
05 May 2024

Università degli studi di Udine

Original

Linear orders: When embeddability and epimorphism agree

Publisher:

Published
DOI:10.1142/S021906131950003X

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/1144720 since 2021-03-19T22:23:34Z



November 8, 2018 11:43 WSPC/INSTRUCTION FILE strongsurj˙final

Journal of Mathematical Logic
c© World Scientific Publishing Company

& Singapore University Press

Linear orders: when embeddability and epimorphism agree

Riccardo Camerlo
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1. Introduction

There are two natural ways of comparing a pair of linear orders L and M : em-

beddability and epimorphism. We write L ≤i M when there is an order preserving

injection, also called an embedding, from L to M . Similarly, L ≤s M stands for

the existence of an order preserving surjection, also called an epimorphism, from M

onto L. The equivalence relation associated to ≤s is written ≡s.
Using the axiom of choice, L ≤s M implies L ≤i M , but the embeddability

relation ≤i is in general weaker than the relation ≤s induced by epimorphisms. For

example, the ordinal number ω embeds into ω + 1, but there is no epimorphism

from ω + 1 onto ω.

There are however linear orders M for which the relations L ≤i M and L ≤s M
turn out to be equivalent. The ordinals satisfying this property have been charac-

terized in [4] (see Theorem 1.2 below). The aim of this article is to study the class

1
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of orders M for which the two notions coincide.

For the purpose of this paper, when talking about a linear order, we will always

assume that it is non-empty; in particular, if no contrary mention is given, when

a linear order is written as a sum
∑
i∈I Li, all the summands are assumed to be

non-empty.

We are now ready to give our main definition.

Definition 1.1. A linear order M is strongly surjective if, for any linear order L,

L ≤i M implies L ≤s M ; equivalently, if M surjects order-preservingly onto each

of its suborders.

The following characterization of strongly surjective ordinals is Corollary 29 of

[4].

Theorem 1.2. An ordinal is strongly surjective if and only if it is a finite multiple

of an indecomposable countable ordinal, that is, if it is of the form ωαm, for some

α < ω1 and m > 0.

The rationals are also strongly surjective: indeed by Proposition 16(1) in [4]

L ≤s Q for every countable linear order L. Up to ≡s, Q is the only countable

non-scattered strongly surjective order (recall that L is scattered if Q 6≤i L): see

Proposition 2.2 below.

Our main result is the following classification of the descriptive complexity of

the set of countable strongly surjective linear orders:

Theorem 1.3. The set of countable strongly surjective orders is Ď2(Π1
1)-complete.

Here Ď2(Π1
1) is the class of sets which are union of an analytic and a coanalytic

set. The set we are interested in belongs to this class because the set of scattered

strongly surjective orders is Π1
1, while the set of non-scattered strongly surjective

orders is Σ1
1. In fact they are both complete in their respective classes (Corollary

4.19 and Proposition 3.3).

Our proof of the upper bound for scattered strongly surjective orders makes an

essential use of both effective descriptive set theory and the fact that ≤s is a well

quasi-order on the countable linear orders. The latter is the main theorem of [9] and

[4].

Even if the study of the first two levels of the projective hierarchy is a long-

standing topic, examples of sets that are true ∆1
2 (that is, ∆1

2 but neither analytic

nor coanalytic) are very rare. The interest in these sets has recently been rekindled

by Fournier’s study of the difference hierarchy of co-analytic sets ([6]). However, as

far as we know, the set of countable strongly surjective orders is the first concrete

example of a Ď2(Π1
1)-complete set that is not made so by design. Furthermore, two

natural examples of sets which are complete in the dual class D2(Π1
1) (consisting of

the intersections of an analytic and a coanalytic set) were found in [5] and [1].

Here is the plan of the paper.
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In Section 2, we prove some basic properties of strongly surjective linear or-

ders, and we present a useful way of defining epimorphisms by pieces, that we use

throughout the paper.

We start studying the descriptive complexity of the set of countable strongly

surjective linear orders in Section 3. The set Lin of all linear orders ≤K on a subset

K of N is Polish as it is a closed subspace of 2N×N. We then call StS the set of

strongly surjective orders in Lin. Definition 1.1 immediately gives an upper bound,

StS being indeed a Π1
2 subset of Lin. We prove in this section that StS is Ď2(Π1

1)-

hard (Theorem 3.11). Our proof uses a study of the powers of Z and we notably

prove that ZK is strongly surjective for all countable K.

In Section 4 we show that for any countable scattered linear order K, there is a

∆1
1(K) function that maps a linear order L to an epimorphism from K to L when

it exists, and to the refusing symbol ⊥ otherwise (Theorem 4.17). As a corollary

we get a Ď2(Π1
1) definition of StS (Corollary 4.20). This completes the proof of

Theorem 1.3.

Finally, Section 5 deals with uncountable linear orders. We first prove that many

concrete (e.g. R, R \ Q, their finite products, and also RN, QN, 2α for α < ω1)

are not strongly surjective, leaving open the problem of the provability in ZFC of

the existence of an uncountable strongly surjective linear order. By contrast, we

prove the existence of uncountable strongly surjective orders assuming either PFA

(Theorem 5.13) or the existence of what we call a Baumgartner tree (Theorem 5.18).

The latter hypothesis is connected to the principle ♦+, and thus orthogonal to PFA.

We conclude by discussing some problems that remain open and suggest new

lines of research.

1.1. About notations

Variable symbols K,L,M always stand for linear orders. L? stands for the reverse of

the linear order L. We call equimorphism the equivalence relation ≡i associated to

≤i, and we use the symbol ' to denote isomorphism. The notation for operations

such as sums and products on linear orders is standard; a reference is [15]. In

particular,
∑
i∈I Li is the sum ordered by I of disjoint copies of each Li, in other

words
⋃
i∈I{i}×Li ordered lexicographically. The multiplicative notation LK stands

for K copies of L, i.e.
∑
k∈K L.

Given an order (K,≤K), and p ∈ K, define (←, p]K as {n ∈ K | n ≤K p}
and order it with the order induced by ≤K . Define in a similar fashion the orders

(←, p)K , (p, q)K , (p, q]K , [p, q)K , [p, q]K , (p,→)K and [p,→)K . We allow the nota-

tion [p, q]K when p = q as well, letting then [p, p]K = {p}. All these sets (including

(←,→)K = K) will be called intervals.

A subset K ′ of K is convex when x, y ∈ K ′ and x ≤K y imply [x, y]K ⊆ K ′ (so

every interval is convex, but not all convex sets are intervals).

We call Emb(L,K) the set of all embeddings from L to K, and Epi(L,K) the

set of all epimorphisms from K onto L.
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2. Strong surjectivity

We begin by stating some basic properties of strongly surjective orders.

Proposition 2.1.

1. A linear order L is strongly surjective if and only if L? is.

2. If L is strongly surjective and M ≤i L ≤s M , then M is strongly surjective and

L ≡s M .

3. If L and M are strongly surjective and L ≡i M , then L ≡s M .

Proof. (1) is obvious. (2) Let K ≤i M . Since M ≤i L and L is strongly surjective,

there is an epimorphism L → K. As there is also an epimorphism M → L, this

yields K ≤s M . (3) follows from the definition of strongly surjective.

Part (3) of Proposition 2.1 states that in any class of equimorphism there is at

most one ≡s-class of strongly surjective orders. However, not every class of equimor-

phism contains a strongly surjective order. Indeed, for an ordinal number α the

classes of equimorphism, isomorphism and bi-epimorphism coincide. So if α is not

of the form given by Theorem 1.2, its equimorphism class does not contain any

strongly surjective order.

The results of [4] easily yield the following characterizations of countable strongly

surjective linear orders that are not scattered:

Proposition 2.2. Let L be a countable non-scattered linear order. The following

are equivalent:

1. L is strongly surjective;

2. Q ≤s L;

3. L has no initial or final segment which is scattered.

Proof. The equivalence of (1) and (2) follows because all countable non-scattered

linear orders are equimorphic and Q is strongly surjective. By the above observation

L is strongly surjective if and only if L ≡s Q, which in turn is equivalent to Q ≤s L
because L ≤s Q for every countable L by Proposition 16(1) in [4].

The equivalence of (2) and (3) follows from Proposition 17 in [4].

Definition 2.3. Given a linear order L without a maximum, the cofinality of L,

denoted cof(L), is the smallest ordinal number α such that there exists an increasing

function α→ L unbounded above in L.

Similarly, for a linear order L without a minimum, the coinitiality of L, denoted

coi(L), is the reverse α? of the smallest ordinal α such that there exists an increasing

function α? → L unbounded below in L. Equivalently, coi(L) = (cof(L?))?.

Recall that L is short means that ω1 6≤i L and ω1
? 6≤i L.

Recall the following fact ([4], Fact 14(5)):
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Proposition 2.4. If K and L have no maximum and K ≤s L, then cof(K) =

cof(L). Similarly, if K,L have no minimum and K ≤s L, then coi(K) = coi(L).

Proposition 2.5.

1. If a strongly surjective order has a minimum, then it is a well-order. If it has a

maximum, then it is the reverse of a well-order.

2. A strongly surjective linear order that is not an ordinal has coinitiality ω?. Sim-

ilarly, a strongly surjective linear order that is not the reverse of an ordinal has

cofinality ω.

3. Every strongly surjective linear order is short.

4. The cardinality of a strongly surjective linear order cannot exceed the continuum

Proof. (1) If L is a strongly surjective order with a minimum and K is a non-empty

subset of L, then K must have a minimum, otherwise K ≤s L would be impossible.

Similarly for the maximum.

(2) If L is an ill-founded strongly surjective order, then ω? ≤i L and so ω? ≤s L.

It also follows that L does not have a minimum. So coi(L) = ω? by Proposition 2.4.

Similarly for the cofinality.

(3) By Proposition 2.4, (1) and (2) any suborder of a strongly surjective order L

must have either a maximum or cofinality ω. Therefore ω1 6≤i L. Similarly ω1
? 6≤i L.

(4) follows from (3) and a classical theorem of Urysohn’s ([15], Theorem 9.28)

about short linear orders.

