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Università degli Studi di Udine
Via delle Scienze, 206
33100 Udine – Italia
https://www.dmif.uniud.it

pippia.eleonora@spes.uniud.it
pippia.eleonora@gmail.com
https://www.dmif.uniud.it


Well, here at last, dear friends, on the shores of the Sea comes
the end of our fellowship in Middle-earth. Go in peace! I will
not say: do not weep; for not all tears are an evil.

— J. R. R. Tolkien, The Lord of the Rings





Abstract

In the last couple of years food service sector is embracing the fourth industrial
revolution. Electrolux Professional, as a leader in this sector, is continuously searching
for smart functionalities and intelligent products to improve the design process or
directly the final products.

This thesis, funded by Electrolux Professional, starts the analysis in food service
sector of the emerging type of systems called Cyber Physical Systems, i.e. systems
where computational and dynamical/physical capabilities as deeply intertwined. We
present four different analyses focusing on optimization problems and reachability.
These two aspects even overlap in one case study.

We start proposing a new functionality for professional ovens able to sort a list
of cooking recipes in order to minimize the total energy consumption. Then a multi-
objective optimization problem to select the complex parameters for a thawing system.
For this second project we propose two approaches: a multi-objective analysis using
a genetic algorithm and a reformulation of the optimization problem as a reachability
analysis over a hybrid system. With this second study we build a bridge between the
optimization field and the tools used for verification analysis. We open here the second
topic of this thesis and the next two projects deal with reachability analysis. We
select a specific reachability tool based on the Bernstein approximation for polynomial
functions. We apply the Bernstein theory to the trajectories of a robot arm in order
to check the collision with an obstacle or to prevent the collision applying a set of
constraints in the joint domain. Finally, the last analysis touches another important
trend of these years: Neural Networks (NN). We focus on the verification of neural net
control systems (NNCS), i.e. systems where the NN are used to control the physical
process. The challenge here is to be able to estimate and bound the behavior of
the neural net. We propose a method, to this end, using rational and polynomial
approximations for activation functions in order to bound the output image of each
layer using the Bernstein expansion.
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Introduction

We are in the era of connectivity, the era of autonomous driving car and collaborative
robot, the era of cloud services and powerful integrated circuit. We are in the forth
industry revolution where factories are smart, products are intelligent, and customers
are demanding for being all around served with great satisfaction. This revolution is
changing people’s life styles and living behaviors, even thinking and mindset, from
shopping to dining, from working to entertaining.

In this context a new generation of hybrid systems called Cyber Physical Systems
(CPS) [11] are becoming increasingly pervasive. The term CPS refers to physical and
software components that are deeply intertwined. These systems are able to collect
and analyze data generated from physical sensors and to use these information to act
and modify the physical world around them in order to exhibit multiple and distinct
behaviors/modalities and to interact with each other by spreading the information to
other devices. The double nature of CPS also changes the way in which we design the
controls for these systems. We build computational models in place of real prototypes
which can be simulated in order to verify their compliance with respect to original
requirements. Indeed, the simulation-driven design processes, so that the Model-Based
Design (MBD), quickly assumed a central role in system design. Virtual prototyping
is a key concept in the development phase and it has two outcomes. On the one side,
the ability to simulate the system speeds up the testing phase, reducing time and
cost, and it enables the use of more sophisticated optimization tools to analyze any
possible scenario. On the other hand, the complexity of generated models poses new
challenges on how to design safety and secure CPS and how to verify the requirements
on the system. At the foundation, to address the two outcomes we have optimization
theory and reachability analysis. These two aspects characterize the thesis and they
even overlap in one of the case studies.

Food service sector

The fourth industrial revolution, that started in the automotive sectors, is now involv-
ing any type of business. In the last couples of years, food service sector is embracing
this revolution too. Shifting consumer preferences from conventional to technolog-
ically advanced products is enabling manufacturers to offer innovative kitchen ap-
pliances. We can think about all the videos and spot showing the first attempt of
collaborative kitchen robots, or smart appliances or artificial intelligence algorithms
all around the kitchen to guide and assist the food operators.

Electrolux Professional is a multinational company in food service equipment and
laundry solutions. It fulfills the business-to-business1(B2B) HORECA2 market by
providing a comprehensive range of solutions to store, prepare, cook, serve food, and
to clean the tools employed in the food service. Electrolux food service equipment is
tailored for different types of professional kitchens from Michelin starred restaurants,



x Introduction

to pubs and bars, from hospitals, schools and military canteens to Quick Service
Restaurants. As a leader in food-service equipment, Electrolux Professional is con-
tinuously innovating the products with advanced solutions to improve efficiency and
productivity of professional kitchens.

This thesis starts the analysis of CPS in food service sector focusing on optimiza-
tion problems and reachability analysis. We present four different analyses. In the
first two, we improve and develop new solutions using optimization techniques with
a direct impact on the products and on the development phase. In the last two anal-
yses, we focus on the verification of advanced tools that are increasingly presents in
professional kitchens, i.e. collaborative robots and neural network, and we select a
specific reachability tool based on Bernstein theory for polynomial functions.

Thesis contribution & structure

As mentioned before, we work on two directions: optimization of CPS and reachability
analysis. This thesis has been divided into three parts. The first part presents the
basic concepts. The second and third parts refer to applications of optimization and
reachability theories on some practical projects.

Part I (Basic Concepts). This part recalls all the necessary definitions and
properties. In Chapter 1 we define what is an optimization problem and we describe
a generic multistage system, that is a particular system present in food service appli-
ances. We also go beyond the range of the standard optimization tools entering in the
field of the artificial intelligence tools by introducing the neural network structure.
The hybrid system theory and the Bernstein theory that we use for the reachability
analysis are reported in Chapter 2.

Part II (Optimization of multistage systems). This part is devoted to the
development and application of optimization algorithms for food service appliances.
In particular we address two projects involving a professional oven and a thawing
appliance. Professional appliances allow to program a working cycle by setting up
one or more modes, instead of setting different heating stages manually. These types
of cycles are called multistage systems.

In Chapter 3 we develop a new functionality for professional ovens, able to sort a
list of multistage systems in order to minimize the total energy consumption. This
optimization algorithm is patented [SFPT19] and it is currently implemented on Elec-
trolux Professional ovens. The scheduling problem is reformulated as the standard
optimization problem to find an Hamiltonian circuit on a graph (see in [LPR20] a
parallel work for sufficient conditions for Hamiltonian, 4-regular graphs).

The project followed in Chapter 4 is a multi-objective optimization analysis for
a single thawing multistage system. The availability of a virtual model that simu-
lates the thawing appliance, allows to implement a multi-objective genetic algorithm

1Business-to-business marketing involves the commercial transaction of a company’s product or
service to another company.

2From international Union of National Associations of Hotel, Restaurant, and Cafe Keepers,
HORECA is an abbreviation used in Europe to designate the food service Industry Market (Restau-
rants, Hotels, Bars And Cafes, Supermarkets, Hospitals And Care Homes, Business, Transport &
Industry, Commercial Laundries, Self-Services Laundries).
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[PBT20]. The obtained optimal multistage cycles have been tested by a Food Tech-
nology researcher to evaluate the results in terms of food properties of thawed chicken
fingers [BPTM21]. Finally this project gave us the possibility to show the link be-
tween our two lines of research. Indeed in Chapter 4.2 we were able to reformulate the
optimization analysis as a reachability problem thanks to the nature of the multistage
systems [PBT+19].

Part III (Reachability analysis of hybrid systems). In this last part we
look ahead at the emerging trends on the kitchens, like collaborative robots and
artificial intelligent algorithms, and we address the fundamental topics of verification
and safety.

Essential for the verification of a control system is the reachability problem. We
decided to select a specific reachability technique that uses the Bernstein coefficients
to bound a polynomial or a rational function.

In Chapter 5 we start using this technique in the robotic field, where we address
the problem to literally reach or avoid-to-reach obstacles with a robot arm.

Finally we touch the last emerging topic that is the use of neural networks as
intelligent control systems. Indeed, Electrolux Professional is currently evaluating
the potential of neural network controllers for food service appliances. In Chapter
6 we address the emerging need to verify and estimate the behavior of a neural
networks. We propose a method to bound the output value of a neural network
by approximating each layer with a rational or polynomial function and using the
Bernstein theory [PDP20].

The structural choices have resulted in the following contents of the thesis, as
visualized in Figure 1.

Figure 1: Schematic overview of the contents.
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Basic Concepts





1
Optimization: tools and

problems

Optimization deals with problems of minimizing or maximizing a function of several
variables usually subject to constraints. In other words we are searching for the best
combination of variables to achieve a certain goal. The applications of optimization
are limitless both for industrial and academical topics. In industrial application, it is
quite common that the range of variables are discrete or the constraints are relational
constrains. In these cases the underline structure of the problem can be describe as
a graph structure.

The system we want to analyze is a multistage cooking program and (qualitatively/
quantitatively) governing this kind of processes is fundamental for most professional
food appliances. Professional chefs, in fact, use different heating methods to bring
more flavor to the food or to control the final results. For example, in an oven they
may start with a short grill for searing a steak and then continue the process at
low temperature for a long time [14]. Or they could select in a fridge 3 different
temperatures to cool down gently a cooked product defining a duration for each
temperature.

Lifting up our view from the single application, a multistage systems is a sys-
tem characterized by n stages, where each stage has a precise—albeit parametric—
evolution law. The underlying structure is a Directed Acyclic Graphs (DAG). Lets
first of all introduce definitions and properties both for graph theory and optimiza-
tion theory that will be used throughout Part II, where we will optimize a multistage
system and a list of multistage systems.

1.1 Graphs

Graph theory is not only an area of interest in its own right but it gives also a
basic framework to describe the underline discrete structure of complex systems and
models such as multistage systems. We introduce some notation and we leave [20] for
a detailed introduction.

Definition 1.1.1. A graph (or undirected graph) is a pair G = (V,E), where V is a
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finite set of vertices or nodes and E ⊆ V × V is a set of edges.

Given and edge e = {v, v′} we say that the edge e is incident in v and v′. We
define δ(v) the set of edges incident on the node v and we call the degree of v the
cardinality |δ(v)| .

Definition 1.1.2. (Regular graph) A graph is k-regular if every vertex has degree k.

A particular class of graphs are the complete graphs Kn, graphs with n vertices
and edges {i, j} for each pair i, j ∈ V .

Definition 1.1.3. (Path and cycle) Let G = (V,E) be a graph. A path is a se-
quence of distinct vertices (vi)i∈[0,n] and distinct edges (ei)i∈[0,n−1] such that, ei =
{vi, vi+1} ∈ E for all i ∈ [0, n − 1]. A cycle is a path with the additional edge
{v0, vn} ∈ E.

A particular path that we can define on a graph is the Hamiltonian path that is
a path that visits all the vertices of the graph. Similarly an Hamiltonian cycle is a
cycle that visits all the vertices of the graph. Determine if such cycle exists in a graph
is well known to be NP-complete (see [20] also for computational complexity).

Definition 1.1.4. A graph is direct if E is a set of couples e = (v, v′), where v is
the source and v′ is the destination of the edge.

We can easily extend the above definitions for direct graphs.

1.2 Optimization problems

We can now define what we mean with an optimization problem. A standard form of
an optimization problem is

P : min
x

f(x)

s.t. gi(x) ≤ 0 i = 1, . . . , k
(1.1)

where f : Rn → Rm are m objective functions and gi ≤ 0 are k constraints.
One interesting example of optimization problem over a graph structure is the

following,

Definition 1.2.1. (Traveling salesmen problem (TSP)) Given a graph G = (V,E)
and a weight function w : E → R, find an Hamiltonian cycle H such as

∑
e∈H w(e)

is minimum.

This problem is extremely famous and can be found in many applications. If we
consider a direct graph we can define the Asymmetric TSP where the weight to travel
from one vertex to another is different if we travel on the opposite direction.

Another important class of optimization problems is the class of job-shop or
scheduling problems in which multiple jobs are processed on one or several machines.
Each job consists of a sequence of tasks, which must be performed in a given order.
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For example, the job could be a multistage system and each stage is a specific task
of the job. The problem is to schedule the tasks on the machines so as to minimize
the length of the schedule (time) or total weight of the schedule (e.g. energy). It is
interesting to notice that the TSP can be reformulated as a job shop problem, where
each node is a job and we want to schedule all the jobs one after the other. Viceversa
some job shop problems can be reformulated and solved as a TSP instance.

1.2.1 Multi-objective optimization problems

Especially in industry field, many decision and planning problems involve multiple
conflicting objectives that should be considered simultaneously. For example, we want
to find the best multistage system that maximize the final food result while minimizing
the energy consumption of the appliance or the running water. Such problems are
generally known as multi-objective optimization problem where the problem P in
Equation (1.1) has m > 1.

Although single-objective optimization problems may have a unique optimal solu-
tion, multi-objective optimization problems (as a rule) present a possibly uncountable
set of solutions. A key concept in determining a set of multi-objective optimization
problem solutions is that of Pareto front.

Definition 1.2.2. (Pareto Dominance) A vector u = (u1, . . . , uk) is said to dominate
v = (v1, . . . , vk) (denoted by u � v) if and only if u is partially less than v, i.e.,
∀i ∈ {1, . . . , k} ui ≤ vi ∧ ∃i ∈ {1, . . . , k} ui < vi.

Definition 1.2.3. (Pareto Front) For a given multi-objective optimization problem
with objective functions F(x), the Pareto front P is defined as:

P := {x | ¬∃x′ : F(x′) � F(x)}. (1.2)

In order to evaluate a set of solutions, we need to use a performance indicator
able to compare two different Pareto fronts. To conclude the introduction on multi-
objective optimization problem we propose the hypervolume indicator IH [66] as one
possibility to evaluate the Pareto front. This indicator, that we will use in Chapter 4.1,
measures the hypervolume of the portion of the objective space that is dominated by
the set of points on the Pareto front. In order to measure this quantity, the objective
space must be bounded or, alternatively, we should use a reference point that is at
least weakly dominated by all points.

The hypervolume indicator in 2D is an area as in Figure 1.1. It is easy to be
calculated dividing the area in slices (horizontally or vertically) and this partition can
be calculated in linear time, processing the points on the Pareto front in ascending
order of the first coordinate (Figure 1.2). Compute the hypervolume indicator in 2D
is Θ(n log n) using the slice partitioning because it is just necessary to reorder the
first coordinate. [117] shows that also in 3D we can extend the slice partitioning idea
to reach the same complexity as in Figure 1.3 where the bounding point is (r1, r2, r3).
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1.3 Neural networks

As we noted, graphs and networks can be used to model many important problems in
engineering, business and the physical and social science. Machine learning algorithms
are general-purpose tools for approximating models from data [18]. They are able to
solve problems from many disciplines without detailed domain specific knowledge.
Optimization lies at the heart of machine learning. The essence of most machine
learning algorithms is to build an optimization model and learn the parameters in the
objective function from the given data. The main steps of machine learning are the
selection of the model, usually from an appropriate family of models, and the learning
phase where we determine the parameters by minimizing an objective function (e.g. a
loss function) of the training samples.

Artificial neural network (NN) is a popular machine learning family of models that
simulates the mechanism of learning in biological organisms [1]. NNs have been around
since 1943, when they were first introduced in Warren McCulloch and Walter Pitts’
paper “A Logical Calculus of the Ideas Immanent in Nervous Activity”, describing
how networks of artificial neurons could be used to solve various logic problems.
However, after the initial euphoria, there was a period of disappointment in which
the data hungry and computationally intensive nature of neural networks were seen
as an impediment of their usability.

Nowadays, in the era of connectivity, where we have more data than ever, and
faster computer-processing, we can properly apply NNs in more practical settings.
NNs plays a significant role in many fields, such as machine translation, speech recog-
nition, image recognition, recommendation system, and they are increasingly used
also in the development of control systems in many hybrid system applications such
as robots, self-driving vehicles (see for example [119, 49] and references therein).

An Artificial Neural Network is a computational model biological inspired by the
human brain processes. A basic unit of computation is the neuron. It receives input
from some other neurons, or from an external source and computes an output. Each
input has an associated weight w and a bias a. The neuron applies an activation
function σ to the weighted sum of its inputs to compute the output. If we have n
input x1, . . . , xn we compute the output y as

y = σ(

n∑
i=1

wixi + a) (1.3)

The activation function σ is a non-linear function. The purpose of the activation
function is to introduce non-linearity into the output of a neuron. This is important
because most real world data are non linear and we want neurons to learn these non
linear representations.

There are different possible activation functions. In Figure 1.4 we plot three most
common types.

The importance of non-linear activation functions becomes significant when one
moves from the single-layer to multi-layer architectures.
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Figure 1.4: Three types of activation functions

1.3.1 Feedforward Neural Network

The feedforward neural network is the first and simplest type of artificial neural
network devised. It contains multiple neurons arranged in layers. Neurons from
adjacent layers have connections between them. All these connections have weights
associated with them (see Figure 1.5).

input

output

x1

x2

x3

Wx+ a σ(Wx+ a)

Figure 1.5: Feedforward neural network structure

These models are called feedforward because information flows from the input
values x, through the hidden layers, and finally to the output y. There are no feedback
connections in which outputs of the model are fed back into itself.

Given a feedforward neural network N : Rn → Rm with L > 2 layers. The
first layer is called input layer, the last is the output layer and all the intermediates
are called hidden layers. We indicate with nl the number of neurons in each layer
l = 1, . . . , L, with n1 = n and nL = m. We call xl the output variables at the layer l.
Each layer has a matrix of weight W l ∈ Rnl−1×nl and a vector of bias al ∈ Rnl . We
denote by hl the function mapping an input xl−1 to the output xl of the layer l

hl(xl−1) = σ(W lxl−1 + al) i = 2, . . . , n (1.4)

Given and input x ∈ Rn, the output N(x) ∈ Rm of the neural network is computed
as the composition of the function hl:

N(x) = (hn ◦ hn−1 ◦ h2)(x) (1.5)

An interesting thing about feedforward networks with hidden layers is that it
provides a universal approximation framework.

Theorem 1.1. (Universal Approximation [54, 27]) A feedforward network with a
linear output layer and at least one hidden layer can approximate any continuous
function as accurately as desired.
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When we decide the structure of a specific model, i.e. the graph structure behind
the network, we need to train the network in order to approximate our desired samples.
Train a neural network is the optimization operation of tuning the weights and biases
in order to minimize a cost function that is a measure difference between the actual
NN output and the desired ones. The objective function is often referred to as a cost
function or a loss function. There are many functions that could be used to estimate
the error of a set of weights in a neural network. Standard example of loss functions
are the followings:

• Mean Absolute Error (MAE)

C =
1

n

∑
x

|y −N(x)| (1.6)

• Mean Square Error (MSE)

C =
1

n

∑
x

(y −N(x))2 (1.7)

• Root Mean Squared Error (RMSE)

C =

√
1

n

∑
x

(y −N(x))2 (1.8)

where n is the total number of training examples, x is an individual training example
and y = y(x) corresponds to the desired output.

Typically, a neural network model is trained using the stochastic gradient descent
optimization algorithm and weights are updated using the backpropagation algorithm.
The goal of backpropagation is to compute the partial derivatives ∂C

∂wi,j
and ∂C

∂aj
of

the cost function C with respect to any weight wi,j of the matrix W or bias aj of the
vector a. For each training data the predicted value of the network is compared to
the expected output, and an error is calculated using the selected cost function. This
error is then propagated back within the whole network, one layer at a time, and the
weights are updated according to the partial derivative value. One round of updating
the network for the entire training dataset is called an epoch and a network may be
trained for tens, hundreds or thousands epochs.

1.4 Summary

In this chapter we introduced notions and definitions related to optimization theory
that we will use especially in Part II. We started by giving the definition of a multistage
system, that is a system that describes a working cycle of a professional appliance.
The underling structure of this system is a directed acyclic graph. Thus we introduced
definition and notations related to the graph theory.
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In Chapter 1.2 we gave the definition of an optimization problem and we defined
a famous optimization problem over graphs: the traveling salesman problem. An
application of this problem is described in Chapter 3.

We also defined a multi-objective optimization problem describing an important
indicator to compare sets of optimal solution. The definitions of this section are
preparatory for Chapter 4.

Finally in Chapter 1.3 we introduced the notation of a data-driven optimization
tools: the Neural Networks. This tool and the analysis of its behavior is reported in
Chapter 6.



2
Modeling: tools and problems

Hybrid systems are modeling tools used to describe processes which evolve according
to dynamics and logic rules. These systems have been the subject of intensive study
in the past few years. A particular emphasis has been placed on solving problems
with safety specifications, which are described by giving a set of good states within
which the controlled hybrid system should evolve.

A promising model for describing such systems is hybrid automata.

2.1 Hybrid automata

The notion of hybrid automata was introduced in [6] as a model and specification
language for hybrid systems. The following definitions are standard notations of
hybrid automata (see [6, 23] for more details).

Definition 2.1.1. An Hybrid Automaton H = 〈Z,Z′,V, E , Inc,Dyn,Act,Reset〉
consists of the following components:

• Z = (Z1, . . . , Zk) ∈ Rk and Z′ = (Z ′1, . . . , Z
′
k) ∈ Rk are two vectors of variables;

• 〈V, E〉 is a finite directed graph: the vertices in V are called locations and the
edges in E are called transitions;

• Each vertex v ∈ V is labeled by two formulas:

Inv(v)[Z] that is an invariant, i.e. a constraint that the variables Z must
respect during their evolution;

Dyn(v)[Z,Z′, t] that is the dynamic law, in particular for each v ∈ V there
is a continuous function fv : Rk × R≥0 → Rk such as Dyn(v)[Z,Z′, t] is Z′ =
fv(Z, t);

The variable t represents the time of the system and range over R≥0.

