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Strong maximum principles for fractional Laplacians

Roberta Musina, Alexander I. Nazarov

Abstract

We give a unified approach to strong maximum principles for a large class of nonlocal op-

erators of order s ∈ (0, 1), that includes the Dirichlet, the Neumann Restricted (or Regional)

and the Neumann Semirestricted Laplacians.

MSC 2010: 35R11; 35B50.
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1 Introduction

In this paper we prove strong maximum principles for a large class of fractional Laplacians of

order s ∈ (0, 1), including the Dirichlet Laplacian

(−∆)su(x) = Cn,s · P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy,

the Restricted Neumann Laplacian

(−∆N
Ω)sRu(x) = Cn,s · P.V.

∫
Ω

u(x)− u(y)

|x− y|n+2s
dy

(also called Regional Laplacian), and intermediate operators, such as the Semirestricted Neu-

mann Laplacian

(−∆N
Ω)sSru = χΩ · (−∆)su+ χΩc · (−∆N

Ω)sRu . (1.1)

Here Ω is a domain in Rn, n ≥ 1, Ωc = Rn \ Ω, χV is the characteristic function of the set

V ⊂ Rn, Cn,s =
s22sΓ(n

2
+s)

π
n
2 Γ(1−s)

and ”P.V.” means ”principal value”.
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In recent years a lot of effort has been made to develop efficient technical tools suitable

to handle nonlocal operators. Differently from the standard Laplacian, that acts by pointwise

differentiation, nonlocal operators can be used to model phenomena in presence of long-range

interactions (see for instance [8] for a long list of applications). Despite the abundant available

literature, several basic questions about fractional Laplacians are still open, including strong

maximum principles. It is needless to mention that, besides their independent interest, maximum

principles play a fundamental role in existence, uniqueness, comparison and regularity issues.

The monograph [21] furnishes the basic knowledge about the popular operator (−∆)s. The

related available literature is quite large; we limit ourselves to cite the recent surveys [8, 15]

and references therein. The fractional Laplacian (−∆)s appears, in particular, as the generator

of the symmetric (2s)-stable process in Rn (the classical Brownian motion is recovered in the

limit case s = 1), and can be used to describe the motion of a particle jumping from any point

x ∈ Rn to any y ∈ Rn with a probability density proportional to 1
|x−y|n+2s .

In the so-called censored processes the particle obeys the same power law decay but can

only jump between points that belong to a given (bounded, smooth) domain Ω; in a quite

naive interpretation, we could say that the region Ω has a ”reflecting boundary”. To study

these processes one is lead to restrict the kernel 1
|x−y|n+2s to Ω, so that the resulting fractional

operator is (−∆N
Ω)sR . A vaste literature about the operator (−∆N

Ω)sR is available as well; its

relevance with regard to censored processes has been pointed out in [3, 10, 12, 13]. We cite

also [22, 23, 24] where Neumann, Robin and mixed boundary value problems for (−∆N
Ω)sR on not

necessarily regular domains Ω are studied.

Different homogenous (for instance) Neumann boundary conditions in a fractional setting

may be introduced by surrounding the domain Ω by a fat ”collar” U ⊃ Ω (here we adopt the

terminology from [10]). Roughly speaking, one could imagine a random movement of a particle

that can only jump between points x, y ∈ U ; moreover, the region U \Ω has a ”reflecting effect”,

so that points x ∈ U, y ∈ Ω interact with probability density proportional to 1
|x−y|n+2s , while

jumps between points x, y ∈ U \ Ω are not allowed. The resulting fractional Laplacian clearly

depends on the collar U .

To obtain the Semirestricted Neumann Laplacian (−∆N
Ω)sSr one takes U = Rn. The fractional

Laplacian (−∆N
Ω)sSr has been proposed in [9] to set up an alternative approach to Neumann

problems; it also can be used to study non-homogeneous Dirichlet problems for (−∆)s, see for

instance the survey [17].
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In this paper we propose a unifying approach to handle all the above-mentioned fractional

Laplacians. More precisely, for any domain Ω ⊆ Rn we consider collars that are given by the

union of two open sets U1, U2 ⊆ Rn such that Ω ⊆ U1 ∩ U2. We allow only jumps from x ∈ U1

to y ∈ U2, and vice versa. Thus the symmetric difference (U1 \ U2) ∪ (U2 \ U1) has a ”reflecting

property” in the sense that, for instance, a point x ∈ U1 \ U2 can only interact with points

y ∈ U2. Next we put

Z =
(
U1 × U2

)
∪
(
U2 × U1

)
⊆ Rn × Rn ,

so that Ω× Ω ⊆ Z. For s ∈ (0, 1) we introduce the space

Xs(Ω;Z) =
{
u : U1 ∪ U2 → R measurable

∣∣ u(x)

1 + |x|n+2s
∈ L1(U1 ∪ U2), u ∈ Hs

loc(Ω)
}
.

Notice that, in particular, Xs(Ω;Z) contains functions u ∈ L1
loc(U1 ∪ U2) such that

Es(u;Z) :=
Cn,s

2

∫∫
Z

(u(x)− u(y))2

|x− y|n+2s
dxdy (1.2)

is finite. For u ∈ Xs(Ω;Z) we introduce the distribution LsZu ∈ D′(Ω) defined via

〈LsZu, ϕ〉 =
Cn,s

2

∫∫
Z

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dxdy , ϕ ∈ C∞0 (Ω) ,

see Lemma 2.1.

