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1 Abstract 
 

More than 90 % pancreatic ductal adenocarcinomas (PDACs) carry mutations in exon 1 of the 

KRAS gene causing the malignant transformation of the cells. One main function of mutant KRAS 

is to reprogram the metabolism in PDAC to generate biomass and reducing power to fuel a high 

rate of proliferation. 

Previous studies have demonstrated that the KRAS promoter contains a G-rich sequence located 

immediately upstream of the transcription start site (TSS). Our laboratory reported for the first 

time that this sequence (called 32R or G4 near) can fold in a non-canonical DNA structure, called 

G-quadruplex (or G4) under physiological conditions. This discovery was done in 2006 and since 

then many questions about the biological functions of this unusual G4 structure have been raised. 

Two years later, our laboratory reported that the KRAS G4 is recognized by several transcription 

factors (TFs) including MAZ, hnRNP A1, Ku70 and PARP1. We therefore hypothesized that the G4 

structure could play a role in the mechanism controlling the transcription of the KRAS oncogene.  

PDAC cells having a high metabolic rate produce more reactive oxygen species (ROS) than healthy 

cells. Higher intracellular levels of ROS are toxic as they promote the oxidation of lipids, proteins 

and DNA. Among the four nucleobases, guanine, having the lowest redox potential, is prone to 

oxidation to 7,8-dihydro-8-oxoguanine (8OG). In fact, previous data from our laboratory revealed 

that an increase of oxidative stress results in a higher level of 8OG in the promoter region 

containing the G4 structure than in non-G4 guanine-rich genomic regions. This guanine lesion is 

likely to behave as an epigenetic mark for the recruitment of MAZ and hnRNP A1 to the promoter. 

An important observation reported in this thesis is the existence of a strict correlation between 

KRAS and oxidative stress, as an increase of ROS significantly stimulates the expression of the 

gene.  An insight into the mechanism activating KRAS transcription was obtained when we 

focused on PARP1, as this protein was seen to be associated to the KRAS promoter region 

encompassing the G4 motif. We reasoned that this protein could be involved in the mechanism 

controlling transcription because when ROS are enhanced in PDAC cells, PARP1 is recruited to 

the KRAS promoter in the region near to TSS. 

PARP1 (Poly-ADP-Ribose Polymerase 1) is a nuclear protein that catalyses the transfer of poly 

ADP-ribose units (a post translation modification called PARylation) or mono ADP-ribose unit 
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(MARylation) onto target proteins, including itself. PARP1 is known to take part to the base 

excision repair (BER) mechanism by which an oxidized base is recognized, excised and repaired.  

In addition to its involvement in BER, the data accumulated during my PhD work clearly indicate 

that PARP1 plays also an important function in the KRAS promoter as a transcription factor.  We 

found that PARP1 tightly binds to the critical G4 structure formed by the 32R G4 motif. We 

foundthat PARP1 forms two DNA-protein complexes of stoichiometry 1:1 and 1:2 with a 

cooperative type of binding. In addition, as PARP1 contains multiple Trp residues in its DNA-

binding domain, we followed its binding to G4 by measuring the quenching of the Trp 

fluorescence upon addition of G4 to a PARP1 solution.  The fluorescence data confirmed a 1:2 

stoichiometry.   

We also observed that upon binding to the folded G4, but not a linear DNA strand, PARP1 

undergoes auto PARylation, acquiring a net negative charge. We reasoned that PARylated PARP1 

may behave as an anionic platform for the recruitment of nuclear factors that are cationic in 

nature under physiological conditions like MAZ (pI = 8.1) and hnRNP A1 (pI = 9.2). According to 

this model, G4 and PARP1 play together a key role in activating the transcription of KRAS. The G4 

structure near to TSS attracts, via PARP1, the transcription factors for the formation of the 

transcription pre-initiation complex. This is indeed confirmed by pulldown experiments carried 

out with biotinylated G4s and a nuclear extract from PDAC cells. We found that the G4 baits pulled 

down indeed all the proteins forming the multiprotein complex: a finding corroborating the initial 

hypothesis that the G4 upstream TSS behaves as an antenna for the recruitment of transcription 

factors. This idea is supported by the fact that when the cells are treated with an oligonucleotide 

mimicking the KRAS G4, the expression of KRAS is strongly inhibited because the exogenous G4 

molecules sequester the transcription factors essential for KRAS transcription. 

The key role played by PARP1 in the KRAS promoter is evidenced by the fact that when the PARP1 

gene is silenced by a specific siRNA, or when the catalytic activity of PARP1 is inhibited by a small 

molecule (Veliparib) we found that the KRAS expression was dramatically reduced. Taken 

together, these results provide evidence that PARP1 inhibition is a validated strategy to arrest 

PDAC cell proliferation. 

Besides elucidating the role played by PARP1 in activating KRAS transcription, we addressed also 

the issue about the recognition of PARP1 by the G4 formed by the 32R motif. A recent NMR study 
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reported that 32R folds in two structurally different G4 conformers (namely G25T and G9T) that 

are in slow equilibrium one another. We found by EMSA that both conformers interact with 

PARP1, forming stable DNA-protein complexes. However, pulled down assays showed that G25T 

has a higher capacity than G9T to form a multiprotein complex. Further experiments are required 

to clarify the role, if any, of G9T.  
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2 Pancreatic Cancer 
 

The pancreas is an abdominal glandular organ whose major part is located behind the bottom 

half of the stomach (Figure 1, [1]). Morphologically and functionally it can be divided into an 

exocrine (composed of acinar and ductal cells) and an endocrine (made of islets of Langerhans) 

pancreas. Exocrine pancreas displays digestive functions: acinar cells secret lipases, proteinases 

and amylases into pancreatic duct and finally reach small intestine to break down fats, proteins, 

and carbohydrates for absorption [2]. Endocrine pancreas is composed of five different 

Langerhans islets that synthesizes and secretes a specific hormone: insulin (β-cells), glucagon (α-

cells), somatostatin (δ-cells), pancreatic polypeptide (PP cells), and ghrelin (ε-cells) [2].  

 

When malignancies occur, this organ can give rise to three different tumour types: pancreatic 

neuroendocrine tumour (PNET) from the endocrine portion, pancreatic ductal adenocarcinoma 

(PDAC) and acinar cell carcinoma from the exocrine one [3]. PDACs are originated from five 

distinct precursor lesions: pancreatic intraepithelial neoplasias (PanINs), intraductal papillary 

mucinous neoplasms (IPMNs), intraductal tubulopapillary neoplasms (ITPNs), intraductal 

oncocytic papillary neoplasms (IOPNs), and mucinous cystic neoplasms (MCNs). All of them  

 

Figure 1.  A view of the pancreas. Bottom right: a micrograph of the pancreatic islets (Betts, J. 
G., Young, K. A., Wise, J. A., Johnson, E., Poe, B., Kruse, D. H., … De Saix, P. (2013). The endocrine 
pancreas. In Anatomy and Physiology. OpenStax.) 
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harbour different histological features, as well as mucin glycoprotein expression pattern and 

genetic alterations [4]. PanINs are the best known PDACs precursor lesions.  The early step is 

known as acinar-to-ductal metaplasia (ADM), a process in which acinar cells regress to a more 

embryonic progenitor cell state in which they express ductal markers [5]. Despite the common 

reversibility of the process during pancreatitis or injury, murine acinar cells driven by oncogenic 

KRASG12D not only are impaired in redifferentiation, but also further progress to duct-like cells 

that form precancerous PanIN 1A or 1B (early dysplastic) or PanIN 2 lesions (increasing levels of 

dysplasia). High-grade dysplasia PanIN 3 and PDAC phenotypes are achieved through further 

factors including:  loss of cyclin-dependent kinase inhibitor 2A, inactivation of tumour suppressor 

genes (i.e. Tp53, Brca2, Smad 4) and inflammation (Figure 2, [5]).   

PDAC is the fourth most frequent cause of cancer-related deaths worldwide with a 5-year overall 

survival of less than 8% [6]. In the last decades, several attempts have been made for a proper 

PDACs classification (reviewed in [7]), which led to the important conclusion that pancreatic 

cancer can’t be managed as one disease [7]; consequently, there’s a urgent demand of tailored 

cures. In 2016, Bailey and co-workers provided a classification of PDACs starting from 456 

samples collected after surgical resection [8]. They described four subtypes with distinct genes 

programs. 

Figure 2. Schematic representing how inflammatory macrophages and genetic 
alterations contribute to ADM and further cell progression toward pancreatic 
cancer cells (Storz, 2017) 
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• The Squamous subtype. Gene reprogramming is addressed to networks involved in  

inflammation, hypoxia response, metabolic reprogramming, TGF-β signalling, MYC 

pathway activation, autophagy and upregulated expression of TP63∆N and its target 

genes; 

• The Pancreatic Progenitor subtype. Transcriptional networks containing transcription 

factors pivotal for cell-fate determination towards a pancreatic lineage and those linked 

to fatty acid oxidation, steroid hormone, drug metabolism and glycosylation; 

• The Immunogenic subtype. Associated immune gene programmes included B cell 

signalling pathways, antigen presentation, CD4+ T cell, CD8+ T cell and Toll-like receptor 

signalling pathways.  

• The Aberrantly Differentiated Endocrine Exocrine (ADEX) subtype. Key genes in their 

network are those involved in acinar cell differentiation, pancreatitis/regeneration and 

endocrine differentiation. 

Currently, four genes resulted to be directly involved in the development of PDAC with 

different frequency through pancreatic cancer samples: KRAS (90%), CDKN2A (90%), Tp53 

(70%) and SMAD4 (55%) [9]. KRAS is a GTPase proto-oncogene that will be discussed in the 

next section. The other three critical genes are tumour suppressor genes implicated in the 

control of cell cycle regulation (CDKN2A), in cellular stress response (Tp53) and in signalling 

mediated by transforming growth factor , TGF- (SMAD4). 
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3 RAS 
 

The RAS oncogene proteins are the founding members of GTPases superfamily, which is divided 

into five major branches on the basis of sequence and functional similarities: RAS, Rho, Rab, Ran 

and Arf [10]. RAS family is composed of 36 members, among which Kirsten Ras (KRAS) (included 

isoforms KRAS4A and KRAS4B), Neuroblastoma Ras (NRAS) and Harvey Ras (HRAS) are the main 

components.  