It is useful to give a name to the orders satisfying the necessary conditions for

strong surjectivity given in the first two items of Proposition 2.5.

Definition 2.6. A linear order L is admissible if the following conditions hold:

1. L has a miminum or it has coinitiality ω?;

2. L has a maximum or it has cofinality ω.

So an order is short if and only if it and all of its suborders are admissible.

2.1. Defining epimorphisms

Given non-empty convex subsets K0 and K1 of K, say that K0 ≤ K1 when for all

x ∈ K0 and y ∈ K1 we have x ≤K y; similarly define K0 < K1 if for all x ∈ K0 and

all y ∈ K1 one has x <K y. Say that K0 and K1 are adjacent if K0 ≤ K1 and there

is no x ∈ K satisfying K0 < {x} < K1. Say they are connected when K0 ≤ K1 but

K0 ≮ K1 (so that they share an element).

An epimorphism can be defined on a covering by convex sets.

Definition 2.7. We say that a family of non-empty convex sets (Ki)i∈I of an order

K is nice if and only if the index set I is an interval of Z, the family (Ki)i∈I is

unbounded above and below in K and for all i ∈ I, Ki ≤ Ki+1 holds.
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We say that (Ki)i∈I is a nice covering of K if it is a covering of K by a nice

family.

Lemma 2.8 (Definition by pieces). Suppose we have (Ki)i∈I a nice family of

convex subsets of K and (Li)i∈I a nice covering of L satisfying that for any i ∈ I
when Ki and Ki+1 are not adjacent then Li has a maximum or Li+1 has a minimum,

and if Ki and Ki+1 are connected, so are Li and Li+1.

If for all i ∈ I, Li ≤s Ki holds, then L ≤s K.

Proof. Take σi ∈ Epi(Li,Ki) and whenever Ki and Ki+1 are not adjacent let li
be the maximum of Li if it exists, or the minimum of Li+1 otherwise. Define then

the map σ : K → L as follows.

σ(x) =

{
σi(x) if x ∈ Ki for some i ∈ I
li if Ki < {x} < Ki+1 for some i ∈ I

We defined σ on every Ki and on the convex sets between Ki and Ki+1, so on all of

K. Let us first check that it is well-defined. Suppose x is in Ki∩Ki+1 for some i ∈ I.

Then, since Ki ≤ Ki+1, we have Ki ∩Ki+1 = {x}, so that x = maxKi = minKi+1

connects the two intervals. The hypothesis gives that maxLi = minLi+1, and as

the maps σi and σi+1 are epimorphisms we have

σi(x) = σi(maxKi) = maxLi = minLi+1 = σi+1(minKi+1) = σi+1(x),

so σ is indeed well-defined. Since the maps σi are epimorphisms and the sets Li
form a nice covering of L, we finally have σ ∈ Epi(L,K).

In the above proof, we say that σ is defined by pieces. Some specific operations

come in handy to define epimorphisms by pieces.

Definition 2.9. Given K,L linear orders, σ ∈ Epi(L,K) and l ∈ L, we denote σl

the following epimorphism:

σl : K −→ (←, l]L

k 7−→

{
σ(k) if σ(k) ≤L l
l otherwise.

Similarly we define

σl : K −→ [l,→)L

k 7−→

{
σ(k) if σ(k) ≥L l
l otherwise.
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Given l ≤L l′, we also define

σl
′

l : K −→ [l, l′]L

k 7−→


l if σ(k) < l

σ(k) if l ≤ σ(k) ≤ l′

l′ if l′ < σ(k).

Proposition 2.10 (Family mash). Given linear orders K and L, with L admis-

sible, if there is a nice family (Ki)i∈I of K such that L ≤s Ki holds for all i ∈ I,

then we have L ≤s K.

Proof. We may assume that L is not a singleton, and so no Ki is a singleton.

Moreover, we can suppose that I has more than one element, otherwise if I = {i}
then Ki = K (because Ki is convex and unbounded) and we are done.

For each i ∈ I fix σi ∈ Epi(L,Ki). We want to define σ ∈ Epi(L,K) by pieces.

Suppose first that I is finite, and let i and j be its minimum and maximum.

Notice that (Ki,Kj) is nice. On the L side, take any l ∈ L and consider the nice

connected covering ((←, l]L, [l,→)L). Then we can use Lemma 2.8, with (σi)
l and

(σj)l witnessing (←, l]L ≤s Ki and [l,→)L ≤s Kj respectively, to define σ.

From now on, we suppose that I is infinite. There are four cases.

1. When L has a minimum l0 and a maximum l1, choose i ∈ I different from

the minimum and maximum of I (at most one of the extrema exists), and let

K− = {k ∈ K | {k} < Ki} and K+ = {k ∈ K | Ki < {k}}. The nice covering

(K−,Ki,K
+) of K and the connected covering ({l0}, L, {l1}) of L allow the

definition by pieces of σ.

2. When L has a minimum l̂ and no maximum, we need to distinguish two subcases.

If I has a maximum i we consider the nice covering (K \ Ki,Ki) and the

connected covering ({l̂}, L).

If instead I has no maximum, by admissibility of L let {ln}n∈N be strictly

increasing and cofinal in L. Fix i ∈ I and let K ′i = Ki∪{k ∈ K | {k} < Ki}. Now

consider the nice family (K ′i,Ki+1,Ki+2, . . .) and the nice connected covering

([l̂, li]L, [li, li+1]L, [li+1, li+2]L, . . .).

Using (σi)
li and (σj)

lj
lj−1

for j > i we again get the definition by pieces of σ.

3. When L has a maximum and no minimum, we can just mirror the previous case.

4. When L has no extrema, we look for a connected nice covering (Li)i∈I to match

(Ki)i∈I . Take (li)i∈Z strictly increasing, coinitial and cofinal in L. If I = Z then

take ([li, li+1]L)i∈I . If I has a minimum j, take Lj = (←, lj ]L and ([li, li+1]L)i≥j .

If I has a maximum j, take ([li, li+1]L)i<j and Lj = [lj ,→)L. In any case, we

can use the appropriate (σi)
li+1

li
, (σj)lj , and (σj)

lj to define σ by pieces.

In the above proof we say that we mash the family (Ki)i∈I onto L.
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Corollary 2.11. For K and L admissible, we have L ≤s LK.

Proof. By admissibility of K, take (ki)i∈I increasing, coinitial and cofinal in K for

some I which is an interval in Z. Mash the nice family (L× {ki})i∈I of LK onto L

using Proposition 2.10.

2.2. Operations on strongly surjective orders

In general, the sum of strongly surjective orders is not strongly surjective: consider

for example a countable ordinal whose Cantor normal form has two summands and

use Theorem 1.2. We now show instead that the product of two strongly surjective

orders is still strongly surjective, and that the left-quotient of a strongly surjective

order by a scattered order is also strongly surjective. First note the following.

Proposition 2.12. Let I be any order and for each i ∈ I, let Li be a strongly

surjective order. Then L =
∑
i∈I Li is strongly surjective if and only if for every

non-empty J ⊆ I there is an epimorphism from L onto LJ =
∑
j∈J Lj.

Proof. If L is strongly surjective, then it must admit an epimorphism onto its

suborder LJ for any non-empty J ⊆ I.

Conversely, suppose there is an epimorphism ψJ : L → LJ for any non-empty

J ⊆ I. Let K be a suborder of L and let J be the set of indices j such that K

intersects Lj in a non-empty set Kj , so that K =
∑
j∈J Kj . Since each Lj is strongly

surjective, let ϕj : Lj → Kj be an epimorphism. These induce an epimorphism

ϕ : LJ → K. Then ϕ ◦ ψJ : L→ K is an epimorphism.

This yields the following simple examples of strongly surjective orders.

Example 2.13. Let γ, δ be countable ordinals and n,m > 0. Then (ωγn)?, ωδm

and (ωγn)? + ωδm are strongly surjective.

Proof. The fact that (ωγn)?, ωδm are strongly surjective is a consequence of The-

orem 1.2 and Proposition 2.1(1). So by Proposition 2.12 it is enough to show

(ωγn)? ≤s (ωγn)? + ωδm and ωδm ≤s (ωγn)? + ωδm, which can be done by a

definition by pieces using the presence of an extremum in the range.

Corollary 2.14. If L and M are strongly surjective, then LM is strongly surjective.

In particular Ln is strongly surjective for all n ∈ N.

Proof. By Proposition 2.12, it is enough to show LK ≤s LM for any suborder K

of M . Let ϕ : M → K be an epimorphism and for k ∈ K let Mk = ϕ−1({k}). As

M is strongly surjective, each Mk must be admissible. Since L is also admissible by

Proposition 2.5, Corollary 2.11 implies that there is an epimorphism ϕk : LMk → L

for every k ∈ K. Gluing together these epimorphisms yields LK ≤s LM .
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Strongly surjective orders are not closed under infinite products (ordered lexi-

cographically), as we will show in Section 5.

Lemma 2.15. If L is a scattered linear order and 0 < n < m, then Lm 6≤i Ln.

Proof. We first show the special case L2 6≤i L, which is actually Lemma 1.17 of

[13]. Notice that if L2 ≤i L then an easy induction shows that Ln ≤i L for any n.

We show that under this hypothesis L is not scattered. To this end we recursively

define for every s ∈ 2<N a subset Ls of L which is isomorphic to L and a point

xs ∈ L. Start with L∅ = L. Assuming that Ls ' L and Ls ⊆ L, since L3 ≤i Ls,
pick a point xs in the middle copy of L embedded in Ls and let Ls0 and Ls1 be the

left and right copies of L embedded in Ls. Then {xs}s∈2<N is a dense suborder of

L, and so L is not scattered.

Now assume 0 < n < m and Lm ≤i Ln. Again inductively one can show that

L(m+ k(m− n)) ≤i Ln for all k. If k is large enough we have m+ k(m− n) ≥ 2n

and hence Ln2 ≤i Ln, which by the above implies that Ln is not scattered. Thus

L is not scattered.

