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Multiple homoclinic solutions for a one-dimensional

Schrödinger equation∗

Walter Dambrosio† Duccio Papini‡

Abstract

In this paper we study the problem of the existence of homoclinic solutions to a
Schrödinger equation of the form

x′′ − V (t)x+ x3 = 0,

where is a stepwise potential. The technique of proof is based on a topologi-
cal method, relying on the properties of the transformation of continuous planar
paths (the S.A.P. method), together with the application of the classical Conley-
Ważewski’s method.

AMS-Subject Classification. 34C25; 34C28; 34C37.
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1 Introduction

Let us consider the equation
x′′ − V (t)x+ x3 = 0, (1.1)
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where V : R → R is a L∞-function; we assume that there exist 0 < V1 < V2 and
t0 < t1 < . . . < t2K < t2K+1 such that

V1 ≤ V (t) ≤ V2, for a.e. t ∈ R,
V (t) = V1, ∀ t ∈ [t2j , t2j+1], j = 0, . . . ,K,

V (t) = V2, ∀ t ∈ [t2j+1, t2j+2], j = 0, . . . ,K − 1.

(1.2)

The equation (1.1) is the very classical one-dimensional Schrödinger equation, which
comes from the study of stationary waves of a nonlinear Schrödinger equation in RN ;
there is a huge literature on this equation and several different results have been proved
(see for instance, among the others, [1], [5], [8], [20]). Very recently, some results on the
lines of our approach have been proved in [24]; indeed, in the quoted paper the authors
study the existence of chaotic dynamics for the equation (1.1), using the S.A.P. method.

We will be concerned with the existence of solutions of (1.1) homoclinic to the equilib-
rium point (0, 0) (in the phase-plane) and having some prescribed behavior - in terms
of the number of zeros of the derivative - in the intervals [ti, ti+1], i = 0, . . . , 2K. Many
papers can be found in the literature on this topic; we only mention [10, 15, 17] and the
very recent [2, 6, 9]. In particular, the results in [2, 6] are exactly in the same spirit of
the one of the present paper, but they are concerned with a different form of equations.
For related results on this direction see also [3].

We will able to prove the following result:

Theorem 1.1. There exists S∗ > 0 and for any integer M ≥ 1, there exists T ∗ =
T ∗(M) > 0, such that if

t1 − t0 ≥ S∗,
tj+1 − tj ≥ T ∗, j = 1, . . . , 2K − 1,

t2K+1 − t2K ≥ S∗,
(1.3)

there exist M2K−1 geometrically distinct globally defined positive solutions u of (1.1)
such that

lim
t→±∞

(u(t), u′(t)) = (0, 0).

We point out that the same result can be proved also for a more general equation of the
form

x′′ − V (t)x+ f(x) = 0,

where f(x) = xh(x), for every x ∈ R, and h ∈ C1(R;R) is such that h(0) = 0, h′(x) > 0
for every x > 0 and

lim
x→+∞

h(x) = +∞
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(cfr. [24]).

The proof of Theorem 1.1 is based on the combination of the Conley-Ważewski’s method
(see [4, 23]) and of the so-called S.A.P. method (see [16, 17, 19]); the technique is a slight
variant of the ones already used in [2, 6]. More precisely, we first show the existence of
the stable and unstable manifolds of the equilibrium point (0, 0); then we are able to
connect these two sets by suitable orbits of (2.1) (coming from the application of the
S.A.P. method), solving a kind of generalized Sturm-Liouville problem for (1.1). The
crucial point in the present situation is that we need an approximation procedure in order
to replace the stable and unstable manifolds (which are in general merely continua) by
images of continuous paths.

We observe that the problem of connecting continuous paths can be found already in
the paper [22]; more recently, it has been considered in [7, 12, 13, 15, 21].

The plan of the paper is the following. In Section 2, we prove the existence of stable
and unstable manifolds to the equilibrium (0, 0); in Section 3 we study the dynamics of
the equation on bounded intervals, while in Section 4 we prove our result.

Throughout the paper by a path or curve γ we mean a continuous map γ : [0, 1]→ R2.
We will make a systematic abuse of notation by using the same symbol γ to stand for
the curve and for its image γ([0, 1]).

2 Continua of asymptotic solutions

In this section we prove the existence of stable and unstable manifolds to the equilibria
of the nonautonomous planar system{

x′ = y

y′ = V (t)x− x3,
(2.1)

with V : R → R a locally integrable function. We use the notation z(t; p, t0) for the
(unique) solution to (2.1) satisfying the condition z(t0) = p. Moreover, we define

Eµ(x, y) =
1

2
y2 − 1

2
µx2 +

1

4
x4, ∀ (x, y) ∈ R2, µ > 0;

let us observe that Eµ is the energy associated to the autonomous system{
x′ = y

y′ = µx− x3,
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Finally, for every V1 < V2, V1, V2 ∈ R, let

T− = {(x, y) ∈ R2 : EV2(x, y) ≤ 0 ≤ EV1(x, y), x ∈ [0,
√

2V1], y ≥ 0}

T+ = {(x, y) ∈ R2 : EV2(x, y) ≤ 0 ≤ EV1(x, y), x ∈ [0,
√

2V1], y ≤ 0},
(2.2)

which are drown in figure 1.