Investigation of RAS started in 1960s from the isolation of transforming retroviruses able to 

induce sarcomas in mice, rats, cats, monkeys, chickens, turkeys and potentially transform cells in 

culture [11]. First sarcoma viruses were isolated in 1964 by Jennifer Harvey [12] and three years 

later by Werner Kirsten [13], from whom they were named Harvey and Kirsten sarcoma viruses, 

respectively (Ha-MSV and Ki-MSV). In 1974 Scolnick and colleagues found that these viruses held 

rat sequences within their genomes, hence suggesting that sarcoma formation might be related 

to normal cells that underwent malignant transformation [14]; at that time, genes we now know 

to be Ras were named as variants of src genes. Further studies performed by Scolnick proved the 

cellular origin of Harvey and Kirsten viruses (hereafter called HRAS and KRAS, from rat sarcoma); 

furthermore, these genes encode 21 kDa proteins that bind GDP and GTP, they are associated 

with the plasma membrane; when overexpressed, these proteins can turn cells into malignant 

counterpart and the key event is the GTP preferential binding (summarized in the review [11]). 

In 1982 a report by Cooper and colleagues stated that the transforming genes of human bladder 

and lung carcinoma cell lines are homologous to the transforming genes of Harvey and Kirsten 

sarcoma viruses [15]. Finally, in 1983 sequences of both normal and transformed HRAS and KRAS 

were provided. 

RAS-related proteins can be distinguished from the rest of the GTPases superfamily for the “G-

domain” that undergoes conformational change upon GDP-GTP switch [16]. Structure of KRAS4B 

is shown in Figure 3 [17].  
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H-, N- and KRAS genes encode for 188-89 residues proteins that share almost 90% of homology 

sequence, with some differences in the primary structure [16]. The most important common 

features among these proteins are the membrane targeting domain and the G domain. 

 

 

Figure 4.  Top: molecular insight of 
KRAS switch mechanism. When 
bound to GTP, it  interacts with 
effectors (E) for downstream 
signaling. Middle: overall sequence 
of Ras proteins. G-domain displays 
the highest homology degree 
among Ras members. Asterisks 
label most common mutational 
hotsposts. SI = switch region 1; SII = 
switch region 2. Bottom: detailed 
sequences of hypervariable C-
terminus where lipid post-
translational modification occurs. 
Pink box: CAAX motif. (Cox et al., 
2015)  

Figure 3. A) GDP-bound KRAS 4B crystal structure ; B) 2D representation of KRAS 4B secondary motifs; C) Linear sequence 
of KRAS 4B. Arrows indicate the most common mutational hotspots. Structural regions in all panels are highlighted with 
the following colour scheme: P-loop (residues 10–14), orange; switch-I (residues 30–40), red; switch-II (residues 58–72), 
blue; HVR (residues 167–188), green (Pantsar, 2020). 
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C-terminus is the site where a crucial post-translational modification occurs to keep KRAS 

anchored to the cytosolic site of plasmatic membrane: the addition of a lipid anchor. C-terminus 

is a hypervariable region (illustrated in Figure 4, bottom); despite RAS proteins here display 

lowest homology degree, they share a common pattern in the last four residues, known as “CAAX 

motif” (C =  cysteine, A = aliphatic amino acid, X = any amino acid, but commonly serine or 

methionine) [18].  Once translated, RAS undergoes farnesylation: briefly, farnesyltransfeRase 

(FTase) catalyzes the thioether linkage formation between a 15-carbon farnesyl polyisoprene unit 

and the cysteine of the CAAX motif. Farnesylated-RAS displays higher affinity toward endoplasmic 

reticulum whereas it undergoes cleavage of AAX amino acids by  RAS converting CAAX 

endopeptidase 1, also known as RAS converting enzyme 1 (RCE1); finally, the carboxy end of 

cysteine gets methylesterified by isoprenylcysteine carboxylmethyltransfeRase (LCMT). This final 

reaction results in mature Ras with higher affinity toward plasma membrane where it migrates.  

G domain is where GTP-GDP switch occurs. Secondary structure encompasses six -strands, 

forming the protein core, surrounded by five -helices (Figure 3). G domain harbours two regions 

referred to as Switch 1 (SW1) and Switch 2 (SW2), that change conformation when -phosphate 

is released upon GTP hydrolysis [19] and contain crucial residues for nucleotide and Mg2+ 

coordination [20]. The P-loop, also known as Walker A motif, is located between the 10th and the 

17th residue and is shared among ATPases and GTPases [21], [22]. P-loop wraps tightly around 

the GTP β-phosphate group [23]. Mutations in this sequence dramatically affect RAS behaviour, 

leaving the protein in a constitutive GTP-bound active state. 

GTP-bound KRAS indicates signalling pathway is on, whereas the GDP-bound points out signalling 

is switched off. Two proteins promote this transition: GTPase Exchange Factor (GEF), which aids 

the exchange of GDP in favour of GTP, and GTPase Activating Protein (GAP) that induces the 

hydrolysis of GDP that turns off KRAS signalling. Cancer-associated RAS genes display missense 

mutations that encode single amino acid substitutions primarily at one of three mutational hot 

spots: glycine-12 (G12), glycine-13 (G13), or glutamine-61 (Q61). These mutations render RAS 

persistently GTP-bound and constitutively active regardless extracellular stimuli. Persistent 

activation of RAS results in the continuing stimulation of downstream signalling partners, which 

results in many of the phenotypic hallmarks of cancer including increased proliferation, the 

suppression of apoptosis, altered metabolism, alteration of the tumour microenvironment, 

evasion of the immune response, and metastasis [24].  
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3.1 KRAS signalling in pancreas 

 

Oncogenic KRAS signalling in PDAC is highly complex and is thought to involve three major 

pathways: Raf/MEK/ERK, PI3K/Pdk1/Akt and the Ral GTPases pathway (Figure 5, [25]).  

 

1. The Raf-MEK-ERK pathway (Figure 5, red dotted) comprises the major part of the mitogen-

activated protein kinase (MAPK) pathway system, and the A-, B- and C-Raf kinases are on the 

top of this cascade. Once KRAS is active, Rafs are recruited to the membrane when they get 

phosphorylated. Activated RAF phosphorylates kinases MEK1 and MEK2, which in turn 

activate the serine–threonine kinases ERK1 and ERK2. Interestingly, despite KRASG12D is a 

shared mutation both in PDAC and non-small cell lung cancer, C-Raf is required for tumour 

development only for the latter, whereas it displays only little effect on pancreatic cancer 

[26], [27]. In mice, pancreas-specific expression of the B-RafV600E oncogene leads to the rapid 

formation of multifocal PanIN lesions [28].  

 

2. The PI3K/PTEN/AKT pathway (Figure 5, green dotted) is a second well-characterized RAS 

effector pathway in pancreatic cancer. Among membrane lipids, phosphoinositides are 

negatively charged constituents involved in intracellular signalling: they’re formed by 

phosphorylation of hydroxyl groups on positions 3′, 4′, or 5′ of the inositol ring of phosphatidyl 

inositol (PI) by PI 3′-OH kinase (PI3K). PI3Ks are composed of different catalytic subunits that 

belong to one of three classes (I, II and III). In PDAC, class I PI3Ks gets active upon GTP-KRAS 

stimulus; active PI3K stimulates the production of PIP3 (phosphatidylinositol 4,5-

triphosphate) from PIP2 (phosphatidylinositol 4,5-biphosphate), which serves as recruitment 

platform for both AKT and the phosphoinositide-dependent kinase 1 (PDK1). AKT then gets 

activated via phosphorylation [25]. Phospho-AKT downstream signalling includes MTOR and 

RAC pathways. On the contrary, PTEN hydrolyses PIP3 into PIP2 by 3’-dephosphorylation [29]. 

Mutations in PI3K/PTEN/AKT pathway are so powerful that oncogenic class I PI3KAH1047R 

drives ADM, PanIN formation and adenocarcinoma in a PDAC mouse model even in the 

absence of oncogenic RAS; furthermore, these tumours displayed activated AKT and GSK3B 

at a level indistinguishable from oncogenic KRAS-driven tumours [25]. 
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3. Ral GTPases (Figure 5, blue dotted) represent a third family of Ras effector molecules. Like 

other small GTPases, Ral cycles between the GDP-bound inactive state and GTP-bound active 

state in cells; likewise, they rely on RalGEFs to exchange GDP with GTP and RalGAPs to 

hydrolyse GTP into GDP. RalA and RalB are the two proteins involved in this branch [30]. 

Importance of this pathway in pancreatic cancer has been elucidated by Lim, Counter and 

colleagues: in a panel of pancreatic cancer cell lines and patient-derived tumours, RalA was 

found crucial for tumour initiation whereas RalB is more involved in tumour metastasis. 

Interestingly, RalA-RalB branch pathway seemed to be more activated in pancreatic tumour 

tissue than other Ras effector pathways [31], [32]. 

 

It has been observed that many RAS-driven tumours strongly depend on the continued 

expression of oncogenic KRAS [33]. Indeed, recent studies support the notion that KRAS 

reprograms the metabolism in cancer cells in order to produce the biomass necessary to feed a 

Figure 5. Overview of KRAS signalling cascade in pancreatic cancer (Mann K.M. et al., 2016) 
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high proliferation rate [34], [35]. The dependence of the metabolism on specific oncogenes has 

led to the concept of “oncogene addiction”, according to which cancer cells although depending 

on a number of genetic aberrations, often develop a dependency on a particular oncogene [36], 

[37]. Recent data showed that oncogenic KRAS increases the glucose, glutamine and fatty acids 

uptake as well as their consumption in order to sustain the biosynthesis and to maintain the 

cellular redox homeostasis [38]. KRASG12D directs part of the glycolytic flux into the 

hexosamine/glycosylation pathways and the pentose phosphate pathways (PPP) to produce 

ribose for nucleotide synthesis and reducing power (NADPH) [34]. Furthermore, KRAS mutant 

pancreatic cancer cells display quite a high consumption of glutamine and serine. As KRASG12D 

inhibits the enzyme glutamate dehydrogenase GLUD1, which by converting glutamate into alfa-

ketoglutarate channels glutamate into the Krebs cycle, Gln in the mitochondria is deaminated 

oxidatively into glutamate which is then transaminated with oxaloacetate into aspartate by 

GOT2. Asp is transported in the cytoplasm where it is reconverted to oxaloacetate, by the 

aspartate transaminase GOT1, then into malate and pyruvate by the malic enzyme NADP+ -

dependent. This unusual metabolic cycle induced by KRASG12D increases the level of NADPH and 
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thus the cell redox potential [35] (Figure 6, right hand side [38]). In addition to glutamine, PDAC 

cells consumes a lot of serine. This is not surprising as serine is the amino acid that supplies one-

carbon group to folic-acid pool, the vitamin necessary for the synthesis of the purine and 

pyrimidine nucleotides [39].   