Proposition 2.16. If L is scattered and LK is strongly surjective, then K is

strongly surjective.

Proof. Let J ≤i K and fix an epimorphism ϕ : LK → LJ . Define the relation

R ⊆ K×J by letting kRj ⇔ ϕ(L×{k})∩ (L×{j}) 6= ∅. If k ∈ K we denote by Rk
the vertical section {j ∈ J | kRj}. Similarly, for j ∈ J , Rj is the horizontal section

{k ∈ K | kRj}. Notice that:

- all sections are non-empty (i.e. the domain of R is K and its range is J);

- all sections are convex subsets of the respective linear order;

- |Rk| ≤ 3 for each k ∈ K (by Lemma 2.15).

To define an epimorphism ψ : K → J , we only need to define a surjection ψ that

satisfies kRψ(k) for all k ∈ K. Given k ∈ K we distinguish several cases.

(a) If |Rk| = 1 and j is the unique element of Rk set ψ(k) = j.

(b) If there is j (necessarily unique, by Lemma 2.15) such that L×{j} ⊆ ϕ(L×{k}),
then set ψ(k) = j; note that if |Rk| = 3 then k satisfies this case.

(c) So it remains to define ψ on the set H of those k such that |Rk| = 2, but do not

fall in case (b). Consider I a maximal ≤K-convex subset of H that is embeddable

in Z: I is contained in a cF -condensation class C of K; see Section 4.2 in [15].

So I has order type finite, ω, ω? or ω? + ω. We need to define ψ on each such I.

(c1) Suppose first that I has n elements k0 < . . . < kn−1. Consequently,
⋃n−1
r=0 Rkr

consists of n + 1 consecutive points of J , say j0 < . . . < jn, so that Rkr =

{jr, jr+1}.
(c1a) If k0 = minC, set ψ(kr) = jr+1 for 0 ≤ r ≤ n− 1. Notice that in this case, since

j0 does not witness that case (b) applies to k0, Rj0 consists of k0 and an infinite
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convex set with supremum k0: then for all but at most one k ∈ Rj0 \ {k0} we

have ψ(k) = j0 by case (a).

(c1b) If k0 6= minC but kn−1 = maxC, then let ψ(kr) = jr for 0 ≤ r ≤ n − 1. An

argument similar to the one used in case (c1a) shows that in this case ψ(k) = jn
for some k.

(c1c) If neither k0 is the first element of C, nor kn−1 is the last element of C, let k′

be the immediate precedessor of k0 and k′′ be the immediate successor of kn−1

in K. Thus k′Rj0, k′′Rjn (because neither k0 nor kn−1 satisfy the condition of

case (b)) and both ψ(k′) and ψ(k′′) have been defined according to cases (a)

or (b). Notice that ψ(k′) and ψ(k′′) cannot have both been defined according

to clause (b), with values different from j0, jn, respectively, as in this case one

would have L(n + 3) ≤i L(n + 2), contradicting Lemma 2.15. This implies that

either ψ(k′) = j0 or ψ(k′′) = jn. If ψ(k′) = j0, let ψ(kr) = jr+1; otherwise, let

ψ(kr) = jr.

(c2) If I has order type ω, ω? or ω? + ω, then
⋃
k∈I Rk has the same order type and

we can define ψ on I as any order preserving surjection onto
⋃
k∈I Rk.

By construction, ψ : K → J is order preserving and surjective.

3. Bounding the complexity of StS from below

The closure properties of Subsection 2.2 allow to build several examples of strongly

surjective linear orders. We present here other kinds of examples allowing to obtain

some hardness results.

First we make our formal setting precise. We call Lin the subset of 2N×N con-

sisting of all linear orders ≤K on a subset K = dom(≤K) of N. By definition it

is a Polish subspace of 2N×N. To avoid heavy notations, when there is no possible

confusion we just write K for the pair (K,≤K).

When we work with elements of Lin we fix recursive copies of N and Q, denoted

respectively by ω and η. Moreover we assume a fixed way of implementing sums

(finite or infinite) and products as recursive (and hence continuous) operations

which produce new elements of Lin.

Remark 3.1. In the literature most often people work with LO, the space of all

total orders on the domain N. The downside of LO is the absence of finite orders,

which we need for the main result in Section 4. That is why we deal with Lin.

However, for the classification results on strongly surjective orders the two settings

are equivalent. Indeed, denote by Fin the Σ0
2 set of finite orders in Lin, and notice

that there are continuous functions LO→ Lin\Fin and Lin\Fin→ LO that preserve

order types. If Γ is a pointclass that includes Σ0
2 and is closed under finite unions

and continuous preimages, and the set of strongly surjective orders in LO belongs to

Γ, then StS \ Fin ∈ Γ, so StS ∈ Γ. Conversely, if StS ∈ Γ, one has that the strongly

surjective orders as a subset of LO are in Γ as well.
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3.1. Basic hardness

Let Scat and WO be the subsets of Lin consisting of the scattered countable linear

orders and of the countable well-orders. It is well-known that both Scat and WO

are Π1
1 and Π1

1-complete.

Proposition 3.2. The sets StS, StS ∩ Scat and StS ∩WO are Π1
1-hard.

Proof. Let g : Lin→ Lin be defined by g(L) = (1 +L)ω. Using Proposition 2.5 and

Theorem 1.2, as g(L) has a minimal element for any L, we have g(L) ∈ StS if and

only if g(L) ∈WO. Since g(L) ∈WO if and only if L ∈WO, we have that g reduces

WO to StS, to StS ∩ Scat, and to StS ∩WO as well.

We now consider the set of countable strongly surjective linear orders that are

non-scattered.

Proposition 3.3. The set StS is Σ1
1-hard, and the set of non-scattered strongly

surjective orders is Σ1
1 and Σ1

1-complete.

Proof. Let f : Lin → Lin be defined by f(L) = η + Lω. As f(L) is non-scattered

for all L, we have f(L) ∈ StS if and only if it has no scattered initial nor final

segments by Proposition 2.2. But f(L) never has a scattered initial segment, and it

has a scattered final segment if and only if L itself is scattered. So finally f reduces

Lin \ Scat to StS, and even to the set of non-scattered strongly surjective countable

linear orders, which are consequently Σ1
1-hard.

The fact that StS \ Scat is Σ1
1 follows from the characterization of Proposition

2.2.(ii).

3.2. Powers of Z

The main new ingredient needed for the lower bound is a general version of the

exponentiation with base Z. There are two definitions of Zα for α an ordinal number.

The first one is by ordinal induction (see [15], Definition 5.34), while the second ([15],

Definition 5.35) is a direct set theoretic definition, and it can actually be used as

a definition of ZK for K any linear order. As pointed out in [15], Exercise 5.36(1),

the two definitions coincide when K is a well-order.

We first recall the definition by ordinal induction.

Definition 3.4.

1. Z0 = 1,

2. Zα+1 = Zαω? + Zα + Zαω,

3. Zα =
(∑

β<α Zβω
)?

+ 1 +
∑
β<α Zβω if α is a limit ordinal.

The following equalities will be useful.
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Proposition 3.5. For any α and β < α, we have

Zα =
(∑
γ<α

Zγω
)?

+ 1 +
∑
γ<α

Zγω =
( ∑
β≤γ<α

Zγω
)?

+
∑

β≤γ<α

Zγω.

Proof. To prove the first equality we argue by induction on α. The cases α = 0

and α limit are immediate from the definition. For the successor case we have

Zα+1 = Zαω? + Zα + Zαω

= Zαω? +
(∑
γ<α

Zγω
)?

+ 1 +
∑
γ<α

Zγω + Zαω

=
( ∑
γ<α+1

Zγω
)?

+ 1 +
∑

γ<α+1

Zγω,

where in the central step we use the induction hypothesis.

The second equality can be proved applying the first one to β, using (Zβω)? +

Zβω = ZβZ = Zβ+1.

Proposition 3.6. For any countable ordinal α and natural number m > 0, the

order Zαm is strongly surjective.

Proof. Since finite linear orders are trivially strongly surjective, by Corollary 2.14

it suffices to show that each Zα is strongly surjective. Proceed by induction on α.

When α = 0 we get the singleton linear order. Notice that Z is strongly surjective

by Example 2.13, so that Corollary 2.14 handles the successor step because Zα+1 =

ZαZ.

Suppose now that δ is limit and that Zγ is strongly surjective for all γ < δ. By

Corollary 2.14, so are Zγω and Zγω?. Recall that, by Proposition 3.5, Zδ can be

written as a sum over the index set I = δ? + δ: Zδ = (
∑
γ<δ Zγω)? +

∑
γ<δ Zγω.

First we show that if 1 ≤ β0 < β1 ≤ δ and H is a non-empty subset of δ with

supH < β0, then

∑
γ∈H

Zγω ≤s
∑

β0≤γ<β1

Zγω. (3.1)

If β1 = ρ+ 1 is a successor ordinal, (Zβ0ω,Zρω) is a nice family in
∑
β0≤γ<β1

Zγω
and we can mash

∑
β0≤γ<β1

Zγω onto
∑
γ∈H Zγω, since

∑
γ∈H Zγω ≤i Zβ0 ≤i

Zβ0ω ≤i Zρω. If β1 is limit, let ρn be an increasing cofinal sequence in β1, with

ρ0 = β0: we can mash the nice family (Zρnω)n∈N onto
∑
γ∈H Zγω. So, in either case

we get (3.1).

Take now a non-empty subset J of I: it determines two subsets J−, J+ ⊆ δ –

one of them possibly empty – and a suborder K = (
∑
γ∈J− Zγω)? +

∑
γ∈J+ Zγω.

We want to show that K ≤s Zδ, so that we can conclude the proof by applying

Proposition 2.12. Set K− = (
∑
γ∈J− Zγω)? and K+ =

∑
γ∈J+ Zγω.
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First notice that we may suppose that both K− and K+ are non-empty. In fact

if, for example, K− = ∅, letting α = min J+, we have

K = K+ = Zα +K+ ≤s (Zαω)? +K+,

so that an epimorphism from Zδ onto the rightmost part gives by composition an

epimorphism onto K.