Figure 1: A picture of the two sets T− and T+ when V1 = 4 and V2 = 18.

We are able to prove the following result:

Theorem 2.1. The following statements hold true.

1. Assume that
0 < V1 ≤ V (t) ≤ V2, for a.e. t ∈ (−∞, t0],

for some t0 ∈ R, V1, V2 ∈ R. Then there exists a continuum Γ−∞ ⊂ R2, with Γ−∞ ⊂ T−,
(0, 0) ∈ Γ−∞, Γ−∞ ∩ {

√
2V1} × R 6= ∅ and such that for any p ∈ Γ−∞ it holds that

lim
t→−∞

z(t; p, t0)→ (0, 0).

2. Assume that
0 < V1 ≤ V (t) ≤ V2, for a.e. t ∈ [t0,+∞),

4



for some t0 ∈ R, V1, V2 ∈ R. Then there exists a continuum Γ+∞ ⊂ R2, with Γ+∞ ⊂ T+,
(0, 0) ∈ Γ+∞, Γ+∞ ∩ {

√
2V1} × R 6= ∅ and such that for any p ∈ Γ+∞, it holds that

lim
t→+∞

z(t; p, t0)→ (0, 0).

Proof. We observe that Statement 2 is a consequence of Statement 1 and the symmetry
enjoyed by the vector field in (2.1) with respect to the axis y = 0.
Concerning the proof of Statement 1, let us fix ε > 0 such that

0 < V1 − ε

and define

Tε = {(x, y) ∈ R2 : EV2+ε(x, y) ≤ 0 ≤ EV1−ε(x, y), x ∈ [0,
√

2(V1 − ε)], y ≥ 0}.

We first prove that any solution z(t) = (x(t), y(t)) which remains in Tε for every t ≤ t0
has to satisfy

lim
t→−∞

z(t) = (0, 0).

Indeed, for such a solution we have that, for t ≤ t0,

x(t) ∈
(

0,
√

2(V1 − ε)
]
, x′(t) > 0,

and, hence, there exists
lim

t→−∞
x(t) = L <

√
2(V1 − ε).

If L > 0 then there exists t1 ≤ t0 such that

L ≤ x(t) ≤ x(t1) <
√

2(V1 − ε), ∀ t ≤ t1.

As a consequence, since (x(t), x′(t)) ∈ Tε for every t ≤ t1, this implies that

x′(t) ≥ c > 0, ∀ t ≤ t1,

with
c = min

{√
(V1 − ε)L2 − L4/2,

√
(V1 − ε)x(t1)2 − x(t1)4/2

}
.

This contradicts the fact that L is finite.
Finally, since z(t) ∈ Tε for every t ≤ t0, the fact that x(t)→ 0 for t→ −∞ implies that
x′(t)→ 0 for t→ −∞.
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Now we write system (2.1) as an autonomous system in R3:
x′ = y

y′ = µx− x3

t′ = 1

(2.3)

and let π(·; s0, P ) be the unique solution to (2.3) starting from P ∈ R3 at s = s0. We
set

W = Tε × (−∞, t0], U = (γ− \ {(0, 0)})× (−∞, t0], V = (γ+ \ {(0, 0)})× (−∞, t0],

where γ− and γ+ are the portions of the boundary of Tε lying on EV1−ε = 0 and
EV−2+ε = 0, respectively.

Let us study the behavior of the vector field associated with system (2.3) at any point
P = (x1, y1, t1) ∈ ∂W . First, if (x1, y1) = (0, 0), it is clear that π(s; t1, P ) = (0, 0, s)
for all s. Next, if P ∈ U ∪ V , the vector field points strictly inwards W ; therefore,
π(s; t1, P ) /∈W for all s in a left neighborhood of t1. Finally, if either

(x1, y1) ∈ ∂Tε \ (γ− ∪ γ+ ∪ {(0, 0)})

or
(x1, y1) ∈ Tε \ (γ− ∪ γ+ ∪ {(0, 0)}) and t1 = 0

then π(s; t1, P ) ∈ W for all s in a left neighborhood of t1, since in those points the
vector field of (2.3) points strictly outwards W .

Following the terminology introduced in [4], a point P ∈ ∂W is called an entry point in
W for the flow π if π(s; 0, P ) 6∈W for all s ∈ [−ε, 0) and some ε > 0; moreover it is called

a strict entry point if in addition π(s; 0, ε) ∈
◦
W for all s ∈ (0, ε] and some ε > 0. The

analysis carried above shows that all the entry points in W are strict and that their set
is U ∪ V .