 

 

 

3.2 Targeting KRAS 

 

As PDAC cells are addicted to oncogenic KRAS, this critical oncogene or its product, i.e. the KRAS 

protein, are regarded as suitable targets for the rationale design of anticancer drugs. In fact, 

genetically engineered mouse models showed that the initiation of PDAC is caused by oncogenic 

KRAS [34]. So far attempts to develop small-molecule inhibitors specific for the KRAS protein did 

Figure 6. Some of the amino acid metabolism reprogramming to which KRASG12D is responsible. Pink-colored 
background is for pathway revealed in non small lung cell cancer (NSCLC), yellow-colored is for common pathways 
between PDAC and NSCLC. Mutant KRAS enhances both macropinocytosis and autophagy to provide an amino 
acid pool to sustain tumour growth. Among aa, glutamine is consumed through an alternative pathway: KRASG12D 

indeed inhibits glutamate dehydrogenase (GLUD1), preventing Gln to enter TCA cycle, and enhances glutamic-
oxaloacetic transaminase (GOT2) that converts Gln into Asp. This latter gets further catabolized by cytosolic 
enzymes into pyruvate which, in turn, produce NADPH that boosts Reactive Oxygen Species (ROS) production 
(Pupo et al., 2019) 
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not give the expected results because the surface of the RAS protein lacks of a suitable 

hydrophobic pocket to host the inhibitor [40]. Alternative strategies on which many researchers 

focused their efforts are based on the development of inhibitors targeting the association of the 

KRAS protein to the plasma membrane, the downstream KRAS signaling and specific KRAS-

dependent metabolic pathways [41]. Despite more than two decades of research, no anti-RAS 

drugs have yet reached the clinic, suggesting that KRAS is quite “undruggable”. This 

notwithstanding, oncologists agree about the urgency for finding alternative and innovative 

strategies to treat RAS-driven cancers. Given the negative impact of PDAC in western countries, 

this represents one of the main challenges of the medical research for the near future. 

 

Recent studies have focused on targeting the metabolic enzymes regulated by KRAS, including 

those of the glucose and glutamine metabolism and of the lipid homeostasis. It has been recently 

reported that in lung cancer mutant KRAS upregulates acyl-coenzyme A (CoA) synthetase long-

chain family member 3 (ACSL3), which converts fatty acids into acyl-CoA esters to supply β-

oxidation [42]. Moreover, mutant KRASG12D drives a lipogenic gene-expression program to 

promote de novo lipogenesis to produce monounsaturated lipids which are less keen to 

peroxidation than the polyunsaturated analogues [43]. Synthetic lethal interactions have been 

widely investigated in cancer therapy, in particular the PARP-inhibitors for cancers deficient in 

the homologous recombination repair pathway seems one of the most promising [41].  

 

The targeted therapies against KRAS that have been investigated in PDAC cells can be grouped 

into the following categories:  

1. MEK1/2 inhibitors. This category includes trials with the purpose of targeting the KRAS 

MAPK signaling pathway. In the last decade, several trials were assessed to evaluate 

inhibitors efficacy: three phase 2 trials evaluated MEK inhibitors in combination with 

gemcitabine in locally advanced and/or metastatic PDAC; two phase 2 studies evaluated 

the role of dual inhibition of KRAS downstream pathways, selumetinib + erlotinib and 

selumetinib with MK 2206 (an AKT inhibitor) (reviewed in [44]) 
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2. Ras Farnesyl transferase inhibitions. The mevalonate pathway provides all mammalian 

isoprenoids, a class of metabolites which serves as starting molecules for the synthesis of 

a conspicuous number of biomolecules i.e. steroids, bile acids, lipoproteins, vitamin D, 

heme A, ubiquinone, dolichol and isopentenyladenine [45]. Mevalonate is the reduction 

product of hydroxymethylglutaryl coenzyme A (HMG-CoA), catalyzed by HMG-CoA 

reductase; mevalonate is then converted into the 5-carbon precursor units isopentenyl 

pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). Hereafter, each 

elongation step adds 5 carbon units: human farnesyl pyrophosphate synthase (hFPPS) 

produces the C-10 geranyl pyrophosphate (GPP) and then the C-15 isoprenoid farnesyl 

pyrophosphate (FPP), whereas the immediate downstream human geranylgeranyl 

pyrophosphate synthase (hGGPPS) enzyme elongates FPP substrate to the C-20 

isoprenoid geranylgeranyl pyrophosphate (GGPP). As reported in Chapter 2, KRAS 

undergoes farnesylation onto the CAAX motif by the action of FTPase, a crucial post-

translational modification to anchor KRAS to the inner layer of the cellular membrane. 

Noteworthily, when FTPase is inhibited, Ras proteins rely on geranylgeranyl phosphate 

transferase (GGTPase) to get prenylated and exert their function [46]. Several compounds 

were studied to evaluate their efficacy in PDAC patients, among which R115777 and 

Tipifarnib showed either low or no amelioration in clinical outcome [47]. Ongoing studies 

are investigating both geranyl-geranyl transferase and farnesyl transferase.   

 

3. Targeting the hydrophobic pocket of RAS protein. Initial attempts to targeting the 

nucleotide binding domain showed that this strategy is difficult due to the high picomolar 

affinity of RAS protein towards the nucleotide GDP and GTP, which are present in the 

intracellular matrix at high micromolar concentrations. GDP-bound KRAS 4B can be 

stabilized by two ligands:  2-(4,6-dichloro-2-methyl-1H-indol-3yl)ethane-1-amine [48] and 

N-(2-[(1H-indol-3-yl)methyl]-1H-1,3-benzodiazol-5-yl)pyrrolidine-2-carboxamide [49]. In 

both case, the interaction prevents the formation of KRAS-GEF complex, and the latter 

displays greater affinity toward G12D mutated KRAS 4B form. Another promising 

compound was found by Xie et al. in 2017 [50], named 0375-0604. It binds with moderate 

affinity to the Switch I – Switch II region of mutant G12D, G12C and Q61H KRAS 4B 

selectively inhibiting proliferation of non-small lung cancer cells without any effect on 
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normal cells. This inhibition results in G2/M cell cycle arrest and reduced activation levels 

of AKT, CRAF and ERK pathways. 

 

4. Targeting either the promoter or the 5’-UTR/3’-UTR regions of  kras gene.  

 

4.1 In the past years, our laboratory provided a number of different approaches to 

target KRAS expression in PDAC. Focusing on short non-coding micro RNAs, 

miR216b resulted atypically downregulated in pancreatic tumours, thus provided a 

good platform to develop a miR-based strategy to inhibit KRAS expression, hence 

PDAC viability [51]. Double-stranded miR-26b mimics, with unlocked nucleic acid 

(UNA) modifications in the guide strand, specifically suppress the KRAS gene in 

PDAC cells. Also UNA-modified single strand miRNAs turned out to be strongly 

active. The strategy was further validated when Panc-1 and Mia PaCa2 cells were 

treated with designed lipid-modified miR-216 delivers with palmityl-oleyl-

phosphatidylcholine liposomes. Clonogenic assays showed that these siRNAs 

caused a marked decrease of cell growth [51].  

 

4.2 KRAS 5’-UTR was found to adopt a non canonical nucleic acid structure, known as 

G-quadruplex (see “G-Quadruplex, a non canonical DNA/RNA structure” section). 

Stabilization of this structure is a key element to prevent KRAS translation [52], [53]. 

Small anthrafurandione (ATFD) and anthrathiophenedione (ATPD) molecules 

tested in our lab strongly induce apoptosis and reduce the metabolic activity and 

colony formation of Panc-1 cells [54]. Recently, another common G4 ligand has 

been used both in vitro and in vivo to evaluate its effect on PDAC cells: porphyrin 

TMpyP4. Our lab improved its permeability to cells by increasing its degree of 

lipophilicity with the attachment of a C14 or C18 alkyl chain [55]. These alkylated 

porphyrins bind efficiently to the KRAS and NRAS transcripts at the G4 structures 

located in 5’-UTR causing the breakdown upon photoirradiation of mRNA. This 

resulted in a strong reduction of Panc-1 metabolic activity; moreover, C14-

porphyrin reduces cell growth of a Panc-1 xenograft and induce apoptosis [55].  
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4.3 In the late 1980s, Perucho and Jordano found that the promoter of human KRAS 

gene reveals a G-rich nuclease-hypersensitive element (NHE), upstream of the 

transcription start site /TSS), which is essential for transcription [56], [57]. In 2006, 

our laboratory demonstrated for the first time that NHEs can adopt under 

physiological conditions a stable G4 structure that serves as a recruitment platform 

for different nuclear proteins [58]. In the light of these findings, the design of 

oligonucleotides mimicking KRAS quadruplexes (G4 decoys) should sequester these 

proteins and block transcription. Experiments carried out in our laboratory showed 

that the G4 decoys inhibit KRAS expression, cell growth and colony formation in 

pancreatic cancer cells [59]. 
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4 G-Quadruplex, a non canonical DNA/RNA structure 
 

1953 was the year zero for DNA. James Watson and Francis Crick discovered DNA common 

structure is a double helix, known as B-DNA [60]. The two DNA strands run antiparallelly and are 

kept together by hydrogen bonds between base pairs (A with T, G with C). Moreover, B-DNA is 

made of two grooves named major and minor grooves. Duplex DNA can adopt two further 

conformations: A-DNA (a thicker right-handed duplex) and Z-DNA (left-handed, with a 

pronounced zig-zag pattern in the phosphodiester backbone). In addition to the canonical 

structure (Fig. 2A), DNA can form non-canonical DNA structures such as triplex, tetraplex of 

guanines (G-quadruplex), i-motifs and junction structures, including a cruciform (four-way 

junction) consisting of two hairpin and a three-way junction (Figure 7) [61].  