• Each edge e ∈ E is labeled by other two formulas:

Act(e)[Z′] is the activation, i.e. a constraint on the activation of the edge
e;

Reset(e)[Z,Z′] is the reset of the variables while we are using the edge e.
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Definition 2.1.2 (State). A state σ is a pair (v,x) considering a location v ∈ V and
a valuation x ∈ Rk for the variables Z such as Inv(v)[x] holds.

Definition 2.1.3 (Transition relations). Let H be a hybrid automaton. We have two
type of transition relations:

1. continuous transition relation →t between two states σ = (v,x) and δ = (v,y)is
defined as follows:
σ →t δ ⇔ there exists f : R≥0 → Rk continuous function such that x = f(0),
y = f(t) and for each t′ ∈ [0, t] holds Inv(v)[f(t′)] and Dyn(v)[x, f(t′), t′]

2. discrete transition relation →e between two states σ = (v,x) and δ = (w,y) is
defined as follows:
σ →e δ ⇔ e ∈ E such that e = (v, w) and holds Inv(v)[x], Inv(w)[y], Act(e)[x]
and Reset(e)[x,y]

Definition 2.1.4 (Trajectory & Path). Let H be a hybrid automaton. A trajectory
is a sequence (σj)j∈J of states such that:

1. for all j ∈ J \ {0} there exists an edge e ∈ E such that σj−1 →e σj or there
exists a time t > 0 such that σj−1 →t σj;

2. for all j ∈ J \ {0, 1} there exists e and e′ in E such that σj−2 →e σj−1 →e′ σj
or σj−2 →e σj−1 →t σj or σj−2 →t σj−1 →e σj;

A path is a sequence of location v ∈ V for which there exists a corresponding trajectory
of H.

Definition 2.1.5 (Reachability). Let σ and δ be two states of a hybrid automaton
H. The state δ is reachable from the state σ if there is a trajectory of H that starts
in σ and ends in δ.

Definition 2.1.6 (Reachability problem). Given an automaton H, a set of starting
states ΣS and a set of ending states ΣE, decide whether there exists a state σ ∈ ΣS
from which a state in ΣE is reachable.

Reachability problem is a key part to the verification of a hybrid system. In par-
ticular the verification of safety properties is equivalent to the reachability question.
Safety property informally requires that “something bad will never happen”, means
that the system should stay within a set of safe states, or equivalently, that the system
should never reach a set of bad states.

• Safety problem requires that all trajectories that start in ΣS do not reach a
state of ΣE

∀k > 0 ∀(σj)j=1,...,k(σ1 ∈ ΣS → σk 6∈ ΣE) (2.1)

• Reachability problem is the negation of the safety problem, indeed the reacha-
bility problem asks if exists at least one trajectory that starts in ΣS and ends
in ΣE

∃k > 0 ∃(σj)j=1,...,k(σ1 ∈ ΣS ∧ σk ∈ ΣE) (2.2)
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We can set the safety property also in the positive way. Instead of avoid something
bad we want to guarantee that we remain always into good states. Given a property ϕ,
we want to verify that this property holds for a hybrid automaton H; in other words,
that ϕ remains true for all possible executions starting from a set ΣS of starting
states. If we call Reach(ΣS) the set of reachable states from ΣS , then we only need
to prove that Reach(ϕ) ∈ Sat(ϕ), where Sat(ϕ) is the set of states where ϕ is true.

2.2 Bernstein theory

Among methods for reachability analysis are those based on Bernstein expansion of
polynomials. A Bernstein polynomial is a polynomial expressed in the Bernstein form,
that is a linear combination of the Bernstein basis polynomials. As we will see in the
following, the coefficients associated with these basis own interesting properties that
can be exploited to bound the image of a polynomial over a unit box domain. Before
giving the formal definition we can have an intuition of their usage looking at the plot
of the Bernstein polynomial in the unitary interval (Figure 2.1). Depending on the
degree we select, we are filling the interval [0, 1] with a set of functions whose picks are
a discretization of the interval and with the property that the sum of these functions
is constantly 1. We can now imaging to manually play with this base of functions
adding a set of coefficients to increase or decrease those picks in order to approximate
a given function. The selected coefficients will directly describe the shape of the
desired function.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
B(5,0)(x)

B(5,1)(x)

B(5,2)(x)

B(5,3)(x)

B(5,4)(x)

B(5,5)(x)

Figure 2.1: Bernstein polynomial base with degree 5.

We start now recalling all the definitions and properties of this theory, and we go
further describing also some interesting generalizations. We developed all for function
f : Rn → R but can be easily expanded to f : Rn → Rm just repeating all the steps
for each fj : Rn → R, j = 1, . . . ,m.

Lets consider a polynomial p : Rn → R expressed using the power basis as follows:

p(x) =
∑
i∈In

aix
i (2.3)
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where the index i = (i1, . . . , in) is a multi-index of size n ∈ N and xi denotes the
monomial xi11 x

i2
2 . . . xinn . We want to represent p(x) using Bernstein basis.

2.2.1 Bernstein basis and properties

We need some additional definitions to continue. Given two multi-indices i = (i1, . . . , in)
and j = (j1, . . . , jn) we write j ≤ i if jk ≤ ik for k = 1, . . . , n. We write i/j for the
multi-index (i1/j1, . . . , in/jn) and

(
i
j

)
for the product

(
i1
j1

)
. . .
(
in
jn

)
. Finally we define

the degree deg of p as the smallest multi-index such as i ≤ deg for all i ∈ In. In the
following we will refer to Ideg = {i ∈ Nn | i ≤ deg}

A polynomial p(x) can be represented using Bernstein basis as

p(x) =
∑
i∈Ideg

bi(p)B(deg,i)(x) (2.4)

where bi(p) are called Bernstein coefficients for a polynomial p and they are defined
as

bi(p) =
∑
j≤i

(
i
j

)(
deg
j

)aj (2.5)

and the i-th Bernstein polynomial B(deg,i) of degree deg is

B(deg,i)(x) = β(d1,i1)(x1) . . . β(dn,in)(xn) (2.6)

with deg = (d1, . . . , dn) and

β(dj ,ij)(x) =

(
dj
ij

)
xij (1− x)dj−ij (2.7)

Example 2.2.1. Consider the polynomial q(x) = x2 + 1, we want to represent it
using Bernstein basis. We have deg = 2 and using Equation (2.5) we can compute
the three Bernstein coefficients, b0(q), b1(q) and b2(q) as follows:

b0(q) =

(
0
0

)(
2
0

)1 = 1

b1(q) =

(
1
0

)(
2
0

)1 +

(
1
1

)(
2
1

)0 = 1

b2(q) =

(
2
0

)(
2
0

)1 +

(
2
1

)(
2
1

)0 +

(
2
2

)(
2
2

)1 = 2

The final expression using Bernstein basis is

q(x) = 1

(
2

0

)
(1− x)2 + 1

(
2

1

)
x(1− x) + 2

(
2

2

)
x2 = (1− x)2 + 2x(1− x) + 2x2

For illustrative purpose lets consider also a bivariate polynomial p(x1, x2) = 1
3x

2
1−

1
2x2 + 1

4x1x2 + 1
2 . We have deg = (2, 1) and 6 Bernstein coefficients to compute. We
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just calculate b(1,1) and b(1,0):

b(1,1) =

(
(1,1)
(0,0)

)(
(2,1)
(0,0)

) 1

2
−

(
(1,1)
(0,1)

)(
(2,1)
(0,1)

) 1

2
+

(
(1,1)
(1,0)

)(
(2,1)
(1,0)

)0 +

(
(1,1)
(1,1)

)(
(2,1)
(1,1)

) 1

4
=

1

8

b(1,0) =

(
(1,0)
(0,0)

)(
(2,1)
(0,0)

) 1

2
+

(
(1,0)
(1,0)

)(
(2,1)
(1,0)

)0 =
1

2

Bernstein coefficients present three interesting property.

Property 2.1. (Sharpness) For all i ∈ Vdeg

bi(p) = p(i/deg) (2.8)

with Vdeg the set of vertices of the hyperrectangle [0, d1] × . . . [0, dn] with deg =
(d1, . . . , dn).

.

Property 2.2. (Range Enclosing)

min
i∈Ideg

bi(p) ≤ p(x) ≤ max
i∈Ideg

bi(p) (2.9)

for all x ∈ [0, 1]n

These two properties together states that we can bound a polynomial function in
the unitary domain and the vertices of the box enclosing, match exactly the values
of the polynomial at some points. Property 2.2 is true on the unitary hyperbox, but
can be easily extended to a hyperrectangle composing the polynomial with an affine
transformation between the hyperrectangle and the unitary box [34].

The last important property allows to enclose the input/output polynomial rela-
tion with a convex structure.

Definition 2.2.1. Let V = {v1, . . . , vl} be a sequence of points in Rn. The convex
hull of V is the set

Convexhull(V ) = {y ∈ Rn | y =

l∑
i=1

αivi,

l∑
i=1

αi = 1, αi ≥ 0}

Property 2.3. (Convex hull) Let p ∈ [0, 1]n → Rm be a polynomial of degree deg,
we have (

x
p(x)

)
⊆ Convexhull

({(
vi
bi(p)

)
| i ∈ Ideg

})
(2.10)

were vi := i
deg and (vi, bi(p)) is called control point associated with the i-th Bernstein

coefficient.
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Example 2.2.2. We consider again the two polynomial in Example 2.2.1. We start

with q(x) = x2 + 1 and we can apply Property 2.1 for computing b0(q) = 0
2

2
+ 1 = 1

and b2(q) = 2
2

2
+ 1 = 2. Thanks to Property 2.2 these values bound exactly the output

of the polynomial function in [0, 1]. In addition, if we consider the 3 control points
{(0, 1), (0.5, 1), (1, 2)} and we link them with a triangle we can enclose the polynomial
q(x) as we can see in Figure 2.2

As reguard p(x1, x2) = 1
3x

2
1− 1

2x2 + 1
4x1x2 + 1

2 , with the sharpness property we can
obtain

b(0,0) =
1

2

b(2,0) =
1

3

(2

2

)2

+
1

2
=

5

6

b(0,1) = −1

2
· 1

1
+

1

2
= 0

b(2,1) =
1

3

(2

2

)2

− 1

2
· 1

1
+

1

4
· 2

2
· 1

1
+

1

2
=

7

12

Knowing also the remaining 2 coefficients from the previous example we can bound the
output p(x1, x2) ∈ [0, 5

6 ] when x1, x2 ∈ [0, 1] as we can see in Figure 2.3. Moreover,
we can link all the control points and obtain a convex hull that enclose the surface.

0 0.5 1
0

1

2

3
q(x)

Convex hull

Figure 2.2: Polynomial function q(x)
in [0, 1] enclosed by the convex hull of
its control points.

00.5
1

0

0.5

1

0

1
6

2
6

3
6

4
6

5
6

x1

x2

p(x1, x2)

Figure 2.3: Polynomial function p(x1, x2)
with x1, x2 ∈ [0, 1]. The 6 black dots are
the control points.

All the properties described so far can be apply for polynomial functions on uni-
tary boxes or in general on hyperrectangular domains, what if we consider more
general domains? Are these properties still valid? What about a rational function?
We discuss here two generalization: first the generalization over simplices domains
that allows to extended the Bernstein theory over any convex domain and then the
extension of the Bernstein properties for rational functions.
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2.2.2 Simplicial Bernstein generalization

In order to extend the Bernstein properties over different domains, keeping the same
properties, we need to change the system of coordinates searching for non-negative
coordinates. Moreover the coordinates definition should be easy enough to be gen-
eralized in n-dimension and we should also be able to compute the new Bernstein
coefficients to take advantage of the properties. In [112, 32] they define an easy
extension for general polytope, i.e. a bounded convex set defined by a set of linear
inequalities. Unfortunately this coordinates are not positive in the total convex hull.
An alternative definition is given in [69]. Here the coordinates are positive on the
convex hull but the construction is not easy to be generalized in n-dimensions. In
both cases the estimation of the Bernstein coefficients is not explained. The major-
ity of the generalized barycentric coordinates are developed just for 3D and used for
graphical purposes [94, 72, 60, 44, 115]. The easiest generalization that keeps the de-
sired property is the Simplicial Bernstein generalization, i.e. the Bernstein base over
a simplex [41].

Definition 2.2.2. Let V = {v1, . . . , vm} be a sequence of points in Rn. V is affinely
independent if

∀x ∈ Rn ∃!ξ(x) ∈ Rm : x =

m∑
i=1

ξi(x)vi,

m∑
i=1

ξi(x) = 1

The functions ξi : Rn → R so defined are called barycentric coordinates and they are
non-negative on the convex hull of the points in V .

We denote by e1, . . . , en the canonical basis of Rn and by e0 the zero vector in Rn.
For n ≥ 0 the standard simplex ∆n is the set ∆n ⊂ Rn defined by

∆n = {
n∑
i=1

ξi(x)ei |
n∑
i=1

ξi(x) = 1, ξi ≥ 0} (2.11)

If x = (x1, . . . , xn) ∈ ∆ then the barycentric coordinates with respect to ∆ are
ξ(x) = (ξ0(x), . . . , ξn(x)) = (1−|x|, x1, . . . , xn) with |x| = x1 + · · ·+xn. Another way
to describe ∆n is to say that it is the convex hull of the standard basis {e0, . . . , en}. We
can define a general simplex S ⊂ Rn as the convex hull of n+ 1 vectors {v0, . . . , vn}.
The simplex S is non-degenerate if {v0, . . . , vn} are affinely independent.

Figure 2.4: Standard simplex ∆n with n = 0, 1, 2, 3.

We want to define a Bernstein polynomial over a standard simplex. Lets first of
all observe the following property of the Bernstein polynomials defined in Equation
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(2.7). Given an x ∈ R and k ∈ N we have

1 = 1k = (x+ (1− x))k =

k∑
i=1

(
k

i

)
xi(1− x)k−i

=

k∑
i=1

β(k,i)(x)

This observation gives us an idea to define a generalize multinomial expression. Given
a vector ξ = {ξ1, . . . , ξm} with

∑
i ξi = 1 we introduce the following notation for

multinomial expansion

(ξ1 + · · ·+ ξm)k =
∑

α1+···+αm=k

(
k

α1, . . . , αm

)
ξα1
1 . . . ξαm

m

=
∑
|α|=k

(
|α|
α

)
ξα

with α ∈ Nm and (
k

α

)
=

(
k

α1, . . . , αm

)
=

k!

α1! . . . αm!

Definition 2.2.3. Given V = {v1, . . . , vm} and a polynomial

p : Convexhull({v1, . . . , vm})→ R,

the generalized Bernstein polynomial of degree k is

B
(k)
V p =

∑
|i|=k

b
(k)
i (p, V )B

(k)
i,V

with ξ = (ξ1, . . . , ξm) the generalized barycentric coordinate with respect to V , and

B
(k)
i,V (x) =

(
|i|
i

)
ξi(x)

Given a general simplex S of vertices {v0, . . . , vn} with vi ∈ Rn we can map affinely
each point of S into the standard simplex ∆ and vice-versa. In particular given x ∈ ∆
we obtain y ∈ S as y1

...
yn

 = T (x) := V

x1

...
xn

+ v0 (2.12)

with

V =

v1(1)− v0(1) . . . vn(1)− v0(1)
...

...
v1(n)− v0(n) . . . vn(n)− v0(n)
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W.l.o.g., as the case of the unitary box, we develop the theory just for the standard
simplex ∆.

We introduce additional notations. Given α = (α0, . . . , αn) ∈ Nn+1 we indicate

with α̂ = (α1, . . . , αn). For α̂, β̂ ∈ Nn with α̂ ≤ β̂, we use(
α̂

β̂

)
:=

n∏
i=1

(
αi
βi

)
(2.13)

and if |α̂| < k then (
k

α̂

)
:=

(
k

α1, . . . , αn

)
=

k!

α1! . . . αn!(k − |α̂|)!
(2.14)

Definition 2.2.4. ([51]) Given a (multivariate) polynomial of degree l

p(x) =
∑
|β̂|≤l

aβ̂x
β̂

the Simplicial Bernstein generalization of p of degree k ≥ l on ∆ is

p(x) =
∑
|α|=k

b(k)
α (p,∆)B(k)

α (2.15)

where

B(k)
α =

(
k

α

)
ξα (2.16)

and

b(k)
α (p,∆) =

∑
β̂≤α̂

(
α̂
β̂

)(
k
β̂

)aβ̂ , |α̂| ≤ k (2.17)

Definition 2.2.5. Given the Bernstein coefficients of degree k ≥ l of a (multivariate)
polynomial p of degree l over a general simplex S, the control point associated with

the α-th Bernstein coefficient b
(k)
α (p, S) is the point (v

(k)
α (p, S), b

(k)
α (p, S)) with

v(k)
α (p, S) :=

α0v0 + · · ·+ αnvn
k

∈ Rn, |α| = k (2.18)

Example 2.2.3. Lets consider again the polynomial p(x1, x2) = 1
3x

2
1− 1

2x2+ 1
4x1x2+ 1

2
and lets define it over the standard simplex ∆2. deg = (2, 1) so we can define the

Simplicial Bernstein generalization of degree 3. Lets compute just b
(3)
(1,1,1)(p,∆) :

b
(3)
(1,1,1)(p,∆) =

(
(1,1)
(0,0)

)(
3

(0,0)

) 1

2
−

(
(1,1)
(0,1)

)(
3

(0,1)

) 1

2
+

(
(1,1)
(1,0)

)(
3

(1,0)

)0 +

(
(1,1)
(1,1)

)(
3

(1,1)

) 1

4
=

1

2
− 1

6
+

1

24
=

3

8

The associated control point is ( 1
3 ,

1
3 ,

3
8 )

With this generalization we still have the same main properties.
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Property 2.4. (Sharpness [72]) Keeping the same notations, we have

b
(k)
kei

(p,∆) = p(vkei) ∀i ∈ {0, . . . , n} (2.19)

Property 2.5. (Range Enclosing [51]) The output of a polynomial p over S is con-
tained within the maximum and the minimum Simplicial Bernstein coefficients

min|α|=kb
(k)
α (p, S) ≤ p(S) ≤ max|α|=kb(k)

α (p, S) (2.20)

Property 2.6. (Convex Hull [51]) The polynomial p over S is contained within the
convex hull of the control points(

x
p(x)

)
⊆ Convexhull

({(
v

(k)
α (p, S)

b
(k)
α (p, S)

)
| |α| = k

})
(2.21)

2.2.3 Bernstein for rational function

The last generalization we want to consider is the Bernstein theory for rational func-
tion so the ratio between two polynomial functions. We consider f = p

q rational
function with p, q polynomial functions. Let us compute the Bernstein coefficients

b
(k)
α (p) and b

(k)
α (q), over a box X or the standard simplex ∆. Assume that all Bern-

stein coefficients b
(k)
α (q) have the same sign and are non-zero (this implies for the

range enclosing property that q(x) 6= 0, for all x ∈ X). Then in [82] they prove that
holds Property 2.2 for the rational function so

min
|α|=k

b
(k)
α (p)

b
(k)
α (q)

≤ f(x) ≤ max
|α|=k

b
(k)
α (p)

b
(k)
α (q)

(2.22)

with k ≥ the degree of p and q.
Unfortunately in [82] they also show that the convex hull property does not hold

for rational functions and they create also a counterexample.
Generalize the Bernstein theory for rational functions in not as easy as the simplex

generalization. The convex hull property does not hold anymore and the range en-
closing property holds under a strict condition for the denominator. Indeed, to apply
the range enclosing property we need to guarantee that the Bernstein coefficients of
the denominator have the same sign. As we can see in Example 2.2.4, we can have
negative Bernstein coefficients even with a positive function.

Example 2.2.4. Lets consider the rational function f(x) = p(x)
q(x) = x2−1

x2+1 over [−2, 1].

To compute the Bernstein coefficients we transform the domain into the unitary in-
terval using the transformation T : [0, 1]→ [−2, 1] defined as

T (u) = 3u− 2

p(T (u)) and q(T (u)) are polynomial functions on [0, 1]. Computing the Bernstein
coefficients we have

b0(p) = 3 b0(q) = 5

b1(p) = −3 b1(q) = −1

b2(p) = 0 b2(q) = 2
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Then we can take the ration and we obtain that the rational function is wrongly
bounded by the interval [0, 3] (see Figure 2.5). The denominator is a positive function
but the second Bernstein coefficient is negative and the others are positive. This
happens because the point x = 0 where we have the minimum of the function q is not
included in the discretization of the interval (see Figure 2.6).

−1−1.5 −1 −0.5 0 0.5 1
−2

−1

0

1

2

3

4
f(x)

Figure 2.5: Rational function f(x)
wrongly bounded in [0, 3].

−1−1.5 −1 −0.5 0 0.5 1
−1

0

1

2

3

4

5
q(x)

Convex hull
minimum

Figure 2.6: Convex hull for q(x) > 0
with a negative Bernstein coefficient.

We need to address the problem of deciding whether a given polynomial or rational
function in n-variables has a positive certificate, i.e. all its Bernstein coefficients are
positive. In [106] they prove Theorem 2.1 on a simplex, but the same holds also for
hyperrectangle.

Theorem 2.1. Let p be a polynomial of degree d ≤ k over a simplex ∆. Then

minx∈∆p(x) = min|α|=kb
(k)
α (p) (2.23)

if and only if

min|α|=kb
(k)
α (p) = b

(k)
α∗ (p) (2.24)

for some α∗ = kei with i ∈ {0, . . . , n}
These results suggest us that the Bernstein coefficients of a positive function are

positive only if we are able to select the minimum in our control points. In Example
2.2.5 we apply this technique for the polynomial expression in Example 2.2.4.