We understand the inequality LsZu ≥ 0 in Ω in distributional sense, that is,

〈LsZu, ϕ〉 ≥ 0, if ϕ ∈ C∞0 (Ω), ϕ ≥ 0.

Clearly, (−∆)s is recovered by choosing U1 = U2 = Rn, the Restricted Laplacian is obtained by

taking U1 = U2 = Ω, while the intermediate case (−∆N
Ω)sSr is given by core U1 = Rn, U2 = Ω.

In our main result, see Theorem 4.1, we provide a strong maximum principle for solutions

to LsZu ≥ 0 in Ω, with no assumptions on Ω. To prove Theorem 4.1 we follow the outlines of

the arguments in [14, Theorems 2.4 and 2.5], that cover the case LsZ = (−∆)s, Ω bounded and

smooth, n ≥ 2, u ∈ Hs(Rn) and u ≥ 0 in Rn \ Ω. We cite also [6, Theorem 1.2] for a related

result involving the fractional Dirichlet p-Laplacian.

Our approach can be easily generalized for a wider class of kernels A(x,y)
|x−y|n+2s with A measur-

able, symmetric, bounded and bounded away from zero.
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The paper is organized as follows. In Section 2 we prove some auxiliary statements. Sec-

tion 3 is devoted to Caccioppoli-type estimates and to De Giorgi-type maximum estimates for

(sub)solutions. In Section 4 we state and prove Theorem 4.1, and formulate corresponding

results for the Dirichlet, Restricted and Semirestricted Neumann Laplacians.

In the Appendix we collect some more strong maximum principles for nonlocal Laplacians.

First, we formulate a strong maximum principle for (−∆)s that is essentially contained in the

remarkable paper [19] by Silvestre, who extended the classical theory of superhamonic functions

to the case of fractional Laplacian. Then we discuss strong maximum principles for spectral

fractional Laplacians. The Spectral Dirichlet Laplacian (−∆Ω)sSp (also called the Navier Lapla-

cian) is widely studied. Notice that for Ω = Rn we have (−∆Ω)sSp = (−∆)s, for other Ω these

operators differ, see [16] for some integral and pointwise inequalities between them. The Spec-

tral Neumann Laplacian (−∆N
Ω)sSp is less investigated; we limit ourselves to cite [1, 4, 11] and

references therein.

Notation. Here we recall some basic notions taken from [21]. For Z ⊆ Rn × Rn and u measurable, let

Es(u;Z) be the quadratic form in (1.2). We put

Hs(Rn) =
{
u ∈ L2(Rn) | Es(u;Rn×Rn) <∞

}
,

that is an Hilbert space with respect to the norm

‖u‖2Hs(Rn) := Es(u;Rn×Rn) + ‖u‖2L2(Rn).

For any domain G ⊂ Rn, we introduce the following closed subspace of Hs(Rn):

H̃s(G) =
{
u ∈ Hs(Rn) | u = 0 on Rn \G

}
,

and its dual space H̃s(G)′.

We write u ∈ Hs
loc(Ω) if for any G b Ω, the function u is the restriction to G of some v ∈ Hs(Rn),

and we put

‖u‖Hs(G) := inf
{
‖v‖Hs(Rn) | v = u on G

}
.

It is well known that u ∈ Hs
loc(Ω) if and only if ηu ∈ H̃s(Ω) for any η ∈ C∞0 (Ω), see for instance [21,

Subsection 4.4.2].

We adopt the following standard notation:

Br(x) is the Euclidean ball of radius r centered at x, and Br = Br(0);

u± = max{±u, 0}; sup
G
u and inf

G
u stand for essential supremum/infimum of the measurable function

u on the measurable set G;

Through the paper, all constants depending only on n and s are denoted by c. To indicate that a

constant depends on other quantities we list them in parentheses: c(· · · ).
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2 Preliminaries

For any function ϕ on Rn we put

Ψϕ(x, y) =
(ϕ(x)− ϕ(y))2

|x− y|n+2s
. (2.1)

Lemma 2.1 Let u ∈ Xs(Ω;Z). Then LsZu is a well defined distribution in Ω. Moreover, for

any Lipschitz domain G b Ω, we have LsZu ∈ H̃s(G)′ and∫∫
G×G

|u(x)u(y)|Ψϕ(x, y) dxdy <∞ for any ϕ ∈ C∞0 (G).

P r o o f. Let ϕ ∈ C∞0 (Ω). In order to have that LsZu is well defined we need to show that

g(x, y) :=
(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
∈ L1(Z).

Take two Lipschitz domains G, G̃, such that supp(ϕ) ⊂ G b G̃ b Ω. From u ∈ Hs(G̃), we have∫∫
G̃×G̃

|g(x, y)| dxdy ≤ ‖u‖
Hs(G̃)

‖ϕ‖Hs(Rn).

Next, since ϕ vanishes outside G, and since[
Z \ (G̃× G̃)

]
\ (Gc ×Gc) =

[
G×

(
(U1 ∪ U2) \ G̃

)]
∪
[(

(U1 ∪ U2) \ G̃
)
×G

]
, (2.2)

it is enough to prove that g ∈ L1(G×
(
(U1 ∪ U2) \ G̃)). We have∫∫

G×((U1∪U2)\G̃)

|g(x, y)| dxdy ≤
∫
G

|ϕ(x)|
[ ∫

(U1∪U2)\G̃

|u(x)|+ |u(y)|
|x− y|n+2s

dy

]
dx

≤ c(dist(G, ∂G̃))
(
‖ϕ‖L2(G)‖u‖L2(G) + ‖ϕ‖L1(G)

∫
U1∪U2

|u(y)|
1 + |y|n+2s

dy
)
≤ c(G, G̃, u)‖ϕ‖

H̃s(G)
.