 

In 1910 Bang reported that a concentrated solution of GMP (25 mg/ml) at pH 5 becomes viscous 

and forms a gel, suggesting the formation of a high-order structure [62]. About a half century 

later, Gellert et al. reported that guanylic acid has the ability to form tetrameric structures by 

self-association [63]. In the 80’s, two groups reported conserved DNA sequences of telomeres 

are able to fold into a so-called G-quadruplexes (G4) structures in vitro, providing the first 

example ever of a DNA trait to adopt such structure [64], [65]. 

Figure 7. Structure of both canonical and non-canonical DNA 
structures (Tateishi-Karimata and Sushimoto, 2020) 
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G- quadruplexes are non canonical DNA structure that take place into both DNA and RNA G-rich 

strands. They’re made of two or more G tetrads that stack on top of each other, in which single 

guanines derive from one G rich tract, known as G-run. In each tetrad, guanines are kept together 

by Hoogsteen-like hydrogen bonds between neighbouring bases: N1-H····O6 and N2-H····N7. In 

the centre, a monovalent cation stabilizes this structure, i.e. K+ (the major monovalent cation in 

the cells), Na+ or NH4
+, but also bivalent cations like Mg2

+ or Ca2
+ (Figure 8a, [66]).  

G4s structures display a variety of topologies that can arise from the intra- or inter-molecular 

folding of G-rich strands (Figure 8b;c, [66]): in the first case G-runs come from the same strand, 

whereas inter-molecular folding occur upon dimerization or tetramerization of separate 

filaments. The number of G stacks in the quadruplex, as well as the length and the composition 

of loops which take no part to the tetrad formation affect thermal stability of G quadruplex. 

Strands orientation is the criterium according to which G4 can be classified into: parallel, 

antiparallel or hybrid. Orientation is strictly correlated with the anti or syn conformational state 

of the glycosidic bond between guanine and sugar [67]: the anti conformation characterizes a 

parallel folding, while antiparallel G4s are found to adopt both syn and anti orientations [68].  

 

 

Figure 8 Structure of G quadruplex; a) A G tetrad seen from above, in which 4 guanines 
are kept together by Hoogsteen bonds and coordinated by a monovalent cation (M) in 
the center; b;c) Different topologies adopted by G quadruplex (Majee et al., 2020) 
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4.1 G4 presence in genomes 

 

Given the rising interest toward G4s and their role in biology, many bioinformatic tools have been 

developed to find putative G4 sequences in genomes [69], [70]. Potential G4 forming sequences 

can be described as follows:  

G m - X n - G m - X o - G m - X p - G m 

Where “m” is the number of G bases in each G run, usually involved in the tetrad formation; Xn, 

Xo, and Xp can be any combination of residues, including G, that take part in the loops [67]. For 

instance, a G3 - X1-7 - G3 - X1-7 - G3 - X1-7 - G3 consensus sequence input on the human genome 

revealed that it contains over 300,000 sequences that have the potential to form G-quadruplexes 

[71]. G4s distribution is non random: they are mainly abundant onto promoters, telomeres, 

ribosomal DNA, untranslated region (UTR) of mRNA, micro- and mini-satellite repeats, borders 

between introns and exons and immunoglobulin heavy chain switch regions [72], [73]. 

Presence of putative G4 sequences (pG4s) has been described also in plants , bacteria and human 

DNA and RNA viruses [15]. Moreover, topoisomerase I in S. cerevisiae yeast was found to have 

crucial role in suppressing a number of genome rearrangements related to G4 formation upon 

transcription [74].  

G4s were found to affect transcription and translation level in cells. Evolutionally speaking, G4s 

were kept in regulatory regions of genes, especially promoters and close to the transcription start 

site [71]. A great step beyond has been made by the production of a G4-specific antibody (BG4) 

[75]: based on that, it was reported existence of G4 within cells and its formation to rely on cell 

cycle [75]; furthermore, HeLa cells tested with BG4 provided evidence that G4s are present both 

in telomeric regions and elsewhere in the chromosomes [76]. Employing G4-forming condition 

and combining features of the polymerase stop assay with Illumina next-generation sequencing, 

almost 700,000 G4 structures were revealed, especially within many oncogenes such as BRCA1, 

BRCA2, MAP3K8, MYC, TERT, AKT1, FGFR3, BCL2L1, CUL7, FOXA1, TUSC2 and HOXB13 [77]. 

Starting from the previous approach, Balasubramanian and co-workers implemented this 

technique using the BG4 specific antibody as a probe to perform a G4-specific ChIP-seq. The 

number of G4 structures (~10,000 G4 ChIP–seq peaks) is substantially lower than was predicted 

by computation or observed by G4–seq. Interestingly, G4 enrichment in cancer genes i.e. MYC, 
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PTEN and KRAS was found in immortalized HaCaT cell line compared to physiological NHEKs cells, 

suggesting a link between G4 occurrence and transcriptionally active chromatin state. Overall, 

this can be explained in two ways: either a possible suppressive role played by heterocromatin in 

the formation of G-quadruplexes or higher sensibility displayed by G4 ChIP-seq than BG4 

immunostaining [78].  

 

4.2 G4s as therapeutic target 

 

Given its biological relevance in cancer development, G4s have stimulated researchers mind to 

design molecules able to bind and stabilize them so to prevent unfolding, thus oncogene 

expression. Drug design basically follows two G4 features: it’s made of a large -surface and it 

carries a negative charge. In the light of this, candidate drug should have both a positive charge 

and a large -surface as well [79]. Some of these molecules are reported in Figure 9 [80]. A549 

lung cancer cells stop proliferating, thus undergoing cell death, upon high-dose treatment with 

porphyrin TMPyP4 or its derivative TPyP4-Pt [81]. Upon irradiation with either visible or near 

infrared light, porphyrin molecules display their effect releasing Reactive Oxygen Species (ROS); 

as discussed in next section, ROS release is a promising approach to induce tumour cell death 

because they can cause extensive DNA damage overcoming antioxidant response triggered by 

cancer cells. Interestingly, G4 ligands and NHEJ regulatory factors DNA-PK, PARP1 or WRN, display 

synergistic effect [82] in a synthetic lethality-like fashion (explained in “PARP1 and cancer” 

section). Indeed, HeLa and U2OS cancer cell lines exposed to the WRN inhibitor NSC-19630 

display higher sensitivity toward G4 ligand telomestatin [83]. Similarly, treatment of HT29 human 

colon cancer xenografts with a combination of the G4 ligand RHPS4 and the PARP1 inhibitor GPI 

results in a 50% reduction in tumour weight and an increase in the survival rate of mice by 45%, 

which is higher than that obtained by treatment with either RHPS4 or GPI alone [84].  

In PDAC, MM41, a tetra-substituted naphthalene diimide derivative, was found to sensibly 

decrease MIA PaCa-2 pancreatic cancer growth in vivo [85]. Starting from MM41, Marchetti, 

Neidle and colleagues designed another naphthalene diimide G4-binding compound (2,7-bis(3-

morpholinopropyl)-4-((2-(pyrrolidin-1-yl)ethyl)amino)benzo[lmn][3,8]phenanthroline-

1,3,6,8(2H,7H)-tetraone, called CM03) [86]. CM03 was found to down-regulate key pathways to 

maintain PDAC phenotype, including hippo signalling, axon guidance, and endocytosis. CM03 
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shows potent antiproliferative activity in vitro, as well as in vivo antitumoural action in mouse 

xenograft model of PDAC [86].  

 

Our laboratory focused on alternative G4 ligands in the last years. Anthrafurandione 2a and its 

anthrathiophenedione analogue 2b (Figure 10, left, [54]) were found to bind and stabilize KRAS 

5’-UTR preventing translation, thus remarkably reducing viability of Panc-1 and BX PC3 cell lines 

as reported by detection of apoptotic caspase 3/7 and annexin/propidium iodide staining and 

reduced metabolic activity, as well as colony formation. More recently, tetra-meso(N-methyl-4-

pyridyl) porphyrin (TMPyP4), a G4-binding validated compound, was derivatized with alkyl group 

of different length (Figure 10, right, [55]): this modification resulted not only in increased KRAS 

G4 5’-UTR affinity, but also in a more efficient cellular uptake and cytoplasmatic localization in 

Figure 9. Some of the G4 targeted molecule used for anticancer therapies. a. A 3, 6, 9-trisubstituted 
acridine ligand, BRACO-19; b. 3,11-Difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium 
methosulfate (RHPS4). C. An N, N′-bis(quinolinyl)pyridine-2,6-dicarboxamide derivative, 
pyridostatin. d. Telomestatin. e. A tetra substituted perylene derivative, EMICORON91. (Neidle S., 
2017) 
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PDAC cells. Once photoactivated, these compounds generate ROS that break down RNA 

structure, with consequent apoptosis induction. 

  

 

 

  

Figure 10. Left: structure of  Anthrafurandione 2a and its anthrathiophenedione analogue 2b (adapted from 
Miglietta et al., 2017). Right: structure of 5-(4-N-alkylpyridyl)-10,15,20-tri(4-N-methylpyridyl)- 21H,23H-
porphyrine (P4) and its alkyl-derivatized analogues (adapted from Ferino et al., 2020) 
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5 Oxidation 
 

Aerobic organisms rely on oxygen for all biological process in their life. Adenosine triphosphate 

(ATP), the energy-vector in cells, is made by oxidative phosphorylation in which nutrients-derived 

electrons are directed by mitochondrial enzymes to reduce O2 into H2O: this chain of reactions 

allows to create a proton gradient used to drive ATP formation. Conversion of O2 into H2O is not 

a quantitative reaction: when only one electron is transferred to molecular oxygen, it gives birth 

to an anion radical: the superoxide anion (O2·−) [87], [88], one of the member of Reactive Oxygen 

Species (ROS). ROS can be also deliberately produced by specific enzymes in a strictly controlled 

manner, i.e. mitochondrial NADPH oxidases. They produce ROS by transferring electrons from 

NADPH via FAD and across two non equivalent hemes to molecular oxygen, the electron acceptor 

[89]. Superoxide anion can also be additionally produced by two enzymes: xanthine oxidase and 

cyclooxygenases. The first is a form of xanthine oxidoreductase that oxidizes GMP-derived 

hypoxanthine and AMP-derived xanthine into uric acid; this enzyme plays an important role in 

the catabolism of purines in some species, including humans [90]. Cyclooxygenase-1 and 

cyclooxygenase-2 (COX-1 and COX-2) instead are involved in the transformation of arachidonic 

acid (a polyunsaturated fatty acid) into prostaglandin H2, a substrate for cytosolic synthases that 

produce pro-inflammatory mediators [91]. O2·− can react with nitric oxide from NOS synthases 

activity with formation of peroxynitrite (ONOO-), which plays a role as cytotoxic effector molecule 