Example 2.2.5. Consider again the rational function f(x) = p(x)
q(x) = x2−1

x2+1 over

[−2, 1]. The denominator q(x) has the minimum in x = 0 so we split the domain in
X1 = [−2, 0] and X2 = [0, 1]. The Bernstein coefficients for q(x) are

b0(q,X1) = 5; b1(q,X1) = 1; b2(q,X1) = 1;

b0(q,X2) = 1; b1(q,X2) = 1; b2(q,X2) = 2.

They are all positive and we obtain two convex hull as in Figure 2.8. We can finally
compute the ratio of the Bernstein coefficients for the two domains

b0(f,X1) =
3

5
; b1(f,X1) = −1; b2(f,X1) = −1;

b0(f,X2) = −1; b1(f,X2) = −1; b2(f,X2) = 0.

and bound correctly the function as in Figure 2.7.
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−1−1.5 −1 −0.5 0 0.5 1
−2

−1

0

1

2

3

4
f(x)

Figure 2.7: Rational function f(x) cor-
rectly bounded in [−1, 3

5 ] when x ∈
[−2, 0 and [−1, 0] when x ∈ [0, 1].

−1−1.5 −1 −0.5 0 0.5 1
−1

0

1

2

3

4

5
q(x)

Convex hull X1

Convex hull X2

Figure 2.8: Two convex hull for q with
positive Bernstein coefficients.

Matrix method to compute Bernstein coefficients

To conclude with the Bernstein theory we want to describe a matrix method to com-
pute the coefficients. It is well known that we can compute the Bernstein coefficients
over a hyperrectangle using a matrix product. This method was introduced by Garloff
in [47]. In [104], Garloff and Titi expand the matrix calculation for simplicial Bern-
stein expressions. The idea behind is the same, so we describe it for the simplex
case and the hyperrectangle case can be considered a subcase, see [105] for additional
details.

Let q : Rn → R be a polynomial defined over a simplex S = {v0, . . . , vn}. Using
the transformation 2.12 we define the polynomial p(x) = q(T (x)) over the standard
simplex ∆.

p(x) =
∑
|α̂|≤l

aα̂x
α̂ (2.25)

The Bernstein polynomial has a degree k such as l ≤ k. We arranged the coeffi-
cients of p in an (k + 1)× k∗ matrix A with k∗ := (k + 1)n−1

A :=


a0,0,...,0 a0,1,...,0 . . . a0,k,...,0 . . . a0,k...,k

a1,0,...,0 a1,1,...,0 . . . a1,k,...,0 . . . a1,k...,k

...
...

...
...

ak,0,...,0 ak,1,...,0 . . . ak,k,...,0 . . . ak,k...,k


with aα̂ = 0 if |α̂| > l. We also define the lower triangular Pascal matrix P , i.e.

(Pk)i,j =

{(
i−1
j−i
)

j ≤ i
0 otherwise

(2.26)

We can compute Pk =
∏k
h=1Kh from the matrices Kh, h = 1, . . . , k defined as

(Kh)i,j =


1 j ≤ i
1 i = j + 1, j ≥ k − h+ 1

0 otherwise

(2.27)



2.3. Summary 23

We introduce the cyclic ordering of the entries of a matrix denoted with the
superscript c, i.e. the order of the indices of the entries of the matrix under a cyclic
permutation. This means that the index in the first position is replaced by the index
in the second one, the index in i-th position by the one in the i + 1-th position and
the index in the n.th position by the one in the first position. In two dimensions the
cyclic ordering is the transposition. We put C0(∆) := A and define for t = 1, . . . , n

Ct := (PkCt−1)c (2.28)

The Bernstein coefficients of the polynomial p over ∆ can be obtained for the entries
of the matrix Cn considering just (Cn)α̂ with |α̂| ≤ k.

b(k)
α = b

(k)
(k−|α̂|,α̂) = (Cn)α̂ (2.29)

Finally we compute vα as

v(k)
α = T (

α0e0 + · · ·+ αnen
k

) = T (
α̂

k
) (2.30)

2.3 Summary

In this chapter we introduced notions and definitions related to the theory of hybrid
systems that we will use in Part III. In Chapter 4.2.1 we defined the hybrid automaton
formalism and we defined the reachability problem. These two concepts are important
to understand the second approach for the thawing case proposed in Chapter 4.2.
Moreover the reachability problem is a basic concept for the whole Part III.

To solve the reachability problem in this thesis we decided to exploit the technique
based on Bernstein theory. In Chapter 2.2 we collected all definitions, properties and
theorems of Bernstein theory both for rectangular and simplex domains. We described
the polynomial case that is used particularly in Chapter 5 and the rational case that
is functional for Chapter 6.
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II
Optimization of multistage

systems





3
Scheduling of recipes for a

professional oven application

The soaring demand for productivity and flexibility in food catering sectors, canteens
or food retail, has increased and highlighted the value of cooked-chilled and cooked-
frozen food products. Anyone who has eaten at a top restaurant or hotel, at a banquet
or reception, or on an airplane or ship is likely to have eaten a Cook & Chill meal.

Cook & Chill and Cook & Freeze are well known food process techniques used to
prepare meals in advance and store them safely till the right serving time maintaining
a consistent quality [39, 71]. In the Cook & Chill the meals or meal components
are fully cooked, then cooled by controlled chilling, e.g. blast chilling, to reduce the
temperature in the center of the food from about 60◦C to 10◦C in less than two
hours; subsequently stored at a temperature above freezing point (4◦C) and finally
reheated/regenerated rapidly before the service. In the Cook & Freeze the meals or
meal components should be maintained at or below −18◦C [22].

Different benefits promote the use of these methods. Above all the production
and preparation of a meal are spatially and temporary independent of the service
and consumption. The kitchen is not forced to follow the service request and the
lunch/dinner hours but can distribute its workflow during the day. This allows to
plan the production ahead and systematically, to reduce product and time waste and
to avoid repetitive cook and serve operations.

Nowadays the scheduling is made up according to the need of the chef, without
following any technical criteria, e.g. the energy and water consumption or the total
time. We want to study an automatic function able to sort a list of cooking processes
with respect to energy consumption. As reported in [80, 86] the energy consumption
is a relevant cost factor in professional kitchen. Food service facilities have an average
energy use almost three times higher than other commercial activities. Therefore we
select the energy as the technical criteria to optimize the scheduling.

The automatic function considers a list of cooking processes, each one charac-
terized by a set of parameters as temperature, humidity and duration, and it out-
puts a reordered sequence that minimizes the total energy consumption. This result
is achieved taking into account only the energy consumption during the transient
phases between consecutive cooking processes. The total energy consumption during
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the stationary phase of each cooking process can be considered invariant among the
possible reorders. We start formalizing the problem and the variables involved, then
we characterize the energy function and finally we describe the implemented solution.

3.1 Scheduling problem definition

The automatic function that we want to define has to solve the following problem.

Definition 3.1.1. (Problem statement) Given a list of m cooking processes we want
to find a sequence π that minimizes the total energy, i.e. the energy consumption
needed to heat up the oven, execute all the cooking processes following π and cool
down again the appliance.

A cooking process C is a multistage system with n > 1 stages. We call the first
stage transient stage. It should be performed with the cavity empty and it is intended
to prepare the oven with the right temperature and humidity. The transient stage
ends when the oven reaches the desired values. It could be a warm up phase if we are
rising the temperature or a cooling down phase if we need to decrease the temperature
inside the cavity of the oven. The other stages of C depend on the specific recipe and
they are characterized by a temperature value, a humidity percentage and a duration.
For each cooking process C with n stages we can define a vector TC = (TC1 , . . . , T

C
n )

of temperatures and a vector HC = (HC
1 , . . . ,H

C
n ) of humidity levels.

We start considering just two cooking processes C1 and C2 with n1 and n2 stages,
respectively. If we select the sequence (1, 2) we will have a total energy E(1,2) that
depends on the energy needed for the two cooking processes (EC1

, EC2
), the energy

needed to warm up the oven before the first cooking process (EWU−C1
), the energy

required to pass from the ending temperature of C1 to the first temperature of C2

(EC1−C2), and finally the energy to cool down the oven at the end of the sequence
(ECD−C2). So in the end we have the following quantity

E(1,2) = EWU−C1 + EC1 + EC1−C2 + EC2 + ECD−C2

If we select the sequence (2, 1) we obtain

E(2,1) = EWU−C2
+ EC2

+ EC2−C1
+ EC1

+ ECD−C1

We can assume that the energy consumption when the foodstuff is inside the cavity
does not depend on the order but is related just to the specific recipe and the food
properties. What we can change is the energy during the transient stages between
consecutive cooking processes (warm-up or cooling-down stages). In other words, we
can neglect the terms EC2 and EC1 and work on the remaining ones.

Given a set of cooking processes J = {C1, . . . , Cm}, we need to define an energy
function f : J × J → R such that f(Ci, Cj) defines the energy to pass from the last
stage of the cooking process Ci to the first stage of the cooking process Cj . In the
example above EC1−C2 = f(C1, C2).

We need to define a dummy cooking process C0 with a single stage characterized
by the environment temperature T0 and a humidity 0%. This correspond to the
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starting/ending condition, when the oven is off. With this definition we have, for
example, EWU−C1

= f(C0, C1).
We can now define the problem in Definition 3.1 as a scheduling problem where

each cooking process is a job and the energy function is a switching cost to pass from
one job to the next one.

Definition 3.1.2. (Scheduling problem) Given a set J = {C0, . . . , Cm}, with m
jobs (Ci)i∈{1,...,m} and a starting/ending condition C0, and given a weight function
f : J × J → R, select a permutation π of {1, . . . ,m} in order to minimize the total
cost

cost = f(C0, Cπ(1)) +

m−1∑
i=1

f(Cπ(i), Cπ(i+1)) + f(Cπ(m), C0)

Before addressing the solution of the problem we need to define the energy function
f(Ci, Cj).

3.2 Characterization of the energy function

We already said that we want to define this energy considering just the last stage
of a cooking process Ci characterized by a set of temperature and the first stage of
the consecutive cooking process Cj . The energy f(Ci, Cj) is the energy to pass from

temperature TCi
ni

and humidity HCi
ni

to temperature T
Cj

1 and humidity H
Cj

1 . Basically
the function e represents the energy consumption to move from a stage defined by
(T,H) to a stage with values (T ′, H ′). Instead of defining a function of four variables
(2 temperatures and 2 humidity levels) we decide to use only two variables: T̄ and
∆H. T̄ represents the change in temperature from T to T ′ weighted with a corrective
factor and ∆H is the simple variation of humidity from H to H ′.

Use the energy balance is a traditional method to evaluate the energy efficiency
of a process but it does not provide information on the degradation of energy during
a process. For our purpose the concept of exergy is more indicated to describe the
difference between sequences. The concept of exergy [57] is the maximum useful work
possible during a process. In a heating process this depends on the temperature at
which heat is available and the temperature level at which the rejected heat can be
disposed. We use this idea and the definition of exergy as an inspiration to modify
the temperature variation with the Carnot coefficient

T̄ = ∆T (1− T0

T
) (3.1)

where ∆T = (T ′ − T ) and T0 is the environment temperature.
We have to describe the function f as a function of T̄ and ∆H. The function

f must be characterized for the specific appliance that we want to consider. The
analytic expression depends on the dimensions of the oven, the heating elements and
the insulation. The expression could become very complex and must be recalculated
for each appliance. For this reason we decide to fit some experimental tests to create
a surrogate polynomial model pf that approximates the energy consumption. All the
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information are obtained measuring the energy consumption with some idle tests, so
by increasing or decreasing the temperature and humidity of the oven with the cavity
empty.

We design the tests in order to cover a realistic portion of the domain. During
the test campaign we noticed that the behavior of the warm up stages, where T̄ > 0,
is functionally different from the behavior during cool down stages, with T̄ < 0. For
this reason we decide to approximate the energy consumption with two second degree
polynomial function : one for T̄ ≥ 0 (Epos) and one for T̄ ≤ 0 (Eneg).

Our final function pf is a piecewise polynomial function

pf (T̄ ,∆H) =

{
Epos(T̄ ,∆H) T̄ > 0

Eneg(T̄ ,∆H) T̄ ≤ 0
(3.2)

where

Eneg(T̄ ,∆H) = n1,1T̄∆H + n2,0T̄
2 + n0,2∆H2 + n1,0T̄ + n0,1∆H + n0,0

Epos(T̄ ,∆H) = p1,1T̄∆H + p2,0T̄
2 + p0,2∆H2 + p1,0T̄ + p0,1∆H + p0,0

and the coefficients pi,j and ni,j are obtained by fitting the experimental data.

3.3 Asymmetric traveling salesman problem

In order to solve the scheduling problem in Definition 3.1.2 we reformulate it as an
asymmetric traveling salesman problem (ATSP). Let us consider a complete graph
Kn with n = m+1 as in Figure 3.1. Each vertex is a job in J . For each edge e = (i, j)
we define the same cost function wi,j = f(Ci, Cj). We want to find a minimum weight
path that starts in C0, visits all the nodes and comes back to C0, so a Hamiltonian
cycle.

C0

C3

C1

C2

C5

C4

Figure 3.1: Complete graph K6

Definition 3.3.1. (ATSP) Given a direct graph G = (V,E) with n nodes and a
weight function w : V × V → R, find a Hamiltonian cycle H such as wH =

∑
e∈H we

is minimum.
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In literature there are bunch of algorithms to solve the ATSP. In order to imple-
ment a light algorithm that has to be included inside a real machine, we decide to
solve the problem using a greedy approach.

We implement the classical Karg-Thompson heuristic [62]. This heuristic is a
greedy algorithm that strongly depends on the initial order. The pseudocode is de-
scribed in Algorithm 3.1

Algorithm 3.1 Karg-Thompson heuristic

1: Input: A complete graph Kn+1 and a weight function w : V × V → R
2: Output: A vector V of reordered indices

3: Select a permutation π of {1, . . . , n}.
4: Initialize V (1) = π(1) and the current value E = w0,π(1) + wπ(1),0

5: for i = 2, . . . , n do
6: select a position pos ∈ {1, . . . i} that minimize the energy value
7: if pos = 1 then
8: E = (E − w0,V (1)) + w0,π(i) + wπ(i),V (1)

9: else if pos = i then
10: E = (E − wV (i−1),0) + wV (i−1),π(i) + wπ(i),0

11: else
12: E = (E − wV (pos−1),V (pos)) + wV (pos−1),π(i) + wπ(i),V (pos)

13: end if
14: Update V (j + 1) = V (j) for j = pos, . . . , i− 1 and V (pos) = π(i)
15: end for

In order to improve that heuristic we repeat the algorithm few times starting
with different random orders. For ensuring the repeatability of the algorithm and the
implementation on the user interface environment, we have implemented the Lehmer’s
algorithm for the Pseudo Random Number Generator [87].

3.4 Practical aspects

In order to improve the performance of the automatic function and to fit better the
final application, we add two boolean information for each cooking process: the ice
information and the dirty information.

3.4.1 Ice information

The ice information is a flag that identifies the cooking processes target for frozen
foodstuff, for example frozen vegetables or frozen fish. The presence of frozen foodstuff
will impact the energy consumption. When we are working with frozen foodstuff the
shape of our objective function changes its slope if we are considering a warm-up
phase (positive temperatures). Instead, the shape remains the same if we are during
a cooling-down phase (negative temperatures).
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In order to use this information, we have defined a corrective factor kice > 0 to
increase the slope of the energy surface with respect to the temperature variable.

Epos(T̄ ,∆H) = kice(p1,1T̄∆H + p2,0T̄
2 + p1,0T̄ ) + p0,2∆H2 + p0,1∆H + p0,0 (3.3)

3.4.2 Dirty information

The dirty information is a boolean flag that identifies a cooking process with foodstuff
that can soil the cavity of the oven, as grilled chicken or fish. Usually after these
processes the chef has to clean up the oven in order to not contaminate the flavor of
next cooking process. In alternative, all this cooking processes must be done at the
end of the sequence, to reduce the impact on the other meals. The dirty information
restricts the possible orders that we can arrange

The general request to postpone and move at the end of the sequence a set of
cooking processes can be managed easily with the Karg-Thompson heuristic. Indeed,
we just need to keep a pointer where the last “no-dirty” cooking process is. Each
time we are processing a new cooking process, we will evaluate only the first half of
the positions till the pointer, if the cooking process is not dirty, and the second half
if the cooking process is dirty.

3.5 Example of Usage

The scheduling algorithm is meant for any food sector that is using the Cook & Chill
process technique. One of this sectors is the catering sector. Let’s consider a possible
list of plates for a catering sector with a buffet menu. In Table 3.1 we list seven plates
with the corresponding multistage cycle. We also add the ice information introduced
in Section 3.4.1 with a boolean flag.

Using the polynomial function in Equation 3.2 we tune the coefficients with respect
to a real Electrolux Professional oven. We obtain the polynomial surface in Figure 3.2.
With these values we can apply the Karg-Thompson heuristic to obtain the optimal
sequence. We can also search with an exhaustive search the worst sequence, i.e. the
sequence with the maximum energy consumption. Since it would be unlikely that a
chef would come up with the worst possible solution to begin with, we also decide
to ask directly to a chef of the Electrolux Professional chef accademy to test also a
realistic scheduling. We obtain the three sequence in Table 3.2.

In Figure 3.3, Figure 3.4 and Figure 3.5 we plot qualitative temperature target
profiles for the best sequence, the custom sequence and the worst sequence, where we
set each stage 1 to 5 minutes if it is a warm up and just 1 minute if it is a cooling
down phase. We can immediately notice that in the worst sequence we continue to
jump from a multistage with a low temperature to a multistage with high tempera-
ture, using lot of energy to heat up the oven. Then we loose everything by cooling
down the oven and we need to heat up again for the next multistage. The custom
sequence has a gentile constant warm up that reduces partially the waste of energy
of the worst sequence but each recipe is not taking completely advantage on the heat
accumulate in the previous step. Both the worst and the custom sequences end with
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Figure 3.2: Polynomial function that approximates the energy consumption of a pro-
fessional oven during the transient phases

Table 3.1: List of multistage cycles for a buffet menu. For each stage we list the
temperature T , the humidity H and the duration t. If the duration is not specified,
the stage ends when we reach the two conditions (T , H) inside the oven.

N. Plate
Multistage parameters

Ice flag
stage 1 stage 2

1 Rice T = 100◦C T = 100◦C
0H = 100% H = 100%

t = 13min
2 Steam Vegetables T = 100◦C T = 100◦C

1H = 100% H = 100%
t = 7min

3 Cheesecake T = 140◦C T = 120◦C
0H = 80% H = 80%

t = 15min
4 Escalope T = 170◦C T = 150◦C

0H = 70% H = 70%
t = 10min

5 Pizza T = 200◦C T = 180◦C
0H = 20% H = 20%

t = 11min
6 Vegetable au gratin T = 230◦C T = 210◦C

0H = 40% H = 40%
t = 18min

7 Bacon T = 240◦C T = 220◦C
0H = 10% H = 10%

t = 8min



34 3. Scheduling of recipes for a professional oven application

Table 3.2: Best sequence obtained with the Karg-Thompson heuristic, custom se-
quence made manually by a chef and worst sequence obtained with an exhaustive
search. The numbers of the multistage systems refer to Table 3.1

Best 7 5 6 4 3 2 1
Custom 1 2 3 4 5 6 7
Worst 2 6 3 5 1 4 7

a high temperature and we need to cool down the oven, loosing all energy of this last
multistage. In the best sequence instead we can notice a descendant shape for the
temperature, where we heat the oven till the maximum, the most expensive step, and
then we use this energy in the downhill.

The humidity profiles are reported in Figure 3.6, Figure 3.7 and Figure 3.8 using
again the convention of 5 minutes for warm up stages and 1 minute when we have
a cooling down stage. Again we can notice a jumping profile for the worst case and
almost a monotone profile for the custom sequence and the best sequence. In the
custom sequence, having selected a ascendent schedule for the temperature, we have
the opposite trend in the temperature. The best sequence, instead, has an ascendant
profile for the humidity and this is intuitively coherent with the effort to avoid the
phenomenon of condensation that occurs when the oven is cold and we need to inject
a high percentage of humidity.

Finally we notice that with the ice information the steam vegetables are performed
at the end of the best sequence in order to use all the accumulated energy to faster
defrost the vegetables. This phenomenon is not present on the reported qualitative
figures but it has a huge impact in the real appliance.
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Figure 3.3: Temperature profile of the
best sequence in Table 3.2
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Figure 3.4: Temperature profile of the
custom sequence in Table 3.2

To conclude the example we execute the three sequences inside a professional oven
and we obtain −10% of energy saving for the best sequence with respect to the worst
one and −6% with respect to the custom. The multistage cycles selected for the buffet
menu have a variety of temperature and humidity stages and this highlights what we
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Figure 3.5: Temperature profile of the
worst sequence in Table 3.2
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Figure 3.6: Humidity profile of the
best sequence in Table 3.2
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Figure 3.7: Humidity profile of the
custom sequence in Table 3.2
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worst sequence in Table 3.2
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can gain from the scheduling algorithm.
In general, this algorithm performs better with diversified multistage systems. On

the contrary we will not save energy with a sequence of equal multistage systems
because any possible order will have the same total energy. This is a characteristic of
the scheduling problem and it depends on the definition of the energy function.

3.6 Conclusion and future works

We presented a scheduling algorithm for sorting a list of cooking recipes, i.e. a set of
multistage systems, inside a professional oven. This new functionality works on the
interaction between two consecutive multistage systems and suggest the best order
that minimizes the total energy consumption of the machine. To reach this goal we
solved a TSP considering the temperature and humidity of the first and last stage of
each multistage system. We used an approximate model of the energy consumption
of the oven to create the weight matrix and we finally solved the TSP instance with
the Karg-Thompson heuristic.