Similarly, we may assume that both J− and J+ are unbounded in δ. Indeed, if

α < δ is an upper bound for, say, J+, we have

K ≤s K− + Zα+1 ≤s K− + Zα+1ω ≤s K− +
∑

α+2≤γ<δ

Zγω,

where in the first inequality we used the induction hypothesis, and in the last one

(3.1).

Since Zδ = (
∑
β≤γ<δ Zγω)? +

∑
β≤γ<δ Zγω for any β < δ, it is enough to show

that both K− ≤s (
∑
β≤γ<δ Zγω)? and K+ ≤s

∑
β≤γ<δ Zγω hold for some β. To

prove, for instance, the latter, let {αn}n∈N be increasing and cofinal in J+, with

α0 = min J+, and let {βn}n∈N be increasing and cofinal in δ, with αn+1 < βn for

all n ∈ N. Then, by (3.1), there exist epimorphisms∑
βn≤γ<βn+1

Zγω →
∑

γ∈J+,αn≤γ<αn+1

Zγω

Gluing them together, one obtains an epimorphism from
∑
β0≤γ<δ Z

γω onto K+.

Here is the set-theoretic definition of exponentiation with base Z.

Definition 3.7. Let K be a linear order. For any map ϕ : K → Z, Supp(ϕ) stands

for the support of ϕ, that is Supp(ϕ) = {k ∈ K | ϕ(k) 6= 0}. The K-power of

Z, denoted by ZK , is the following order on {ϕ : K → Z | Supp(ϕ) is finite}. If

ϕ,ψ : K → Z are maps with finite support let ϕ ≤ZK ψ if and only if ϕ = ψ or

ϕ(k0) <Z ψ(k0) where k0 = max{k ∈ Supp(ϕ) ∪ Supp(ψ) | ϕ(k) 6= ψ(k)}.

We now show that if K is countable but not a well-order then ZK ≡s Q, and

hence ZK is strongly surjective by Proposition 2.2.

Lemma 3.8. For any linear orders K and L we have:

1. ZK+L ' ZKZL
2. if K is countable and with no minimum then ZK ' Q.

Proof. (1) The bijection ZK+L → ZKZL, ϕ 7→ (ϕ|K , ϕ|L) is an isomorphism.

(2) Take K countable with no minimum, and suppose ϕ <ZK ψ holds for some

ϕ and ψ in ZK . As K has no minimum pick k0 ∈ K that is strictly below every
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element of Supp(ϕ) ∪ Supp(ψ). Define ϕ−, θ and ψ+, all in ZK , as follows.

ϕ−(x) =

{
−1 if x = k0

ϕ(x) otherwise,

θ(x) =

{
1 if x = k0

ϕ(x) otherwise,

ψ+(x) =

{
1 if x = k0

ψ(x) otherwise.

We have

ϕ− <ZK ϕ <ZK θ <ZK ψ <ZK ψ+,

so ZK is dense, countable, without extrema, giving ZK ' Q.

Proposition 3.9. If K is countable and not a well order then there is a countable

ordinal α such that

ZK ' ZαQ.

Hence ZK ≡s Q.

Proof. To obtain ZK ' ZαQ it suffices to use the previous lemma with the decom-

position K = α+K ′ for α ordinal and K ′ without a minimum. Since ZK is written

as a Q sum we have Q ≤s ZK , which yields ZK ≡s Q because K, and hence ZK , is

countable.

3.3. The lower bound

We now prove that StS is hard for the class Ď2(Π1
1) of all sets that are the union

of an analytic and a coanalytic set.

As we did for sums and products, we want to realize exponentiation with base

Z as an operation on Lin. Since in this case the details are less straightforward, we

provide them:

Proposition 3.10. There is a continuous (even recursive) function Lin → Lin

mapping any K to an order (ζK ,≤ζK ) isomorphic to ZK .

Proof. Fix n 7→ sn and n 7→ ((n)0, (n)1) recursive enumerations of N<N and N2

respectively, as well as a recursive order ≺ζ , whose domain is the whole N, that is

isomorphic to the strict part of ≤Z. For any K ∈ Lin we define (ζK ,≤ζK ) ∈ Lin.

First, the domain ζK is the set of codes for pairs of sequences of the same length,

the first with values in K, the second in N \ {0}. This simulates the finite support.
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For convenience we require the sequences with values in K to be ≤K-decreasing.

Writing lh(s) for the length of a sequence s:

ζK =
{
n ∈ N | lh(s(n)0) = lh(s(n)1) ∧ ∀i < lh(s(n)0) s(n)1(i) 6= 0

∧ ∀i < j < lh(s(n)0) s(n)0(j) <K s(n)0(i)
}
.

We now compare two codes of pairs of sequences on the first value on which they

differ. We have to be careful because if the value differs on the first sequence, it

means that the two sequences do not have the same support. Also, one sequence

could extend the other. Formally, given n,m ∈ ζK we have n ≤ζK m if and only if

- n = m;

or

- for all i < min{lh(s(n)0), lh(s(m)0)} we have

∀ε ∈ {0, 1}
(
s(n)ε(i) = s(m)ε(i)

)
,

and(
lh(s(n)0) < lh(s(m)0) ∧ 0 ≺ζ s(m)1(lh(s(n)0))

)
∨(

lh(s(m)0) < lh(s(n)0) ∧ s(n)1(lh(s(m)0)) ≺ζ 0
)
;

or

- there exists i < min{lh(s(n)0), lh(s(m)0)} satisfying

∀j < i ∀ε ∈ {0, 1}
(
s(n)ε(j) = s(m)ε(j)

)
,

and(
s(n)0(i) <K s(m)0(i) ∧ 0 ≺ζ s(m)1(i)

)
∨(

s(m)0(i) <K s(n)0(i) ∧ s(n)1(i) ≺ζ 0
)
∨(

s(n)0(i) = s(m)0(i) ∧ s(n)1(i) ≺ζ s(m)1(i)
)
.

This is, given K, a recursive encoding of an order ζK isomorphic to ZK .

Theorem 3.11. The set StS is hard for the class Ď2(Π1
1).

Proof. First observe that the set

A = {(K,L) ∈ Lin× Lin | K /∈WO ∨ L ∈WO}

is Ď2(Π1
1)-complete: if B = B0∪B1, with f0 reducing B0 to Lin\WO and f1 reducing

B1 to WO, then (f0, f1) reduces B to A.

We now prove that StS continuously reduces A. To this end we use the continuous

map f defined by

f(K,L) = ζK(1 + L)ω.
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If K /∈ WO then by Proposition 3.9 Q ≤s ζK . Then f(K,L) has no initial or

final segment which is scattered and by Proposition 2.2 we have f(K,L) ∈ StS. If

K ∈ WO then ζK is isomorphic to an ordinal power of ζ, which is scattered and

strongly surjective by Proposition 3.6. In that case, using both Proposition 2.16 and

Corollary 2.14, f(K,L) ∈ StS if and only if (1 + L)ω ∈ StS. Finally, since (1 + L)ω

has a minimum, Proposition 2.5(1) and Theorem 1.2 tell us that (1 + L)ω ∈ StS if

and only if L ∈WO, which concludes the proof.

4. Bounding the complexity of StS from above

Given a set A 6= ∅, the spaces AN and AN×N are endowed with the product topology

of the discrete topology on A.

Given K,L in Lin, Emb(L,K) is a closed subspace of KL, so it is closed in

(N ∪ {∗})N as well, where ∗ is a new symbol (we map the elements of N \ L to ∗).
Similarly, the space Epi(L,K) is Π0

2 in LK and hence a Π0
2 subspace of (N∪{∗})N.

Therefore both Emb(L,K) and Epi(L,K) are Polish spaces.

4.1. Some effective facts

We assume some familiarity with basic recursion theory. For effective descriptive

set theory, we refer the reader to Section 3E of [14] or to [11]. Notice that Lin is a

Polish recursive space in the sense of Section 2.4.3 in [11].

We make a heavy use of Chapter 4 of [14]. Let us recall the following well-known

facts ([14], 4D.3 and [11], Section 5.1.5, respectively). We state them in relativized

form, fixing a parameter K.

Fact 4.1. If X and Y are recursive spaces and A ⊆ X × Y is Π1
1(K) then {x ∈ X |

∃y ∈ ∆1
1(x,K)(x, y) ∈ A} is Π1

1(K).

Fact 4.2. Let X be a recursive space, Y a Π1
1(K) subset of a recursive space, and

A ⊆ X × Y a Π1
1(K) set. Then there exists a ∆1

1(K) function f : ∃∆A → Y which

uniformizes A on ∃∆A, where

x ∈ ∃∆A⇐⇒ ∃y ∈ ∆1
1(x,K)

(
(x, y) ∈ A

)
.

Some basic operations on linear orders are effective.

Fact 4.3. The operation ? : L 7→ L? is recursive.

We now spell out what we mean by saying that the definition by pieces of Lemma

2.8 is ∆1
1.

Fact 4.4. The following sets are ∆1
1:

1. for I an interval of Z, the set of (K, (Ki)i∈I) such that K ∈ Lin and (Ki)i is a

nice family of K,

2. the same with nice covering,
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3. the set of triples (K,L,M) such that L and M are adjacent convex subsets of

K,

4. the set of triples (K,L,M) such that L and M are connected convex subsets of

K,

5. the set of pairs (L, n) such that n is the maximum of L.

Notation 4.5.

• For I an interval of Z, PiecesI stands for the set of all (K̄, L̄) :=

((K, (Ki)i∈I), (L, (Li)i∈I)) in (Lin × LinI)2 such that: (Ki)i∈I is a nice family

of convex subsets of K; (Li)i∈I is a nice covering of L; for any i ∈ I when Ki

and Ki+1 are not adjacent then Li has a maximum or Li+1 has a minimum; and

if Ki and Ki+1 are connected, so are Li and Li+1.

• Call Epi the space (N ∪ {∗})N ∪ {⊥} where ⊥ is not an element of (N ∪ {∗})N;

Epi is equipped with the smallest Polish topology extending that of (N ∪ {∗})N
and making {⊥} a clopen set.