We proved that LsZu ∈ D′(Ω) and actually LsZu ∈ H̃s(G)′, by the density of C∞0 (G) in H̃s(G).

Further, take again ϕ ∈ C∞0 (G) and notice that Ψϕ(x, · ) ∈ L1(Rn) for any x ∈ Rn, because

Ψϕ(x, y) ≤ c(ϕ)
( χ{|x−y|<1}

|x− y|n−2(1−s) +
χ{|x−y|>1}

|x− y|n+2s

)
.
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Actually

∫
Rn

Ψϕ(x, y) dy ≤ c(ϕ), and by the Cauchy-Bunyakovsky-Schwarz inequality we infer

∫∫
G×G

|u(x)u(y)|Ψϕ dxdy ≤
∫∫
G×G

|u(x)|2Ψϕ dxdy ≤ c(ϕ)

∫
G

|u(x)|2 dx ≤ c(u, ϕ,G) <∞ .

The lemma is proved. �

Next, for any domainG ⊆ U1∩U2 we introduce the relative killing measureMZ
G ∈ L∞loc(G),

MZ
G (x) = Cn,s

∫
(U1∪U2)\G

dy

|x− y|n+2s
, x ∈ G .

When U1 ∪U2 = Rn, that happens for instance in the Dirichlet and in the Semirestricted cases,

see Section 4, the weight MZ
G coincides with so-called killing measure of the set G:

MG(x) := MRn×Rn
G (x) = Cn,s

∫
Rn\G

dy

|x− y|n+2s
.

In the Restricted case we have U1 ∪ U2 = Ω and MZ
G = MΩ×Ω

G ; if G ⊂ Ω then MΩ×Ω
G is the

difference between the killing measures of the sets G and Ω.

Lemma 2.2 Let G ⊆ U1 ∩ U2 be a Lipschitz domain. If u ∈ H̃s(G), then

Es(u;Z) = Es(u;G×G) +

∫
G

MZ
G (x)|u(x)|2 dx

and in particular u is square integrable on G with respect to the measure MZ
G (x)dx.

P r o o f. Trivially Es(u;Z) < ∞, as u ∈ H̃s(G) ↪→ Hs(Rn). Since u vanishes on G
c
, using

(2.2) with G̃ = G we have

Es(u;Z) = Es(u;G×G) + 2Es(u;G×
[
(U1 ∪ U2) \G

]
)

= Es(u;G×G) + Cn,s

∫
G

|u(x)|2
( ∫

(U1∪U2)\G

dy

|x− y|n+2s

)
dx,

and the lemma is proved. �
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The next two elementary lemmata deal with certain quantities, depending on functions

u ∈ Xs(Ω;Z), that will be involved in the crucial Caccioppoli-type inequality in the next section.

For u ∈ Xs(Ω;Z) and for any domain G ⊆ Ω we use Lemma 2.1 to introduce the distribution

〈(−∆N
(U1∪U2)\G)sRu, ϕ〉 :=

Cn,s
2

∫∫
G×[(U1∪U2)\G]

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dxdy, ϕ ∈ C∞0 (G),

that is the restriction on G of the Regional Laplacian of u relative to the set (U1 ∪ U2) \G.

Lemma 2.3 Let G ⊆ Ω be a domain, u ∈ Xs(Ω;Z). Then for any ϕ ∈ C∞0 (G)∫
G

|u(x)||ϕ(x)|2
( ∫
(U1∪U2)\G

|u(x)− u(y)|
|x− y|n+2s

dy
)
dx <∞. (2.3)

In particular, u · (−∆N
(U1∪U2)\G)sRu ∈ L1

loc(G).

P r o o f. Similarly as in the proof of Lemma 2.1, we estimate the integral in (2.3) by∫
G

|u(x)||ϕ(x)|2
[ ∫

(U1∪U2)\G

|u(x)|+ |u(y)|
|x− y|n+2s

dy

]
dx

≤ c(dist(supp(ϕ), ∂G))‖ϕ‖2L∞(G)

(
‖u‖2L2(supp(ϕ)) + ‖u‖L1(supp(ϕ))

∫
U1∪U2

|u(y)|
1 + |y|n+2s

dy
)
<∞ ,

and the lemma follows. �

Lemma 2.4 If u ∈ Xs(Ω;Z), then u± ∈ Xs(Ω;Z); moreover for any G b Ω we have

E(u±;G×G) < E(u;G×G) , E(|u|;G×G) < E(u;G×G)

unless u has constant sign on G.

P r o o f. We compute

(u(x)− u(y))2 − (u+(x)− u+(y))2 = (u−(x)− u−(y))2 + 2
(
u+(x)u−(y) + u−(x)u+(y)

)
≥ 0.

Thus E(u+;G × G) ≤ E(u;G × G) < ∞ for any G b Ω. Therefore u+ ∈ Hs
loc(Ω), and u+ ∈

Xs(Ω;Z) follows.