Figure 11. Extrinsic (i.e. environmental stress) and intrinsic (i.e. mitochondrial electron transport)  factors contribute 
to free radicals generations. First ROS produces is superoxide (O2

•−), which either reacts with nitric oxide (NO•) to 
produce peroxynitrite (ONOO −), or undergoes dismutation to generate hydrogen peroxide (H2O2), in a reaction 
catalyzed by superoxide dismutase (SOD). H2O2 can either be tackled by antioxidant systems such as catalase and 
GSH/glutathione peroxidase, or can generate hydroxyl radical (OH•) by the iron-catalyzed Fenton reaction. 
Extensive ROS and RNS damage to macromolecules can lead cells to trigger apoptosis pathways (Redza-Dutordoir 
and Averill-Bates, 2016)  
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against invading organisms such as bacteria and unicellular parasites that could be phagocytized 

by macrophages or neutrophils [92]. As depicted in Figure 11, superoxide anion may undergo 

dismutation to generate hydrogen peroxide (H2O2), a reaction catalysed by superoxide dismutase 

(SOD). In the presence of Fe2+, H2O2 can be converted into hydroxyl radical (•OH) able to cause 

severe damage to DNA and lipids. The presence of Fe2+ has been reported to be common in 

mitochondrial environment, as aconitase holds a [4Fe-4S]2+ cluster highly susceptible to 

oxidation: Kennedy et al. suggested the [4Fe-4S]2+ aconitase is oxidized by superoxide, generating 

the inactive [3Fe-4S]1+ aconitase. In this reaction, the likely products are Fe2+ and hydrogen 

peroxide. Consequently, the inactivation of m-aconitase by superoxide may increase the 

formation of •OH through the Fenton reaction [93].  

Excess of ROS is tackled by two antioxidant system: enzymatic and non-enzymatic. The first one 

is made of a battery of enzymes including superoxide dismutase (SOD), catalase (CAT), 

glutathione peroxidase (GPx), and glutathione reductase (GR), whereas the non enzymatic one 

comprises scavenging free radicals molecules, i.e. glutathione, flavonoids, vitamin A, C and E [94], 

[95].  

 

5.1 ROS and cancer 

 

At low to modest doses, ROS are considered to be essential for the regulation of normal 

physiological functions involved in development such as cell cycle progression and proliferation, 

differentiation, migration and cell death [96]. In contrast, tumour cells produce elevated level of 

ROS to sustain their growth, resulting in enhanced cell proliferation, increased cellular growth, 

cell survival and in the development of cancer through the regulation of mitogen activated-

protein kinase (MAPK)/extracellular-regulated kinase 1/2 (ERK1/2), phosphoinositide-3-kinase 

(PI3K)/Akt and protein kinase D (PKD) signalling pathways, negative regulation of phosphatases, 

PTEN and protein tyrosine phosphatase 1B (PTP1B), regulation of nuclear factor kB (NF-kB) 

activating pathways, as well as mutations in transcription factors and tumour suppressor genes 

including Nrf2 and p53 [97].  
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As reported in Figure 12, tumorigenesis is kept by a delicate ROS balance between homeostasis 

and death [97]. Overproduction of ROS in tumour cells must be kept under control or these can 

undergo cell death. ROS adaptation in cancer cells is driven by enhancing their antioxidative 

defence to lower ROS levels and by inducing autophagy to reduce the oxidative damage to 

biomolecules and organelles [98]. ROS-driven boosting of oncogene expression is the same 

responsible of the antioxidant defence enhancement: i.e. activation of endogenous KRAS (G12D), 

B-Raf (V619E) and MYC (ERT2) led to lowering of intracellular ROS due to the increased 

transcription of Nrf2 and elevation of the basal Nrf2 antioxidant program [99]; moreover, 

thioredoxin and glutathione pathways seem to synergize to drive cancer progression [100]. 

Nuclear factor erythroid2-related factor 2 (Nrf2) is a potent transcription activator belonging to 

the Cap'n'Collar (CNC) transcription factor family; along with Kelch‐like ECH‐associated protein 1 

(KEAP1), they constitute the main defence mechanism against cell redox balance alterations. 

Under normal conditions, Nrf2 is constitutively kept inactive by CUL3‐KEAP1 E3 ubiquitin ligase 

complex and subjected to degradation by proteasomes [101]. Upon oxidation, Nrf2 is freed from 

Figure 12. ROS balance is crucial for cell fate. Homeostasis is characterized by balanced generation of ROS, sufficient antioxidant 
activity and uncompromised cellular repair pathways. On the contrary, tumour cells rely on enhanced metabolic activity that 
lead to higher ROS production and, consequently, genomic instability. To counterbalance augmented oxidative stress, tumour 
cells increase antioxidant response while keeping pro-tumorigenic signalling. If ROS level rises furtherly, tumour cells show 
insufficient adaptation and undergo cell death (Moloney and Cotter, 2018) 
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CUL3-KEAP1 control and migrates into the nucleus to switch on antioxidant response element 

(ARE) or electrophile response element (EpRE) genes, including: peroxiredoxin (PRDX), 

superoxide dismutase (SOD), catalase, glutathione reductase, thioredoxin, thioredoxin reductase 

and glutathione peroxidase [102]. As stated earlier, Nrf2 overexpression promotes tumorigenesis 

preventing ROS level to rise beyond the toxic level threshold. As reviewed by de la Vega et al., 

Nrf2 plays both direct and indirect roles in each of the cancer hallmarks: sustained proliferative 

signalling, insensitivity to antigrowth signals, resistance to apoptosis, limitless replicative power, 

sustained angiogenesis, tissue invasion and metastasis, metabolic reprogramming, tumour-

promoting inflammation, avoiding immune destruction, genomic instability, altered redox 

balance and proteotoxic stress [103].  

In PDAC, KRASG12D activates Nrf2 via MAPK pathways; in turn, Nrf2 switches on a series of anti-

oxidant genes and also mediates an unusual metabolic pathway of glutamine to generate NADPH 

(see Figure 6). An interesting interplay between ROS, KRAS and Nrf2 in pancreatic cancer cells 

has been recently provided by our lab [104]. Treatment with a ROS-producer molecule stimulates 

KRAS expression in PDAC cell lines which, in turn, upregulates Nrf2 expression. KRAS-induced 

Nrf2 lowers ROS level, which results in the upregulation of pro-survival Snail and the 

downregulation of pro-apoptotic RKIP. Interestingly, PDACs rarely display somatic mutations in 

either the KEAP1 or Nrf2 genes; hence, the Nrf2-mediated antioxidant program in PDAC is 

exclusively activated by oncogenic KRAS [105]. 

In case of toxic level of ROS, both intrinsic and extrinsic apoptosis pathways are triggered, leading 

to cell death by intrinsic apoptotic signalling in the mitochondria or extrinsic apoptotic signalling 

by death receptor pathways [97]. Oxidative stress can cause from mild to severe damage to 

biomolecules such as membranes, lipids, proteins, lipoproteins, and DNA. In physiological 

conditions cysteine residues that exist as anion thiolates (Cys-S-) are more susceptible to 

oxidation if compared to the protonated thiol form Cys-SH. Oxidation of this protein residues 

results into the abundancy of the sulfenic form (SO-), which causes allosteric modification in 

protein conformation altering its function. In the case of DNA, the most common product of 

oxidation is 8-oxo-7,8-dihydroguanine (8-OG).  
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5.2 8-oxo-7,8-dihydroguanine  

 

8-OG is generated through the introduction of an oxo group on the carbon 8 (C8) and the addition 

of a hydrogen atom to the nitrogen at position 7 (N7) of deoxy-guanine [106]. Guanine results 

the most susceptible base to oxidation, resulting the most electron rich among the bases [107]. 

It is estimated that up to 100,000 8-OG lesions can be formed daily in DNA per cell [108]. The 8-

OG lesion is particularly threatening, given its ability to camouflage as a T base when in the syn 

conformation, resulting in a stable 8-OG(syn): A(anti) base pair (Figure 13, [109]). Hence, 

replicative DNA polymerases incorporate C and A opposite 8-OG; thus, the repair system for this 

lesion must convert both 8-OG:C and 8-OG:A mispairs into a G:C pair. If 8-OG is excised from 8-

OG:A and the gap is filled subsequently with DNA polymerase, a G→T transversion results.  

 

Organisms have evolved mechanisms to escape from oxidative damage. First description was in 

E. coli with the “GO-system”, yet evidences indicated this system is shared among other 

prokaryotes and eukaryotes. Prokaryotes system is made of three enzymes: MutT, MutY, MutM; 

their corresponding part in humans are MTH1, OGG1 and MUTYH. Repair of 8-OG is achieved by 

base excision repair (BER), starting with 8-OG removal when base paired with C by the action of 

8-oxoguanine glycosylase 1 (OGG1) in mammals; in contrast, when OG is incorrectly base paired 

with A, MutY DNA glycosylase (MUTYH) removes the A allowing a second chance for a polymerase 

Figure 13. Top: canonical G:C and A:T pairing. Bottom: 8-oxoguanine is 
able to pair either with C when in anti conformation (leading to template 
and polymerase distortions), or with A in syn conformation (generating G:C 
→ T:A transversion)  (David et al., 2007) 
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to insert C opposite OG for further action by OGG1. Following removal of 8-OG by OGG1, an 

abasic site (AP) is formed that is a substrate for apurinic/apyrimidinic endoDNase I (APE1) to 

cleave the 5′-phosphodiester linkage yielding a nick in the DNA. The repair process is completed 

by polymerase β (POLB) that removes the sugar fragment at the nick site followed by inserting 

the correct G nucleotide, and finally ligase (LIG) seals the nick to return the DNA back to its native 

state [110].  

 

5.3 8-OG and G-quadruplex  

 

When 8-OG occurs in a G4-folded structure, it can affect both its physical and chemical features. 

When guanine gets oxidized, the N7 hydrogen bond acceptor on G is lost in turn of an O8-carbonyl 

with significative consequences on G4 stability (Figure 14, [111]).  