Fact 4.6. For any interval I of Z, PiecesI is ∆1
1 and so is the map

DefPiecesI : PiecesI × EpiI −→ Epi(
(K̄, L̄), (σi)i∈I

)
7−→

{
σ if ∀i ∈ I σi ∈ Epi(Li,Ki)

⊥ otherwise,

where σ ∈ Epi(L,K) is given by Lemma 2.8.

The explicit dependence on I will be omitted, and we shall write simply

DefPieces to denote this function.

Fact 4.7. If K ∈ Scat then any convex suborder of K is ∆1
1(K).

Proof. Fix K ∈ Scat. First notice that K has countably many convex subsets (see

[15], Exercise 5.33.1)). Moreover the set of convex suborders of K is a Π0
1(K), and

hence Σ1
1(K), subset of 2N×N. So an application of Harrison’s Effective Perfect Set

Theorem ([14], Theorem 4F.1) concludes the proof.

Definition 4.8. Given A and B subsets of Lin, denote by A + B the set

{K ∈ Lin | ∃K0(K0 is an initial segment of K ∧K0 ∈ A ∧K \K0 ∈ B)}.

Define then n·A for n ≥ 1 by induction on n by 1·A = A and (n+1)·A = n·A+A,

finally FinSum(A) stands for
⋃
n∈N(n+ 1) · A.

Fact 4.9. If A and B are two Π1
1(K) subsets of Scat, then so are A + B and

FinSum(A).

Proof. The class Π1
1(K) is closed by effective countable unions, so it suffices to

prove the statement for A + B. This comes from Facts 4.7 and 4.1.
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4.2. Uniformizations for epimorphisms

Definition 4.10. Given K ∈ Lin we say that K admits a ∆1
1-uniformization if

there exists a ∆1
1(K) map ΦK : Lin → Epi such that ΦK(L) ∈ Epi(L,K) when

L ≤s K and ΦK(L) = ⊥ when L 6≤s K.

Given A ⊆ Lin, if all K ∈ A admit a ∆1
1-uniformization we say that A has the

∆1
1-uniformization for epimorphisms.

Our goal is to show in Theorem 4.17 below that Scat has the ∆1
1-uniformization

for epimorphisms.

Fact 4.11. If L admits a ∆1
1-uniformization, so does L?.

Proof. Define ΦL?(M) = ΦL(M?).

Notice that a ∆1
1-uniformization of some K ∈ Lin is a ∆1

1 subset of U = Lin×Epi.

Following Section 5.1.1 in [11], we call (D1,W1) the coding of ∆1
1-subsets of U .

Recall that we have

• D1 is a Π1
1 subset of NN, W1 is a ∆1

1 subset of D1 × U
• {W1

α | α ∈ D1} is the set of ∆1
1 subsets of U and for any K, {W1

α | α ∈
D1 and α recursive in K} is the set of ∆1

1(K) subsets of U .

Fact 4.12. There is a partial ∆1
1 map: Lin → D1, K 7→ αK such that for every

K ∈ Lin admitting a ∆1
1-uniformization, αK ∈ D1 is a code of a ∆1

1-uniformization

ΦK = W1
αK

.

Proof. The relation

α is the code of a function that uniformizes K

is a Π1
1 subset of D1 × Lin by definition:

α codes a uniformization of K ⇐⇒ α codes a function Φ and

∀L ∈ Lin
(
(L 6≤s K ∧ Φ(L) = ⊥) ∨ Φ(L) ∈ Epi(L,K)

)
.

The result then follows using Fact 4.2.

Proposition 4.13. If A,B ⊆ Scat have the ∆1
1-uniformization for epimorphisms,

then so does A + B.

In particular, FinSum(A) has the ∆1
1-uniformization for epimorphisms.

Proof. We fix K ∈ A+B and K0 ∈ A, K1 ∈ B such that K0 is an initial segment of

K and K1 = K \K0. Since A and B have the ∆1
1-uniformization for epimorphisms,

for i = 0, 1 there exists a ∆1
1-uniformization ΦKi

for Ki. As Ki is a convex subset

of K ∈ Scat, by Fact 4.7 ∆1
1(Ki) is included in ∆1

1(K). Recalling that each ΦKi
is

a ∆1
1(Ki) map, this implies that ΦKi

is a ∆1
1(K) map.
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By Lemma 2.8 (and using the fact that K0 and K1 are adjacent but not con-

nected), L satisfies L ≤s K if and only if there is a nice covering (L0, L1) of L

satisfying L0 ≤s K0 and L1 ≤s K1. Since ΦKi allows to check whether Li ≤s Ki in

a ∆1
1(K) way and using Fact 4.4(2), the set C of triples (L,L0, L1) satisfying the

latter is ∆1
1(K).

We now use the effective version of Lusin-Novikov’s “small section” uniformiza-

tion result (see [14], 4F.6: the statement there is not effective, but the hint proves

the effective version) to obtain two ∆1
1(K) functions Ψ0 and Ψ1 with domain

{L | ∃L0, L1 (L,L0, L1) ∈ C} such that (L,Ψ0(L),Ψ1(L)) ∈ C holds for any L ≤s K.

We can now define ΦK : Lin→ Epi by setting ΦK(L) to be the map defined by

pieces from ΦK0
◦Ψ0(L) and ΦK1

◦Ψ1(L) when Ψ0(L) and Ψ1(L) are defined, and

ΦK(L) = ⊥ otherwise. By Fact 4.6, ΦK is a ∆1
1(K) map and in fact a ∆1

1-uniform-

ization of K.

We recall (some version of) Hausdorff’s hierarchy of countable scattered linear

orders.

• Call Scat0 ⊆ Lin the class of singleton orders,

• an element of Lin is in Scatα when it is isomorphic to a finite sum, an ω-sum or

an ω?-sum of elements of
⋃
β<α Scatβ .

Hausdorff proved that Scat =
⋃
α<ω1

Scatα, so for K ∈ Scat we define the Hausdorff

rank of K:

rkH(K) = min{α < ω1 | K ∈ Scatα}.

We have Scatα = {K ∈ Scat | rkH(K) ≤ α} and we can set Scat<α =
⋃
β<α Scatβ =

{K ∈ Scat | rkH(K) < α}.
Recall that if L is a suborder of K, then rkH(L) ≤ rkH(K) holds, and that rkH

is a Π1
1-norm (see [14], Section 4B). In particular, Scatα and Scat<α are ∆1

1(α).

Moreover, for any K ∈ Scat, using Theorem 4D.1(iii) of [14] we have rkH(K) ∈
∆1

1(K).

To prove that if Scatα has the ∆1
1-uniformization for epimorphism so does

Scatα+1 we only need to handle the case of ω-sums (as for the case of ω?-sums

we can use Fact 4.11, and the case of finite sums is handled by Proposition 4.13).

We use the following notion, implicitly used in [9].

Definition 4.14. We say that an order K is stable if and only if for all k ∈ K we

have K ≡s [k,→)K .

Since it is always the case that [k,→)K ≤s K, K stable really means K ≤s
[k,→)K for all k ∈ K. Notice that in particular a stable K has a minimum and

that the only stable orders with a maximum are the singletons.

Recall from [9] and [4] that the class of countable linear orders is well-quasi-

ordered (wqo) under epimorphisms. In particular, (Lin,≤s) is well-founded. We use

the following observation, due to Landraitis [9], Lemma 2.2.
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Lemma 4.15. Every K ∈ Lin has a stable final segment.

Proof. Fix K ∈ Lin and look for a ∈ K such that [a,→)K is stable. Fix a sequence

(an)n∈N monotone and cofinal in K. The sequence ([an,→)K)n∈N is ≤s-decreasing

so there is N ∈ N such that ([an,→)K)n≥N is ≡s-constant, for ≤s is well-founded

on Lin. Choose then a = aN . For any k ≥K a there is n > N such that k ≤K an
holds, and finally

[a,→)K ≤s [an,→)K ≤s [k,→)K ,

so [a,→)K is a stable final segment of K.

We need the following characterization of stability (also essentially contained in

[9], Lemma 2.2).

Fact 4.16. An admissible linear order K is stable if and only if it has a minimum

and for all a0 ≤K a1 and a in K there are b0, b1 in K such that a ≤K b0 ≤K b1 and

[a0, a1]K ≤s [b0, b1]K .

Proof. It is immediate that if K is stable then it has the desired property, so it

is enough to show the converse. Given any k ∈ K, take (ai)i∈N a cofinal monotone

sequence in K, with a0 = minK and a1 = k. Use the hypothesis to find a sequence

(b0i , b
1
i )i∈N such that we have

• ai+1 ≤K b0i ≤K b1i ≤K b0i+1,

• [ai, ai+1]K ≤s [b0i , b
1
i ]K .

Notice that since [b00, b
1
0]K ≤s [k, b10]K we can assume that b00 = k.

We can apply Lemma 2.8 to define by pieces a surjection showing that K ≤s
[k,→)K .

Theorem 4.17. Scat has the ∆1
1-uniformization for epimorphisms.

Proof. We prove inductively on α that Scatα has the ∆1
1-uniformization for epi-

morphisms. Take K ∈ Scat0, so that there is n ∈ N such that K = {n}. For m ∈ N
define τn,m : N→ N ∪ {∗} by letting τn,m(n) = m, and τn,m(i) = ∗ if i 6= n; then

ΦK : Lin −→ Epi

L 7−→

{
τn,m if L = {m} for some m

⊥ otherwise

is a ∆1
1-uniformizationa of K.

Fix now α < ω1 with α ≥ 1, and suppose that Scat<α =
⋃
β<α Scatβ has the

∆1
1-uniformization for epimorphisms. We need to prove that Scatα has it too.

aNotice that this ΦK is not continuous!
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By Proposition 4.13, FinSum(Scat<α) has the ∆1
1-uniformization for epimor-

phisms. Recall also that, by Fact 4.12, there is a ∆1
1 map that for any L ∈

FinSum(Scat<α) chooses the code αL of a ∆1
1-uniformization ΦL for L.