The proposed solution is currently implemented in the Electrolux Professional
ovens and it is increasing the use of smart solutions and assistant-making algorithms
in the food service sector, particularly in Cook&Chill services.

This first step on the introduction of scheduling algorithm inside the food-service
appliances opens an entire research field. We can think about the central kitchens
where a set of machines is available in a common space for the production of different
restaurants. Central kitchen operates strongly with the Cook&Chill process and the
planning phase is crucial [108]. If we evolve the concept of central kitchen in a central
kitchen hub, by connecting all the appliances and by controlling them remotely, the
outright evolution of this study can be the scheduling on multiple appliances.

The TSP formulation can be easily extended to an hypothetical kitchen with
multiple ovens of the same kind, it is enough to add a dummy state for each considered
oven with a null weight on edges between two of these states. Since the current
approximation of the energy consumption is a data-driven function that depends on
the machine in witch we performed the tests, a different formulation is needed if we
decide to extend further changing also size and typology of oven. In this situation
could be interesting to change the energy function shape and parametrize the size or
some characteristics of the considered machines.



4
Multi-objective black box
optimization of a thawing

process

Multistage heat transfer processes are a family of physical processes where the be-
haviour of the thermal system is dependent on a specific combination of parameters.
How to select the most suitable combination, according to a given objective function
or to a specific requirement, is highly influenced by the complexity of the problem, the
nature of the parameters (number and range) and their role in the physical process.

We want to focus on a special multistage heating process, the thawing process,
that is a food service process where food is subject to a heat transfer operation with
the external environment, in a quantity sufficient to just pass the phase transition of
the water present in the food matrix from solid to liquid. In professional appliances,
commonly used in professional kitchens, chains or canteens, the thawing process is
executed under controlled conditions, for example in terms of airflow temperature
and airflow velocity. The temperature is typically kept in the range 4◦C - 15◦C
to prevent the bacterial growth [37]. Professional appliances allow to program a
multistage thawing cycle. Each stage is characterized by a set of parameters, as the
air temperature and the duration of the stages.

The selection of the parameters has to balance the productivity and quality of the
process. Indeed thawing of raw fish and meat can affect the physical, chemical and
microbiological quality of the product, and thus remains a major concern for proces-
sors and consumers [3, 37]. The bacteria that cause food poisoning are found on the
surfaces of many foods and, in this process, they start growing due to the continuous
arise of the temperature of these areas. There are different evolution models that take
into account the bacterial growth depending on the temperature and the duration,
mostly variants of the logistic evolution model or piecewise exponential growth curves
obtained with empirical methods [88]. The temperature difference between the food
and the surrounding medium is important to prevent the development of microbial
flora and to reduce the impact of enzymatic activity. In our case we choose to con-
sider the most general and the strictest constraint that we can impose. The same
construction can be extended to more complex models. In summary, we want to keep
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the maximum temperature Tmax of the product below a Tsafe temperature of 7◦C
following the codex alimentarius for fish fillet [59].

The optimization problem described is quite general. We have a multistage sys-
tem and we want to minimize the total duration of the process and the temperature
unevenness within the food having an end condition—in the thawing case is a mini-
mum threshold that we have to reach, i.e. the minimum temperature Tmin inside the
product has to reach 0◦C—and satisfying a constraint that in this case is a maximum
threshold that we do not want to overpass (Tmax ≤ 7◦C).

The heating process is described by the computationally efficient model in [103].
This model is able to describe the multi-phase transient field inside the food object,
by means of a finite difference numerical scheme [36]. The only operation that we can
perform with this model is the evaluation, namely we have a procedure to evaluate
the model but we do not have an analytic expression for it. Such a function is called
black box function.

Definition 4.0.1. A black-box optimization problem is an optimization problem in
which the objective function is a black box function.

Following [81] and [90] we can broadly divide all the algorithms used to solve a
black-box optimization problem into two classes:

1. Direct method

2. Surrogate-based methods.

We refer to direct methods when the algorithm determines search directions by eval-
uating the objective function directly, whereas surrogate-base algorithms create and
use a surrogate function to guide the search process, i.e. an analytic function that
approximates the complex system.

Direct methods are advisable when we have a computationally efficient model.
In this scenario the main problem is to deal with black box constraints that express
a property on the trajectory. The difficulties arise because potential solutions, that
violate black box constraints, provide no information beyond their infeasibility. A
possible solution generally used is to relax the constraint and to treat it as an addi-
tional objective function. On the other hand, the use of a surrogate-based method
allows to handle the constraint directly and it gives us the possibility to exploit the
graph structure behind the multistage system.

We decide to exploit both the possibilities. In Chapter 4.1 we investigate a direct
method and the Genetic Algorithms (GA) are a reasonable direct method to analyze
a multi-objective optimization problem. A surrogate-based method is analyzed in
Chapter 4.2, where we consider the multistage system as a single hybrid automaton.

4.1 Genetic algorithm approach

We conduct a multi-objective optimization analysis for a jet impingement thawing
process which is described by means of a computationally efficient model. The avail-
ability of computationally efficient models allows to speed up the research of the right
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configuration, thanks to the possibility to analyze a huge amount of test cases. The
physical behavior of the thawing model and the nature of the input parameters may
introduce multimodal trends of the objective functions. In such cases only a robust
optimization algorithm can ensure a good convergence without being trapped at a
local minimum. Moreover we are interested also in obtaining a set of uniform solu-
tions on the Pareto front, in order to select some promising candidates and investigate
the right compromise between the objective functions. In literature, evolutionary al-
gorithms are quite recognized as state of the art, able to deal with the challenges
described above [101, 26, 40, 84, 75, 2].

[84] present a literature review about the most used optimization algorithms for
building energy simulations, showing a significant use of GA among 200 building opti-
mization studies retrieved by SciVerse Scopus of Elsevier. They remark that the pop-
ularity of GA is mainly due to its capability and robustness in dealing with problems
of different nature, i.e. optimizing functions with continuous or discrete variables,
accelerating the search with parallel simulations, working with populations, robust
handling of discontinuous, multimodal and highly constrained objective functions.
Also [40] confirms the trend about the use of GA algorithm in optimization studies
for building energy simulations, showing firstly a predominance of evolutionary algo-
rithms and secondly the extensive use of GA for more than half the analyzed articles.
Moreover, based also on the work of [91], he confirms that evolutionary algorithms
represent the best compromise to handle an optimization study for a complex black
box model.

The extensive use of GA and the widespread references about its robustness and
reliability, drive our choice in the selection of the optimization algorithm. Moreover
having an algorithm compatible with the parallel computation is extremely impor-
tant to save time and money during the product development process in a company.
MATLAB R©offers the possibility to parallelize the GA algorithm among the individ-
uals of each generation in an effortless way, by simply enabling the parallel option of
the algorithm [76].

As other meta-heuristic techniques, GA requires the setup of the internal param-
eters, whose values are dependent on the particular problem, as remarked by [98].
This is true especially for black box functions, since we have poor information about
the function itself. As successfully shown by [75], [99] and [8], the setup configuration
of the GA can be tuned by using the Taguchi design method. Their works are focused
on single-objective optimization problems. We studied the importance of tuning the
parameters of a GA by using the Taguchi design method also for multi-objective prob-
lems, showing firstly its efficiency for some benchmark cases and then implementing
the method for the thawing case. In order to compare different Pareto fronts, we
evaluate the performance of each configuration using the hypervolume indicator in-
troduced in Chapter 1.2.1. We start with the description of the model and then we
describe the procedure to setup the parameters.

4.1.1 Jet impingement thawing model

In the last few years the jet impingement technology in food service is highly under
research because the use of forced air-streams seems to have advantages compared
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to other traditional methods [9, 93, 79]. The impingement systems exploit jets of
fluid, at high velocities, ideally impinging perpendicularly the surface of products [97].
Impingement reduces the thermal boundary layer thickness surrounding the products
surface, increasing the convective heat transfer coefficient and allowing faster heat
transfer processes. Jet impingement is potentially advantageous for increasing the
thawing rate without increasing the air temperature, when microbial growth becomes
a concern. In [103] a model for jet impingement thawing appliances is proposed.
The model combines in cascade a Computational Fluid Dynamic model and a Finite-
Difference Heat-Conduction model and it is validated on a Tylose brick, a common
food analog. This model describes the thermal evolution of a brick of dimension
16 × 8 × 5 cm3. The brick is divided in about 1000 blocks and the model describes
the temperature evolution T (x, y, z, t) of each block with the enthalpy method. We
can treat the selected thawing model as a function

T : Rn → R3 (4.1)

where n is the number of input needed to describe a particular thawing cycle and the
three output are the three objective functions that we want to optimize. If we setup
a multistage cycle with at most m stages, we have the following input:

1. Re: Reynolds number that expresses the air speed. Re ∈ [12000, 26000].

2. HD : dimensionless distance from the nozzle to the surface of the food (H
distance, D nozzle diameter). HD ∈ [2, 6].

3. Tset = (T1, . . . , Tm): vector of dimension m with all the air temperatures ex-
pressed in Celsius. Tset ∈ [4, 15]m.

4. timeset = (t1, . . . , tm−1): vector of dimension m − 1 with all the durations per
each setpoint expressed in seconds. timeset ∈ [0, 3600]m−1. The last setpoint
does not have a duration but we keep it till the end of the process, so till the
minimum temperature Tmin within the food item reaches 0◦C.

The first two input are peculiar of the jet impingement technology, the other input
instead are common to every multistage thawing process.

The three output of the model that we evaluate for each multistage thawing cycle
are the following:

1. Σt: total time necessary to complete the process, expressed in hours.

2. UI: Uniformity Indicator that measures the temperature uniformity within the
food item during the thawing process.

UI =
1

Σt

∫
t

∫
V
| T − µ(T )) | dV
V (Ttg − T0)

dt (4.2)

where T means T (x, y, z, t) and it is the temperature of the block in position
(x, y, z) at time t, µ(T ) is the average temperature of the food item of volume V
at time t. T0 is the food item initial temperature and Ttg is the target setpoint
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temperature for Tmin that is 0◦C. UI is dimensionless and it ranges between
0 and 1, where 0 means that the temperatures inside the food are completely
uniform.

3. Tmax: maximum temperature within the food item reached during the process,
expressed in Celsius.

Tmax is the indicator that we have chosen to keep the bacterial growth under control.
Through the user interface of the professional appliance usually we can setup

a multistage cycle with a finite number of stages. Realistically, we can decide to
consider at most 5 stages. We can assume that we have always a vector of 11 input.
In conclusion we treat the thawing model as the function

T : R11 → R3

x→ (Σt, UI, Tmax)
(4.3)

where x = (Re,HD, T1, . . . , T5, t1, . . . , t4) and we denote with T (x) = (Σt(x), UI(x),
Tmax(x)).

The following example will clarify better the meaning of the input and output
variables. We will consider a case A with the following input parameters: Re = 12000,
HD = 6 and a profile of the setpoint temperature of the airflow considering T1 = T2 =
T3 = T4 = 5◦C and T5 = 4◦C and the setpoint time t1 = t2 = t3 = t4 = 900s. Then
we will consider a case B with the following setup: Re = 18000, HD = 2 and a profile
of the setpoint temperature of the airflow considering T1 = T2 = T3 = T4 = 15◦C
and T5 = 7◦C and the setpoint time t1 = t2 = t3 = t4 = 720s. The test case A
is meant to provide a lower thawing rate (slow air speed and low air temperature),
but a more uniform temperature distribution within the food, on the contrary the
case B will provide a very fast thawing rate (high speed and high temperature), but
with a very uneven temperature distribution and risk of hot-spots. Figure 4.1 clearly
shows the difference between the two cases in terms of thawing rate, by looking at the
profile of the minimum temperatures within the food. The case A takes Σt = 3.82h
to end the thawing process versus Σt = 1.43h of the case B. Figures 4.2 and figure 4.3
show the temperature contour map at a mid-section of the food item at the end of
the thawing process. It is clear that the case A presents a more uniform temperature
distribution UI = 0.10 and the maximum temperature is Tmax = 4.1◦C, while the
case B presents a very uneven temperature distribution UI = 0.31 and its maximum
temperature reaches Tmax = 13.3◦C, clearly above the safety limit.

Given the model T for the thawing process we want to find the optimal thawing
cycle, so the optimal input x, that minimizes Σt(x) and UI(x) keeping Tmax(x) below
Tsafe.

We write the associated multi-objective optimization problem P for the thawing
case.

P : min
x

(Σt(x), UI(x))

s.t. Tmax(x) ≤ Tsafe
(4.4)

As already pointed out, the only operation that we can perform for the function T
is the evaluation. Thus we need to relax the constraint and to treat it as an additional
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Figure 4.1: Case A and case B: set point temperatures of the air and minimum
temperatures within the food item.

Figure 4.2: Case A: end-process tem-
perature contour map in Celsius at the
mid-section of the food item.

Figure 4.3: Case B: end-process tem-
perature contour map in Celsius at the
mid-section of the food item.
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objective function. In this case we want to keep Tmax under a certain level, so we ask
to minimize the value of this third indicator. In conclusion we are going to solve the
following problem

PT : min
x

(Σt(x), UI(x), Tmax(x)) (4.5)

The problem PT has three functions to be minimized, so the solutions are all the
points on a three dimensional Pareto front. GA is a reasonable direct method to
obtain a set of points that approximately lies on the Pareto front. Moreover, using
the software MATLAB R©, we have the possibility to implement a multi-objective
optimization problem with GA using the function gamultiobj [76].

4.1.2 Parameters setup for a genetic algorithm

Genetic algorithms are optimization algorithms that mimic the biological process of
reproduction and natural selection. The basic components of a GA are:

1. population: batch of solutions that we are currently evaluating. Each solution
x = (x1, . . . , xn) of the problem is an individual of the population and its
components xi are called chromosomes.

2. selection: how we select two individuals to be recombined.

3. crossover : it is the operation to recombine two individuals to obtain the new
one.

4. mutation: it is the operation to change randomly a single chromosome of an
individual.

We have also to choose which is the starting population and how huge it is. At
each run of the GA we use the rules of selection, crossover and mutation to create the
new generation of individuals.

The function gamultiobj is highly customizable. We have some default functions
for each component of the GA but we can also implement our own functions. In Table
4.1 we recap the 7 parameters we have decided to tune and the options considered
for each parameter.

We have 7 parameters or factors, 2 of them have 4 options or levels and the
others have just 2 levels. All the possible combinations are 42 · 25 = 512. In most
of the research studies these settings are based on either default values, or reference
values from the literature or trial and error approaches. When reference values from
literature are not available, a tuning phase of the default settings is advisable. In the
present work the Taguchi design method is used for this purpose. Taguchi method is
a statistical method largely used in engineering contexts to reduce the number of tests
in a robust way. In particular the Taguchi method allows also to work with factors
that have different number of levels. The details of the 16 tests that we perform are
summarized in Table 4.2.

In order to evaluate the sixteen tests, we need to use a performance indicator able
to compare two different Pareto fronts. We choose to compare two Pareto fronts using
the hypervolume indicator IH defined in Chapter 1.2.1. This indicator measures the
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Table 4.1: Matlab genetic algorithm parameters. Functions with * are custom func-
tions that we implement. Directional crossover function is explained in [46]

Parameter No. Option
A Crossover function 1 Single Point

2 Multi Point
3 Heuristic
4 Directional*

B Crossover Fraction 1 0.7
2 0.8
3 0.9
4 0.95

C Mutation function 1 Adaptive
2 Random*

D Creation function 1 Linear
2 Random*

E Migration Fraction 1 0.0
2 0.2

F Pareto Fraction 1 0.10
2 0.35

G Population size 1 100
2 200

Table 4.2: Taguchi design obtained with commercial software [78]

Test
Parameter of GA

A B C D E F G
1 1 1 1 1 1 1 1
2 1 2 1 1 1 2 2
3 1 3 2 2 2 1 1
4 1 4 2 2 2 2 2
5 2 1 1 2 2 1 2
6 2 2 1 2 2 2 1
7 2 3 2 1 1 1 2
8 2 4 2 1 1 2 1
9 3 1 2 1 2 2 1
10 3 2 2 1 2 1 2
11 3 3 1 2 1 2 1
12 3 4 1 2 1 1 2
13 4 1 2 2 1 2 2
14 4 2 2 2 1 1 1
15 4 3 1 1 2 2 2
16 4 4 1 1 2 1 1
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hypervolume of the portion of the objective space that is dominated by the set of
points on the Pareto front. In order to measure this quantity, the objective space
must be bounded or, alternatively, we should use a reference point that is at least
weakly dominated by all points.

According to the setup decided for the multistage thawing cycle, the computa-
tionally efficient model [103] is able to describe the multi-phase transient field inside
the food object, by means of a finite difference numerical scheme [36]. In our case we
have an upper bound and a lower bound for all the three objective functions. The
maximum temperature is dependent on the air temperature so it can not exceed 15◦C
and it can not be lower than the target of 0◦C, thus Tmax ∈ [0, 15].

We can prove easily that UI is in the interval [0, 0.5]. The indicator is non-negative
by definition and it is 0 only if each temperature T inside each volume V has the same
temperature at each instant t. The upperbound instead is a conservative estimation
based on the fact that the extreme condition for the value |T − µ(T )| is obtained

when µ(T ) =
(Ttf−T0)

2 and half of the volumes have T = T0 and the other half have
T = Ttg. But this can be reached only in some time instances, not in all, because of
the end condition imposed to the system.

As regard the total time we can estimate the range knowing the best and the
worst thawing cycles with respect to Σt. For the best thawing cycle Cbest we select
the maximum air speed, the maximum air temperature and the smallest distance from
the jets to the food surface. Instead for the worst case Cworst we select the minimum
air speed, the minimum air temperature and the highest distance from the jets to the
food surface.

Cbest = [26000, 2, 15, . . . , 15, 3600, . . . , 3600]

Cworst = [12000, 6, 4, . . . , 4, 3600, . . . , 3600]

We decide to normalize the three objective functions in [0, 1]. With this new
domain, the Pareto front is in [0, 1]3 and the bounding point is (1, 1, 1) so also the
indicator IH is normalized in [0, 1].

4.1.3 Results for benchmark problems

We run the GA with the 16 different setups and with a small total number of gen-
erations fixed to 300, we calculate IH on the resulting Pareto front and we repeat
each setup 3 times in order to take the average value and in order to increase the
consistency of the results.

The results for Taguchi design are analyzed according to the signal-to-noise (S/N)
ratio. It is a measure of variation and it guarantees the robustness of the design [77].
IH is an indicator that we want to maximize, thus the S/N is defined as

(S/N)i = −10 log10

( 3∑
k=1

( 1

Y 2
i,k

)
3

)
(4.6)

where Yi,k is the value of IH for each test i and repetition k and we sum 1
Y 2
i,k

over the

three repetitions.
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Before applying this procedure to the thawing problem, we first consider the same
strategy with six benchmark problems, to empirically evaluate the validity of the
method.

We consider 6 benchmark problems and we compare the results obtained with
the proposed procedure and the results obtained with the default GA of MATLAB R©.
With this comparison we want to stress the fact that a GA must be customized for
each problem, if we want to be confident of the result, and Taguchi with IH is an
efficient way to proceed even with multi-objective functions.

We select benchmark problems DTLZ1-6 [31] for the ability to define both decision
variables and objective functions to any dimension. Indeed we define these problems
with exactly 11 variables and 3 objective functions, like the thawing problem. These
problems are widely used to test GA performance because each problem introduces a
different challenge as the convergence to the ideal Pareto front or the diversity of the
final solutions or the ability to keep a widely distributed set of solutions for the last
generation with respect of the objective functions.

Figure 4.4: DTLZ1: Comparison be-
tween the obtained front (black) and
the ideal Pareto front (gray).

Figure 4.5: DTLZ2: Comparison be-
tween the obtained front (black) and
the ideal Pareto front (gray).

Figure 4.6: DTLZ3: Comparison be-
tween the obtained front (black) and
the ideal Pareto front (gray).

Figure 4.7: DTLZ4: Comparison be-
tween the obtained front (black) and
the ideal Pareto front (gray).

Figure 4.8: DTLZ5: Comparison be-
tween the obtained front (black) and
the ideal Pareto front (gray).

Figure 4.9: DTLZ6: Comparison be-
tween the obtained front (black) and
the ideal Pareto front (gray).
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After selecting the best setup following the described procedure, we run the GA
with the best setup for 600 generations. We compare the result for the best setup with
the result of the default setup run for 600 generations. We also compare the default
setup with our method by considering almost the same of computational time, running
the default setup for a number of generations equal to the sum of all the generations
of the Taguchi design adding also the number of generations used for the run with
the best setup (i.e. 300 ·16 ·3 + 600). The knowledge of the ideal Pareto front permits
us to better compare the results. First of all we compute IH for each resulting front
and we consider the difference with the hypervolume of the ideal Pareto front (IiH).
Then we also consider two additional indicators following [120, 28] and [58]:

• the generational distance indicator (GD) to evaluate the coverage [110]

GD =

√∑n
i=1 d

2
i

n
(4.7)

where n is the number of obtained solutions, di is the Euclidean distance in
objective space between the ith solution and the nearest solution on the ideal
Pareto front.

• the uniformity and diversity indicator ∆ introduced by one of the inventors of
the benchmark problems [30]

∆ =
df + dl +

∑n−1
i=1 |di − d̄|

df + dl + (n− 1)d̄
(4.8)

where n is the number of obtained solutions, df and dl are the Euclidean dis-
tance between the extreme solutions of the ideal Pareto front and the obtained
solutions, di is the minimum distance from one solution to the next one (in the
objective space) and d̄ is the average of all distance di.