Next, assume that E(u;G×G) = E(u+;G×G) on some domain G b Ω. Then

(u−(x)− u−(y))2 + 2
(
u+(x)u−(y) + u−(x)u+(y)

)
= 0

for a.e. (x, y) ∈ G×G. We infer that u− is constant a.e. on G. If u− = 0 then u ≥ 0 on G; if

u− 6= 0 we get u+ = 0, that is, u ≤ 0 on G. The proofs for u− and |u| follow in a similar way. �
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Remark 2.5 If u ∈ L1
loc(U1 ∪ U2) and Es(u;Z) is finite, then Es(u±;Z) < Es(u;Z) and

Es(|u|;Z) < Es(u;Z), unless u has constant sign on U1 ∪ U2. The proof runs with no changes.

Our proof of Theorem 4.1 requires the construction of a suitable barrier function. The next

lemma slightly generalizes a result by Ros-Oton and Serra [18].

Lemma 2.6 Let BR(x0) ⊂ Ω. For any r ∈ (0, R) there exists a constant c = c(R/r) > 0

and a function Φ ∈ Hs(Rn) satisfying

LsZΦ ≤ 0 in BR(x0) \Br(x
0) ;

Φ ≡ 1 in Br(x
0) , Φ ≡ 0 in Rn \BR(x0) , Φ(x) ≥ c(R− |x|)s in BR(x0) . (2.4)

P r o o f. Without loss of generality we can assume x0 = 0. Lemma 3.2 in [18], see also [14,

Lemma 2.2], provides the existence of Φ ∈ H̃s(BR) satisfying (2.4) and (−∆)sΦ ≤ 0 in BR \Br.

To conclude we claim that the distribution (−∆)sΦ− LsZΦ is nonnegative in Ω. Indeed, take a

nonnegative function η ∈ C∞0 (Ω). Since both Φ and η vanish on Rn \ Ω, we have

〈(−∆)sΦ− LsZΦ, η〉 =
Cn,s

2

∫∫
R2n\Z

(Φ(x)− Φ(y))(η(x)− η(y))

|x− y|n+2s
dxdy

= Cn,s

∫
Ω

Φ(x)η(x)
( ∫
Rn\(U1∪U2)

dy

|x− y|n+2s
dy
)
dx,

and the claim follows. In particular, LsZΦ ≤ (−∆)sΦ ≤ 0 in BR \Br, and we are done. �

Remark 2.7 It is worth to note that if Z ⊂ Z ′ then for any nonnegative Φ ∈ H̃s(Ω) the

inequality LsZΦ ≤ LsZ′Φ holds in Ω. The proof runs without changes.

We conclude this preliminary section by the following remark. We fix an exponent p̄ > 2;

precisely we choose p̄ = 4 (for instance) if n = 1 ≤ 2s, and p̄ = 2∗s = 2n
n−2s if n > 2s. Take any

radius r ∈
(
1, 2
]
. The Sobolev embedding theorem implies Es(u;Rn × Rn) ≥ c

(∫
Br

|u|p̄ dx
)2/p̄

for any u ∈ H̃s(Br).

Now let ρ ∈
(
1, r
)
. Since for u ∈ H̃s(Bρ) one has

Es(u;Rn × Rn) = Es(u;Br ×Br) + Cn,s

∫
Br

|u(x)|2
( ∫
Rn\Br

dy

|x− y|n+2s

)
dx,

8



we plainly infer that

Es(u;Br ×Br) +
1

(r − ρ)2s

∫
Br

|u|2 dx ≥ c
(∫
Bρ

|u|p̄ dx
) 2
p̄

for any u ∈ H̃s(Bρ). (2.5)

3 Pointwise estimates for LsZ-subharmonic functions

First, we prove a Caccioppoli-type inequality. We use again the notation introduced in (2.1).

Lemma 3.1 Let G ⊆ Ω be a Lipschitz domain, w ∈ Xs(Ω;Z) and ϕ ∈ C∞0 (G). Then

Es(ϕw+;G×G) ≤ 〈LsZw,ϕ2w+〉 (3.1)

+
Cn,s

2

∫∫
G×G

w+(x)w+(y)Ψϕ(x, y) dxdy −
∫
G

w+ϕ2(−∆N
(U1∪U2)\G)sRw

+dx .

Proof. Note that all quantities in (3.1) are finite by Lemmata 2.1, 2.3 and 2.4. We compute

(w(x)− w(y))((ϕ2w+)(x)− (ϕ2w+)(y))− ((ϕw+)(x)− (ϕw+)(y))2

= −w+(x)w+(y)(ϕ(x)− ϕ(y))2 +
(
ϕ(y)2w−(x)w+(y) + ϕ(x)2w+(x)w−(y)

)
≥ −w+(x)w+(y)(ϕ(x)− ϕ(y))2

to infer

〈LsZw,ϕ2w+〉 =
Cn,s

2

∫∫
Z

(w(x)− w(y))((ϕ2w+)(x)− (ϕ2w+)(y))2

|x− y|n+2s
dxdy

≥ Es(ϕw+;Z)− Cn,s
2

∫∫
Z

w+(x)w+(y)Ψϕdxdy

= Es(ϕw+, G×G) +

∫
G

MZ
G (x)|w+ϕ|2 dx− Cn,s

2

∫∫
Z

w+(x)w+(y)Ψϕdxdy

by Lemma 2.2. We compute∫
G

MZ
G (x)|w+ϕ|2 dx = Cn,s

∫
G

w+(x)|ϕ(x)|2
( ∫

(U1∪U2)\G

(w+(x)− w+(y) + w+(y))

|x− y|n+2s
dy
)
dx

=

∫
G

w+|ϕ|2(−∆N
(U1∪U2)\G)sRw

+dx+ Cn,s

∫
G

w+(x)|ϕ(x)|2
( ∫
(U1∪U2)\G

w+(y)

|x− y|n+2s
dy
)
dx .
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Since Ψϕ ≡ 0 on Gc ×Gc we have, by (2.2) with G̃ = G,