Figure 14. Effect of 8-OG location in G4 formation of KRAS promoter. A. WT G4 proximal sequence of KRAS 
promoter (32R) and three different oxidized forms (92, 93 and 94) lodging 8-OG in different positions. G-runs 
involved in tetrad formations are highlighted in red. Arrows indicate alternative G-run replacing the one 
where 8-OG is present. B. Different topology of G4 proximal sequence of KRAS promoter according to 8-OG 
location. Right hand side: when 8-OG (red labelled) occurs within a G tetrad, one hydrogen bond is missing, 
thus inducing G4 destabilization (Ferino et al., 2018) 
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Analysis on VEGF by Burrows’ group [112] and KRAS promoter by our lab  [111] provided evidence 

that, in case of oxidation within a G-run involved in tetrad formation, a fifth G-run takes its place 

to keep the stability of the fold. Furthermore, the new topology assumed by the G4 sequence in 

the KRAS promoter displays a decreased melting point as result of a reduced stability [111]. Such 

plasticity was also reported for human telomeres when a G4-core G was replaced by either 

guanidinohydantoin or inosine [113]. Common in these cases is the presence of a fifth G-run that, 

according to Burrows and Fleming hypothesis, may serve as a “spare tire” in case 8-OG falls in a 

G-run crucial for the quadruplex formation [88]. 

Noteworthily, presence 8-OG in the G4 can affect protein recruitment: in oxidized G4, pulled-

down proteins amount (including MAZ, hnRNP A1 and PARP1) is higher than this recovered from 

the wt bait. PARP1 was indeed the object of our investigation. 
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6 PARP1 and PARylation 
 

Poly(ADP-ribosyl)ation (PARylation) is a post translational modification firstly described half a 

century ago. In the early 1960s, Collier, Honjno and collegues found that toxicity of diphtheria 

toxin  relied on NAD+ to inhibit mammalian protein synthesis [114]–[116]. First description of a 

DNA-dependent poly-ADP-ribose producing reaction starting from NAD+ was made by Mandel 

and co-workers [117]. The poly(ADP-ribose) polymerase (PARP) family of proteins is responsible 

for catalysing this reaction; this includes 17 members encoded by different genes and displaying 

a conserved catalytic domain homologous to the diphtheria toxin ART fold responsible for the 

PARylation (this explains why PARPs are also known as ART diphtheria toxin-like (ARTD) enzymes 

[118]). PARylation in the covalent attach of ADP-ribose unit on glutamate, aspartate, arginine, 

lysine and serine residues either on PARP itself (auto-PARylation) or other target proteins 

(PARylation) [119].  

PARPs and their homologous are present in almost every domain of life, from bacteria [120], 

archaea [121] to eukaryotes, with the exception of yeasts [122]. PARP enzymes can be 

structurally and functionally divided into five subclasses: DNA-dependent PARPs, TankyRases, 

CCCH PARPs, PARPs with macro-domain and unclassified PARPs [123]. Moreover, PARPs can be 

divided into three groups according to their catalytical activity: PARPs capable of PARylation with 

His-Tyr-Glu (H-Y-E) triad (“ART signature”) in their active site, PARPs capable only of mono ADP-

ribosylation activity (MARylation) and PARPs inactive protein (they lack NAD+ binding site) [119].  

PARP1 is thought to account for more than 90% of the PARylation activity upon DNA damage 

[124]. PARP1 PARylation consists in a SN1-like reaction mechanism [125] that can be summarized 

into three steps: (i) the attachment of the first ADP-ribose monomer to the acceptor protein 

(initiation); (ii) the formation of a (2’-1’’) ribose-ribose glycosidic bond (elongation) and (iii) the 

formation of a (2’’- 1’’’) ribose-ribose bond between ADP-ribose units (branching) (Figure 15) 

[126]. 
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Figure 15. PARP1 reaction mechanism. A) Initiation step. B) Elongation step. C) Branching step. Key amino acids H-Y-E forming 
the catalytic core are highlighted in red. M890 and Y986 residues were also found crucial for reaction (Alemasova and Lavrik, 
2019).  
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PAR turnover is very fast and de-PARylation is carried out by a number of glycohydrolases 

including PAR glycohydrolase (PARG), terminal ADP-ribose protein glycohydrolase 1 (TARG1), 

ADP-ribosylhydrolase 3 (ARH3), MacroD1 and MacroD2, and Nudix-Type Motif 9 and 16 (NUDT9, 

NUDT16) [119]. PARG is the main enzyme involved in PAR catabolism: it exhibits both exo- and 

endo-glycosidase activities responsible of glycosidic bond cleavage between ADP-ribose units 

[127]. As summarized by Tanuma and co-workers in a recent review, PARP and PARG inhibition 

leads to different cell damage: whereas PARP blockade induces necroptosis, PARG inhibition 

provokes extensive DNA damage triggering apoptosis [128]. 

PARP1 structure has been extensively studied by Pascal group. The modular structure consists of 

six domains (Figure 16, [129]).  

At the N-terminus we find two homologous zinc-finger domains, Zn1 and Zn2, belonging to PARP-

like zinc finger family: these zinc fingers are the sentinel for DNA breaks and, whenever they 

detect one, they contact a continuous segment of the DNA backbone (“the backbone grip”) and 

the nucleobases that were exposed at the DNA end (“the base-stacking loop”) [130]. A third zinc 

Figure 16 PARP1 structure. Top : modular architecture of PARP1. Zn1, Zn2, Zn3 = zinc-binding 
domains; AD = auto-modification domain ; BRCT = BRCA C-terminus domain; CAT = catalytic 
domain, with the two subdomain that is made of: helical subdomain (HD) and the catalytic ART 
core. B) Representation of PARP1 wrapped around DNA (Langelier et al., 2012) 
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finger has been discovered in 2008 [131], whose structure and roles have been elucidated three 

years later: Zn3 domain harbours a zinc ribbon structure completely unrelated from Zn1 and Zn2 

domains and it’s involved in the catalytic turnover of the DNA-dependent PAR synthesis reaction,  

in activated PARP1 assembly upon DNA damage and in compacting chromatin structure [132]. 

The auto-modification domain is located in the centre of the enzyme and it contains a BRCA1 C-

terminus domain (BRCT) involved in protein-protein interaction [129], [133]. WGR domain is 

made of three residues (Tryptophane-Glycine-Arginine) whose function is linked to recognition 

of DNA strand breaks in a structure-specific and sequence-independent manner [130]. W residue 

in particular is essential for initiating DNA-dependent release of DNA from PARP1 [134]. Finally, 

the catalytic domain consists of a helix domain (HD) and the catalytic core known as ADP-

ribosyltransferase domain (ART) at the far end of the C terminus. ART domain contains a donor 

site where ADP-donor is positioned for transferase reaction and comprises: a nicotinamide-

binding pocket (included is the catalytic triad made of His-Tyr-Glu, known as “ART signature”), a 

phosphate binding site and an adenine-ribose-binding site [126]. ART domain also includes an 

acceptor site that binds either the PARylation target during initiation or the distal ADP-ribose 

monomer of the growing PAR chain (‘acceptor’) during elongation/branching stages [126]. Helical 

domain (HD) was found to display an inhibitory action toward PARP1 activity: when PARP1 is 

bound to DNA damaged site, HD get displaced from nicotinamide binding pocket in the ART 

domain, allowing NAD+ to enter the catalytic site [135].  

In a free-state, these domains are connected by flexible linkers like ‘beads on a string’ [136]; upon 

DNA damage recognition, PARP1 undergoes a conformational change in favour of its catalytically 

active state. It remains unclear whether PARP1 auto-modification occurs either intra- or inter-

molecularly [126].  

 

6.1 PARP1 role in cells 

 

PARP1 role has been highlighted in a wide number of biological functions. Growing evidences in 

the last years suggested PARP1 plays a crucial role in almost every DNA damage pathway, 

including: single strand break repair (SSBR) and base excision repair (BER), nucleotide excision 

repair (NER) [17,18], classical non-homologous end-joining (cNHEJ), alternative non-homologous 

end-joining (aNHEJ), microhomology-mediated end-joining (MMEJ), homologous recombination 
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(HR), DNA mismatch repair (MMR) and maintenance of replication fork stability (reviewed in 

[137]). In regard of BER, single-strand break left by OGG1-APE1 action can be resolved by either 

short- or long-patch repair: some of these factors (i.e. XRCC1, DNA polymerase (DNAP) β, DNA 

ligase III, proliferating cell nuclear antigen (PCNA), aprataxin, and condensin I) are known 

PARylation targets by PARP1 [138]. OGG1 was found to interact physically with PARP1. Evans and 

co-workers found that OGG1 binding to PARP1 is enhanced by DNA damage and OGG1 binds to 

auto(ADP-ribosyl)ated PARP1; this first step is crucial for the formation of a PAR-mediated 

multiprotein complex for the following steps of SSB pathway. Furthermore, lack of OGG1 

enhances cells sensitivity toward both PARP inhibitors and oxidizing agents [139]. DNA repair is 

also facilitated by PARP1 ability to remodel chromatin structure: PARylation of histones results 

in chromatin relaxation, thus allowing DNA repair machinery and chromatin remodelers to access 

damage site [140]. New studies have seen PARP1 involved also in RNA metabolism i.e. splicing 

[141], polyadenylation [142] and nuclear export [143]. An interesting paper by Brody et al. 

revealed an interplay between PARP1, PARG and the RNA binding protein HuR. The group 

established that resistance of pancreatic ductal adenocarcinoma cells toward PARP1 inhibitors is 

driven by HuR-induced overexpression of PARG: PARP1 PARylation of HuR promotes its nuclear 

export toward cytosol, whereas it binds to and stabilizes PARG mRNA, thereby increasing PARG 

expression and modulating PARP1-chromatin dynamics. HuR inhibition results in PARG inhibition, 

that in turn leads to enhancing chromatin-trapped PARP1 and accumulation of damaged DNA 

and apoptosis [144]. 

PARP1, as well as PARPs enzymes, play major role in inflammatory pathways. Upon inflammation, 

PARP1 is acetylated by two CREB-binding protein (CBP) and p300: PARP1-CBP-p300 complex 

interacts with NF-B, thus activating it. NF-B results in transcription of proinflammatory 

cytokines, chemokines, transcription factors, and other inflammatory mediators [145].   