Calling A the set of stable elements of Scatα, Lemma 4.15 yields that Scatα can

be defined as

FinSum(Scat<α) ∪
(
FinSum(Scat<α) + A

)
∪ ?
(
FinSum(Scat<α) + A

)
,

where we are using obvious notations.

Fact 4.11 and Proposition 4.13 tell us that if A has the ∆1
1-uniformization for

epimorphisms, then so does Scatα.

Fix K ∈ A and let k0 be the minimum of K. If K has a maximum, it is a singleton

and we already know that it has a ∆1
1-uniformization. Thus we can assume that K

is a stable ω-sum of elements of Scat<α. To define a ∆1
1(K)-uniformization ΦK of

K we use the ∆1
1-uniformizations Φ[k,k′]K of [k, k′]K . Notice that the Φ[k,k′]K are

∆1
1(K) as well, because intervals are ∆0

1(K).

We now define ΦK(L) distinguishing three cases, each of them defined by a ∆1
1

property.

If L has no minimum (a Π0
2 condition) then notice that L 6≤s K and let ΦK(L) =

⊥.

If L has two extrema (a Σ0
2 condition) then notice that L ≤s K if and only if there

is k1 ∈ K such that L ≤s [k0, k1]K holds, if and only if ∃k1 ∈ K Φ[k0,k1]K (L) 6= ⊥.

In case k1 does exist, choose k1 minimal (as a natural number) and define ΦK(L)

by pieces from Φ[k0,k1]K (L) using the function DefPieces of Fact 4.6. Otherwise

let ΦK(L) = ⊥.

The last case is when L has minimum but no maximum (a ∆0
3 condition). Let

B = {L ∈ Lin | L has minimum but no maximum}. If L ∈ B we denote by {li | i ∈
N} the canonical cofinite sequence in L, defined by letting l0 be the minimum of L,

and li+1 be the least (as natural number) l ∈ L such that li <L l. Notice that the

map L 7→ {li | i ∈ N} is ∆1
1 on the ∆0

3 set B.

Claim 4.18. There exists a ∆1
1(K) function f : B → KN such that, writing

f(L)(i) = kLi , we have that the sequence {kLi | i ∈ N} is strictly increasing and

cofinal in K and moreover L ≤s K if and only if [li, li+1]L ≤s [kLi , k
L
i+1]K for every

i ∈ N.

Proof. Given L ∈ B we uniformly define in a ∆1
1(K) way the sequence {kLi | i ∈ N}

and an auxiliary sequence {mL
i | i ∈ N} ∈ 2N by induction on i. The intuition for

mL
i is that as long as mL

i = 0 we are still hoping to show that L ≤s K, while when

we set mL
i = 1 we actually know that L 6≤s K and we just need to make sure that

{kLi | i ∈ N} is cofinal in K.

As K ∈ B, {ki | i ∈ N} stands for the canonical cofinite sequence in K. First,

kL0 = k0 is the minimum of K and mL
0 = 0. Assuming we have already defined kLi

and mL
i we proceed as follows. If mL

i = 0 we look for k ∈ K such that [li, li+1]L ≤s
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[kL0 , k]K . If we succeed, we let k be the least (as natural number) such k and, using

the stability of K and Fact 4.16, find the least (code for) a pair (k̂, kLi+1) ∈ K2 such

that [kL0 , k]K ≤s [k̂, kLi+1]K and maxK(kLi , ki) ≤K k̂. This way we defined kLi+1, and

we set also mL
i+1 = 0. Notice that in this case we have

[li, li+1]L ≤s [kL0 , k]K ≤s [k̂, kLi+1]K ≤s [kLi , k
L
i+1]K .

If either the search for k ∈ K such that [li, li+1]L ≤s [kL0 , k]K fails or mL
i = 1,

we let mL
i+1 = 1 and kLi+1 be the least (as natural number) k ∈ K such that

maxK(kLi , ki) <K k.

Since we made sure that ki ≤K kLi the sequence {kLi | i ∈ N} is indeed cofinal

in K.

Now notice that if mL
i = 0 for every i then [li, li+1]L ≤s [kLi , k

L
i+1]K for every

i; using a definition by pieces we find a witness to L ≤s K. If instead mL
i = 1 for

some i let i be the least such. Then [li, li+1]L 6≤s [kLi , k
L
i+1]K and there is no k ∈ K

such that [li, li+1]L ≤s [kL0 , k]K . The latter fact implies L 6≤s K.

Now, using the claim, we can define ΦK on B. If [li, li+1]L ≤s [kLi , k
L
i+1]K for

every i (a ∆1
1(K) condition) then ΦK(L) can be defined applying the function

DefPieces from Fact 4.6 to the epimorphisms Φ[kLi ,k
L
i+1]K ([li, li+1]L). If instead

[li, li+1]L 6≤s [kLi , k
L
i+1]K for some i we set ΦK(L) = ⊥. �

We can finally pinpoint the complexity of StS, but first the complexity of StS∩
Scat.

Corollary 4.19. The set of scattered strongly surjective orders is Π1
1 and Π1

1-

complete.

Proof. The fact that StS ∩ Scat is Π1
1-hard is contained in Proposition 3.2.

Given an order K say that a ∆1
1-uniformization Φ of K is strong if for all L

such that L ≤i K we have Φ(L) 6= ⊥. By Theorem 4.17 K is scattered and strongly

surjective if and only if it is scattered and admits a strong ∆1
1-uniformization.

This gives in turn, using Fact 4.1, a Π1
1 definition of StS ∩ Scat.

Corollary 4.20. The set StS is the union of a Σ1
1 set and a Π1

1 set. It is in particular

Ď2(Π1
1), and in fact Ď2(Π1

1)-complete.

Proof. By Proposition 3.3, Corollary 4.19 and Theorem 3.11.

5. Looking for uncountable strongly surjective orders

5.1. Classical examples are not strongly surjective

Recall that Proposition 2.5(4) states that a strongly surjective linear order can have

at most the cardinality of the continuum. Here we show that the most common

orders of size the continuum and those that can be obtained from them using basic
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operations are not strongly surjective. We use different techniques, and for some

linear orders we have different proofs that they are not strongly surjective.

We first give a cardinality obstruction for strong surjectivity of suborders of R.

Theorem 5.1. Let ℵ0 < κ ≤ 2ℵ0 , and assume 2ℵ0 < 2κ. Then no X ⊆ R of

cardinality κ can be strongly surjective.

Proof. We use a counting argument: there are more subsets of X than order-

preserving maps from X to X.

Since X ⊆ R we can find a countable subset D of X such that for all x, x′ ∈ X,

if x < x′ holds then there is a d ∈ D with x ≤ d ≤ x′, and such that moreover the

endpoints of X belong to D, if they exist. Every order-preserving map from X to

X is the extension of an order-preserving map from D to X, and there are at most

continuum many of those:∣∣{f : D → X | f order-preserving}
∣∣ ≤ ∣∣XD

∣∣ = κℵ0 = 2ℵ0 .

Fix now f : D → X order-preserving, and compute how many order-preserving

extensions g : X → X of f there can be. Take x ∈ X \D, we can pick for g(x) any

y ∈ X that satisfies

∀d ∈ (←, x)X ∩D ∀d′ ∈ (x,→)X ∩D f(d) ≤ y ≤ f(d′). (5.1)

Call Ix the convex set of all points y satisfying (5.1). If Ix is trivial, that is empty

or reduced to a singleton, then there is at most one order-preserving extension of f

to x. Notice now that by the properties of D, for x 6= x′ in X \D the sets Ix and

Ix′ are disjoint. Since X ⊆ R there can be only countably many non-trivial Ix, and

each of these yields at most κ possible extensions, so for a fixed f we have∣∣{g : X → X | g order-preserving and f ⊂ g}
∣∣ ≤ κℵ0 = 2ℵ0 .

All in all we have at most continuum many order-preserving maps from X to X,

but X has even more subsets by hypothesis so it cannot be strongly surjective.

Corollary 5.2. R and R \Q are not strongly surjective.

Theorem 5.1 and its proof do not provide a concrete L such that L ≤i R yet

L 6≤s R (and similarly for R \ Q). A useful technique to prove that a linear order

does not admit epimorphisms onto another one is to compare their gaps. Recall

that a gap of K is given by a non-empty initial segment A ⊆ K with no maximum

such that K \ A is non-empty and has no minimum. Let G(K) be the set of gaps

of K linearly ordered by ⊆.

Proposition 5.3. If L and K are linear orders such that L ≤s K then G(L) ≤i
G(K).

Proof. If f is an epimorphism from K onto L then A 7→ f−1(A) is an injection

from G(L) to G(K).



November 8, 2018 11:43 WSPC/INSTRUCTION FILE strongsurj˙final

24 Riccardo Camerlo, Raphaël Carroy, Alberto Marcone

Corollary 5.4. Any linear order L with |G(L)| < 2ℵ0 is such that Q 6≤s L.

Hence Q witnesses the fact that R, R \Q, ZN, and, for every countable α ≥ ω,

2α ordered lexicographically are not strongly surjective.

Proof. The first part follows immediately from the Proposition because |G(Q)| =
2ℵ0 .

Each of the linear orders considered in the second part of the statement (and

indeed each short uncountable linear order) is non-scattered. Now observe that R
and 2α are complete (that is, they have no gaps), while |G(R \Q)| = |G(ZN)| = ℵ0.

The statements about R and R \Q are obvious.

To see that 2α is complete let A be a non-empty subset of 2α. Define inductively

x ∈ 2α as follows: given β ∈ α and assuming that x(γ) has been constructed for every

γ ∈ β, let x(β) ∈ {0, 1} be the least value such that x|β+1 majorizes {z|β+1 | z ∈ A}.
Then x majorizes A. Moreover, if y majorizes A and y <lex x, let s = y ∩ x; then

s0 ⊆ y, s1 ⊆ x, contrary to the definition of x. So x = supA.