Cn,s
2

∫∫
Z

w+(x)w+(y)Ψϕ dxdy

=
Cn,s

2

∫∫
G×G

w+(x)w+(y)Ψϕ dxdy + Cn,s

∫
G

w+(x)
( ∫

(U1∪U2)\G

w+(y)Ψϕ dy
)
dx

=
Cn,s

2

∫∫
G×G

w+(x)w+(y)Ψϕ dxdy + Cn,s

∫
G

w+(x)ϕ(x)2
( ∫

(U1∪U2)\G

w+(y)

|x− y|n+2s
dy
)
dx ,

and the lemma follows. �

Remark 3.2 Inequality (3.1) was essentially proved in [7, Theorem 1.4], in a weaker form

but in a non-Hilbertian setting and for more general kernels.

The next De Giorgi-type result is obtained by suitably modifying the argument for [7, The-

orem 1.1].

Lemma 3.3 For any u ∈ Xs(Ω;Z) such that LsZu ≤ 0 in Ω and for every ball B2r(x
0) ⊆ Ω,

one has

sup
Br(x0)

u ≤
( ĉ
rn

∫
B2r(x0)

|u+(x)|2 dx
) 1

2
+ r2s

∫
(U1∪U2)\Br(x0)

|u+(x)|
|x− x0|n+2s

dx , (3.2)

where ĉ > 0 depends only on n and s. In particular, u is locally bounded from above in Ω.

Proo f. First of all let us recall that for U1∪U2 = Rn the last term in (3.2) is called nonlocal

tail. For Z 6= Rn×Rn we call this term relative nonlocal tail and denote it by TailZ(u+;x0, r).

By rescaling we can assume without loss of generality that r = 1 and x0 = 0. We introduce

a parameter k̃ > 0 satisfying

k̃ ≥ TailZ(u+; 0, 1) (3.3)

(its value will be chosen later). For any integer j ≥ 0 we put

rj = 1 + 2−j , kj = k̃(1− 2−j) , Bj = Brj ;

r̃j =
rj + rj+1

2
, k̃j =

kj + kj+1

2
, B̃j = Br̃j ;

wj = (u− kj)+ , w̃j = (u− k̃j)+ , αj =
( ∫
Bj

|wj |2 dx
) 1

2 .
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The following relations are obvious:

rj ↘ 1 , rj+1 < r̃j < rj ; kj ↗ k̃ , kj < k̃j < kj+1;

w̃j ≤ wj , w̃j ≤
w2
j

k̃j − kj
=

2j+2

k̃
w2
j ; (3.4)

α2
0 =

∫
B2

|u+|2 dx , α2
j →

∫
B1

|(u− k̃)+|2 dx as j →∞. (3.5)

In addition, we have

w2
j+1

( k̃

2j+2

)p̄−2
= w2

j+1(kj+1 − k̃j)p̄−2 ≤ w̃p̄j , (3.6)

where the exponent p̄ > 2 was introduced at the end of Section 2.

Next, for any integer j ≥ 0 we fix a cut-off function ϕj satisfying

ϕj ∈ C∞0 (B̃j) , 0 ≤ ϕj ≤ 1 , ϕ ≡ 1 on Bj+1, ‖∇ϕ‖∞ ≤ 2j+3.

Since w̃jϕj ∈ H̃s(Bj) and 1 < r̃j < rj < 2, by (2.5) with ρ = r̃j and r = rj , we have

c
(∫
Bj

|w̃jϕj |p̄
) 2
p̄ ≤ Es(w̃jϕj ;Bj ×Bj) + 22s(j+2)

∫
Bj

|w̃jϕj |2 dx. (3.7)

Notice that 〈LsZ(u− k̃j), w̃jϕ2
j 〉 ≤ 0, since LsZ(u− k̃j) = LsZu ≤ 0 in Bj and w̃jϕ

2
j ∈ H̃s(Bj)

is nonnegative. Using Lemma 3.1 with w = u− k̃j , we infer

Es(w̃jϕj ;Bj ×Bj) ≤ c
∫∫

Bj×Bj

w̃j(x)w̃j(y)Ψϕj (x, y) dxdy −
∫
Bj

w̃jϕ
2
j (−∆N

(U1∪U2)\Bj)
s
Rw̃j dx,

so that (∫
Bj

|w̃jϕj |p̄ dx
) 2
p̄ ≤ c

(
J1 − J2 + k̃2 22sj

(αj
k̃

)2)
(3.8)

by (3.7), where

J1 =

∫∫
Bj×Bj

w̃j(x)w̃j(y)Ψϕj (x, y) dxdy , J2 =

∫
Bj

w̃jϕ
2
j (−∆N

(U1∪U2)\Bj)
s
Rw̃j) dx.