All the three indicators must be minimized. The results are reported in Table 4.3
and we highlight in bold the best result for each indicator. We also plot the Pareto
front in the three different scenarios. Looking at the figures, we can immediately
notice that, in DTLZ1 problem (Figure 4.4) and in DTLZ3 problem (Figure 4.6), the
default setup is not able to converge even in the huge scenario of 15000 generations.
Instead, with the Taguchi tuning, in just 600 generations we are already near the
ideal Pareto front in all the 6 benchmarks.

4.1.4 Results for the thawing model

Following the same method for the thawing case, we run the GA with the 16 different
setups, 3 times each, and with a maximum number of generations fixed to 300. We
perform each run on a workstation with Intel R© Xenon R© E-2176M CPU at 2.7GHz, 6
cores, 32 GB RAM and using MATLAB R©R2019b with Global Optimization Toolbox
and Parallel Computing Toolbox. Each run takes in average 2014 seconds and at each
call, the black box model is evaluated in 0.142 seconds in average. The calculated IH
is reported in Table 4.4.
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Table 4.3: Comparison between the setup obtained after a tuning with Taguchi
(Taguchi+GA600), the default setup of MATLAB R©with the same number of genera-
tion of our final run (GA600) and the default setup with a same number of generations
of our total method (GA15000).

Taguchi+GA600 defaultGA600 defaultGA15000

DTLZ1
IiH − IH 1.1206e− 01 4.7518e+ 04 5.9996e+ 01
GD 3.0491e− 04 3.2624e+ 01 9.2207e− 01
∆ 1.9527e− 05 2.9986e− 04 3.0085e− 04

DTLZ2
IiH − IH 1.0344e− 01 3.4478e− 01 1.2049e− 01
GD 2.4413e− 03 2.5246e− 02 3.1507e− 03
∆ 4.9191e− 07 2.2968e− 04 2.2900e− 10

DTLZ3
IiH − IH 8.8061e− 01 5.4195e+ 04 2.7230e+ 03
GD 2.1358e− 02 3.3370e+ 01 3.3920e+ 01
∆ 9.9503e− 05 3.0542e− 04 3.1098e− 04

DTLZ4
IiH − IH 7.5104e− 02 9.4333e+ 00 1.4717e− 01
GD 5.5542e− 04 1.8808e− 01 4.7269e− 03
∆ 9.9358e− 06 2.9049e− 04 5.0017e− 08

DTLZ5
IiH − IH 5.2905e + 00 5.5266e+ 00 5.3719e+ 00
GD 2.6292e− 04 1.3243e− 03 3.3226e− 04
∆ 2.5592e− 05 8.9160e− 03 6.4881e− 10

DTLZ6
IiH − IH 1.6742e− 02 2.8244e− 02 1.7003e− 01
GD 1.7398e− 02 1.1568e− 02 1.3277e− 02
∆ 3.6501e− 04 5.3343e− 04 3.8945e− 04
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The hypervolume indicator has to be maximized and we can immediately notice
that some combinations are less promising than others: for example all the three
values obtained for the test 1 are smaller than the IH for each run of the test 4.
However, a definitive choice about the best parameters configuration can be made
only studying the cross-correlation effect by a statistical indicator.

Table 4.4: Results obtained from each test and each repetition

Test
IH value

Run 1 Run 2 Run 3
1 0.35516 0.30559 0.36710
2 0.50232 0.50346 0.49503
3 0.45930 0.41904 0.44885
4 0.50056 0.50744 0.50694
5 0.46632 0.47957 0.47356
6 0.48476 0.47415 0.47881
7 0.45463 0.46700 0.44785
8 0.45942 0.46615 0.46931
9 0.48976 0.48362 0.48349
10 0.47303 0.48696 0.48417
11 0.46851 0.49273 0.48594
12 0.44424 0.45557 0.46504
13 0.49365 0.49698 0.50448
14 0.40960 0.29412 0.42170
15 0.50690 0.50792 0.50928
16 0.47190 0.46685 0.46988

Table 4.5: Selection of the MATLAB R©Genetic Algorithm parameters.
Parameter Type

Crossover function Heuristic
Crossover Fraction 0.95
Mutation function Adaptive
Creation function Linear

Migration Fraction 0.2
Pareto Fraction 0.35
Population size 200

Following Equation (4.6), we compute the signal-to-noise (S/N) ratio for each
option of the parameters of the GA, so for each level and each factor of the Taguchi
design. This indicator again has to be maximized. The main effects plot is shown in
Figure 4.10 where we calculate the average of S/N for each level and each factor.

For each factor A,. . . ,G in Figure 4.10 we have to select the level with the max-
imum S/N. Starting from the factors that have the most evident impact, we should
consider the migration (factor E) by setting a value greater than 0 (in this case we
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Figure 4.10: Main effects plot with the average S/N values of the IH for each level
and each factor.

considered 0.20), the Pareto fraction (factor F ) should be set at 0.35 (level 2) instead
of 0.1 and we should consider a population (factor G) of 200 individuals (level 2)
instead of 100. It is also clear that we should not use the single-point function for
crossover (factor A, level 1) and we should use a high crossover fraction (factor B).
The effect of the other factors or levels is less evident but we select in any case the
level with the highest value. We run the GA with the parameters in Table 4.5 with a
maximum number of generations fixed at 600.

Figure 4.11: Slices obtained to calcu-
late the IH for the points on the opti-
mal Pareto front

Figure 4.12: Individuals on the opti-
mal Pareto front: black points are fea-
sible solutions for the problem PT

The resulting Pareto front presents a hypervolume IH = 0.51, visible in Figure
4.11. All these individuals are solutions of the optimization problem PT but not all of
them are feasible for the original problem defined in Equation (4.4). If we restore the
constraint condition Tmax ≤ 7 we have to prune half of the solutions and we obtain
only the individuals with black markers in Figure 4.12. Moreover we can observe
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Figure 4.13: Minimum and maximum
temperature evolution within the food
item for the cycle Cbest

Figure 4.14: Minimum and maximum
temperature evolution within the food
item for the cycle Cworst

that Σt seems inversely correlated with Tmax. Indeed we obtain as extreme points the
two thawing cycles Cbest and Cworst. The presence of these two cycles is extremely
important, because, from the theory of the heat transfer process within the food item,
they are the theoretical extreme cycles that minimize Σt (Cbest) and minimize Tmax

(Cworst). Consequently they theoretically belong to the ideal Pareto front and this
increases the confidence of the goodness of the obtained Pareto front. In Figure 4.13
and Figure 4.14 the evolution of the minimum and maximum temperatures within
the food item for Cbest and Cworst are plotted over time. Again, it can be observed
that the maximum temperature of Cworst does not satisfy the constraint defined in
Equation 4.4.

Another peculiarity of the final generation is the redundancy of some individual.
In particular, when we consider a single stage process that lasts less then 4 hours, some
of the final temperatures in Tset are assigned randomly without having an impact on
the three output. So we can have two input with the same triple output. This is
mainly due to the fact that we are obliged to consider an individual with a fixed
number of chromosome. Nonetheless the upper bound of 1 hour for the values of
timeset has reduced the redundancy problem.

4.2 Hybrid automaton approach

In the previous sections we have seen a possible strategy to solve a multi-objective
optimization problem when we have a black box model, in the end we obtain a set
of points on the Pareto front and we prune with respect to the constraint. Here we
want to discuss a possible alternative by reformulating the problem as a reachability
problem for a hybrid system.

Lifting up our view from the single application, here we want to focus on the
problem of parametrically designing what we can call multistage systems, that are
systems characterized by n stages, where each stage has a precise—albeit parametric—
evolution law. We give multistage systems as a single hybrid automaton [6], whose
states are grouped in layers and states are characterized by a continuous (parametric)
evolution law. Each layer qualitatively represents a stage of the entire process and
the discrete transition represents the switching instant from one stage to the next
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one. The underlying structure of the automaton will be that of a Directed Acyclic
Graph (DAG) and global properties of the process will be optimized with respect to
full paths in such a DAG.

A multistage system is, ultimately, a parametrized hybrid system. In the literature
we can find two main classes of problems analyzed on these systems: parameter
synthesis and optimal control design. Parameter synthesis is simply the problem of
choosing a set of parameters in order to ensure a given property. In [38, 34, 25]
(among many others) we can find possible approaches to solve this problem. Optimal
control design is the problem of choosing the best trajectory that satisfies a given
property, where with trajectory we mean a possible (full) evolution of the system.
Also here we have many examples of possible approaches, such as [70, 16, 53]. The
thawing problem is a combination of the two: we want to select a setting of parameters
suitable to obtain the best trajectory that satisfies a given property.

In the literature this problem goes under the name of optimal parameter synthesis
(or safe reachability problem) and is tackled specifically in [7, 17]. In [17] the authors
perform optimal parameter synthesis but they are working with transient systems
and not with multistage systems as in our case. In a transient system you just
have the set of states (finite or infinite) and a transition relation expressed with a
formula, that in [17] is a linear arithmetic formula. They use model-checking to
obtain the set of all admissible solutions and they illustrate different methods to
explore the solution-space in order to find the best solution. In [7], instead, are
addressing a scheduling problem for a reducing peak power demand of the heating
system of multiple zones for a commercial building [83]. In this problem a solution
is an unordered list of parameters with the associated duration. The authors are not
interested in the specific stage for which we select a given parameter, for this reason
they can reduce the optimal parameter synthesis to a linear optimization. Finally
in [52] they address a different but related problem, a scheduling problem, with non-
linear cost functions. They reformulate it over modified priced timed automata with
non linear cost function in each location. Similarly to what we are going to propose,
they found the solution with a reachability analysis.

Here, we propose a procedure to solve optimal parameter synthesis problem work-
ing directly on the hybrid automaton. We work on the structure of the automaton in
order to reduce the optimal parameter synthesis on a multistage system to the opti-
mal control design on an automaton with an augmented number of locations—that
we will call multistage automaton. Doing this we address the optimization problem
as a reachability problem and we use a backtrack strategy [5] to obtain a feasible
solution in the linear case.

The target is to solve the optimal parameter synthesis for a multistage cooking
program. The procedure we describe is very general and can be applied to every
multistage system. For example, we can create a continuous “cutting-stock” problem
thinking of a painting product-line of a metal tube factory, where we want to maximize
the overall length of tubes produced, while keeping the paint consumption for each
primary color under a supply limit threshold. As another example, we can apply
our methodology to find an ordered solution for the peak power demand problem
described in [83].

Let us consider the thawing problem defined in Chapter 4.1.1. To simplify the
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discussion we decide to not consider the air flow speed and the distance from the
nozzle, we fix these two input to Re = 26000 and HD = 2, and we want to minimize
just the total time. In general we can set m different stages, namely m different
temperatures of the cavity in the form of a vector Tset ∈ [4, 16]m with the temperatures
expressed in Celsius unit. In addition we require how long we want to keep these
temperatures, so we fix another vector timeset with m − 1 duration expressed in
seconds.

The optimization problem described is quite general. We have a multistage system
with m(m − 1) variables and we want to minimize the total time having an end
condition—in the thawing case is a minimum threshold that we have to reach (Tmin =
0◦C)—and satisfying a constraint that in this case is a maximum threshold that we
do not want to overpass (Tmax ≤ 7◦C).

Example 4.2.1 (Linear multistage system). We introduce the following simplified
(linear) version of the thawing cycle. Suppose we have only 3 stages and suppose we
deal with two variables x1, x2 only, evolving linearly. x1 is the minimum temperature
and x2 is the maximum temperature. Suppose Tset ∈ {4, 8, 12, 16}3, so we have to
select one of these temperature for each of the 3 stages. If we are in the stage i we
select the temperature Tset(i) and we have:

x1(t) = x1(0) +
(Tset(i) + 3.2)

4800
· t x2(t) = x2(0) +

Tset(i)

2200
t; (4.9)

The starting values x1(0) and x2(0) for the first stage are −18◦C (typically the freezer
temperature). The starting value in the second and third stage are the last value of the
previous stage. In this example choosing Tset and timeset we obtain a trajectory for x1

and a trajectory for x2 that are piecewise linear functions. For example if we choose
Tset = [k2, k3, k1] and timeset = [2000, 500] we have the evolutions for x1 and x2 as
in Figure 4.15. We obtain an admissible trajectory, because x2 ≤ 7, with the total
duration equal to 10333. If we choose Tset = [k4, k1, k2] and timeset = [2000, 2000]
we have the evolution for x1 and x2 as in Figure 4.16. In this case we obtain a lower
total duration equal to 7000 but x2 becomes greater than 7 so the trajectory is not
respecting the constraint.

In Figure 4.15 and Figure 4.16 we also plot the real evolution of the thawing
process. This linear approximation is trying to respect the time but not the shape of the
evolution and it is meant just as a toy example to explain the idea behind the method.
Other function, e.g. an exponential function, should be selected to approximate better
this phenomenon.

4.2.1 Hybrid Automaton model

A multistage system with n stages is inherently a hybrid model and the natural way
to model it is with a hybrid automaton with n + 1 locations: n locations for the n
stages of the system, plus an extra location for the end condition. Our strategy will
consist in increasing (step by step) the number of locations of a hybrid automaton till
we reach what we call a multistage automaton appropriately modeling our scenario.
Based on the notation in Chapter 2 we define a multistage automaton.



54 4. Multi-objective black box optimization of a thawing process

Figure 4.15: Example of evolution
with Tset = [k2, k3, k1] and timeset =
[2000, 500]. The dashed horizontal line
correspond to 7◦C. x1, x2 are the lin-
ear evolution and Tmin, Tmax are the
real evolution of the thawing process.

Figure 4.16: Example of evolution
with Tset = [k4, k1, k2] and timeset =
[2000, 2000]. The dashed horizontal
line correspond to 7◦C. x1, x2 are the
linear evolution and Tmin, Tmax are
the real evolution of the thawing pro-
cess.

Definition 4.2.1. (Multistage automaton) A multistage automaton (H,K, g) consists
of the following components:

• K a finite set of real parameters;

• H = 〈Z,Z′,V, E , Inv,Dyn,Act,Reset〉 is a hybrid automaton;

• 〈V, E〉 is a Direct Acyclic Graph (DAG) and V = S ∪ V ∪E a partition of three
not empty sets with S set of nodes with only outgoing edges, E set of nodes with
only incoming edges and V set of nodes with at least one outgoing edge and at
least one incoming edge;

• g : V → K is a function of labeling;

• Z = (Z1, . . . , Zn) ∈ Rn and Z′ = (Z ′1, . . . , Z
′
n) ∈ Rn are two vectors of variables

and there exists a function f : Rn × R≥0 ×K → Rn for each v ∈ V such as

Dyn(v)[Z,Z′, t] ≡ (Z′ = f(Z, t, g(v)))

We work with the linear multistage system in the Example 4.2.1 to illustrate
the associated multistage automaton. Set K = {k1, k2, k3, k4} = {4, 8, 12, 16}. If
we fix the parameter vector Tset, we can define a simple linear hybrid automaton
HL = 〈Z,Z′,V, E , Inv,Dynf , Act,Reset〉 as in Figure 4.17.

First of all we are going to explicit the role of the variables Tset(i). These constants
change the evolution of our variables but we have only a finite number of values to
take into account, since the dimension of K is finite.

We split each stage of HL in 4 different locations, one for each possible evolution.
We add also a dummy starting node to initialize the variables. What we obtain is a
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v1

x′1 = x1 + T̂set(1)t

x′2 = x2 + Tset(i)
2200

x1 ≤ 0 ∧ x2 ≤ 7

v2

x′1 = x1 + T̂set(2)t

x′2 = x2 + Tset(2)
2200 t

x1 ≤ 0 ∧ x2 ≤ 7

v3

x′1 = x1 + T̂set(3)t

x′2 = x2 + Tset(3)
2200 t

x1 ≤ 0 ∧ x2 ≤ 7

end
x1 = −18
x2 = −18 x1 = x′1

x2 = x′2

x1 = x′1
x2 = x′2

x1 ≥ 0

x1 = x′1
x2 = x′2

Figure 4.17: Linear Hybrid Automata HL. We indicate with T̂set(i) the value (Tset(i)+3.2)
4800

.

Above each arrow (except the initialization) we indicate the activation condition (if it is no

True), below we indicate the reset condition.

graph with 3 internal layers as in Figure 4.18. We denote by vi,j a location on layer
i = 1, 2, 3 with constant kj ∈ K. Every location at layer i is connected to all the
locations at layer i+ 1. The layered hybrid automaton L in Figure 4.18 has:

• Z = (x1, x2), Z′ = (x′1, x
′
2); (V, E) as in Figure 4.18;

• Reset(e)[Z,Z′] ≡ (x1 = x′1 ∧ x2 = x′2) for e ∈ E ;

• Inv(vi,j)[Z] ≡ (x1 ≤ 0∧ x2 ≤ 7) for i = 1, 2, 3 j, k = 1, . . . , 4; Inv(v)[Z] ≡ True
for v = s, e;

• Dyn(vi,j)[Z,Z
′, t] ≡ (x′1 = x1 +

(kj+3.2)
4800 t ∧ x′2 = x2 +

kj
2200 t for i = 1, 2, 3

j = 1, . . . , 4;
Dyn(s)[Z,Z′, t] ≡ (x′1 = −18∧x′2 = −18) and Dyn(e)[Z,Z′, t] ≡ (x′1 = x1∧x′2 =
x2);

• Act((v3,j , e))[Z
′] ≡ (x′1 ≥ 0) for j = 1, . . . , 4 and the activation is True for all

the other edges.

For each internal location vi,j ∈ V we can define the function g(vi,j) = kj with kj ∈
K. It is evident by construction that the couple (L,K, g) is a multistage automaton.

If we consider the multistage automaton L in Figure 4.18 and we solve a reach-
ability problem from the location s to the location e we find just a feasible solution
for the optimal parameter synthesis but not the optimal one. We need to make a
step ahead adding the information of the total duration. In L we know that the final
duration of our system can vary from 1 hour to 4 hours so we can split the location
end in 4 locations, one per each hour (or more if we want to refine the interval). We
obtain the multistage automaton L̄ as in Figure 4.19. We call e1 the end location
associated with t = 1 hours and in general eh for the end location associated with
t = h hours.

What we have to modify is the activation constraint adding the time bound:

Act((v3,j , e1))[Z′] ≡ (x′1 ≥ 0 ∧ t ≤ 3600);

Act((v3,j , e4))[Z′] ≡ (x′1 ≥ 0 ∧ 3 · 3600 < t) ;

Act((v3,j , eh))[Z′] ≡ (x′1 ≥ 0 ∧ (h− 1) · 3600 < t ≤ h · 3600)
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Figure 4.18: Layer Hybrid Automaton L
with 3 layers
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Figure 4.19: Layer Hybrid Automata L̄
with 3 layers

If the reachability problem from the location s with x1 = −18◦C and x2 = −18◦C
to the location e1 have a solution, we have the existence of a feasible solution for
the optimal parameter synthesis with a total duration ≤ 1 hour, vice versa if the
reachability problem is empty we know that if a solution exists the optimal value is
greater than 1 hours.

In general solving the reachability problem on the automaton L̄ give us the ex-
istence of a feasible solution for the optimal parameter synthesis problem with a
lower/upper bound to the optimal solution.

To conclude we need to be able to solve the reachability problem. In general, if
the evolution are linear, we can solve the reachability problem from the set of starting
states ΣS to the set of ending states ΣE using the backward approach introduced in
[6, 5]. The procedure starts with the set Σcur = ΣE and repeatedly adds states from
which a state in Σcur can be reached. The procedure terminates with an affirmative
answer if at some stage a state in ΣS is added, and it terminates with a negative
answer if no new states can be added. We know that this procedure ends because
we are working with an acyclic graph with trajectories that are limited in time so we
have a finite number of steps.

To add states we need to compute two fundamental sets:

• the precondition set of a transition e = (v, v′) ∈ E

pree(Σ) = {σ | ∃σ′(σ′ ∈ Σ ∧ σ →e σ
′)} (4.10)

with σ = (v, x) and σ′ = (v′, x′).

• the backward time closure set of a location v ∈ V

< Σ >↙v= {σ | ∃σ′∃t(σ′ ∈ Σ ∧ t ∈ R≥0 ∧ σ →t σ
′)} (4.11)

with σ = (v, x) and σ′ = (v, x′).

Given a formula ϕ, we write pree(ϕ) and < ϕ >↙v to indicate only the set of
valuations obtained using the two operators defined above. We can write the recursive
Algorithm 1 and if the algorithm terminates without a YES answer we know that the
reachability problem has a solution.
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Algorithm 4.2 Backtracking Reachability

1: Input: two locations vi ∈ ΣS and vf ∈ ΣE , a formula ϕ(x, t), a valuation xi and
an acyclic automaton G = (V,E).

2: function: backtracking(vi, vf , ϕ, xi, G)
3: for v ∈ V do
4: if e = (v, vf ) ∈ E then
5: if v == vi ∧ ϕ(xi) then
6: Output: YES
7: else
8: ϕcur =< pree(ϕ(x, t)) >↙v

9: recursive call backtracking(vi, v, ϕcur, xi, G)
10: end if
11: end if
12: end for

We can apply the first step of the algorithm to the automaton in Figure 4.19. In
this case we have vi = s, vf = e1, the initial valuation xi = (x1 = −18, x2 = −18, t =
0) and a formula

ϕ(x1, x2, t) = (x1 ≥ 0 ∧ x2 ≤ 7 ∧ t ≤ 3600) (4.12)

We have three edges incident in the location e1, we can select for example the
edge (v3,1, e1) and calculate the formula ϕcur.