Now, we consider the set D ⊂W given by

D = {P = (x1, y1, t1) ∈W : ∃s < t1 s.t.π(s; t1, P ) /∈W}

and the map
Φ : D → ∂W

such that Φ(P ) is the last entry point in W before P for the solution of (2.3) starting
from the point P , namely Φ(P ) = π(s∗; t1, P ) where

s∗ = sup{s < t1 : π(s; t1, P ) 6∈ D}.
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Using the fact that all entry points in W are strict, it follows from the results in [4]
that Φ is continuous on D; moreover, by the previous discussion, Φ(D) = U ∪ V is not
connected and U and V are its connected components.

Let γ : [0, 1] → Σε be a continuous path such that γ(0) ∈ γ− \ {(0, 0)} and γ(1) ∈
γ+ \ {(0, 0)}. Then we have that Φ(γ(0)) ∈ U , Φ(γ(1)) ∈ V . Since [0, 1] is connected,
there must be τ ∈ (0, 1) such that γ(τ) /∈ D. By the topological lemma [21, Corollary
6] there exists a continuum Γ−∞ ⊂ Tε \D such that

(0, 0) ∈ Γ−∞ and Γ−∞ ∩
(
{
√

2(V1 − ε)} × R
)
6= ∅.

Letting ε→ 0+, it is actually possible to show that Γ−∞ ⊂ T− and reaches the vertical
line x =

√
2V1 (see [11, Theorem 6, §47, II, p.171]).

3 Dynamics on bounded intervals

In this section, we fix two real positive constants V1 < V2 and we study the dynamics
associated to the autonomous system{

x′ = y

y′ = Vix− x3, i = 1, 2,
(3.1)

which will be referred to as (Vi).
For T ∈ R and i = 1, 2, we define the map ΨT

i as the Poincaré map associated with
system (Vi) from t = 0 to t = T , i.e.

ΨT
i (x0, y0) = (x(T ;x0, y0), y(T ;x0, y0)), ∀ (x0, y0) ∈ R2,

where (x(·;x0, y0), y(·;x0, y0)) is the unique solution to (Vi) satisfying the initial condi-
tion (x(0), y(0)) = (x0, y0). Observe that (ΨT

i )−1 = Ψ−Ti .

It is well known that the orbits of (Vi) with negative energy EVi are periodic and turn
around the equilibrium (

√
Vi, 0) in clockwise sense. Hence it is useful to introduce a pair

of angular coordinates θi, for i = 1, 2, which are centered at (
√
Vi, 0) and are measured

in clockwise sense starting from the half line
[√
Vi,+∞

)
× {0}. In particular we denote

by θ(t; (x0, y0)) the angular coordinate of the solution of (Vi) starting at time t = 0 from
the point (x0, y0) 6= (

√
Vi, 0) with the choice θ(0; (x0, y0)) ∈ [−π, π).

Let us now consider the points (
√

2V1,±
√

2V1(V2 − V1)) which are two vertices of the
triangular regions T± lying where the homoclinic orbit of (V2) crosses the vertical
line x =

√
2V1. They also lie on the same orbit of (V1), namely the one with en-

ergy EV1(x, y) = V1(V2 − V1), which crosses the positive x-axis at the abscissa x̂ =
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√
V1 +

√
V1(4V2 − 3V1) ∈ (

√
2V1,
√

2V2). We observe that each solution of (V1) that

starts from a point in T− crosses the positive x-axis at a point lying between (
√

2V1, 0)
and (x̂, 0), and the same holds for the solutions of (V1) arriving at a point in T+.

We set
A2 = {(x, y) ∈ R2 : c1 ≤ EV2(x, y) ≤ c2, x > 0}, (3.2)

with c1, c2 fixed in the following way:

1. c1 < c2 < 0;

2. c1 > max{EV2(
√

2V1, 0), EV2(x̂, 0)}.

We observe that condition 1. guarantees that A2 is filled up by periodic orbits of system
(V2), that surround the segment [

√
2V1, x̂] × {0} by condition 2. We denote by ∂eA2

and ∂iA2 the outer (EV2 = c2) and inner (EV2 = c1) boundary of A2, respectively.
In particular, ∂iA2 and ∂eA2 cross the segment (0,

√
V2) × {0} on the x-axis at the

point (x′i, 0) and (x′e, 0), respectively, which both lie inside the region bounded by the
homoclinic orbit of (V1) by condition 2, i.e. they satisfy EV1(x′i, 0), EV1(x′e, 0) < 0.