We estimate from below the left-hand side of (3.8) via (3.6):∫
Bj

|w̃jϕj |p̄ dx ≥
∫

Bj+1

|w̃j |p̄ dx ≥ c
( k̃

2j

)p̄−2
∫

Bj+1

|wj+1|2 dx = c k̃p̄ 2j(2−p̄)
(αj+1

k̃

)2
. (3.9)
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We estimate J1 by using

Ψϕj (x, y) ≤ ‖∇ϕj‖2∞ |x− y|−(n+2s−2)≤ c22j |x− y|−(n+2s−2)

and the Cauchy-Bunyakovsky-Schwarz inequality, to obtain

J1 ≤ c 22j

∫∫
Bj×Bj

w̃j(x)

|x− y|
n+2s−2

2

w̃j(y)

|x− y|
n+2s−2

2

dxdy ≤ c 22j

∫∫
Bj×Bj

|w̃j(x)|2

|x− y|n+2s−2
dxdy

= c 22j

∫
Bj

|w̃j(x)|2
(∫
Bj

dy

|x− y|n+2s−2

)
dx≤ cr2−2s

j 22jα2
j ≤ c k̃2 22j

(αj
k̃

)2
. (3.10)

We handle J2 as follows. For x ∈ supp(ϕj) ⊂ B̃j and y ∈ Ω \Bj we have

|y|
|x− y|

≤ 1 +
|x|
|x− y|

≤ 1 +
rj

rj − r̃j
≤ c 2j .

Hence, using also (3.4) we can estimate

w̃j(x)|ϕj(x)|2 w̃j(y)− w̃j(x)

|x− y|n+2s
≤ c

k̃
|wj(x)|2 2j(n+2s+1) wj(y)

|y|n+2s
,

so that

−J2 =

∫
Bj

w̃j(x)|ϕj(x)|2
( ∫

(U1∪U2)\Bj

w̃j(y)− w̃j(x)

|x− y|n+2s
dy
)
dx

≤ c

k̃
2j(n+2s+1)

( ∫
(U1∪U2)\Bj

wj(y)

|y|n+2s
dy
) ∫
Bj

|wj |2 dx

≤ ck̃ 2j(n+2s+1) TailZ(u+; 0, 1)
(αj
k̃

)2

because Bj ⊃ B1 and wj ≤ u+. Comparing with (3.8), (3.9) and (3.10) we arrive at

2
2(2−p̄)
p̄

j
(αj+1

k̃

) 4
p̄ ≤ c 2j(n+2s+1)

(
1 + k̃−1 TailZ(u+; 0, 1)

)(αj
k̃

)2
.

Taking (3.3) into account, we can conclude that

αj+1

k̃
≤ (ĉ

β
2 η
− 1
β )ηj

(αj
k̃

)β+1
, (3.11)
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where β =
p̄

2
− 1 > 0 , η = 2

p̄
4

(n+2s+1)+β > 1. Now we choose the free parameter k̃, namely

k̃ = TailZ(u+; 0, 1) + ĉ
1
2α0 = TailZ(u+; 0, 1) +

(
ĉ

∫
B1

|u+|2 dx
) 1

2
,

compare with (3.2). The above choice of k̃ guarantees that

ĉ
1
2
αj

k̃
≤ η−

j
β (3.12)

for j = 0. Using induction and (3.11) one easily gets that (3.12) holds for any j ≥ 0. Thus

αj → 0 and hence (u− k̃)+ ≡ 0 on B1 by (3.5). The proof is complete. �

4 Main results

We are in position to state and prove a strong maximum principle for the nonlocal operator LsZ ,

that is the main result of the present paper.

Theorem 4.1 Let u be a nonconstant measurable function on U1 ∪ U2 such that

u ∈ Hs
loc(Ω) ,

∫
U1∪U2

|u(x)|
1 + |x|n+2s

dx <∞ , LsZu ≥ 0 in Ω.

Then u is lower semicontinuous on Ω, locally bounded from below on Ω and

u(x) > inf
U1∪U2

u for every x ∈ Ω.

P r o o f. First, local boundedness from below follows from Lemma 3.3.

To check the first claim it suffices to show that u has a representative that is lower semicon-

tinuous on any fixed domain G b Ω. From

Cn,s
2

∫
G

(∫
G

(u(x)− u(y))2

|x− y|n+2s
dy
)
dx <∞

we infer that ∫
G

(u(x)− u(y))2

|y − x|n+2s
dy <∞ (4.1)
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for a.e. x ∈ G. Let G0 be the set of Lebesgue points x ∈ G for u that satisfy (4.1). We can

assume that u(x0) = lim inf
x→x0

u(x) for any x0 ∈ G\G0, because G\G0 has null Lebesgue measure.

Our next goal is to show that u(x0) ≤ lim inf
x→x0

u(x) for any x0 ∈ G0. We use Lemma 3.3 with

u replaced by u(x0)− u to get

inf
Br(x0)

u ≥ u(x0)− TailZ((u(x0)− u)+;x0, r)−
( ĉ
rn

∫
B2r(x0)

|(u(x0)− u)+|2 dx
) 1

2
(4.2)

for any r > 0 small enough. First we split

TailZ((u(x0)− u)+;x0, r) = r2s

∫
(U1∪U2)\B2r(x0)

|u(x0)− u(x)|
|x− x0|n+2s

dx

≤ r2s

∫
(U1∪U2)\G

|u(x0)|+ |u(x)|
|x− x0|n+2s

dx + r2s

∫
G\B2r(x0)

|u(x0)− u(x)|
|x− x0|n+2s

dx =: Pr +Qr.