ϕcur =< pre[(v3,1, e1)](ϕ) >↙v3,1

=< x1 = 0 ∧ x2 ≤ 7 ∧ t ≤ 3600 >↙v3,1

= (x1 + 4× 10−3t′ = 0 ∧ x2 + 7.3× 10−3t′ ≤ 7 ∧ t + t′ ≤ 3600 ∧ x1 ≤ 0 ∧ x2 ≤ 7)

= (−7.3x1 + 4x2 ≤ 28 ∧ t− 0.25× 103x1 ≤ 3600 ∧ x1 ≤ 0 ∧ x2 ≤ 7)

where t′ is a support variable to express the current evolution.
In this case we have linear evolution and we know that both the precondition and

the backward time closure set are linear set of valuations. The procedure is effective
and we can for example prove that the automaton L does not have feasible trajectories
with a duration less than 2 hours, so the two reachability problems from s to e1 and
e2 have a negative result.

4.3 Conclusion and future works

New emerging technologies for food service promote the use of advanced analysis
methodologies due to a lack of knowledge about the dynamic behavior of the sys-
tem. Two optimization analyses for a jet impingement multistage thawing process
are presented.

The first method is a multi-objective analysis in virtual mode that permits to
speed up the development process and permits to make experiments only for the
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most promising combinations of parameters, avoiding the time-consuming trial and
error process. The implemented methodology is an example of structured approach
to optimize a complex parametric process, by combining a validated virtual model
with standard optimization techniques. It has also some drawbacks. The price of the
reliability and robustness of a GA is paid with the time spent in the tuning process,
in particular when quite complex and heavy black box functions are used. Future
works are related to the experimental study of some optimal thawing cycles, taken
from the obtained Pareto front, by conducting additional food quality analyses.

The second method creates a bridge in this thesis between the optimization tech-
niques and analysis of hybrid systems. Indeed, we showed how we can reformulate
the optimal parameter synthesis problem as a reachability problem. With this re-
formulation we can use the backtrack technique introduced by Alur [6, 5] to prove
the existence of a feasible solution, and obtain a lower/upper-bound to an optimal
solution. True thawing is, in fact, non-linear. The graph construction presented here
is applicable to the non-linear case but additional ideas are needed to solve the reach-
ability problem in that case. A further interesting direction consists, therefore, in
studying the temperature-evolution in order to approximate its law—to start—with
a piece-wise linear function. An option, usually used to find and analytic solution for
heating systems without phase change, is the integral method [85]. Additional anal-
ysis are need to verify the feasibility of this method for phase changing phenomenon
in 3 dimensions.
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5
Reachable set approximation for

robot arms

The paradigm for robot usage has changed in the last few years, from an idea in
which robots work with complete autonomy to a scenario where robots cognitively
collaborate with human beings. This brings together the best of each partner, robot
and human, by combining coordination, dexterity and cognitive capabilities of humans
with the robots’ accuracy, agility and ability to sustain repetitive work.

The most crucial problem that must be solved in order to enable this paradigm
is to ensure a safe collaboration, i.e. obstacle avoidance. The obstacle avoidance is
literally a reachability analysis. We want to physically reach an object with the robot
arm, while avoiding some obstacles.

In the pioneering work of Khatib [65], a real-time obstacle avoidance approach
based on the classical artificial potential field concept is introduced. After this work
a wide variety of approaches has been proposed to accomplish the obstacle avoidance
challenge [96, 95, 42, 89].

We can distinguish between two types of obstacles: fixed obstacles and movable
obstacles. To solve the complete obstacle avoidance problem, both have to be ac-
counted for. While with moving obstacles we are forced to use real-time algorithms, a
key point with fixed obstacles is the definition of the reachable space of robots. If we
are able to reflect the presence of the fixed obstacle in the definition of the workspace
we can light the real-time work and support the decision process.

What we propose is to formally describe the obstacle avoidance as a reachability
problem and use a technique from the verification field to estimate the reachability
space. Indeed a robot is, in a natural way, a trigonometric dynamical system, we
will see in the following the precise expression of the evolution law. The field of
dynamical systems has provided us various tools to design the reachable region for
nonlinear dynamical systems. Reachable set definition through Bernstein coefficients
is one of these techniques [33]. This approach allows not only to describe the reachable
space but, in principle, to certificate that the robot will not reach a given region.

The definition of reachable space in robotic field is a mature topic that has re-
ceived much attention during the last decades The majority of the methods used
to define this region can be classified into three groups: geometrical methods, dis-
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cretization/sampling methods, and singularity-based methods. Geometrical methods
can handle kinematic constraints such as joint limits and even self-collisions, but
only in relatively simple cases [29]. Sampling methods generate many configurations
of the robot, and check if each configuration belongs to the workspace satisfying
all kinematic constraints [10, 113]. Singularity-based methods works with kinematic
constraints written as equalities and, in general, they solve the problem numerically
[50, 19].

Among these methods, only few describe a direct relationship between the work-
space and the joint space, where we formulate the trajectory. For example in [100]
a task constraints method obtained by sampling the positions in the joint space is
described. In [109] instead, using the traditional ellipsoids kinematic analysis, they
extend the reachable space with a quality index that penalizes the behaviors near
the joint limits and near a possible obstacle. Unfortunately in [43] they have already
shown that in the general case the polytopes approximation provides more accurate
estimations with respect to the ellipsoids method.

In this work we want to use the Bernstein theory to approximate the reachable
space with polytopes given a limitation on the joint space. Moreover we want to use
this approximation to define joint constraints when fixed obstacle are present.

5.1 Forward kinematics of a robot arm

A robot arm is an assembly of rigid parts (links) and moving parts (joints) that
connect two different links. A joint is a moving element with constraints on the
directions. There are two main types of joints:

1. prismatic joint: translation movement along one axis;

2. rotational joint (or revolute): rotation movement around one axis.

Figure 5.1: Joint types: 3 prismatic joints (left) and 3 revolute joints (right)

A kinematic chain robot is a robot defined with n joints and n + 1 links and
the joints and links are alternated. Each link is connected with only other two rigid
bodies, except for the first and the last links that are connected only with one rigid
body.

Given a kinematic chain robot with n joints and given the joint variable θ =
(θ1, . . . , θn) we define the joint space as the set of joint vectors Θ ⊂ Rn. We define
also the work space as the subset P ∈ R3 of reachable space positions.
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The forward kinematics is the problem of moving from the joint space Θ to the
working space P. A standard way to solve the forward kinematics problem is to define
the transformation T .

T : Θ→ P× {1}
such as θ ∈ Θ and T (θ) = P ∈ P× {1} with P = (x, y, z, 1).

The inverse kinematics instead is the problem to find one of the possible inverse
transformation to map a point in the working space to a configuration of the robot
in the joint space. This reverse operation is more challenging and generally a robot
arm is built to have multiple configurations in the internal part of the working space.

Lets focus on the forward kinematics and we want to define the transformation
T . By working in the space P× {1}, we are able to use a 4× 4 matrix for describing
rotation and translation movements. In this space the composition is just a matrix
product.

We will describe T for a specific robot but the construction is general for each
kinematic chain robot. We are working with the Comau robot Racer5-0.63. This
robot has 6 revolute joints, θ1, . . . , θ6, and 7 links (Figure 5.2). The joint space is a

Figure 5.2: Comau robot Racer5-0.63

Table 5.1: Joint limitations for Comau
robot Racer5-0.63

min [◦] max [◦]
θ1 -170 170
θ2 -95 135
θ3 -90 155
θ4 -200 200
θ5 -125 125
θ6 -2700 2700

subset of R6 defined with bounds in Table 5.1. We define with the positive direction
of θ2 e θ3 the frontal direction of the robot. If we move 90◦ the joint θ2 the robot is
90◦ bending forward, if we move −90◦ the robot is 90◦ bending backward.

In order to define the transformation T we need to define the coordinate systems
as in Figure 5.3. The main coordinate systems are the followings:

• World frame: coordinate system of the environment in which the robot is in-
stalled.

• Base frame: coordinate system of the robot base.

• Uframe: coordinate system of the working surface (e.g. a table or a desk).

• Tool frame: coordinate system of the central point in which we can attach a
tool.
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In the following we assume that the word frame is the same as the base frame.

Figure 5.3: Coordinate systems for
Comau robot Racer5-0.63

Figure 5.4: Transformation from tool
frame to world frame

The transformation T can be created defining a transformation chain that trans-
lates the coordinates of a point from the tool frame to the world frame (Figure 5.4).
In particular we want to express the position of the origin of the tool frame with
respect to the world frame. In the figure we can see that for moving from the origin
O1 to the origin O0 we need to use only a translation along z axis. Instead from
origin O2 to origin O1 we need a translation and a rotation. The transformation T is
a function of the joint variables θ1, . . . , θ6. T allows us to express the point O6 with
respect to the world frame.

The transition from the coordinate system of the rigid body i to the coordinate
system of the rigid body j can be described using the homogeneous transformation
T ji

T ji =

[
M j
i vji

0 0 0 1

]
(5.1)

with M ∈ R3×3 a rotation matrix and v ∈ R3×1 a translation vector.

T is the matrix product of n homogeneous transformations, from one link to the
next.

T =

n∏
i=1

T i+1
i (5.2)

Every homogeneous transformation T ji is the product of two different matrices:

a constant homogeneous transformation Aji , that describes the geometric property

of the link, and a rotation matrix Rji (θ) around z axis that is the movement of the
revolute joint θi. We assume that the rotation axis (and translation axis) is always
the z axis of the reference frame of the next link. For example θ1 is a joint between
link 1 and link 2 and it describes a rotation of the z axis of the coordinate system of
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the link 2. The matrix Rji (θ) is:

Rji (θi) =


cos(θi) sin(θi) 0 0
− sin(θi) cos(θi) 0 0

0 0 1 0
0 0 0 1

 (5.3)

In general T ji = Rji (θi) · A
j
i , then T (θ) =

∏n
i=1R

i+1
i (θi) · Ai+1

i . We need also to
add another matrix A1

0 to transform the base frame (reference frame of the first link)
to the coordinate system of the second link. The final expression for T is

T (θ) = A1
0 ·

n∏
i=1

Ri+1
i (θi) ·Ai+1

i (5.4)

Example 5.1.1. In the case of the Racer5-0.63, if we want to move from O0 to O1

we need to translate along z of 24.2cm by defining the matrix A1
0

A1
0 =


1 0 0 0
0 1 0 0
0 0 1 24.2
0 0 0 1


Then for moving from the first link to the second we have

T 2
1 (θ1) =


cos(θ1) sin(θ1) 0 0
− sin(θ1) cos(θ1) 0 0

0 0 1 0
0 0 0 1

 ·


1 0 0 5
0 1 0 0
0 0 1 12.3
0 0 0 1


The transformation T (θ) returns the vector (x, y, z, 1). We define with tx(θ), ty(θ)

and tz(θ) the three functions associated to T (θ) that return the three coordinates.

x = T (θ)(1) =: tx(θ)

y = T (θ)(2) =: ty(θ)

z = T (θ)(3) =: tz(θ)

1 = T (θ)(4)

(5.5)

5.1.1 Adding a tool

Almost all the robots allow the installation of a tool connected to the last link. On
the tool we can define the Tool Central Point (TCP), a characteristic point that
represents the center of the utensil. We can define a new coordinate system with the
origin on the TCP and the orientation that agrees with the tool frame. Given the
translation vector dTCP from the origin of the tool frame to the TCP, we want to
perform the forward kinematic of the TCP. Given the vector θ, we can follow two
ways that are equivalent.
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• We apply the transformation T defined in Eq. 5.4 to the point (dTCP ,1), that
is the TCP point with respect to the tool frame.

x
y
z
1

 = T (θ) ·


dTCP (1)
dTCP (2)
dTCP (3)

1

 (5.6)

• We define a new coordinate system on the TCP point and we treat the tool as
a extra link connected with a fixed joint.

x
y
z
1

 = T (θ) ·


1 0 0 dTCP (1)
0 1 0 dTCP (2)
0 0 1 dTCP (3)
0 0 0 1

 ·


0
0
0
1

 (5.7)

In the following we will use the approach of Equation 5.7 and we will define the
constant matrix An+2

n+1 that is the translation matrix from the origin of the tool frame
to the TCP point. We are considering the tool as the n + 2 link with a fixed joint
then the matrix Rn+2

n+1 is the identity.
Our robot Racer5-0.63 has 6 joints, 7 links and a shovel-shaped cooking tool

(Figure 5.5) connected to the end of the link 7. The TCP point is on the center of
the external edge on the flat part of the tool. In the following we use T (θ) to indicate
the transformation matrix of a point from the coordinate system of the TCP to the
world frame.

Figure 5.5: shovel-shaped cooking tool connected to the Racer5-0.63

5.2 Reachability region

Given a joint combination θ ∈ Θ we obtain the point T (θ) in the work space P×{1}.
All the points in the work space are reachable points. Starting from a position θ =
(θ1, . . . , θn) and adding a limitation ε = (ε1, . . . , εn) and ε = (ε1, . . . , εn) to each joint
we want to describe the reachability region as

Reach(θ, ε, ε) = {p ∈ P|∀i ∈ {1, . . . , n}∃δi ∈ [−εi, εi] : T (θ + δ) = (p, 1)} (5.8)
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Lets assume, in first approximation, to work with a symmetric interval with ε =
ε = ε. The problem of computing reachability region from an initial condition is call
reachability problem.

If T is the forward kinematic function for the TCP of the robot, the starting
position P ∈ P× {1} is the point

P = T (θ) ·


0
0
0
1

 = A1
0 ·

(
n∏
i=1

Ri+1
i (θi) ·Ai+1

i

)
An+2
n+1 ·


0
0
0
1


while a generic point in the reachability region is described by

P ′ =T (θ + δ) ·


0
0
0
1

 = A1
0 ·

(
n∏
i=1

Ri+1
i (θi + δi) ·Ai+1

i

)
An+2
n+1 ·


0
0
0
1



=A1
0 ·


cos(θ1 + δ1) sin(θ1 + δ1) 0 0
− sin(θ1 + δ1) cos(θ1 + δ1) 0 0

0 0 1 0
0 0 0 1

 ·A2
1 · . . .

·


cos(θn + δn) sin(θn + δn) 0 0
− sin(θn + δn) cos(θn + δn) 0 0

0 0 1 0
0 0 0 1

 ·An+1
n ·An+2

n+1 ·


0
0
0
1


Since the rotation matrix of an angle θ + δ is the product of the rotation matrix

of the angle θ and the rotation matrix of the angle δ, we can rewrite the point P ′ as

P ′ =T (θ + δ) ·


0
0
0
1

 =

=A1
0 ·


cos(θ1) sin(θ1) 0 0
− sin(θ1) cos(θ1) 0 0

0 0 1 0
0 0 0 1

 ·


cos(δ1) sin(δ1) 0 0
− sin(δ1) cos(δ1) 0 0

0 0 1 0
0 0 0 1

 ·

A2
1 · . . . ·


cos(θ6) sin(θ6) 0 0
− sin(θ6) cos(θ6) 0 0

0 0 1 0
0 0 0 1

 ·


cos(δn) sin(δn) 0 0
− sin(δn) cos(δn) 0 0

0 0 1 0
0 0 0 1

 ·

An+1
n ·An+2

n+1 ·


0
0
0
1

 = A1
0 ·

(
n∏
i=1

Ri+1
i (θi) ·Ri+1

i (δi) ·Ai+1
i

)
·An+2

n+1 ·


0
0
0
1
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By changing δ inside the interval [−εi, εi] we obtain the reachability region. This
region has 2n vertices. We can calculate each vertex setting δi = εi or δi = −εi.

Example 5.2.1. In Figure 5.6 we can see an example of reachability region for
the robot Racer5-0.63. The red dot is the starting position that correspond to θ =
(0◦,−90◦, 0◦, 0◦, 0◦, 0◦). The black dots are all the vertices of the region. The lines
are obtained by selecting j ∈ {1, . . . , 6}, fixing δi = ±εi for all i 6= j and varying just
δj ∈ [−εj , εj ]. We have set εi = 5◦ for i ∈ {1, . . . , 6}.

Figure 5.6: Example of a reachability region for the robot Racer5-0.63

We can also consider the forward kinematic function T for other critical points
like the wrist or the elbow of the robot. Being able to solve this problem for different
points is fundamental to analyze the behavior of the robot and to address safety-
critical scenarios.

Here we want to address the problem to avoid a fixed obstacle. We consider a red
zone R that we want to avoid. This zone is a polytope defined with a set of linear
inequalities.

R := {x ∈ R3|Aix ≤ bi ∀i = 1, . . . ,m} (5.9)

with Ai ∈ R3 and bi ∈ R.

We want to solve these two problems:

1. Safety problem: decide if the reachability region crosses the red zone;

2. Max-safety problem: define the maximum intervals [−εi,+εi] such as the reach-
ability region does not intersect the red zone.

In the following we will address these problems with respect to the TCP, but we
can make the same analysis for any critical point, by changing the forward kinematic
function T .
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5.3 Safety problem

In the safety problem the variables θ and ε are fixed, so the reachability region is fixed
too. The coordinates of an arbitrary point in the reachability region, with respect to
the world frame, are defined by

x = T (θ + δ)(1) =: tx(δ)

y = T (θ + δ)(2) =: ty(δ)

z = T (θ + δ)(3) =: tz(δ)

where only δ is a variable.
The safety problem can be solved with the following feasibility problem.

Ai,1tx(θ + δ) +Ai,2ty(θ + δ) +Ai,3tz(θ + δ) ≤ bi ∀j = 1, . . . ,m

−εi ≤ δi ≤ εi ∀i = 1, . . . , n
(5.10)

If the feasibility problem has a solution δ∗ then the reachability region crosses the
red region R and the solution θ + δ∗ is a point in the intersection. If the feasibility
problem is unfeasible, the two regions have an empty intersection.

The three functions tx, ty and tz are trigonometric functions. We can decide to
solve directly the problem by calling a non-linear optimization solver, or we can work
on the expression of the reachability region.

Inspired by the work of Dreossi [34] we follow this second strategy and we overap-
proximate the reachability region using the Bernstein theory for polynomial function
(see Chapter 2.2). First of all we need to transform the three functions in a poly-
nomial. We define two vectors, X and Y , of n variables, such as Xi := cos(δi) and
Y i := sin(δi). We denote with px, py and pz the three functions obtained replacing
each occurrence of cos(δi) and sin(δi) with Xi and Y i.

x = T (θ + δ)(1) = tx(δ) =: px(X,Y )

y = T (θ + δ)(2) = ty(δ) =: px(X,Y )

z = T (θ + δ)(3) = tz(δ) =: px(X,Y )

Now px, py and pz are polynomial functions in 2n variables. We need also to add n
trigonometric constraints, so the new feasibility problem is

Ai,1px(X,Y ) +Ai,2py(X,Y ) +Ai,3pz(X,Y ) ≤ bi ∀j = 1, . . . ,m

Xi2 + Y i2 = 1 ∀i = 1, . . . , n

cos(εi) ≤ Xi ≤ 1 ∀i = 1, . . . , n

− sin(εi) ≤ Y i ≤ sin(εi) ∀i = 1, . . . , n

(5.11)

We can observe that the three functions are polynomial functions of degree n
in 2n variables. This is true independently of the value of θ because it is a direct
consequence of the way in which we have built the transformation T and depends
only on the fact that we are working with a kinematic chain robot.
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5.3.1 Overapproximation of the reachability region

The reformulation of the functions tx, ty and tz in polynomial form allowed us to use
the overapproximation using the Bernstein polynomial. We follow the steps of [34] in
order to create a parallelotope that encloses the reachability region.

The three functions px, py and pz are polynomials p(X,Y ) = p(x) ∈ R2n → R
with the first n variables that represents cos(δ) and the last n variables that represents
sin(δ). Every polynomial can be represented using the power basis as follows:

p(x) =
∑
i∈In

aix
i (5.12)

where the index i = (i1, . . . , i2n) is a multi-index of size 2n ∈ N and xi denotes the
monomial xi11 x

i2
2 . . . xi2n2n .

As a direct consequence of creating T as a matrix product of rotations, we can
observe that the multi-index i of our polynomial p(x) satisfy the following properties.

Property 5.1.

1.
∑
j=1,...,2n ij ≤ n

2. i ∈ {0, 1}2n

3. ij + in+j = 1

We want to represent p(x) using Bernstein basis. Following the definitions in
Chapter 2.2 we define the Bernstein coefficient for a polynomial p(x) as

bi(p) =
∑
j≤i

(
i
j

)(
deg
j

)aj (5.13)

Thanks to the second point in Property 5.1 we have j ∈ {0, 1}2n and deg =
(1, . . . , 1). The binomial coefficients are all equals to 1 and also the fraction is 1. In
our case we obtain:

bi(p) =
∑
j≤i

aj (5.14)

We can use the Sharpness Property 2.1 to compute all of them, because we have
Vdeg = [0, 1]2n. The vertices are all the possible 22n multi-index i ∈ {0, 1}2n.

To overapproximate the reachability region we try the usage of both the range
enclosing Property 2.2 and the convex hull property 2.3. These properties are true
on the unitary box, but can be generalized over an arbitrary box.

Our domain is defined by sine and cosine of εi. Given εi ∈ [0, 90◦] one possible
domain for the variables X,Y is D1×D2 with

D1 :=[cos(ε1), 1]× . . . [cos(εn), 1]

D2 :=[− sin(ε1), sin(ε1)]× . . . [− sin(εn), sin(εn)]
(5.15)
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Figure 5.7: Rectangular domain for two couple of variables (Xi, Y i)

In Figure 5.7 we have a graphical representation of the domain [cos(εi), 1] ×
[− sin(εi), sin(εi)] for a couple of variable (Xi, Y i) associated to the angle variable
δi ∈ [−εi, εi]

We define the transformation v(x) that maps the unitary box [0, 1]2n in the domain
D1×D2:

v(x) =



1− cos(ε1) . . . 0 0 . . . 0

.