Now, let
A1 = {(x, y) ∈ R2 : c3 ≤ EV1(x, y) ≤ 0, x ≥ 0},

where 0 > c3 > max{EV1(x′e, 0), EV1(x′i, 0)}; by these choices, the internal boundary
∂iA1 of the annulus A1 (i.e. the level set EV1 = c3) surrounds the segment [x′e, x

′
i]×{0}

on the positive x-axis and, hence, the set

A1 ∩ A2

is non-empty and it has exactly two connected components. We denote by R1 the
connected component contained in {(x, y) ∈ R2 : y > 0} and by R2 the other one (see
Figure 2). Moreover, we name explicitly some of the “sides” of R1 and R2 :

Rl1 = ∂R1 ∩ ∂eA2 Rr1 = ∂R1 ∩ ∂iA2

Rl2 = ∂R2 ∩ ∂eA1 Rr2 = ∂R2 ∩ ∂iA1

where the superscript l, r stands for “left” and “right”, respectively. Setting R−1 =
Rl1 ∪Rr1 and R−2 = Rl2 ∪Rr2, we obtain that each of the pairs

R̃1 = (R1,R−1 ), R̃2 = (R2,R−2 )

is an oriented rectangle, according to [16, 18].

Oriented rectangles are crucial in the following definition (see again [16, 18]).
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Figure 2: The shadowed regions are the two topological rectangles whose orientation is
given by choosing their “left” and “right” sides. Here we have chosen V1 = 10, V2 = 18,
c1 = −55, c2 = −30, c3 = −10.

Definition 3.1. Let R̃1 = (R1,R−1 ), R̃2 = (R2,R−2 ) be oriented rectangles and let
Ψ : DΨ ⊂ R2 → R2 be a continuous map.

We say that (H,Ψ) stretches R̃1 to R̃2 along the paths and write

(H,Ψ) : R̃1 m−→R̃2

if H ⊂ R1 ∩ DΨ is a compact subset and for every continuous path γ : [0, 1] → R1

such that γ(0) ∈ Rl1 and γ(1) ∈ Rr1 there exists a sub-interval [s′, s′′] ⊂ [0, 1] such that
γ([s′, s′′]) ⊂ H, Ψ(γ([s′, s′′])) ⊂ R2 and Ψ(γ(s′)) ∈ Rl2, Ψ(γ(s′′)) ∈ Rr2 (or viceversa).

We say that Ψ stretches R̃1 to R̃2 along the paths with crossing number M ≥ 1 and
write

Ψ : R̃1 m−→M R̃2

if there exist M pairwise disjoint compact sets H1, . . . ,HM ⊂ R1∩DΨ such that (Hi,Ψ) :
R̃1 m−→R̃2 for i = 1, . . . ,M .

As an easy consequence of the definition, we have that the stretching property has a
good behavior with respect to compositions of maps.
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Proposition 3.2. Let Ã, B̃ and C̃ be oriented rectangles and Φ,Ψ be suitable continuous
maps such that (H,Ψ) : Ã m−→B̃ and (K,Φ) : B̃ m−→C̃ for some compact sets H ⊆ A and
K ⊆ B. Then the set H ∩Ψ−1(K) is a non-empty compact set and

(H ∩Ψ−1(K),Φ ◦Ψ) : Ã m−→C̃.

In particular, if Ψ stretches Ã to B̃ with crossing number M and Φ stretches B̃ to C̃ with
crossing number N , then the composition Φ ◦ Ψ stretches Ã to C̃ with crossing number
M ×N .

The following crucial result on the stretching can be proved arguing as in [24, Sect. 3]:

Proposition 3.3. For any M ∈ N, there exist T∗(M) > 0 such that, for every T1 >
T∗(M) and T2 > T∗(M), we have

ΨT2
2 : R̃1 m−→M R̃2, ΨT1

1 : R̃2 m−→M R̃1.

Proof. The proof is essentially contained in [24, Sect. 3]. We only highlight some key
points of the argument for ΨT2

2 : R̃1 m−→M R̃2 which will be useful in the sequel.
We observe that ΨT2

2 moves the points of R1 along the periodic orbits of system (V2)
which fill up the annulus A2 and that the period τi of the orbit on ∂iA2 is smaller than
the period τe of the orbit on ∂eA2. Hence, if we choose T2 such that

T2 ≥ (M + 2)
τiτe
τe − τi

, (3.3)

any path γ : [0, 1]→ R1 with γ(0) ∈ Rl1 ⊂ ∂eA2 and γ(1) ∈ Rr1 ⊂ ∂iA2, is transformed
by ΨT2

2 into a path winding at least M + 1 times around (
√
V2, 0) in clockwise sense. In

particular ΨT2
2 (γ) crosses R2 at least M times across the components of the boundary

in R−2 . As a consequence it is possible to select M sub-paths γ1, . . . , γM of γ such that
ΨT2

2 (γi) is contained in R2 and crosses both components of R−2 for i = 1, . . . ,M . More
precisely, we observe that