We readily obtain

Pr ≤ c(dist(x0, ∂G)) r2s

∫
(U1∪U2)

|u(x0)|+ |u(x)|
1 + |x|n+2s

dx→ 0

as r → 0. Next we use the Cauchy-Bunyakovsky-Schwarz inequality to estimate

Qr ≤ r2s
(∫
G

(u(x0)− u(x))2

|x− x0|n+2s
dx
)1

2
( ∫
Rn\B2r(x0)

dx

|x− x0|n+2s

) 1
2

= crs
(∫
G

(u(x0)− u(x))2

|x− x0|n+2s
dx
) 1

2
.

Since (4.1) is satisfied at x = x0, we have that Qr → 0. Thus TailZ((u(x0)− u)+;x0, r)→ 0 as

r → 0. Further, the last term in (4.2) goes to zero as r → 0 because x0 is a Lebesgue point for

u. Thus lim inf
x→x0

u(x) ≥ u(x0), and the first statement is proved.

Next, assume by contradiction that u is bounded from below and

Ω+ := {x ∈ Ω | u(x) > m := inf
U1∪U2

u }

is strictly contained in Ω. Since u is lower semicontinuous on Ω, the set Ω+ is open and has a

nonempty boundary in Ω.

Fix a point ξ ∈ Ω∩∂Ω+, so that u(ξ) = m. Using again the lower-semicontinuity of u, we can

find R > r > 0 and a point x0 ∈ Ω+, such that ξ ∈ BR(x0) b Ω and u(x) ≥ 1
2(u(x0) +m) > m

14



for every x ∈ Br(x
0). We can assume that x0 = 0 to simplify notations. Thus we have the

following situation:

ξ ∈ BR ⊂ Ω , u(ξ) = m , inf
Br
u(x) ≥ m+ δ (4.3)

for some δ > 0. Let Φ be the function defined in Lemma 2.6. We claim that u ≥ m + δΦ > m

in BR \Br, that gives a contradiction with (4.3).

Indeed, define v = u− δΦ, so that

v = u− δ ≥ m in Br, v = u ≥ m in (U1 ∪ U2) \BR.

Our goal is to show that v ≥ m also on BR \Br.

Clearly v ∈ Xs(Ω;Z) as u,Φ ∈ Xs(Ω;Z). By Lemma 2.4 this implies vm± := (v − m)± ∈
Xs(Ω;Z). Next, notice that vm− = 0 out of BR \ Br. Therefore vm− ∈ H̃s(BR \ Br), and using

Lemma 2.1 we obtain

〈LsZv, vm− 〉 = 〈LsZu, vm− 〉 − δ〈LsZΦ, vm− 〉 ≥ 0. (4.4)

However,

〈LsZv, vm− 〉 =
Cn,s

2

∫∫
Z

((v(x)−m)− (v(y)−m))(vm− (x)− vm− (y))

|x− y|n+2s
dxdy

= −Cn,s
2

∫∫
Z

vm+ (x)vm− (y) + vm+ (y)vm− (x)

|x− y|n+2s
dxdy − Es(vm− ;Z)

≤ −Es(vm− ;BR ×BR),

so that (4.4) implies Es(vm− ;BR × BR) = 0, that together with vm− ∈ H̃s(BR \ Br) gives the

conclusion. �

By choosing U1 = U2 = Rn we have Z = Rn×Rn. It is well known that LsRn×Rnu = (−∆)su

pointwise on Rn if u ∈ C2(Rn). Thanks to Lemma 2.1, we can say that LsRn×Rnu = (−∆)su in

H̃s(G)′, for every u ∈ Xs(Ω;Rn×Rn) and for any Lipschitz domain G b Ω. From Theorem 4.1

we immediately infer the next result.

Corollary 4.2 (Dirichlet Laplacian) Let Ω ⊆ Rn be a domain, and let u be a non-

constant measurable function on Rn such that

u ∈ Hs
loc(Ω) ,

∫
Rn

|u(x)|
1 + |x|n+2s

dx <∞ , (−∆)su ≥ 0 in Ω.
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Then u is lower semicontinuous on Ω, locally bounded from below on Ω and u(x) > inf
Rn
u for

every x ∈ Ω.

The Restricted Laplacian is obtained by choosing U1 = U2 = Ω. In fact, LsΩ×Ωu = (−∆N
Ω)sRu

on Ω if u ∈ C2(Ω), and LsΩ×Ωu = (−∆N
Ω)sRu in H̃s(G)′, for every u ∈ Xs(Ω;Rn ×Rn) and every

Lipschitz domain G b Ω. From Theorem 4.1 we infer the next result.

Corollary 4.3 (Restricted Laplacian) Let Ω ⊂ Rn be a domain, and let u be a non-

constant measurable function on Ω such that

u ∈ Hs
loc(Ω) ,

∫
Ω

|u(x)|
1 + |x|n+2s

dx <∞ , (−∆N
Ω)sRu ≥ 0 in Ω.

Then u is lower semicontinuous on Ω, locally bounded from below on Ω and u(x) > inf
Ω
u for

every x ∈ Ω.

Next, we choose U1 = Ω, U2 = Rn, so that Z = R2n \ (Ωc)2. By [9, Lemma 3] we have that

LsR2n\(Ωc)2u = (−∆N
Ω)sSru if u ∈ C2(Rn) ∩ L∞(Rn), compare with (1.1). From the computations

there and thanks to Lemma 2.1 we can identify the distributions LsR2n\(Ωc)2u and (−∆N
Ω)sSru for

functions u ∈ Xs(Ω;R2n \ (Ωc)2) (see also [9, Definition 3.6]). Theorem 4.1 immediately implies

the next corollary, see also [2, Theorem 1.1] for a related result.