To see that ZN has only countably many gaps let L = ZN ∪ (Z<N \ {∅}) where

the order on ZN is extended to L by ordering Z<N \{∅} lexicographically and letting

x <L s if and only if x|lh(s) ≤lex s for every x ∈ ZN and s ∈ Z<N \ {∅}. Then L is

complete.

Notice that the fact that 2N and ZN are not strongly surjective shows that Corol-

lary 2.14, stating that strongly surjective orders are closed under finite products,

cannot be extended to infinite products.

The next natural candidates for being uncountable strongly surjective orders are

the finite products obtained by using R \Q, R and possibly some countable orders

as factors. We show however that no uncountable strongly surjective order can be

obtained in this way.

Lemma 5.5. Let K, L and M be linear orders. Suppose that K 6≤s L and that

K ′ 6≤s M for any convex subset K ′ of K that has more than one point. Then we

have K 6≤s ML.

Proof. Suppose we have ϕ ∈ Epi(K,ML) and consider f : L → P(K) defined by

f(r) = ϕ(M×{r}). There is some r ∈ L such that f(r) is not a singleton, otherwise

f would induce an epimorphism from L onto K. But then f(r) ≤s M and f(r) is a

convex subset of K with more than one point, which is again impossible.

Definition 5.6. If κ is an infinite cardinal, a linear order L is κ-dense if it has no

end points and between any two distinct elements of L there are exactly κ elements

of L.

Lemma 5.7. There is a 2ℵ0-dense suborder M of R \ Q such that every interval

[x, y]M , for x <M y, has 2ℵ0 gaps.
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Proof. The following construction is a variation on the classical construction of a

Bernstein set (see e.g. Example 8.24 in [8]).

Let {In}n∈N be the set of the traces on R \Q of the real intervals with rational

endpoints. In each In we define subsets Xn = {xnβ}β∈2ℵ0 and Y nβ = {ynβm}m∈N, for

β ∈ 2ℵ0 , such that the elements xnβ , y
n
βm are all distinct. Fix β < 2ℵ0 and n ∈ N.

Suppose that xn
′

β′ and yn
′

β′m are defined for all β′ < β and n′,m ∈ N, as well as

xn
′

β and yn
′

βm for n′ < n and m ∈ N. Notice that the set A of these elements, if

non-empty, has cardinality max(ℵ0, |β|) < 2ℵ0 . So pick any xnβ ∈ In \A and distinct

ynβm ∈ In \ (A ∪ {xnβ}) such that

sup{ynβm | m ∈ N, ynβm < xnβ} = xnβ = inf{ynβm | m ∈ N, xnβ < ynβm}.

It follows that every xnβ is a gap in M = (R \Q) \ {xnβ | β < 2ℵ0 , n ∈ N}. Moreover,

if x, y ∈M,x < y, then [x, y]M contains some In ∩M , which has the cardinality of

the continuum (containing all ynβm) and has continuum many gaps (at least every

xnβ).

Theorem 5.8. Let L =
∏

0≤i≤n Li, where for each i either Li is countable or

R \ Q ≤i Li and |G(Li)| < 2ℵ0 (R \ Q and R are instances of such linear orders).

If L is uncountable, then L is not strongly surjective.

Proof. Suppose that L is uncountable, so at least one of the factors is uncountable.

Let M be the order given by Lemma 5.7. Since M ≤i R \ Q we have M ≤i L. It

then suffices to show that M 6≤s L, and this can be done by induction on n.

For n = 0, notice that M 6≤s L since |G(L)| < 2ℵ0 = |G(M)|.
If the statement holds for n, let L =

∏
0≤i≤n+1 Li. If

∏
1≤i≤n+1 Li is countable

(by cardinality reasons), or by inductive hypothesis, M 6≤s
∏

1≤i≤n+1 Li. Moreover,

if M ′ is any convex subset of M containing more than one point, then M ′ �s L0

either by cardinality reasons (if L0 is countable) or by the fact that M ′ has more

gaps than L0 (if L0 is uncountable). Now apply Lemma 5.5.

We already argued that 2N and ZN ordered lexicographically are not strongly

surjective. However the gap method does not apply to other natural infinite lexico-

graphic products, such as QN, RN, and (R \Q)N, which have 2ℵ0 many gaps. First

we show that products such as RN and (R \Q)N are not strongly surjective.

Theorem 5.9. For every k ∈ N let Lk be a linear order with at least two elements

such that for every convex set K ⊆ Lk we have Q 6≤s K. Then Q 6≤s
∏
k∈N Lk,

where the product is ordered lexicographically.

Proof. First of all notice that the hypothesis on Lk implies that every convex

subset of Lk does not surject onto 1 +Q, Q+ 1, or 1 +Q+ 1.

Suppose f :
∏
k∈N Lk → Q is an epimorphism. Our goal is to define an embed-

ding g : 2N →
∏
k∈N Lk such that f is injective on the range of g, thus reaching a

contradiction because Q is countable.
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If s ∈
∏
i<k Li for some k ∈ N we let Ns = {z ∈

∏
k∈N Lk | s ⊂ z}. To define

g we define h : 2<N →
⋃
k∈N

∏
i<k Li such that h(s) ∈

∏
i<2k Li when s ∈ 2k,

h(s) ⊂ h(t) when s ⊂ t, f(Nh(s)) is a convex subset of Q with at least two elements,

and f(Nh(sa0)) ∩ f(Nh(sa1)) = ∅. Then we set g(x) =
⋃
k∈N h(x � k), so that it is

immediate that if x, y ∈ 2N are distinct then f(g(x)) 6= f(g(y)).

The definition of h(s) is by recursion on the length of s, starting from h(∅) = ∅.
Thus we assume that s has length k and h(s) is defined respecting the conditions,

so that f(Nh(s)) is isomorphic to one of Q, 1+Q, Q+1, and 1+Q+1. Consider the

map that sends ` ∈ L2k to f(Nh(s)a`) ⊆ Q: since f(Nh(s)) 6≤s L2k, for some `0 ∈ L2k

we have that f(Nh(s)a`0) is not a singleton. Since L2k has at least two elements `0
is either not the maximum or not the minimum of L2k. Let us assume it is not

the maximum (otherwise we reason symmetrically). Then (`0,→)L2k
is a nonempty

convex subset of L2k and hence does not surject onto
⋃
`>L2k

`0
f(Nh(s)a`), which

is isomorphic to one of Q, 1 + Q, Q + 1, and 1 + Q + 1. Therefore we can find

`1 >L2k
`0 such that f(Nh(s)a`1) is also not a singleton. Notice that it might be

that f(Nh(s)a`1) intersect f(Nh(s)a`0) in a common endpoint. Thus we go to the

next level and find `00 <L2k+1
`01 <L2k+1

`10 <L2k+1
`11 such that f(Nh(s)a`i`ij ) is

not a singleton for every i, j. Consequently f(Nh(s)a`0`00) ∩ f(Nh(s)a`1`11) = ∅. Let

h(sai) = h(s)a`i`ii for i = 0, 1.

Corollary 5.10. Q witnesses that 2N, ZN, RN, and (R \Q)N ordered lexicographi-

cally are not strongly surjective.

Proof. First notice that 2, Z, R, and R \Q satisfy the condition imposed by The-

orem 5.9 on the Li’s. Then observe that each of 2N, ZN, RN, and (R \ Q)N is non-

scattered.

To show that QN is not strongly surjective we must use a different approach

(obviously Q ≤s QN): we exploit the definability of epimorphisms in certain settings.

Theorem 5.11. No uncountable Borel suborder of 2N, with the lexicographic order,

is strongly surjective.

Proof. First, notice that the usual product topology and the order topology on 2N

coincide. Indeed, for any s ∈ 2<N, the basic open set Ns = {x ∈ 2N | s ⊆ x} is open

in the order topology:

- N∅ = 2N

- if s = s′01h for some h > 0, then Ns = (s′01h−101∞, s′10∞)2N ; similarly if

s = s′10h for some h > 0

- if s = 0h for some h > 0, then Ns = (←, 0h−110∞)2N ; similarly if s = 1h for some

h > 0

Conversely, given any x ∈ 2N, fix y ∈ (x,→)2N and set s = x ∩ y. Observe that

x ∈ Ns0 and y ∈ Ns1, so Ns1 ⊆ (x,→)2N , which implies that (x,→)2N is open in
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Cantor space. Similarly one proves that (←, x)2N is open.

Now let X ⊆ 2N, and fix any order-preserving function f : X → 2N. For any

s ∈ 2<N the subset f−1(Ns) of X is convex, so there exists a convex subset A of 2N

such that f−1(Ns) = A ∩X. By the above, if x ∈ A and x is not an end point of

A, then x is in the topological interior of A. This implies that A is the union of an

open set plus at most two points (its end points, if they exist), so A is Borel in 2N

and f−1(Ns) is Borel in X; consequently, f is Borel.

If X is Borel in 2N, then f(X) must be analytic; so if X is uncountable, then

X is not strongly surjective, since there exist non-analytic subsets of X onto which

there can be no epimorphism.

Corollary 5.12. 2N, ZN and QN ordered lexicographically are not strongly surjec-

tive.

Proof. It is enough to show that ZN and QN, endowed with the product topology

on the discrete topology, Borel embed order preservingly in 2N ordered lexicograph-

ically. Since the natural inclusion is a Borel order preserving embedding of ZN into

QN, by the main theorem of [10] it is enough to prove that 2ω+1 6≤i QN. Notice that

2ω+1 has uncountably many pairs of consecutive points, so if 2ω+1 ≤i QN then QN,

being dense, should have uncountably many pairwise disjoint open intervals. How-

ever this is not the case, as every ≤lex-open interval in QN contains a non-empty

open subset in the Polish topology of QN.

The argument of Theorem 5.11 cannot be extended to suborders of 2α for ω+1 ≤
α < ω1, since on 2α the order topology and the product topology do not coincide.

In fact, for ω+ 1 ≤ α < ω1, there are more order-preserving functions from 2α into

itself than Borel maps with respect to the product topology. To see this, for every

A ⊆ 2N consider the function ϕA : 2α → 2ω+1 defined by letting

ϕA(x) =

{
(x � ω)a0 if x � ω ∈ A;

(x � ω)a1 if x � ω /∈ A.