θ2(T2; γ(0)) ≤ θ2(0; γ(0)) + 2π

⌈
T2

τe

⌉
≤ 2π

⌈
T2

τe

⌉
θ2(T2; γ(1)) ≥ θ2(0; γ(1)) + 2π

⌊
T2

τi

⌋
≥ 2π

⌊
T2

τi

⌋
− π

and, therefore, as s ranges in [0, 1], the angular function s 7→ θ2(T2; γ(s)) spans all the
M pairwise disjoint intervals [2π(n∗ + n− 1), 2π(n∗ + n)− π], where n∗ = dT2/τee and
n = 1, . . . ,M . Indeed, the choice (3.3) of T2 implies that

T2

τi
− T2

τe
≥M + 2
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and, thus: ⌊
T2

τi

⌋
−
⌈
T2

τe

⌉
≥M.

In particular, if we define

H1 = {z ∈ R1 : ΨT2
2 (z) ∈ R2}

H1
n =

{
z ∈ H1 : n∗ + n− 1 ≤ θ2(T2; z)

2π
≤ n∗ + n− 1

2

}
for n = 1, . . . ,M,

it is possible to find points sn1 , s
n
2 ∈ [0, 1], with n = 1, . . . ,M and

0 ≤ s1
1 < s1

2 < s2
1 < · · · < sM−1

2 < sM1 < sM2 ≤ 1,

such that γ([sn1 , s
n
2 ]) ⊂ H1

n, ΨT2
2 (γ(sn1 )) ∈ Rl2 ⊂ ∂eA1 and ΨT2

2 (γ(sn2 )) ∈ Rr2 ⊂ ∂iA1.
This shows that the following stretching properties hold:

(H1
n,Ψ

T2
2 ) : R̃1 m−→R̃2 for all n = 1, . . . ,M.

We remark that each solution of (V2) starting at time t = 0 from any point z ∈ H1
n ends

in R2 at t = T2 after exactly 2(n∗ + n)− 1 crossings with the x-axis.
In a very similar way, one can show also that, if we denote by σi the period of the

orbit ∂iAi of (V1) and choose T1 ≥ Mσi, then also the following stretching properties
are true:

(H2
n,Ψ

T1
1 ) : R̃2 m−→R̃1 for all n = 1, . . . ,M,

with the positions:

H2 = {z ∈ R2 : ΨT1
1 (z) ∈ R1}

H2
n =

{
z ∈ H2 : n− 1

2
≤ θ1(T1; z)

2π
≤ n

}
for n = 1, . . . ,M,

and with analogous considerations about the nodal behavior of the solution of (V1)
starting from points of H2

n. Actually in this case the argument is slightly simpler thanks
to the fact that the external boundary ∂eA1 of A1 is the homoclinic orbit of (V1) and
not a periodic one.

In conclusion, the lemma is proved with the choice

T∗(M) = max

{
(M + 2)

τiτe
τe − τi

,Mσi

}
.
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4 Proof of the result

We fix M ≥ 1 and {(nj)}j=1,...,2K−1 such that nj ∈ {1, . . . ,M} for all j = 1, . . . , 2K−1.
We then consider T ∗ = T ∗(M) as given in Proposition 3.3 and a weight function V as
in (1.2)-(1.3), with S∗ given below.

We first apply Proposition 2.1 on the intervals (−∞, t0] and [t2K ,+∞) in order to find
the continua Γ±∞. We then select P± = (

√
2V1, y±) ∈ Γ±∞ and let

S∗ = max

{
1√
2

∫ x−

√
2V1

dx√
FV1(x−)− FV1(x)

,
1√
2

∫ x+

√
2V1

dx√
FV1(x+)− FV1(x)

}
(4.1)

where, for every µ > 0, Fµ is the primitive of

fµ(x) = −µx+ x3

such that Fµ(0) = 0, and x± > 0 are such that

(x±, 0) ∈ {(x, y) ∈ R2 : EV1(x, y) = EV1(P±)},

as before. In other words, S∗ is the maximum between the times needed to run from
P− to (x−, 0) and from (x+, 0) to P+ along the orbits of (V1).1

In order to prove Theorem 1.1 we will show that the following Sturm-Liouville-type
boundary value problem:

x′ = y

y′ = V (t)x− x3 for t ∈ [t1, t2K+1]

(x(t0), y(t0)) ∈ Γ−∞

(x(t2K+1), y(t2K+1)) ∈ Γ+∞

(4.2)

has at least a solution whose oscillatory behavior in each interval (tj , tj+1) is described
by the fixed number nj ∈ {1, . . . ,M}, for each j = 1, . . . , 2K − 1, in a way that will be

1The constant S∗ thus defined is not very explicit since it depends on the knowledge of points of the
continua Γ±∞. A more explicit, albeit rougher, constant S∗ could be obtained in the following way. Each
solution of (V1), starting from a point (

