In H = G ∪ {0}
we can define the following hyperproduct:

a ◦ b =

{
{0} if a = 0 or b = 0

{0, ab} else.

(H, ◦) is a zero-semihypergroup such that the relation β∗K is not transitive for
all subsemihypergroups K ⊆ H of size |K| > 2. Clearly we have H+ = G, the
relation β∗H+

is the identity relation and H+/β
∗
H+
∼= G. By Corollary 2.1, if G

is not a torsion group then (H, ◦) is not a fully zero-simple semihypergroup.
We note that if x ∈ G is an element of infinite period then the set

S = {xn | n ∈ N− {0}}

is a subsemigroup of (G, ·) and K = S ∪ {0} is a subsemihypergroup of
(H, ◦). Moreover (K, ◦) is not zero-simple, indeed we have K ◦ x ◦K 6= K
since x 6∈ K◦x◦K. Hence the first axiom of fully zero-simple simihypergroup
is not verified.

If (G, ·) is a torsion group then all subsemigroups of (G, ·) are subgroups.
Moreover, K ⊆ H is a subsemihypergroup of (H, ◦) of size ≥ 2 if and only if
there exists a subgroup k of (G, ·) such that K = k ∪ {0}. Clearly we have
K ◦ x ◦K = K, for all x ∈ K. Thus in this case (H, ◦) is a fully zero-simple
semihypergroup.
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Remark 2.3. Let F0,p be the class of fully zero-simple semihypergroups
(H, ◦) such that the set S = {0, x, y} is a subsemihypergroups, for all pair
(x, y) of distinct elements in H+. For definition of fully zero-simple semihy-
pergroup we have (S, ◦) ∈ F0,p. If we suppose that there exists a hyperprod-
uct P of elements in S+ such that {x, y} ⊆ P then x◦x∪x◦y∪y ◦x∪y ◦y ⊆
P ◦P . By Lemma 1.1 (3), we have S = P ◦P and the relation βS is transitive,
that is impossible since (S, ◦) ∈ F0,p. In consequence, by Lemma 1.1 (4), if
x, y ∈ H+ and |x ◦ y| = 2 then x ◦ y ∈ {{0, x}, {0, y}}. Hence the residual
semihypergroup (H+, ?) is a semigroup and (S+, ?) is a subsemigroup of size
2 isomorphic to S+/β

∗
S+

because β∗S+
is the identity relation. Moreover, by

Proposition 2.1 (3), (S+, ?) is a completely simple semigroup of size 2. Thus
(S+, ?) is isomorphic to one of the following semigroups:

R2:
1 2

1 1 2
2 1 2

L2:
1 2

1 1 1
2 2 2

Z2:
1 2

1 1 2
2 2 1

Now, we show that if H ≥ 4 then there are no subsets {x, y, z} of distinct
elements in H+ such that the semihypergroups S ′ = {0, x, y} and S ′′ =
{0, x, z} verify the following cases:

a.) S ′+
∼= R2 and S ′′+

∼= Z2;

b.) S ′+
∼= L2 and S ′′+

∼= Z2;

c.) S ′+
∼= Z2

∼= S ′′+;

d.) S ′+
∼= R2 and S ′′+

∼= L2;

The case a.) is impossible. Indeed, if S ′+ = {x, y} ∼= R2 and S ′′+ = {x, z} ∼= Z2

then the subset T = {0, y, z} is not a subsemihypergroup of (H, ◦) since
x ∈ z ◦ z ⊆ T ◦ T .

The cases b.) anc c.) are similar to previous case.

Finally, in the last case, we obtain the following partial table

x y z
x x y x
y x y
z z z
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Since x ? (z ? y) = (x ? z) ? y = {y} then z ? y = {y} and so we have the
contradiction {x} = y ? x = (z ? y) ? x = z ? (y ? x) = z ? x = {z}.

An immediate consequence of the considerations made in the previous
remark is the following result

Theorem 2.2. Let F0,p be the class of fully zero-simple semihypergroups
(H, ◦) such that the set S = {0, x, y} is a subsemihypergroup, for all subsets
{x, y} of distinct elements in H+. Moreover, let T = {0, 1, 2} a subset of H.
Then we have

1. (H+, ?) is a semigroup;

2. for all x, y of distinct elements in H+, ({x, y}, ?) is a completely simple
semigroup of size 2;

3. all subsemihypergroups of size 2 in (H+, ?) are isomorphic to only one
of three semigroups R2, L2, Z2;

4. if (T+, ?) is isomorphic to R2 then (H+, ?) is a right zero-semigroup
and {y} ⊆ x ◦ y ⊆ {0, y}, for all x, y ∈ H;

5. if (T+, ?) is isomorphic to L2 then (H+, ?) is a left zero-semigroup and
{x} ⊆ x ◦ y ⊆ {0, x}, for all x, y ∈ H;

6. if (T+, ?) is isomorphic to Z2 then |H| = 3.