The function ϕA is order-preserving, and ϕA 6= ϕB whenever A 6= B. Since 2ω+1

is isomorphic to a suborder of 2α, this shows that there are at least 22ℵ0 order-

preserving functions from 2α into itself.

5.2. Beyond ZFC

In contrast with the negative results that we showed so far, we now build an un-

countable strongly surjective order under extra set theoretic assumptions. For κ an

infinite cardinal less than the continuum, consider the statement

BAκ: up to isomorphism, there is a unique κ-dense suborder of R.

We know that BAℵ0 holds in ZFC, while the consistency of BAℵ1 with ZFC

was proved in [2]. Moreover, BAℵ1 follows from PFA. The interest for BAℵ2 was
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rekindled recently, as witnessed by [12]. Itay Neeman recently announced a proof of

the consistency of BAℵ2 from large cardinals.

Theorem 5.13. Let κ be an uncountable cardinal smaller than the continuum.

Assume BAκ. Then there exist strongly surjective orders of cardinality κ.

We prove in fact the following.

Proposition 5.14. Let κ be an uncountable cardinal smaller than the continuum.

Suppose that, up to isomorphism, X is the unique κ-dense suborder of R. Then

L ≤s X for any L ⊆ R with |L| ≤ κ.

Proof. Let M ⊆ L be a countable dense set in the order topology of L containing

all points having an immediate successor or an immediate predecessor in L and the

endpoints of L if they exist. Let Y =
∑
l∈L Yl, where Yl is isomorphic to X if l ∈M ,

and a singleton otherwise. It is then enough to show that Y is isomorphic to X. It

is easily checked that Y is κ-dense, so it remains to check that Y ≤i R.

For each l ∈ M let Zl ' R be a linear order containing Yl. If l ∈ L \M , let

Zl = Yl. Finally, let Z be the completion of
∑
l∈L Zl. The proof will be concluded

by showing that Z ' R.

By construction, Z does not have minimum nor maximum and it is complete.

To apply the classical characterization of the order type of R ([15], Theorem 2.30) it

remains to show that Z is separable. For each l ∈M , pick a countable dense subset

Ql of Zl. Then
∑
l∈M Ql is dense in Z.

Applying Corollary 2.14, one obtains that if X is the order provided by BAκ,

then each Xn is a strongly surjective order. These are in fact distinct order types,

more precisely the following holds.

Proposition 5.15. Assume BAκ and let X witness it. Then

X <i X
2 <i X

3 <i . . . and X <s X
2 <s X

3 <s . . .

Proof. Since Xn ≤s Xn+1, it is enough to show inductively Xn+1 6≤i Xn. First

notice thatX2 6≤i X, becauseX2 contains an uncountable family of pairwise disjoint

open intervals, while X does not.

Now assume Xn+1 6≤i Xn, and suppose towards a contradiction that f : Xn ×
X2 → Xn × X witnesses Xn+2 ≤i Xn+1. Write f(a, x) = (g(a, x), h(a, x)). If

for some a ∈ Xn the map x 7→ h(a, x) is injective then it witnesses X2 ≤i X,

contradicting the base step of our induction. Hence for all a ∈ Xn there exist

distinct x, y ∈ X2 such that h(a, x) = h(a, y). Fix a ∈ Xn, pick x = (x0, x1) and

y = (y0, y1) with this property, and such that x <X2 y. For all z ∈ (x, y)X2 and

b ∈ Xn we have (a, x) <Xn+2 (b, z) <Xn+2 (a, y) and hence h(b, z) = h(a, x). This

implies that (b, z) 7→ g(b, z) is injective and witnesses Xn × (x, y)X2 ≤i Xn. Now

notice that X ≤i (x, y)X2 : this is clear if x1 <X y1, while when x1 = y1 it follows
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from the fact that (x0, y0)X is κ-dense, and hence isomorphic to X. Putting all

together, we have shown that Xn+1 ≤i Xn, against the induction hypothesis.

In Theorem 5.13 we proved the existence of uncountable strongly surjective

orders under a consequence of PFA. So it is natural to try to build strongly surjective

orders under quite orthogonal principles, like ♦ and its variations. To this end it

appears that the following notions, with roots in [3], are relevant.

Definition 5.16. A partial order (T,≤T ) (often denoted only by T ) is a tree if for

all t ∈ T the initial interval (←, t[T has order-type an ordinal α called the length of

t. The set of nodes of length α is the αth level of T : we denote it by Tα. The height

of T is the smallest ordinal α such that Tα is empty. Moreover we say that s, t ∈ T
belong to the same brotherhood of T if (←, t[T = (←, s[T .

If every brotherhood of T is linearly ordered, then we can order T by the lexi-

cographic order we denote by ≤lex and, following Baumgartner [3], we say that T

is doubly ordered.

Two doubly ordered trees T and S are isomorphic (and we write (T,≤T ,≤lex) ∼=
(S,≤S ,≤lex)) if there exists a bijection f : T → S which preserves both the partial

and the linear orders.

Definition 5.17. A doubly ordered tree (T,≤T ,≤lex) is a Baumgartner tree if the

following conditions hold:

• (T,≤T ) is a Suslin tree (that is, every chain and every antichain in T is countable,

the height of T is ω1, and for all t ∈ Tα and all β < ω1 with α ≤ β there exists

s ∈ T β such that t ≤T s).
• T has rational brotherhoods, that is the ordering of each brotherhood of T is

isomorphic to Q.

• for every X ∈ [T ]ℵ1 , if

– X is cofinal with respect to ≤T in {t ∈ T | ∃s ∈ X(s ≤T t)},
– X has a rational basis, that is the ordering of its minimal elements is iso-

morphic to Q,

then we have (X,≤T ,≤lex) ∼= (T,≤T ,≤lex).

Assuming ♦+, in Theorem 4.15 of [3], Baumgartner claimed to build a minimal

Specker type which was in fact the linear part of what we call a Baumgartner tree.

As pointed out by Hossein Lamei Ramandi, Baumgartner’s proof has however a gap:

there are indeed many counterexamples to the crucial Lemma 4.14, stated without

proof.

Recently, Dániel Soukup ([16], see Section 4) modified the proof of Theorem 2.3

in [7] to construct a Baumgartner tree under ♦+.

Theorem 5.18. The linear order of a Baumgartner tree is strongly surjective.

Proof. Fix a Baumgartner tree (T,≤T ,≤lex) and let L = (T,≤lex).
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30 Riccardo Camerlo, Raphaël Carroy, Alberto Marcone

Observe first that, as T has rational brotherhoods, (T 0,≤lex) ' Q holds. Hence

L can be written as a Q-sum and Q ≤s L. For any countable linear order K we

have K ≤s Q and hence K ≤s L.

It remains to deal with the uncountable suborders of L. Given X ⊆ T uncount-

able let K = (X,≤lex). Consider

X◦ = {s ∈ X | X is cofinal in {t ∈ T | s ≤T t}},

and call A the set of its≤T -minimal elements. As A is an antichain and T is Suslin, A

is countable. Let B = X \X◦: B is not cofinal in any set of the form {t ∈ T | s ≤T t}
and hence, by a well-known property of Suslin trees, it is countable. For s ∈ B let Ls
be the singleton order, and for s ∈ A let Ls = 1 +L. Notice that for s ∈ A we have

Ls ' ({t ∈ X | s ≤T t},≤lex) by the last clause in the definition of Baumgartner

tree. The set {t ∈ X | s <T t} has indeed a rational basis C: take t, t′ ∈ C with

t <lex t
′ and call s′ = t∩t′ ≥T s. The second clause implies that there are immediate

successors s0 <lex s1 <lex s2 <lex s3 <lex s4 of s′ such that s1 ≤T t and s3 ≤T t′.

Cofinality gives us then ti ≥T si in C for i = 0, 2, 4, so C is densely ordered with

no extremes. As an antichain in T , C is countable.

Thus we have K '
∑
s∈A∪B Ls, where the sum is taken according to lexico-

graphic order. Since the 0th level of T is ordered as Q we have L ' LQ, so for any

countable linear order M we have, as linear orders: LM ' (LQ)M ' L(QM) '
LQ ' L. In particular Ls ' 1 + L ≤s L2 ' L for every s ∈ A, so we have∑
s∈A∪B Ls ≤s LM , where M = (A ∪ B,≤lex). Since M is countable, LM ' L.

Altogether we showed K ≤s L, as needed.

5.3. Some directions for further research

In this paper, we have given a fairly complete treatment of countable strongly

surjective linear orders. On the other hand, various problems regarding uncountable

strongly surjective linear orders have been left open. We discuss briefly here some

lines for further research in this direction.

5.3.1. The existence of uncountable strongly surjective orders

In the first draft of this paper, we left open three problems concerning strongly

surjective orders. The main one was: Does there exist an uncountable strongly sur-

jective order in ZFC? With two related questions: Does there exist an uncountable

strongly surjective order under CH? Or under ♦?

Upon learning about these problems, Dániel Soukup answered negatively the

second question, so a fortiori the first one: see Section 5 of [16].

The existence of a strongly surjective order under ♦ remains open. Dániel Soukup

included a healthy list of open problems about uncountable strongly surjective or-

ders in Section 6 of [16].
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5.3.2. Definably strongly surjective orders

In Theorem 5.11 we proved that no uncountable Borel suborder of 2N can be strongly

surjective by using definability reasons: such an order cannot surject onto a non-

analytic suborder, since epimorphisms are Borel. This suggests that there may be

some Borel subsets of 2N for which this is the only obstruction to strong surjectivity,

as they admit epimorphisms onto all their analytic suborders. Call such orders

definably strongly surjective.

Corollaries 5.4 and 5.10 (but not Corollary 5.12) show that 2N and ZN ordered

lexicographically are not definably strongly surjective.

Question 5.19. Do there exist definably strongly surjective orders that are not

strongly surjective? In particular, is QN definably strongly surjective? Can the con-

cept of a definably strongly surjective order be extended beyond the Borel suborders

of 2N?
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