√
2V1, y0) on the “right side” {

√
2V1}× [0,

√
2V1(V2 − V1)] of the

region T− that contains Γ−∞ (see (2.2)), hits the positive x-axis at the abscissa x̂(y0) ∈ (
√

2V1,
√

2V2)
which can be explicitly evaluated together with the time needed to reach the point (x̂(y0), 0). By letting

S∗ = max

{
1√
2

∫ x̂(y0)

√
2V1

dx√
FV1(x̂(y0))− FV1(x)

: 0 ≤ y0 ≤
√

2V1(V2 − V1)

}
we obtain a larger bound that doesn’t depend on the explicit knowledge of Γ±∞.
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clearer along the proof and that, however, is closely related to the definition of the sets
Hin in Proposition 3.3. In fact, any solution of (4.2) is necessarily a global solution of
(1.1) and satisfies (x(±∞), x′(±∞)) = (0, 0) by the very definition of Γ±∞.

Since our shooting argument involves mainly paths of initial points and the sets Γ±∞
are just continua, we first replace the two continua in the boundary conditions with (the
image of) two suitable paths that lie in an ε-neighborhood of Γ±∞, as in the following
claim.

Claim 1. For every ε > 0 there exists a continuous path γ±ε : [0, 1]→ T± such that

γ±ε (0) = (0, 0), γ±ε (1) = P±

and
dist(γ±ε (s),Γ±) < ε, ∀ s ∈ [0, 1].

Proof. We give the details of the proof for γ−ε ; the existence of γ+
ε can be obtained in a

similar way, by reversing the direction of time.

For every ε > 0 let

Bε = {(x, y) ∈ R2 : dist((x, y),Γ−∞) < ε};

since Bε is arcwise connected, there exists a path γ−ε : [0, 1] → Bε such that γ−ε (0) =
(0, 0) and γ−ε (1) = P−.
We observe that we can choose γ−ε in such a way that γ−ε ([0, 1]) ⊂ T−; indeed, if this
condition fails, it is sufficient to replace the components u, v of the curve γ−ε = (u, v)
with the components ũ, ṽ given by

ũ(s) = min
{

0,max(u(s),
√

2V1)
}
,

ṽ(s) = min
{√
−2fV2(ũ(s)),max

{
v(s),

√
−2fV1(ũ(s))

}}
,

for all s ∈ [0, 1].

For each ε > 0 we look for solutions of the approximating boundary value problems
x′ = y

y′ = V (t)x− x3 for t ∈ [t1, t2K+1]

(x(t0), y(t0)) ∈ γ−ε
(x(t2K+1), y(t2K+1)) ∈ γ+

ε

(4.3)
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with suitable oscillatory behavior. At the end of the argument we will let ε → 0. Our
shooting argument starts by following the forward evolution of the points on γ−ε from
t = t0 to t = t1 and the backward evolution of the points on γ+

ε from t = t2K+1 to
t = t2K , along the flow generated by the differential equations in (4.3).

Claim 2. There exist 0 < s′± < s′′± < 1 such that

Ψt1−t0
1 (γ−ε ([s′−, s

′′
−])) ∈ A2 ∩ [0,+∞)× [0,+∞) ,

Ψt1−t0
1 (γ−ε (s′−)) ∈ ∂eA2, Ψt1−t0

1 (γ−ε (s′′−)) ∈ ∂iA2

and
Ψ
t2K−t2K+1

1 (γ+
ε ([s′+, s

′′
+])) ∈ A2 ∩ [0,+∞)× (−∞, 0] ,

Ψ
t2K−t2K+1

1 (γ+
ε (s′+)) ∈ ∂eA2, Ψ

t2K−t2K+1

1 (γ+
ε (s′′+)) ∈ ∂iA2.

Proof. As before, we give the details only for the time interval [t0, t1].

Let us consider z(·; γ−ε (1), t0) = (x(·; γ−ε (1), t0), y(·; γ−ε (1), t0)) and let

s0 = inf{s ∈ (0, 1] | ∃ t ∈ (t0, t1] : y(t; γ−ε (t0), t0) = 0},

which is well defined by the construction of γ−ε and the fact that t1 − t0 ≥ S∗. Indeed,
the condition t1 − t0 ≥ S∗ implies that z(·; γ−ε (1), t0) = z(·;P−, t0) crosses the positive
x-axis at least once in (t0, t1] (see (4.1)). Moreover, the crossing point lies in the interior
of the inner boundary ∂iA2 of the annulus A2 by the very construction of A2 (see (3.2)).
By the way, we observe that 0 < s0 ≤ 1. Hence, Ψt1−t0

1 ◦ (γ−ε )|[0,s0] is a continuous path

in T− which connects (0, 0) with the point Ψt1−t0
1 (γ−ε (s0)) on the x-axis. Therefore, its

support crosses A2 in the upper half plane; this allows to define

s′− = max{s ∈ [0, s0] : Ψt1−t0
1 (γ−ε (s)) ∈ ∂eA2}

s′′− = min{s ∈ [s1, s0] : Ψt1−t0
1 (γ−ε (s)) ∈ ∂iA2}

and conclude the proof of the claim.