.
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We can observe that p(v(x)) is still a polynomial, so we can calculate all the Bernstein
coefficients bvi (p) = p(v(i/deg)). In the end we are computing all the Bernstein
coefficients kust applying the polynomial function on the vertices of the box domain
D1×D2.

Range enclosing property

Lets work directly with an example. For the Racer5-0.63 we have 212 vertices in Vdeg
so we have 212 Bernstein coefficients for each function px, py and pz. For each function
we can find the minimum and the maximum coefficient. For example if we consider
px we can calculate the bounds:

Xmin = min
i∈I2n

px(v(i/deg)) ≤ px(v(x)) ≤ max
i∈I2n

px(v(i/deg)) = Xmax

The reachability region is inside the intersection of the two half-spaces X ≥ Xmin and
X ≤ Xmax.



72 5. Reachable set approximation for robot arms

Figure 5.8: Overapproximation of a reachability region with an hyperrectangle.

We have to repeat the same operation for the other two functions and we obtain
a parallelepiped that contains the reachability region (Figure 5.8).

The obtained overapproximation can be refined with two different approaches:

1. by modifying the hyperrectangle that defines the domain (e.g. using an hyper-
parallelogram);

2. by modifying the final directions, that is, instead of overapproximate the di-
rection x, y and z we overapproximate a linear combination of that directions
ax+ by + cz.

We describe these two approaches.
1. Different overapproximation by changing the domain. The domain D1 × D2 is
obtained using an upperbound and a lowerbound to Xi and Y i. In Figure 5.7 we
can see the arc that defines the relationship between these two variables, that is
Xi = cos(δi) and Y i = sin(δi) with δi ∈ [−εi, εi]. If we consider only a couple of
variables (Xi, Y i), the domain is the blue rectangle in Figure 5.7.

Now we want to substitute the rectangle with a parallelogram, as the green par-
allelogram in Figure 5.9 obtained using two tangent lines.

A parallelogram in 2n dimensions can be described using the generator represen-
tation. In this representation we have to specify a vector q ∈ R2n called vertex and
2n vectors gi called generators. Given q, g1 and g2 as in Figure 5.10 we can describe
the parallelogram B as follows:

B = {q + α1g
1 + α2g

2|(α1, α2) ∈ [0, 1]2} (5.16)

Then we define the function v̄(x) that maps the unitary square into the parallelogram
B:

v̄(x) = q +

2n∑
i=1

gix(i) (5.17)
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Figure 5.9: Rectangular domains (blue)
and parallelogram domain (green) for the
couple (Xi, Y i)
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Figure 5.10: Parallelogram with
vertex and generators.

Finally we calculate the Bernstein coefficients and the relative bounds of the new
polynomial p(v̄(x)).

It’s possible to use the same representation also for describing the domain D1×D2.
For this domain we have, for each couple of variables (Xi, Y i), q = (cos(εi), sin(εi)),
g1 = (1− cos(εi), 0) and g2 = (0,−2 sin(εi).

v(x) =



cos(ε1)
...

cos(εn)
sin(ε1)

...
sin(εn)


+

n∑
i=1



1 − cos(ε1)
...

1 − cos(εn)
0
...
0


x(i) +



0
...
0

− sin(ε1))
...

− sin(εn)


x(i+ n) (5.18)

Example 5.3.1. We are still working on the same example, with θ = (0◦,−90◦,
0◦, 0◦, 0◦, 0◦) and εi = 5◦ for each i ∈ {1, . . . , n}. We create a parallelogram using
the tangent lines to the point that correspond to the angle at 5◦ and to the angle at
−5◦. For each couple (Xi, Y i) we create a parallelogram like the parallelogram B
in Figure 5.10 and we define it following the Equation 5.16. In this case we have
q = (cos(5◦), sin(5◦)), g1 = (tan(5◦) sin(5◦),− sin(5◦)) and g2 = (− tan(5◦) sin(5◦),
− sin(5◦)). Then we build the hyperparallelogram bv̄ ∈ R2n and we create the function
v̄ : [0, 1]2n → B as follows:

v̄(x) =



cos(5◦)
...

cos(5◦)
sin(5◦)

...
sin(5◦)


+

n∑
i=1



tan(5◦) sin(5◦)
...

tan(5◦) sin(5◦)
− sin(5◦)

...
− sin(5◦)


x(i) +



− tan(5◦) sin(5◦)
...

− tan(5◦) sin(5◦)
− sin(5◦)

...
− sin(5◦)


x(i+ n)
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We are now ready to calculate the Bernstein coefficients of px(v̄(x)), py(v̄(x)) and
pz(v̄(x)). We have new upperbounds and lowerbounds that create the green paral-
lelepiped in Figure 5.11. The blue parallelepiped is the one created starting from the
hyperrectangle D1×D2 using the function v(x).

Figure 5.11: Two overapproximation with parallelepiped (green and blue) changing
the domain.

2. Different overapproximation by changing directions. Given a domain, we can use
the hyperrectangle D1×D2, we want to work on the shape of the overapproximation
region, so on the parallelepiped. In particular we want to change the directions of the
planes that we are using.

Given the polynomial px(v(x)) we calculate the maximum Bernstein coefficient
bvmax(px) and the minimum Bernstein coefficient bvmin(px). With these two values we
can define two planes x = bvmax(px) and x = bvmin(px) and we know that the reachability
region is inside these two planes. We can consider the planes ax + by + cz = kmin

and ax+ by + cz = kmax. Again we have that apx(v(x)) + bpy(v(x)) + cpz(v(x)) is a
polynomial and we can overapproximate it using Bernstein coefficients.

Example 5.3.2. Given θ = (0◦,−90◦, 0◦, 0◦, 0◦, 0◦) and εi = 5◦ with i ∈ {1, . . . , n}
we consider the hyperrectangle D1 × D2 = [cos(5◦), 1]n × [− sin(5◦), sin(5◦)]n. We
want to overapproximate the reachability region using the plane 2x+ z = k. We have
to calculate the maximum Bernstein coefficient and the minimum Bernstein coefficient
of the polynomial 2px(v(x))+pz(v(x)). We obtain two planes that are the green planes
in Figure 5.12.

These approaches can be merged to improve the final approximation. We can
collect the Bernstein coefficients over different input domain and compute the bounds
for a set of possible output directions. We can define a set k of directions L ∈ Rk×3

such as Lix = k define a plane. For example we can define all the directions in Figure
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Figure 5.12: Overapproximation of the reachability region using the plane 2x+z = k.

5.12.

L =


1 0 0
0 1 0
0 0 1
2 0 1


In Figure 5.13 we plot the approximation obtained considering the directions L

and the two different domains in Figure 5.9.

Figure 5.13: Overapproximation of the rechability region obtained by taking the
intersection of different input domains and different output directions.
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Convex hull property

The range enclosing property create a less precise domain but allows to control the
shape of the final overapproximation. The described techniques is useful in general
when we need to create a pipe flow of reachable regions. If we are interested, as in
this case, just on the single precise overapproximation then we can use Property 2.3
considering the convex hull of all Bernstein coefficients. Thanks to [15] we have that
this approximation is exactly the image of the box domain. In Figure 5.14 we plot
the obtained output. We can refine it by changing domain as we describe above.
Considering the two domains in used for Example 5.3.1 we obtain the two convex hull
in Figure 5.15.

Figure 5.14: Overapproximation of a
reachability region with convex hull
using domain D1×D2.

Figure 5.15: Two overapproximation
of a reachability region with convex
hull using two different domains (green
and blue).

As a final consideration we also observe that we have worked with a symmetrical
interval [−εi, εi] but all the described procedures can easily be extended on a general
interval, by changing the definition of the input domain.

5.4 Max-safety problem

In the max-safety problem we want to maximize the intervals [−εi,+εi] ensuring that
the reachability zone does not intersect the red zone. We consider again a symmetric
interval with εi = εi = εi. We also assume that the starting position of the robot is
outside the red zone, so the problem is not trivial.

We remember that the polynomial p(x) is a polynomial of degree n in 2n variables
such as the first half of variables x(1), . . . , x(n) are the variables Xi = cos(δi) and
the second half of variables x(n + 1), . . . , x(2n) are the variables Y i = sin(δi) with
δi ∈ [−εi, εi]. In the following we will consider εi ∈ [0, 90◦] and we choose for our
variables X,Y the domain D1×D2 that we have already defined in Equation 5.15.

We can take again the function v(x) to move from the unitary box to the current
domain, choosing the expression of Equation 5.18. In this problem εi is a variable.
We define two new families of variables: X̃i = cos(εi) and Ỹ i = sin(εi). We define the
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vector x̃ such as the first half of variables x̃(1), . . . , x̃(n) are the variables X̃i = cos(εi)

and the second half of variables x̃(n+1), . . . , x̃(2n) are the variables Ỹ i = sin(εi). We
rewrite the Equation 5.18 as follows

v(x, x̃) =



X̃1
...

X̃n

Ỹ 1
...

Ỹ n


+

n∑
i=1



1 − X̃1
...

1 − X̃n
0
..
.
0


x(i) +



0
...
0

−Ỹ 1
...

−Ỹ n


x(i+ n)

=x̃+

n∑
i=1



1 − x̃(1)
...

1 − x̃(n)
0
...
0


x(i) +



0
...
0

−x̃(n+ 1)
...

−x̃(2n)


x(i+ n)

(5.19)

We can now calculate the Bernstein coefficient with respect to x and we obtain a
polynomial in x̃.

bvi (p)(x̃) = p(v(i, x̃)) ∀i ∈ {0, 1}2n (5.20)

Observation 5.1. The function v(x, x̃) is a linear function respect to x̃.

This observation is easy to prove looking at the definition in Equation 5.19.

Observation 5.2. The function p(v(x, x̃)) is a linear function respect to the couple
of variables (x̃(i), x̃(n+ i)).

This observation can be proved using the third point of Property 5.1.

Suppose to consider only the joint i and to fix to 0 all the other values of ε, we have
x̃ = (1, . . . , x̃(i), . . . , 1, 0, . . . , x̃(n+ i), . . . , 0). Each Bernstein coefficient is defined by
the following equation

bvj (p)(x̃) = p(v(j, x̃)) ∀j ∈ {0, 1}2n (5.21)

and thanks to the Observation 5.2 we have that

bvj (p)(x̃) =Aj x̃(i) +Bj x̃(n+ i) + Cj

=Aj cos(εi) +Bj sin(εi) + Cj
(5.22)

with Aj , Bj , Cj ∈ R.
We can use this last expression to compute the max-safety region with respect to

the red region.

5.4.1 Half-space region

We consider the base case of a red region defined by a single constraint. Thus an
entire half-space that define our red region. We can choose, for example, that the red
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half-space is define by the following inequality

Y ≤ K K ∈ R (5.23)

Our starting point P = T (θ) is outside the red region so Py > K. If we fix n values
εi for each i ∈ {1, . . . , n}, we know that the reachability region can be overapproximate
using the Bernstein coefficients. We also know that Ymin is the minimum Bernstein
coefficient of the polynomial py. So if we ensure that Ymin > K we are sure that our
reachable region does not cross the red region.

We have to work with one variable εi per time and we need to search the maximum
range such as each Bernstein coefficient does not exceed the K value.

In order to build a problem that has only one possible solution we can decide a
priority between two different joints. We can choose to process all the joints, from
the first to the last. A possible algorithm is Algorithm 5.3

Algorithm 5.3 Max-safety: half-space region

1: Input: K value that define the half-space bound.

2: Initialization: ε = (0, . . . , 0)
3: for i = 1 : n do
4: εi = 90◦

5: for j = 1 : 22n do
6: find the maximum εmax

i ∈ [0, 45◦] such as
7: Aj cos(εmax

i ) +Bj sin(εmax
i ) + Cj > K . see Eq.(5.22)

8: if εmax
i < εi then

9: εi = εmax
i

10: end if
11: end for
12: end for

Unfortunately this algorithm is highly dependent on the order and we should test
all the possible configurations in order to maximize the volume of the reachable region.
We illustrate this problem through an example.

Example 5.4.1. Given the robot Racer5-0.63 with a starting position θ = (90◦,−90◦,
0◦, 0◦, 0◦, 0◦) we want to solve the max-safety problem and define the vector ε such as
the reachability region doesn’t cross the plane y = −500mm. We solve the max-safety
problem processing the joints in two different orders. We select π1 = {1, 2, 3, 4, 5, 6}
and π2 = {6, 5, 4, 3, 2, 1}. In Figure 5.16 there is in red the plane and in blue the
overapproximations of the maximum reachability regions. On the left we can see the
obtained region with the order π1, the maximum allowed angle is ε = (45◦, 7.29◦, 0◦, 0◦,
0◦, 0◦). On the right picture we plot the region with the order π2 and we obtain
ε = (10.58◦, 45◦, 45◦, 45◦, 45◦, 45◦)
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Figure 5.16: Two maximum reachable regions. On the left we select the order
{1, 2, 3, 4, 5, 6}, on the right we use the reverse order {6, 5, 4, 3, 2, 1}

5.4.2 Polytope region

Lets consider a red zone R in a general form of a polytope defined with a set of linear
inequalities.

R := {x ∈ R3|Aix ≤ bi ∀i = 1, . . . ,m} (5.24)

with Ai ∈ R3 and bi ∈ R.
The method of Bernstein coefficients allowed to overapproximate the reachability

region just with a convex region. When also the red region is a polytope, so a convex
space, we can reduce the general case to the previous case of the half-space. Indeed is
enough to conduct the research on the orthogonal direction to the minimum distance
between the starting point and the red region.

5.5 Conclusion and future works

We reformulated the obstacle avoidance problem as a reachability problem considering
the robot arm as a trigonometric dynamical system. We used a reachability technique
based of Bernstein theory and we described in detail which are the steps to follow
in order to adapt this technique with a kinematic chain robot. We focused on two
problems: the safety problem to detect a possible collision and the max-safety problem
to define a joint limitation in order to prevent the collision and guarantee the safeness
of the reachable region.

In this chapter we collected all the basic ingredients to implement a reachability
tool. A refinement of the implementation, especially for the max-safety problem, is
needed in order to reduce the computational time and to ensure the applicability of
the method on real case studies.

With this study we showed the feasibility of a more verification-oriented approach
and we illustrated the versatility of Bernstein theory. In the next chapter we will
continue to use this technique and we will adapt it on a completely different system.



80 5. Reachable set approximation for robot arms



6
Output set approximation for

Feed Forward Neural Nets

Neural networks (NN) are increasingly used in the development of control systems
in many autonomous applications such as robots, self-driving vehicles, and medical
devices, thanks to their successful applications in fields such as image classification,
natural language processing and speech recognition (see for example [68, 61] and
references therein). Their ability of “learning” from data, used to describe appropriate
behaviors and adapt to new situations, makes NN suitable to control problems in
complex and changing environments. We call systems where NN are used to control
a physical process Neural Net Control Systems (NNCS). However, assuring the safety
and reliability of their usage, in particular under the impact of adversarial inputs or
perturbations, is still challenging. Formal verification of neural networks has thus
recently attracted much interest.

Robustness of neural networks can be theoretically verified using the tools devel-
oped in the context of abstract interpretation and programs verification to propagate
uncertain input sets through the computation of the net. Nevertheless, these tools
must face scalability issues when dealing with NN with an increasingly large number
of layers and neurons. The verification problem becomes even more challenging for
NNCS. Verifying NN components (without taking into account the effect of their de-
cisions on the entire system behavior) is not sufficient to deduce the correctness and
robustness of the closed-loop system, since NN accuracy measured in terms of a loss
function may not reflect the closed-loop performance. A neural net that matches very
well the training data may violate a desired closed-loop specification while another
neural net with larger matching error can satisfy the specification. To achieve an ac-
ceptable compromise between accuracy and computation cost, it is thus of interest to
be able to approximate the image of the function of the NN with given error bound.

In this work, we propose a method to do so, with view of applications to closed-
loop verification of NNCS. Indeed the method can then be connected with an existing
tool for continuous/hybrid systems (such as SpaceEx [45], CORA [4], Flow∗ [24]) to
check closed-loop specification.

The NNCS verification problem but in particular NN verification problem has
recently been widely investigated (see [73] for a survey). We can find a large variety
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of methods and approaches like Mixed-Integer Linear Programs (MILPs) and global
optimization [67, 35, 92], polytopes [48, 13], network conversion [56], linearization
and function approximation [55, 118], Satisfiability Modulo Theory (SMT) [63, 64],
Interval Arithmetic [114] and Set-based methods [12, 107].

The majority of them can handle only Rectified Linear Unit (ReLU) activation
functions. The approach proposed in [56] can handle sigmoid activation functions only.
The works in [55, 92] are more general and they use the Lipchitz theory to propagate
the approximation. These approaches do not take advantage of the structures of the
neural network and the types of activation functions. Some of these approaches can
handle also sigmoid or hyperbolic tangent function but they have more refinement
strategy on the ReLU case, e.g. ERAN tool [13]. The tool NNV [107] handles the
same classes of activation functions of ERAN tool and uses also the monotonicity of
some of them in the resolution of optimization problem for over-approximating the
reachable sets.

The method we propose can handle most common classes of activation functions,
namely ReLU, sigmoids, tanh. Our focus is on sigmoid and tanh activation functions,
the ReLU case is extensively covered. Nevertheless the idea behind our approach
is applicable to the majority of activation functions. Indeed it can be proved that
these activation functions can be approximated by a rational function r(x) (ratio
of two polynomials) as accurately as desired [102]. Following this idea, we want to
approximate each layer with a rational function and, assuming that the input lies
inside a polytope, compute the image using the Bernstein expansion.

6.1 Problem definition

We consider a feed-forward neural network N : Rn → Rm with L > 1 layers. We
indicate with nl the number of neurons in the lth layer, with l = 1, . . . , L, and n1 = n
and nL = m. Given an input value x ∈ Rnl−1 of the lth layer, we denote by hl the
function mapping x to the output of the layer:

hl(x) = σ(W lx+ al) l = 2, . . . , L (6.1)

where σ is the activation function, W l ∈ Rnl−1×nl and al ∈ Rnl . The output of the
neural network is the composition of these functions:

N(x) = (hL ◦ hL−1 · · · ◦ h2)(x), x ⊆ Rn (6.2)

Definition 6.1.1. (Reachability problem for NN) Given an input set X ⊆ Rn of
the NN, we want to over-approximate the image N(X) = {N(x) | x ∈ X} within a
desired over-approximation error bound ε.

We address the reachability problem for polytopes, a class of convex sets commonly
used in the reachability problem.

Definition 6.1.2. (Polytope) A polytope P ⊂ Rn is a bounded subset of Rn such
that there is a finite set H = {h1, . . . , hm} of half spaces whose intersection is P , i.e.:

Q =

m⋂
i=1

hi, (6.3)
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where an half-space is a set h = {x | Ax ≤ b} with d ∈ Rn \ {0} and c ∈ R.

In literature, a polytope is often said a H-polytope if it is represented as a set
of half-space. However, a polytope can also be seen as the convex hull of a finite
set of points V = {v1, . . . , vp}. A polytope represented b y its vertices is called a
V-polytope. We also list two important properties.

Property 6.1. (Parallelotope decomposition) There exists a finite set of parallelo-
topes {P1, . . . , Pk} such that X = ∩ki=1Pi, where parallelotopes is the n-dimensional
generalization of a parallelogram, i.e. a symmetric convex polytope whose opposite
facets are parallel.

Property 6.2. (Simplex decomposition) There exists a finite set of siplices {S1,
. . . , St} such that X = ∪ki=1Si, with Si ∩ Sj = ∅ for i 6= j.

Given a neural network N a polytope X as the input set, we want to approximate
layer by layer the non-linear function hl and we can bound the output of the approx-
imated function using the Bernstein theory as we did in Chapter 5 for the arm robot
application.

Lets focus on the function in Equation (6.1) for a generic layer l with m neurons
and n input for each neuron, i.e. hl : Rn → Rm. For simplicity of notation, in the
sequel we drop the superscript indicating the indices of the layer.

yi = h(x) = σ(Wix+ ai) (6.4)

with W ∈ Rn×m, a ∈ Rm and we denote with x ∈ Rn the input values and with
y ∈ Rm the output values.

In order to use Bernstein we need to approximate the non-linear activation function
with a polynomial function or a rational one. Thanks to the result in [102] we can
use a rational approximation.

6.2 Bernstein approximation with a Rational Func-
tion

We already know from Chapter 2.2.3 that the convex hull property does not hold for
rational functions but we can just use the range enclosing property. We recall this
property.

Definition 6.2.1. (Range enclosing property) Considering a rational function f = p
q

where p, q are polynomials. We compute the Bernstein coefficients bsi (p) and bsi (q) over
a domain X which can be a box or a standard simplex, with s greater than the degrees
of p and q. Assuming that all Bernstein coefficients bsi (q) have the same sign and
are non-zero (which implies that q(x) 6= 0, for all x ∈ X), then the range enclosing
property holds

min
i≤s

bsi (p)

bsi (q)
≤ f(x) ≤ max

i≤s

bsi (p)

bsi (q)
(6.5)
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We can apply the range enclosing property to a generic polytope by splitting
it into siplices with Property 6.2 or we can decompose it into parallelotopes using
Property 6.1 and transform the standard box into the parallelotopes with an affine
transformation (a generalization of Equation (5.17)).

To apply the range enclosing property we need also to guarantee that the Bernstein
coefficients of the denominator have the same sign. We already discuss in Chapter
2.2.3 a possible way to guarantee this property. Lets consider a particular activation
function to understand how we can apply it in practice.

We select the hyperbolic tangent as representative of an activation function. The
hyperbolic tangent is defined as

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
(6.6)

It is known that tanh can be defined also with the Lambert’s continued fraction
defined as

tanh(x) =
x

1 +
x2

3 +
x2

5 + . . .