As a consequence of points 4., 5. and 6. of previous theorem we have
that the class F0,p consists of three subclasses, namely R0, L0 and G0(3).
The semihypergroups (H, ◦) in R0 (resp. L0) satisfy the condition {y} ⊆
x ◦ y ⊆ {0, y} (resp. {x} ⊆ x ◦ y ⊆ {0, x}), for all x, y ∈ H. In finite
case, in paper [11] the number of semihypergroups in R0 (resp. L0) has been
calculated, up to isomorphisms. If n ≥ 2 and |H| = n+ 1 then such number
is the (n + 1)-th term of sequence A000070 [24], namely

∑n
k=0 p(k), where

p(k) denotes the number of nonincreasing partitions of integer k. Moreover,
the semihypergroups in class G0(3) are the six semihypergroups listed below,
apart of isomorphisms:

◦1 0 1 2
0 0 0 0
1 0 1 2
2 0 2 0, 1

◦2 0 1 2
0 0 0 0
1 0 1 2
2 0 0, 2 0, 1

◦3 0 1 2
0 0 0 0
1 0 1 0, 2
2 0 2 0, 1
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◦4 0 1 2
0 0 0 0
1 0 1 0, 2
2 0 0, 2 0, 1

◦5 0 1 2
0 0 0 0
1 0 0, 1 0, 2
2 0 0, 2 1

◦6 0 1 2
0 0 0 0
1 0 0, 1 0, 2
2 0 0, 2 0, 1

Obviously, the six semihypergroups listed above belong to class G0 of
fully zero-simple semihypergroups (H, ◦) whose the residual semihypergroup
(H+, ?) is an Abelian 2-group.

In the next theorem if (H, ◦) ∈ F0 and x ∈ H+ then we denote by x̂+ the
cyclic subsemihypergroup of (H+, ?) generated by the element x. Moreover
we put ?xn = x ? . . . ? x︸ ︷︷ ︸

n times

.

Theorem 2.3. Let (H, ◦) ∈ F0, then the following conditions are equivalent

1. the residual semihypergroup (H+, ?) is a torsion group;

2.
⋂

x∈H+
x̂+ 6= ∅ and x̂+ is a finite subgroup of (H+, ?), for all x ∈ H+.

Proof. The implication 1. ⇒ 2. is obvious. We prove that 2. ⇒ 1. If y ∈
H+ and ε is the identity of ŷ+ then

⋂
x∈H+

x̂+ ⊆ ε̂+ = {ε}. Hence
⋂

x∈H+
x̂+ =

{ε} and so ε ∈ x̂+, for all x ∈ H+. Since ε is an idempotent element, we
have that ε is the identity of group x̂+, for all x ∈ H+. Consequently ε is
also identity of (H+, ?) and every element x ∈ H+ has inverse because x̂+
is a group. Now, we show that |a ? b| = 1, for all a, b ∈ H+. Clearly the
thesis is true if ε ∈ {a, b}. Therefore we suppose that a, b ∈ H+ − {ε} and

let {x, y} ⊆ a? b. Since â+ and b̂+ are finite subgroups of (H+, ?), there exist
n,m ∈ N− {0, 1} such that ?an = {ε} = ?bm. We have ?anm = ?bnm = {ε}
and ?anm−1 ? x∪ ?anm−1 ? y = ?anm−1 ? {x, y} ⊆ ?anm−1 ? (a ? b) = (?anm−1 ?
a) ? b = ?anm ? b = ε ? b = {b}. Hence ?anm−1 ? x = ?anm−1 ? y = {b} and
we have {y} = ε ? y = ?anm ? y = (a ? (?anm−1)) ? y = a ? ((?anm−1) ? y) =
a ? ((?anm−1) ? x) = (a ? (?anm−1)) ? x = ?anm ? x = ε ? x = {x}. Thus
|a ? b| = 1 and (H+, ?) is a torsion group. �

Notice that the semihypergroups (H, ◦) ∈ R0 (resp. L0) satisfy the condition
that x̂+ is a subgroup of (H+, ?), for all x ∈ H+. In this case we have⋂

x∈H+
x̂+ = ∅ because x̂+ = {x}, for all x ∈ H+, and (H+, ?) is a right zero

semigroup (resp. a left zero semigroup).

As a consequence of the previous theorem we obtain the following
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Corollary 2.2. Let (H, ◦) ∈ F0, then the following conditions are equivalent

1. the residual semihypergroup (H+, ?) is an Abelian 2-group;

2. there exist an element 1 ∈ H+ such that {1, x} is a subgroup of (H+, ?)
for all x ∈ H+.

The class of semihypergroups that verify one of the equivalent conditions of
the previous corollary is indicated with G0. In [13], the authors show that the
hyperproduct ◦ of semihypergroups in G0 can be regarded as superposition
of the product table of a zero-semigroup and an elementary Abelian 2-group.
In particular, in case of size 5 or 9 the number of semihypergroups in G0 are
41 or 7272 respectively.
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