Now we follow the forward evolution of the solutions starting at t = t0 from γ−ε up to
the time t = t2K . The main idea here is to select a sub-path of γ−ε that gives rise to
solutions with the desired oscillatory properties in the intermediate intervals and that
is transformed at time t = t2K into a path whose position inside the annulus A2 is in
some sense good.

By Claim 2, the path s 7→ z(t1; γ−ε (s), t0) crosses the annulus A2 in the upper half
plane as s ranges in [s′−, s

′′
−]. Since t2 − t1 ≥ T ∗(M) it is possible to argue as in

14



the proof of Proposition 3.3 and show that the map Ψt2−t1
2 transforms the curve s 7→

z(t1; γ−ε (s), t0) into a path that winds in A2 and crosses R2 at least M times as s ranges
in [s′−, s

′′
−]. In fact, there exists a non-trivial subinterval [s′2, s

′′
2] ⊂ [s′−, s

′′
−] such that

z(t2; γ−ε (s), t0) ∈ R2 for all s ∈ [s′2, s
′′
2], z(t2; γ−ε (s′2), t0) ∈ Rl2 and z(t2; γ−ε (s′′2), t0) ∈ Rr2.

More precisely the interval [s′2, s
′′
2] can be chosen among M different ones, according to

the number of oscillations that the solution performs in the interval [t1, t2]. Based on
the choice of n1 ∈ {1, . . . ,M} that we made at the beginning of the proof, the interval
[s′2, s

′′
2] can be characterized by the following property:

n1
∗ + n1 − 1 ≤ θ2(t2 − t1; γ−ε (s))

2π
≤ n1

∗ + n1 −
1

2
, ∀s ∈ [s′2, s

′′
2]

where n1
∗ = d(t2 − t1)/τee. We omit the details since they are analogous to those em-

ployed in the proof of Proposition 3.3. We only remark that all the solutions z(·; γ−ε (s), t0),
for all s ∈ [s′2, s

′′
2] cross the positive x-axis exactly 2(n1

∗ + n1) − 1 times in the interval
(t1, t2).

Now, about the dynamics in the intermediate interval [t2, t2K−1], we observe that
the map p 7→ z(t2K ; p, t2) is the alternate composition, for suitable values of j, of the

maps Ψ
t2j+2−t2j+1

2 and Ψ
t2j+1−t2j
1 for which the stretching properties of Proposition 3.3

with crossing number M hold thanks to assumption (1.3). However, the compact sets
Hin with respect to which the S.A.P. property holds are different for each of those maps
since they depend explicitly on the length of the time intervals tj+1− tj . To make things
slightly more complicated, in the case i = 1 (i.e. j odd) one has also to be careful
with the minimum number of turns n∗ which also depends on the lengths tj+1 − tj . In
order to take into account all these facts, we modify our notation in the following way:
the superscript j in Hj and Hjn is allowed to range in 2, . . . , 2K − 2 and, from now
on, it refers to the stretching property in the interval [tj , tj+1] for the appropriate map,
depending on the value that V has in that interval according to (1.2). More precisely,
by Proposition 3.3 we then have

(H2j+1
n ,Ψ

t2j+2−t2j+1

2 ) : R̃1 m−→R̃2,

for n = 1, . . . ,M, and j = 1, . . . ,K − 2, where

H2j+1 = {z ∈ R1 : Ψ
t2j+2−t2j+1

2 (z) ∈ R2},

H2j+1
n =

{
z ∈ H2j+1 : n2j+1

∗ + n− 1 ≤ θ2(t2j+2 − t2j+1; z)

2π
≤ n2j+1

∗ + n− 1

2

}
,

n2j+1
∗ =

⌈
t2j+2 − t2j+1

τe

⌉
,

and
(H2j

n ,Ψ
t2j+1−t2j
1 ) : R̃2 m−→R̃1 for all n = 1, . . . ,M,
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for n = 1, . . . ,M, and j = 1, . . . ,K − 1, where:

H2j = {z ∈ R2 : Ψ
t2j+1−t2j
1 (z) ∈ R1},

H2j
n =

{
z ∈ H2j : n− 1

2
≤ θ1(t2j+1 − t2j ; z)

2π
≤ n

}
.

Thanks to this notation, to the assumption (1.3) and to Proposition 3.3, we have the
following chain of successive stretching maps:

(H2
n2
,Ψt3−t2

1 ) : R̃2 m−→R̃1

(H3
n3
,Ψt4−t3

2 ) : R̃1 m−→R̃2

...