Corollary 4.4 (Semirestricted Laplacian) Let Ω ⊂ Rn be a domain, and let u be a

nonconstant measurable function on Rn such that

u ∈ Hs
loc(Ω) ,

∫
Rn

|u(x)|
1 + |x|n+2s

dx <∞ , (−∆N
Ω)sSru ≥ 0 in Ω.

Then u is lower semicontinuous on Ω, locally bounded from below on Ω and u(x) > inf
Rn
u for

every x ∈ Ω.

We conclude by recalling that in the local case s = 1, the strong maximum principle states

that every nonconstant superharmonic function u on Ω satisfies u(x) > inf
Ω
u for every x ∈ Ω.

Notice that in the non local, Neumann Restricted case we reached the same conclusion. In

contrast, in the Dirichlet and in the Semirestricted cases a similar result can not hold, see the

example in the next remark.
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Remark 4.5 Take any bounded domain Ω ∈ Rn and two nonnegative functions u, ψ ∈
C∞0 (Rn) such that 0 ≤ u ≤ 1, u ≡ 1 on Ω, suppψ ⊂ Ω. For any x ∈ Ω we have

(−∆)su(x) = (−∆N
Ω)sSru(x) = Cn,s · P.V.

∫
Rn

1− u(y)

|x− y|n+2s
dy > 0.

Since (−∆)su, (−∆)sψ are smooth functions, we have that (−∆)s(u − εψ) ≥ 0 in Ω, for some

small ε > 0. Then u− εψ satisfies the assumptions in Corollaries 4.2 and 4.4, but inf
Ω

(u− εψ)

is achieved in Ω, and actually u − εψ has a strict local minimum in Ω if ψ has a strict local

maximum. Clearly, inf
Rn

(u− εψ) = 0 is not achieved in Ω.

Appendix

We start with a proposition in fact proved in [19]. It gives the same conclusion as in Corollary

4.2 under weaker summability assumptions on u. Notice however that n > 2s is needed (this is

a restriction only if n = 1), and that Silvestre’s construction cannot be easily extended to more

general operators such as the Restricted and Semirestricted ones.

Proposition A.1 Assume n > 2s and let u be a nonconstant measurable function on Rn

such that u(x)
1+|x|n+2s ∈ L1(Rn) and (−∆)su ≥ 0 in the distributional sense on Ω, that is,

〈(−∆)su, ϕ〉 =

∫
Rn

u (−∆)sϕ dx ≥ 0 for any ϕ ∈ C∞0 (Rn), ϕ ≥ 0.

Then u is lower semicontinuous on Ω and u(x) > inf
Rn
u for every x ∈ Ω.

P r o o f. First, notice that (−∆)su is a well defined distribution, as (1 + |x|n+2s) (−∆)sϕ is

a bounded function on Rn, for any ϕ ∈ C∞0 (Rn). Proposition 2.2.6 in [19] gives the lower

semicontinuity of u in Ω and the relations u(x0) ≥
∫
Rn
u(x)γsr(x0 − x) dx > −∞ for any ball

Br(x0) ⊂ Ω, where γsr is certain continuous and positive function on Rn. If u is unbounded from

below we are done; otherwise, we can assume inf
Rn
u = 0. Suppose that there exists x0 ∈ Ω such

that u(x0) = 0. Take a ball Br(x0) ⊂ Ω. Then 0 ≥
∫
Rn
u(x)γsr(x0 − x) dx ≥ 0, that immediately

implies u ≡ 0 in Rn, a contradiction. �

17



Now we recall that the Spectral Dirichlet/Neumann fractional Laplacian is the s-th power

of standard Dirichlet/Neumann Laplacian in Ω in the sense of spectral theory.

A strong maximum principle for the Spectral Dirichlet Laplacian follows from [5, Lemma

2.6] and reads as follows.

Proposition A.2 Let Ω ⊂ Rn be a bounded domain, and let a function u ∈ H̃s(Ω) be such

that (−∆Ω)sSpu ≥ 0 in Ω the sense of distributions. Then either u ≡ 0 or inf
K
u > 0 for arbitrary

compact set K ⊂ Ω.

A strong maximum principle for the Spectral Neumann Laplacian can be obtained from the

results in [5].

Theorem A.3 Let Ω ⊂ Rn be a bounded Lipschitz domain, and let a function u ∈ Hs(Ω)

be such that (−∆N
Ω)sSpu ≥ 0 in a subdomain G ⊂ Ω in the sense of distributions. Then either

u ≡ const or inf
K
u > inf

Ω
u for arbitrary compact set K ⊂ G.

P r o o f. It is well known, see [20], [4] and [1] for a general setting, that for any u ∈ Hs(Ω)

the boundary value problem

−div(y1−2s∇w) = 0 in Ω× R+; w
∣∣
y=0

= u; ∂nw
∣∣
x∈∂Ω

= 0, (A.1)

has a unique weak solution wNs (x, y), and

(−∆N
Ω)sSpu(x) = − 22s−1Γ(s)

Γ(1− s)
· lim
y→0+

y1−2s∂yw
N
s (x, y)

(the limit is understood in the sense of distributions).

Without loss of generality we can assume that inf
Ω
u = 0. Then by the maximum principle

for (A.1) we have w ≥ 0. By [5, Lemma 2.6] the statement follows. �
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