 

 

6.2 PARP1 and cancer 

 

PARP enzymes were proved to take part into six of the eight “cancer hallmarks”: metastasis, 

never-ending proliferation, angiogenesis, cell death resistance, independence from growth 
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suppression, proliferative signalling, deregulation of cellular energetics, and immune escaping 

[146]. Since 1980s, great effort was put to develop PARP1 inhibitors. As reviewed in [147], three 

generations of PARP1 inhibitors have been developed: the first is “nicotinamide analogue” family, 

according to the observation that nicotinamide, the by-product of NAD+ cleavage by PARP1, is 

able to inhibit reaction; the second generation included quinazoline analogues (structurally 

related to nicotinamide) which provided a major effectiveness and target specificity; finally, the 

last generation collects all the molecules currently running trial tests, among which we cite: 

Rucaparib, Olaparib, Veliparib, Niraparib, Talazoparib. PARP1 inhibition leads to cell death in two 

fashions: the blockade of Base Excision Repair (in the context of synthetic lethality) and the 

trapping of PARP1-DNA complex [148]. In the last years, numerous trials have been started to 

validate PARP1 inhibitors to tackle cancer progression [149].  

In regard of pancreatic cancer, synthetic lethality approach seems to be very promising, since 10-

to-20% of pancreatic tumours display mutations in homologous recombination genes [148]. 

According to this model, when Base Excision Repair (BER) is impaired, there’s the conversion of 

a single strand nick into a double strand break (DSB). If the tumour cell has an underlying defect 

in HR, (commonly those harbouring BRCA1/2 mutations), it will be unable to repair the DSBs and 

will die [148]. 

 

6.3 PARP1 vs oncogene G4s 
 

PARP1 activity at enhancers and promoters occurs mainly by functional interactions with other 

transcriptional factors, as well as nuclear receptors; surprisingly, PARP1 can act either as positive 

or negative regulator of gene transcription; moreover, its enzymatic activity is not always 

required to display transcriptional activity [150]. To date, few examples of G4-driven oncogene 

expression by PARP1 have been provided. 
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6.3.1 PARP1 vs CKIT G4 

 

CKIT belongs to the tyrosine-kinase receptor class-III family (RTK) that acts as cell-surface 

receptors. CKIT deregulation results in tumourigenesis in very different ways such as gain of 

function, loss of function, overexpression, and point mutations [151]. Only few reports address a 

relationship between PARP1 and CKIT1: in BRCA1-mutated ovarian cancer cell lines, Olaparib-

driven PARP1 inhibition results in overexpression of CKIT1 [152]; also, CKIT1 mutation was 

associated with resistance to Olaparib in acute myeloid leukaemia patients [153].  

A brilliant work made by Ladame and co-workers explored the interaction between PARP1 and 

CKIT 1 G4 structure, revealing a protein:DNA stoichiometry of 2:1. Once bound to G4, PARP1 

undergoes in vitro auto-PARylation, in the presence of NAD+ [154]. Starting from this striking 

evidence, Dai et al. developed a method to detect the amount of PARP1 tethering onto the G4 

[155]: briefly, a modified CKIT 1 is covalently assembled on a gold electrode in presence of 

mercaptohexanol (MCH), a compound known to create uniform monolayer and induce G4 

formation [156].  Once PARP1 binds to CKIT 1, it undergoes auto-PARylation, a negatively charged 

post-translational modification easily detected by positively charged signal molecules, i.e. 

hexaammineruthenium(III) chloride (RuHex), that can be adsorbed onto the electrode surface, 

causing an intense electrochemical response. The amplitude of the electrochemical signal is 

directly proportional to PAR extension, therefore to PARP1 molecules bound to the G4. 

 

6.3.2 PARP1 vs CMYC G4 

 

CMYC belongs to the superfamily of basic helix-loop-helix DNA-binding proteins and is involved 

in the control of several normal cellular functions. It’s one of the most frequent mutation among 

human cancers; alterations in its physiological level result in the occurrence of the mostly 

common cancer hallmarks i.e. cell proliferation enhancement, glycolysis and mitochondrial 

biogenesis stimulation and shift in the glutamine metabolism [157]. The interplay between 

PARP1 and CMYC has been already proved in a couple of papers: pharmacological inhibition of 

MYC expression induces PARP inhibitors sensitivity in  triple-negative breast cancer cell line MB 

231 [158] and doxycycline induced expression of MYC renders glioblastoma stem-like cell lines 

less susceptible to PARP inhibition [159]. In cervical cancer cell lines, PARP1 inhibition was found 
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to lower CMYC expression via -catenin signalling pathway [160]. Maione and colleagues found 

out that PARP1 is associated to CMYC promoter; this induces PARylation that keeps CMYC 

promoter chromatin to an active state through histone modifications [161].  

Pal et al. found PARP1 to be a positive modulator of this gene by binding both in vitro and in vivo 

to the G4 structure present in the human CMYC gene promoter; once bound, PARP1 catalyzes 

conversion from G4 to canonical B-DNA, allowing gene expression [162]. Results are supported 

by previous reports in which the presence of G4 within CMYC promoter negatively correlates 

with gene expression [163]–[165] 

 

6.3.3 PARP1 vs telomeres G4 

 

Telomeres are the end of chromosomes. They comprise tandem repeats of 6 nucleotides (5’ – 

TTAGGG – 3’)n with a 3’ overhang provided by nucleolytic degradation [166] and play a plethora 

of roles such as: keeping genomic stability, preventing chromosome fusions, protecting 

chromosomes ends from DNA repair pathways that might recognize them as DSBs and silencing 

nearby genes (a phenomenon known as telomere position effect (TPE) [167]). The 3’ overhang 

folds into higher-order chromatin structure and telomere-associated proteins in a huge complex 

called shelterin [168], [169]. Due to the end replication problem, telomeres progressively shorten 

after each cell cycle [166] leading to cell death or senescence, yet two mechanisms for telomere 

maintenance have been discovered in previous studies: transcriptional activation of a telomere 

reverse transcriptase called telomerase and the activation of alternative lengthening of 

telomeres (ALT), which is telomerase-independent and works via HR pathway [170]. Aberrant 

telomeres length has been reported to be shared among lot of tumours; i.e. telomeres shortening 

has been described for cervical and endometrial cancers whereas glioma and sarcoma display the 

longest chromosome ends [171]. Involvement of PARP family in telomeres behaviours have been 

reported: tankyrase 1, a PARP1-like enzyme, modulates telomerase inhibition in human cancer 

cells and can be seen as a potential telomere-directed anticancer target [172]; in colorectal 

cancer cell lines, PARP1 inhibition prevents the escaping a telomere-driven crisis after a certain 

number of cell divisions through induction of telomere intra-chromosomal fusions [173]; PARP1 

deficient mice exhibited telomere shortening and increased end-to-end chromosome fusions 

[174]; finally, normal cells deficient for PARP-2 display a spontaneously increased frequency of 
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chromosome and chromatid breaks, suggested by a lack of 5’ - TTAGGG - 3’ repeats at their ends 

[175].  

Presence of G4 has been reported in human telomeres [176], [177], providing also a platform for 

protein recruitment [178]–[181]. Cells treated with G4-interactive compound RHPS4 display an 

increased recruitment of PARP1 upon damaged telomeres; moreover, both RNA interfering and 

GPI-mediated PARP1 inhibition enhances the antitumoural activity of RHPS4-based therapy [84].  

 

6.3.4 PARP1 vs KRAS G4 

 

In human KRAS promoter, a polypurine site in a nuclease hypersensitive element (NHE) was found 

to fold into quadruplex by our lab [58]. PARP1 inhibition was reported to affect KRAS mutant cell 

lines viability and ameliorate clinical outcome in patients harbouring KRAS mutant tumours 

[182]–[184].  

The closer NHE sequence to the transcription start site (called 32R) was found to be recognized 

by PARP1 [185], [186]. Moreover, either PARP1 silencing or enzymatic inhibition led to a 

reduction of murine KRAS level [186]. In accordance to further reports [187]–[189], it is widely 

believed that PARP1 is positively correlated with genes expression. 

To date, there’s still no report in human cells that proves KRAS G4 promoter activity is regulated 

by PARP1. This work provides such evidence for the first time, assessing a ROS-PARP1-KRAS axis 

that has never been shown so far. 
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7 Aim of the work 
 

In this PhD program, I focused my research work on the role of KRAS in pancreatic ductal 

adenocarcinoma cells (PDAC cells) from a biochemist point of view. Despite the increasing amount of 

data so far collected, pancreatic cancer remains one of the deadliest malignancies with a very poor 

prognosis that poorly respond to conventional chemotherapies. It is now clear that mutations in 

codons 12, 13 and 61 of the KRAS proto-oncogene are able to initiate and maintain pancreatic cancer. 

Previous work in our lab investigated how KRAS expression is regulated, as this oncogene is 

responsible for the initiation of pancreatic cancer. Firstly, KRAS promoter was found to contain a G-

rich sequence that affects gene expression. Within this DNA stretch,  three G4 motifs - hereafter called 

G4-near, G4-middle and G4-far, according to their distance to the transcription start site - can adopt 

each a G-quadruplex conformation under physiological conditions. As these unusual conformations 

are formed within a promoter sequence critical for transcription, our laboratory has investigated if 

the G4 structures play any role in the process governing transcription. Although the implications of 

G4 DNA in transcription is still matter of debate, the work of our laboratory strongly support the 

hypothesis that the G4s serve as a recruitment platform for nuclear proteins. By means of pulldown 

and mass spectrometry experiments we discovered that the KRAS G4 nearest to TSS is recognized by 

MAZ, hnRNP A1, Ku70 and PARP1: transcription factors essential for the transcription of the gene.  