(H2K−3
n2K−3

,Ψ
t2K−2−t2K−3

2 ) : R̃1 m−→R̃2

(H2K−2
n2K−2

,Ψ
t2K−1−t2K−2

1 ) : R̃2 m−→R̃1

and, therefore, by Proposition 3.2 there exists a non-trivial subinterval [s′2K−1, s
′′
2K−1] ⊂

[s′2, s
′′
2] such that the path s 7→ z(t2K−1; γ−ε (s), t0) crosses R1, with:

z(t2K−1; γ−ε (s′2K−1), t0) ∈ Rl1,
z(t2K−1; γ−ε (s′′2K−1), t0) ∈ Rr1,
z(tj ; γ

−
ε (s), t0) ∈ Hjnj

∀s ∈ [s′2K−1, s
′′
2K−1] and ∀j = 2, . . . , 2K − 2.

The last condition, in particular, grants that all the solutions starting from γ−ε (s) at
time t = t0 for all s ∈ [s′2K−1, s

′′
2K−1] have the oscillatory behavior prescribed by the

integer nj in the interval [tj , tj+1], for j = 1, . . . , 2K − 2 (the behavior for j = 1 is
already granted by the choice of s′2, s

′′
2).

Since finally t2K − t2K−1 ≥ T ∗(M), also the path s 7→ z(t2K−1; γ−ε (s), t0) is trans-

formed by Ψ
t2K−t2K−1

2 into a path that winds in A2 at least M times. More precisely it
is possible to find a non-trivial subinterval [s′2K , s

′′
2K ] ⊂ [s′2K−1, s

′′
2K−1] such that

n2K−1
∗ + n2K−1 − 1 ≤ θ2(t2K − t2K−1; z(t2K−1; γ−ε (s)))

2π
≤ n2K−1

∗ + n2K−1 −
1

2
,

θ2(t2K − t2K−1; z(t2K−1; γ−ε (s′2K))) = 2π(n2K−1
∗ + n2K−1)− 2π,

θ2(t2K − t2K−1; z(t2K−1; γ−ε (s′′2K))) = 2π(n2K−1
∗ + n2K−1)− π.

In other words, as s ranges in [s′2K , s
′′
2K ], the solutions z(·; γ−ε (s), t0) cross the positive x

axis exactly 2(n2K−1
∗ +n2K−1)−1 times in the time interval (t2K−1, t2K), while the curve

s 7→ z(t2K ; γ−ε (s), t0) describes an arc that lies in the lower half of the annulus A2 and
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joins the segments [x′e, x
′
i]×{0} and [x′′i , x

′′
e ]×{0}, which are the two components of the

intersection of the annulus A2 with the positive x-axis (here x′e < x′i <
√
V2 < x′′i < x′′e).

Now, the lower half A2∩{(x, y) : y ≤ 0} of A2 is also a topological rectangle in which
the segments [x′e, x

′
i]× {0} and [x′′i , x

′′
e ]× {0} form one couple of opposite sides and the

arcs ∂eA2 ∩{(x, y) : y ≤ 0} and ∂iA2 ∩{(x, y) : y ≤ 0} form the other couple (see figure
2). The discussion carried on above shows that both the paths s 7→ z(t2K ; γ−ε (s), t0), for
s ∈ [s′2K , s

′′
2K ], and s 7→ z(t2K ; γ+

ε (s), t2K+1), for s ∈ [s′+, s
′′
+] (see Claim 2), lie in that

topological rectangle and join different couples of opposite sides. Therefore, those two
paths must intersect by [14, Lemma 3]. More precisely, there exists sε ∈ [s′2K , s

′′
2K ] such

that z(t2K+1; γ−ε (sε), t0) ∈ γ+
ε which means that z(·; γ−ε (sε), t0) is a solution of (4.3)

which in addition has the oscillatory behavior prescribed by nj in each interval (tj , tj+1)
for all j = 1, . . . , 2K − 1, as described along the proof.

Now we conclude the proof by passing to the limit as ε → 0. Along a suitable
sequence εm → 0 as m → +∞, the sequence zm := γ−εm(sεm) converges to a point
z0 = (x0, y0) ∈ Γ−∞ and, by the continuous dependence on initial data, we have that:

1. z(·; zm, t0) converges to z(·; z0, t0) uniformly on [t0, t2K+1];

2. in particular z(t2K+1; zm, t0) → z(t2K+1; z0, t0) ∈ Γ+∞ and, thus, z(·; z0, t0) is a
solution of (4.2);

3. z(·; z0, t0) still has the same oscillatory behavior prescribed by the numbers nj
in (tj , tj+1) as the approximate solutions z(·; zm, t0) have, since the inequalities
satisfied by the angular coordinates are weak and the angular coordinates are
continuous.

We also observe that the first component of the solution z is positive, by construction.
Therefore Theorem 1.1 is proved.
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