(6.7)

We can approximate the hyperbolic tangent function taking Equation (6.7) up to a
finite number of fraction and we will call rd(x) the rational function with d fractions.
In Figure 6.1 we plot the approximation in the domain [−10, 10].

Figure 6.1: Approximation of tanh with Lambert’s fraction.

Given a confidence interval [lb, ub] ⊂ R we approximate the Equation (6.4) with

yi ≈


−1 x < lb

rd(Wix+ ai) lb ≤ x ≤ ub
1 x > ub

(6.8)

We can observe that if d is odd we just need to bound/intersect the output range
with [−1, 1].

It is easy to observe that the denominator of rd(x) is a positive even polynomial
function with degree bd2c and with only positive coefficients. It is also immediate to
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prove that this polynomial has a minimum at x = 0 with value
∏d−1
i=0 2i+1. Theorem

2.1 suggests us that the Bernstein coefficients of the denominator function are positive
if we select the couple (0, bsααα(p)) in our control points. Moreover, by construction, the
extreme points of a domain are always control points. For this reason we decide to
split our domain with x ≥ 0 and x ≤ 0 in order to guarantee that all the Bernstein
coefficients of the denominator are positive.

By changing the activation function, thus the rational approximation, we need to
perform the same analysis before applying the Bernstein approximation.

To conclude we sketch in Algorithm 6.4 the pseudocode of the complete procedure
to overapproximate the image of a complete NN with an input set X. We consider a
neural net where for each layer l = 1, . . . , L, W l and al denote the matrix and bias of

the layer, and rld = pl

ql
is the rational approximation of the activation tanh function,

with d odd. Hence for layer l we have pl = p(W lx + al); ql = q(W lx + al).

In line 4 we split the input domain to guarantee a positive certificate. In line 5
we are using Property 6.2 to apply in line 7 the range enclosing property.

Algorithm 6.4 Approximation of a NN with tanh using rational approximations.

1: Xcurr = X
2: for l = 1, . . . , L do
3: for k = 1 : nl do
4: calculate X+ = Xcurr∩{W l

kx+alk ≥ 0} and X− = Xcurr∩{W l
kx+alk ≤ 0}

5: split both X+ and X− into t and s simplices S1, . . . , St and P1, . . . , Ps

6: compute bi(X
+) =

{ bi(Sj ,p
l
k)

bi(Sj ,qlk)

}
j=1,...,t

and bi(X
−) =

{ bi(Sj ,p
l
k)

bi(Sj ,qlk)

}
j=1,...,s

7: define b = mini{bi(X+), bi(X
−)} and b = maxi{bi(X+), bi(X

−)}
8: y

k
= max(min(b, 1)− 1) and yk = max(min(b, 1)− 1)

9: end for
10: Xcurr =

∏n
i=1[y

i
, yi]

11: end for

In this case Property 6.1 it is more complex to be used. Indeed we need to
introduce the affine transformation v for each parallelotope and split each one with
respect to v(W l

kx + alk) ≥ 0 and v(W l
kx + alk) ≤ 0. There is no guarantee that the

splitting domain is again a parallelotope and this can cause an additional splitting.
It is complex also to change the output direction and we need to modify the splitting
hyperplane also according also to the chosen direction. The Algorithm 6.4 is already
heavy and we just bound the output of every layer with an hyperbox. In particular
the splitting phase in line 5 can explode increasing the dimension, i.e. the number of
neurons per layer.

As proposed in [13], one possibility to simplify the computational effort is to
duplicate the neurons on each layer and analyze separately the affine computation
(Wx + a) and the activation function. If we keep an interval approximation we do
not need to apply Bernstein but we can exploit the monotonicity of the activation
function.
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6.2.1 Exploiting monotonicity

We consider again the computation of a single layer in (6.1). We can split this
computation in two steps

y = Wx + a (6.9)

z = σ(y) (6.10)

Equation (6.9). The functions in (6.9) are m linear functions with n variables.
The sharpness property allows to quickly compute the Bernstein coefficients. We have
to translate each x ∈ X in the unitary cube u ∈ [0, 1]n. We define a∗ := x + a and
W ∗ = (W l

i,j(xj − xj))i,j . For the sharpness property we can compute the Bernstein
coefficients as bi(Wx + a,X) = W ∗i + a∗ with multi-index i ∈ {0, 1}n. We need only
the minimum and the maximum bi, so we can simplify the search by looking at the
positive and negative values of W ∗. In particular if we want to compute the bound
for yj , j = 1, . . . ,m, we consider the row W ∗j and obtain

∑
i:W∗i,j<0W

∗
i,j + a∗j ≤ yj ≤∑

i:W∗i,j>0W
∗
i,j + a∗j . We indicate this interval with [y

j
, yj ].

Equation (6.10). The activation function is a monotone function over the inter-
val [y

j
, yj ] and we can easily compute the image interval approximation by applying

the specific activation function. So we have z ∈
∏n
j=1[σ(y

j
), σ(yj)]. We mention that

monotonicity is also exploited in [116] in the formulation of optimization problem
for bounding the output variables. The structure of this algorithm is reported in
Algorithm 6.5.

Algorithm 6.5 Box-approximation directly with the exact activation function.

1: Input: X =
∏n
i=1[xi, xi] domain; W l, al, l = 1, . . . , L, matrix and bias of the

neural network for each layer; σ activation function;
2: Xcurr = X
3: for l = 1, . . . , L do
4: calculate W ∗ = (W l

i,j(xj − xj)), a∗ = al + x
5: for k = 1 : nl do
6: y

k
=
∑
i:W∗i,k<0W

∗
i,k + a∗k and yk =

∑
i:W∗i,k>0W

∗
i,k + a∗k . exploiting

Equation (6.9)
7: [zi, zi] = [σ(y

k
), σ(yk)] . exploiting Equation (6.10)

8: end for
9: Xcurr =

∏n
i=1[zi, zi]

10: end for

Experimental result

Algorithm 6.5 is faster, scalable and is applicable for tanh, sigmoid, ReLU or other
monotonic activation functions. This algorithm can be used as a quick approximation
to decide if a more accurate approximation is needed for property verification.

To illustrate the potentiality of this algorithm, we use a Simulink R© model of a
single link robotic arm, provided by Mathworks1. The aim is to control the trajectory
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of this system while the value of the input reference signal r(·) randomly changes in
[−0.5, 0.5] every 10 seconds. We use a nominal discrete-time feedback PID controller
to generate desired trajectories as data for training a neural net of the following form
uk = NN(rk, . . . , rk−3, yk, . . . , yk−3, uk−1, uk−2) where y is the output, u is the control
input updated at discrete time points, r is the reference that the output should track.
We train two different neural nets with 2 hidden layers with 30 neurons each. We call
the first neural network NNbad since it has a diverging behavior as shown in Figure
6.2 for the constant reference with value −0.2. The second is called NNok since it
has a correct behavior shown in Figure 6.3.

Figure 6.2: Comparison of the control
output for NNbad and a standard PID
controller.

Figure 6.3: Comparison of the control
output for NNok and a standard PID
controller

We define a noise factor η = |r| · p where p has three values {0.01%, 0.1%, 0.5%}.
We run Algorithm 6.5 where the first 4 inputs rk, . . . , rk−3 take constant value −0.2,
the next 4 inputs have the range [−0.2− η,−0.2 + η] and the last two have the range
u = 10y. We obtain the approximations in Table 6.1.

Table 6.1: Interval approximation of NNbad and NNok using Algorithm 6.5 and
adding the noise factor η.

p = 0.01% p = 0.1% p = 0.5%

NNbad [-2.344, -1.684] [-5.342, 1.313] [-18.673, 14.600]

NNok [-2.133, -1.862] [-3.368, -0.627] [-8.850, 4.858]

We can see that the output interval of NNbad is 2.4 times the size of the output
interval of NNok, and this result is coherent with the behavior of the two nets.

6.3 Bernstein approximation with a Polynomial Func-
tion

We have understood the potentialities and the limitations of the rational approach.
In order to improve the current strategy, at least for sigmoid and tanh functions, we

1https://ch.mathworks.com/help/deeplearning/ug/design-model-reference-neural-

controller-in-simulink.html

https://ch.mathworks.com/help/deeplearning/ug/design-model-reference-neural-controller-in-simulink.html
https://ch.mathworks.com/help/deeplearning/ug/design-model-reference-neural-controller-in-simulink.html
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consider a polynomial approximation. W.l.o.g. we continue to consider the hyperbolic
tangent. Indeed we can notice that the sigmoid function σ(x) = tanh(x2 ) + 1 and vice
versa tanh(x) = 2σ(2x)− 1. If we select a polynomial approximation p(x) ≈ tanh(x)
than q(x) = p(x2 ) + 1 is a polynomial approximation for σ(x).

As in the rational case, we approximate the hyperbolic tangent with a piecewise
function in a confidence interval [lb, ub] ⊂ R.

tanh(x) ≈


−1 x < lb

p(x) lb ≤ x ≤ ub
1 x > ub

(6.11)

We consider three types of polynomial approximation: Taylor, Chebyshev and
minmax approximation.

The first way to approximate a function with a polynomial expression is by taking
the Taylor expansion up to a certain degree. Given a function f : R → R we can
write the Taylor expansion in x0 as

f(x0) + f (1)(x0)(x− x0) +
f (2)(x0)

2!
(x− x0)2 + . . . (6.12)

with f (i) is the i-th derivative of f . For the hyperbolic tangent we use the Taylor
expansion in x0 = 0 and we have

tanh(x) ≈ x− x

3
+

2x5

15
+ . . . (6.13)

In Figure 6.4 we plot different approximations with a saturation to [−1, 1] if we exceed
this interval.

Figure 6.4: Approximation of hyperbolic tangent with Taylor expansion around x0 =
0 from degree 1 up to degree 9.

This approximation is really rough and it approximates the function only locally.
In [111] they suggest to use the Chebyshev expansion to better approximate sig-

moid functions, and so also the hyperbolic tangents. They define the Chebyshev
expansion as the integration of the Bernstein expression as follows:

Cp,q(x) =

(
1 + x

2

)q+1 p∑
i=0

(
i+ q

i

)(
1− x

2

)i
(6.14)
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Vlček obtains approximation of σ(8x) with the expression C11,11(x). We plot in Figure
6.5 the modified polynomial 2 · C11,11(x/4) − 1 in comparison with the hyperbolic
tangent.

Figure 6.5: Chebyshev approximation of the hyperbolic tangent.

This is a better approximation in compare with the Taylor one, but we are working
with a polynomial of degree 23 and we still have a maximum error of 0.06 that is the
3% of the output range.

A third possibility is to consider a minmax approximation. Given a desire degree
we can sample the hyperbolic tangent in the confident interval and we can tune the
coefficients of the polynomial function in order to minimize the maximum absolute er-
ror. For example we can use the polyfit function available in MATLAB R©to obtain the
polynomial functions in Figure 6.6. With this approximation we create a polynomial
function of degree 9 and with a maximum error of 0.0165.

Figure 6.6: Minmax polynomial approximation of the hyperbolic tangent using the
polyfit tool in MATLAB R©.

Minmax approximation allows to reduce the total error and we also decrease the
polynomial degree. We can now use it to perform a Bernstein overapproximation. We
select the polynomial function π(x) with degree d = 9 and we can observe, similarly
to the rational case, that if we select the right degree (d−1

2 even) it is enough to bound
the output in [−1, 1].

Instead of implementing a new procedure to compute the Bernstein approximation,
with the polynomial form we can compute the image approximation by calling some
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of the already implemented functions inside the SAPO tool [33]. To use the SAPO
tool we need to transform a polytope into its bundle representation.

Lets consider a polytope X as an input set defined by a list of inequalities Ax ≥ b.
Each line of the matrix A correspond to a direction and b are the corresponding off-
sets. We know from Property 6.1 that we can split X into a set of parallelotopes.
We call this equivalent form a bundle representation. Lets assume that the polytope
X has ndir possible directions, n variables and we decompose it into nparall paral-
lelotopes. In this representation we specify a matrix L ∈ Rndir×n of directions and
two vectors c ∈ Rndir , c ∈ Rndir such as Lx ≤ c and −Lx ≤ c. Then we define
a matrix T ∈ {1, . . . , ndir}nparall×n where we group the directions of L to form the
different parallelotopes. The polytope X =< L, T, c, c > is expressed in the bundle
representation.

In general the number of directions are less or equal the number of the initial
inequalities. For example if we consider the unitary box in 2D defined as [0, 1]2 =
{x ∈ R2|Ax ≥ b} with

A =


1 0
−1 0
0 1
0 −1

 b =


0
−1
0
−1


the associated bundle representation has

L =

(
1 0
0 1

)
T =

(
1 2

)
c =

(
0 0

)
c =

(
1 1

)
The final algorithm is reported in Algorithm 6.6. The steps that are done inside

the third for-loop are already implemented in SAPO.

Algorithm 6.6 Approximation of a NN with tanh using polynomial approximations.

1: Xcurr = X defined as X =< L, T, c, c >
2: for l = 1, . . . , L do
3: c = −∞, c = −∞
4: for i = 1 : nparall do
5: for j = 1 : ndir do
6: P is the i-th parallelotope of Xcurr

7: define v : [0, 1]nl−1 → P
8: define f = π(W ∗ v(x) + a) with f : [0, 1]nl−1Rnl

9: compute the coefficients bi for Lj · f(x)
10: update cj = max(cj ,max(bi)), cj = max(cj ,−min(bi))
11: end for
12: end for
13: Xcurr =< L, T, c, c > ∩[−1, 1]nl

14: end for

With the polynomial form we obtain a thin approximation because we can change
both the input and the output directions. In addiction, we reduce the computational
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time avoiding the split into simplices. The computation of the Bernstein coefficients
in Line 9 is still a tough point and it is hardly dependent on the number of neurons
in the previous layer.

6.4 Conclusion and future works

The increasing use of NN in many autonomous applications leads to an interest of
developing tools for NN formal verification. The verification problem becomes even
more difficult for NNCS where the performance of the net may not reflect the behavior
of the closed loop.

A major challenge in verifying NNCS is to be able to approximate the image of a
NN within a given error bound. We describe a method using rational approximations
for activation functions and taking advantage of the Bernstein expansion. We sketch
this approach in an abstract algorithm. Moreover, by monotonicity of the activation
functions, we propose another, faster and more scalable, algorithm. This algorithm
can be used as a quick approximation to decide if a more accurate approximation
is needed for property verification. The two proposed algorithms use box approxi-
mations, in the last section we discussed a possible improvement using polynomial
approximation when we consider hyberbolic tangent or sigmoid activation functions.
The polynomial approximation enables the possibility to obtain approximated NN
images more accurately with more complex sets, such as polytopes.

The proposed methods have just a prototype implementation to validate the idea
but we did not reach the maturity to test them against some benchmark case study.
Nonetheless it is evident that the computation of Bernstein coefficients is a stopping
point when we consider huge networks, because we are handling a function over nl−1

variable, that are all the neurons at the previous layer (or at the input layer). A
possibility to build a scalable tool is to analyze a fixed subset of neurons at a time, as it
is proposed in the ERAN tool for ReLU activation functions. We are currently working
to implement the designed strategy using the ERAN tool as the main framework.
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Conclusions

The fourth industrial revolution and the call for smart functionalities and intelligent
products is pervasive in any type of business. Food service sector is not an exception.
Electrolux Professional, as a leader in this sector, is continuously researching for
new techniques to improve the design process or directly the final products to help
professional kitchens to become efficient and manageable.

In this technological scenario, where computational and dynamical/physical ca-
pabilities as deeply intertwined inside any device and appliance, the emerging type
of systems are the Cyber Pysical Systems (CPS). This thesis, funded by Electrolux
Professional, starts the analysis of CPS in food service sector focusing on optimization
problems and reachability analyses. We present four different analyses with a direct
impact on the professional sector.

The first project, related to the scheduling of a professional oven, has the most
concrete outcome and it answers to the demanding needs for productivity and saving
in food catering, canteens and food retail services. This functionality is already in-
cluded in the controller of the professional ovens and it is able to sort a list of cooking
recipes in order to minimize the total energy consumption of the oven. The energy
approximation that we design allows to solve the scheduling problem over multistage
systems as a standard Traveling Salesman Problem (TSP).

It is a different story for the thawing multistage system analyzed in Chapter 4.
The challenge is the selection of the complex parameters for this multistage system
in order to balance the productivity and quality of the global process using a new
thawing technology: the air impingement thawing. We propose two approaches.
The availability of computationally efficient models enables a multi-objective analysis
using a genetic algorithm. This allows to obtain a set of optimal configurations to
be further tested in a prototype for a food quality analysis. Unfortunately, with
this analysis we were not able to consider the safeness of the multistage system as
a constraint. For this reason, we proposed a second approach where we exploit the
structure of the multistage system to define a hybrid automaton and we reformulate
the optimization problem as a reachability analysis.

With this second study we build a bridge between the optimization field and
the tools used for verification analysis. We open here the second topic of this the-
sis and the next two projects deal mainly with reachability analysis keeping an eye
on optimization problems. We focus on the verification of advanced tools that are
increasingly presents in professional kitchens, i.e. collaborative robots and neural net-
works by selecting a specific reachability tool based on the Bernstein approximation
for polynomial functions.

The Bernstein technique used in for a collaborative robot not only allows to avoid
an obstacle but can guarantee that all the possible movements of the robot will not
collide with the given obstacle. The search of this guarantee is and optimization
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problem and the constraint itself is the maximum angular range for each joint of the
robot.

Finally, the last analysis touches another important trend of these years: Neural
Networks (NN). We focus on the verification of neural net control systems (NNCS),
i.e. systems where the NN are used to control the physical process. Neural network are
model approximation tools and, in a broad sense, can be classify as optimization tools.
In this project we are not using NN as a tool, but the aim is analyzing this tool and
be able to estimate and bound the behavior of the neural net. We propose a method
that can handle most common classes of activation functions. The idea is to process
the network layer by layer and approximate the layer with rational or polynomial
function in order to bound the output image using the Bernstein expansion.

Future works have been already discussed at the end of each chapter and all these
four analyses open a possible field of research. In particular the latter topic, as it is
emerging from the most recent literature in the field, represents a fundamental tool to
deal with NNCS. Moreover we want to highlight that the parameter synthesis study
conducted in Chapter 4 can be further enlarged by changing the virtual model with a
data-driven one. Indeed recent studies are combining combinatorial optimization tools
directly in the training phase of a NN [21, 74] to solve parameters optimizations, and
this would be an additional step to gain the best of both optimization and machine
learning fields. We strongly believe that the challenge for the future, that will be a
key point for handling complex systems and improve our ability on controlling and
modeling such systems, is the cross collaboration of different fields as optimization
and verification but also thermodynamics, control theory and machine learning.
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[24] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow∗: An analyzer for
non-linear hybrid systems. In International Conference on Computer Aided
Verification, pages 258–263. Springer, 2013. https://doi.org/10.1007/978-

3-642-39799-8_18.

[25] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. Pa-
rameter synthesis with ic3. 2013 Formal Methods in Computer-Aided Design,
FMCAD 2013, pages 165–168, 2013.

[26] C. A. C. Coello. Evolutionary Optimization. Springer, Boston, Massachusetts,
2003.

[27] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of control, signals and systems, 2(4):303–314, 1989. https://doi.org/
10.1007/BF02551274.

[28] X. Dai, X. Yuan, and Z. Zhang. A self-adaptive multi-objective harmony search
algorithm based on harmony memory variance. Applied Soft Computing, 35:541–
557, 2015.

[29] B. Danaei, N. Karbasizadeh, and M. Tale Masouleh. A general approach on
collision-free workspace determination via triangle-to-triangle intersection test.
Robotics and Computer-Integrated Manufacturing, 44:230–241, 2017. https:

//doi.org/10.1016/j.rcim.2016.08.013.

[30] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjec-
tive genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation,
6(2):182–197, 2002.

[31] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable multi-objective op-
timization test problems. In Proceedings of the 2002 Congress on Evolutionary
Computation. CEC’02 (Cat. No. 02TH8600), volume 1, pages 825–830. IEEE,
2002.

[32] Tan Do. Generalised Bernstein Operators on Polytopes. PhD thesis, University
of Auckland, 05 2011.

[33] T. Dreossi. Sapo: Reachability computation and parameter synthesis of poly-
nomial dynamical systems. CoRR, abs/1607.02200, 2016. http://arxiv.org/
abs/1607.02200.

[34] T. Dreossi. Sapo: Reachability computation and parameter synthesis of poly-
nomial dynamical systems. Hybrid Systems: Computation and Control (HSCC
2017), 2017.

[35] S. Dutta, X. Chen, S. Jha, S. Sankaranarayanan, and A. Tiwari. Sherlock
- a tool for verification of neural network feedback systems: Demo abstract.
In Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, HSCC ’19, pages 262–263, 2019. https://doi.org/
10.1145/3302504.3313351.

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/j.rcim.2016.08.013
https://doi.org/10.1016/j.rcim.2016.08.013
http://arxiv.org/abs/1607.02200
http://arxiv.org/abs/1607.02200
https://doi.org/10.1145/3302504.3313351
https://doi.org/10.1145/3302504.3313351


100 C. Bibliography

[36] F. Erdogdu and R. P. Singh. Mathematical modeling of air-impingement cool-
ing of finite slab shaped objects and effect of spatial variation of heat transfer
coefficient. Journal of Food Engineering, 71:287–294, 2005.
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[38] Andrè Étienne and Soulat Romain. The Inverse Method. Wiley, 2013.

[39] J. Evans, S. Russell, and S. James. Chilling of recipe dish meals to meet
cook—chill guidelines. International Journal of Refrigeration, 19(2):79–86,
1996.

[40] R. Evins. A review of computational optimisation methods applied to sustain-
able building design. Renewables and Sustainable Energy Reviews, 22:230–245,
2013.
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