Considering that cancer cells produce higher level of reactive oxygen species (ROS) than normal cells,  

we asked if ROS can have any impact in the transcription of KRAS. This because guanine, having the 

lowest redox potential among the nucleobases, has a great tendency to oxidize to 8-oxoguanine 

(8OG). Indeed, we demonstrated by ChIP and qPCR that the levels of 8OG in PDAC cells is higher than 

in non-cancer cells and that the level 8OG in the promoter containing the G4 motifs is higher than in 

other genomic sequences. From this observation we asked what is the impact of PARP1 on KRAS 

expression under enhanced oxidative stress typical of PDAC cells. We specifically focused on PARP1 

(Poly ADP-Ribose Polymerase 1) as it is involved in DNA damage recognition and repair, including base 

excision repair (BER) accounting for removal of oxidized bases, including 8OG. Together with other 

members of PARP superfamily, PARP1 is responsible of both mono(ADP-ribosylation) as well as 

poly(ADP-ribosylation): NAD+-dependent post-translational modifications that consist in the 

attachment of ADP-ribose moieties to proteins and DNA. The structure of PARP1 can be divided into 

a N-terminus, responsible of DNA recognition (among which DNA and RNA non canonical structure, 
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i.e. G-quadruplexes), and a C-terminus accounting for enzymatic activity. Previous work from our 

laboratory reported that G4-near is recognized by several proteins including PARP1, essential for 

transcription. It was also found that the oxidation of G4-near results in an increase of the  recruitment 

to the promoter  of the transcription factors. The data suggested that 8OG behaves as an epigenetic 

mark for activating the transcription platform. The pivotal role played by PARP1 in the KRAS promoter 

was evidenced by the fact that its silencing by shRNA reduced dramatically KRAS expression, clearly 

indicating that PARP1 behaves as an activator of this oncogene.  

On the basis of  these observations, the main objective of my PhD project was to investigate the role 

of PARP1 on the KRAS promoter, in particular under conditions of enhanced oxidative stress, as occurs 

in cancer cells.  First, to demonstrate that 8OG is more abundant in the KRAS promoter G4 motifs than 

in non-G4 sequences, I performed pull-down/ChIP experiments using a biotinylated molecule (b-6438) 

capable to bind to G4 DNA as a bait.  Sheared chromatin from Panc-1 cells was incubated with b-6438 

and pulled down with streptavidin-coated magnetic beads. The recovered chromatin enriched with 

G4-containing fragments was immuno-precipitated with an antibody specific for 8OG, and analyzed 

by qPCR with primers specific for the promoter G4 and control regions. The results showed that the 

KRAS promoter region harboring the G4 motifs contained, compared to control regions, 3-fold more 

8OG than non-G4 regions. These data further support the notion that ROS increase the level of 8OG 

more in the promoter region harboring the G4 motifs than in G-rich control regions unable to form 

G4. Then, the work focused on the binding between PARP1 and G4-near/G4-middle sequences 

following two approaches: electrophoretic mobility-shift assays and fluorescence experiments taking 

advantage of the fact that the intrinsic fluorescence of PARP1 is quenched when it binds to G4. The 

data suggested the formation of two DNA-protein complexes of stoichiometry 1:1 and 1:2. Then by 

performing pull-down experiments with synthetic oligonucleotides mimicking the G4s formed by G4-

near and G4 middle, I found that G4-near behaves as a platform for the formation of a multiprotein 

complex with PARP1, MAZ and hnRNP A1, located upstream of TSS. PARP1 plays a critical role in the 

KRAS promoter as when it is silenced by siRNA or its enzymatic activity is inhibited by small molecules, 

the expression of KRAS is strongly inhibited. Then I addressed the issue regarding how PARP1 

stimulates KRAS expression.  I discovered that PARP1, upon binding to the KRAS G4, undergoes auto-

PARylation. All these data allowed me to propose a regulatory mechanism of KRAS expression 

according to  which, an increase of oxidative stress, stimulates the recruitment of PARP1 to the KRAS 

promoter. The protein then binds to G4 and undergoes auto-PARylation. This post translational 
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modification confers negative charge to PARP1, that works as an antenna for the recruitment of 

cationic proteins such as MAZ and hnRNP A1. The formation of a multiprotein complex drives the 

unfolding of G4 and the reconstitution of canonical duplex DNA, the excision of 8OG by OGG1 and the 

activation of transcription. The data of this work has been published in International Journal of 

Molecular Sciences [190].  

Another aspect that I have investigated regards the G4 structures formed by G4-near, located 

immediately upstream of TSS. A recent NMR study that our laboratory has performed in collaboration 

with a French group from Bordeaux, revealed that G4-near folds in a G4 that exists in equilibrium 

between two conformers. I therefore asked if both conformers are able to bind to PARP1 and the 

other nuclear factors. To address this issue we carried out EMSA, fluorescence titrations and pulldown 

experiment with oligonucleotide baits mimicking the two conformers. The results showed that both  

conformers are recognized by the transcription factors. As one of the two conformers has a unique 

structure, it may represent an attractive target for anticancer small molecules. 
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Abstract: In pancreatic Panc-1 cancer cells, an increase of oxidative stress enhances the level of 7,8-dihydro-8-

oxoguanine (8OG) more in the KRAS promoter region containing G4 motifs than in non-G4 motif G-rich 

genomic regions. We found that H2O2 stimulates the recruitment to the KRAS promoter of poly [ADP-ribose] 

polymerase 1 (PARP-1), which efficiently binds to local G4 structures. Upon binding to G4 DNA, PARP-1 

undergoes auto PARylation and thus becomes negatively charged. In our view this should favor the 

recruitment to the KRAS promoter of MAZ and hnRNP A1, as these two nuclear factors, because of their 

isoelectric points >7, are cationic in nature under physiological conditions. This is indeed supported by 

pulldown assays which showed that PARP-1, MAZ, and hnRNP A1 form a multiprotein complex with an 

oligonucleotide mimicking the KRAS G4 structure. Our data suggest that an increase of oxidative stress in Panc-

1 cells activates a ROS-G4-PARP-1 axis that stimulates the transcription of KRAS. This mechanism is confirmed 

by the finding that when PARP-1 is silenced by siRNA or auto PARylation is inhibited by Veliparib, the 

expression of KRAS is downregulated. When Panc-1 cells are treated with H2O2 instead, a strong up-regulation 

of KRAS transcription is observed.  

Keywords: G4 DNA; KRAS; oxidative stress; 8-oxoguanine; PARP-1; transcription factors; transcription 

regulation  

 

1. Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers with a median survival 

of about 6–8 months after diagnosis [1]. This poor prognosis is ascribable to its high aggressive nature and its 

resistance to conventional chemotherapies. Recent studies have demonstrated that point mutations in the KRAS 

proto-oncogene are the initial step of the PDAC carcinogenesis [2]. In the mutated form, the oncogene 

reprograms the metabolism of PDAC by increasing the glycolytic flux, the glutamine and serine metabolism, in 

order to generate biomass and reducing power necessary for tumour growth [3–5]. The dependence of the 

metabolic pathways on specific oncogenes led to the concept of “oncogene addiction”, according to which cancer 

cells although depending on a number of genetic aberrations often develop a dependency on a particular 

oncogene [6,7]. As PDAC cells are addicted to mutant KRAS, this oncogene has become the focus of intense 

investigation [8]. In our laboratory we discovered that the KRAS promoter contains upstream of the transcription 

start site (TSS) a G-rich region adopting a G-quadruplex (or G4) structure recognized by several transcription 

factors [9–11]. The presence in the KRAS promoter of this unusual DNA conformation has been confirmed by 

ChIP-seq analysis carried out on transcriptionally active chromatin [12]. Although some hypotheses on the role 

of G4 DNA in gene regulation have been suggested, the data so far obtained are insufficient to propose a general 
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mechanism for transcription regulation by G4 DNA [13,14]. In 2012 we discovered that PARP-1 binds to the 

KRAS G4 region located upstream of TSS [11]. While PARP-1 was originally described as a protein involved in 

DNA repair [15], several studies suggest that it has also a role in transcription regulation [16–18]. It has been 

reported that PARP-1 behaves as a modulator of chromatin, a regulator for DNA-binding transcription factors 

and DNA methylation [19]. Human PARP-1 is a 113 kDa protein composed by an amino-terminal DNA binding 

domain comprising two zinc-finger motifs, a B domain containing a nuclear localization signal and a caspase-3 

cleavage site, a central auto-modification domain allowing protein–protein interactions and a C-terminal 

domain harboring a highly conserved sequence that forms the catalytic site [20,21]. PARP-1 binds and cleaves 

NAD+ to nicotinamide and ADP-ribose (ADPR), and it couples one or more ADPR units to acceptor proteins, 

including itself. These may become mono(ADP-ribosyl)ated or poly(ADP-ribosyl)ated: A modification called 

PARylation [20,21]. Most PARP-1 functions are localized in the nucleus, where the protein is involved in DNA 

repair, chromatin structure, transcription, translation and oxidative stress [15,19,21]. In the present work we 

focus on the role of PARP-1 in transcription regulation of KRAS in PDAC cells. We report that PARP-1 is 

associated to a G4-motif region of the KRAS promoter, in particular when the cellular levels of oxidative stress 

and 8-oxoguanine (8OG) are increased. We also found that PARP-1, upon binding to the KRAS promoter G4 

structures, undergoes auto PARylation. This seems to induce the recruitment of the transcription factors hnRNP 

A1 and MAZ and the formation of the transcription pre-initiation complex. Previous studies from our and other 

laboratories showed that MAZ and hnRNP A1 bind to the promoter G4 region of KRAS and activate 

transcription [22–27]. In summary, in this study we have identified a ROS-G4-PARP-1 axis that controls the 

expression of KRAS under conditions of enhanced oxidative stress. 

 

2. Results and Discussion 

2.1. G4 Formation in the KRAS Promoter and Guanine Oxidation 

The promoter of the human KRAS proto-oncogene contains, between −270 and −118 (3’→5’, non-coding 

strand) from the transcription start site (TSS), three G4 motifs hereafter called G4 32R (also called G4 near), G4 

mid and G4 far (Figure 1) [9,28,29]. Previous studies have demonstrated that G4 32R and G4 mid form stable G4 

structures under physiological conditions, whereas G4 far forms a G4 which is too weak for determining a 

thermal stability [28]. In Figure 1 we report typical CD spectra of G4 32R and G4 mid in 100 mM KCl, at 25 and 

95 °C. Both exhibit a strong ellipticity at 265 nm, in agreement with the formation of parallel G4 structures 

which have TM’s of 62 and 78 °C, respectively. DMS footprinting experiments showed that G4 32R forms a 

parallel tri-stacked G4 with a 1/1/12 topology, characterized by two 1-nt loops, a 12-nt loop and a T-bulge in one 

strand (Supplementary Information S3) [11]. A recent NMR study confirmed this structure, but showed that it 

is in equilibrium with a conformer containing a 11-nt loop, a folded-back guanine and 3-nt cap at the 3’-end [30]. 

By contrast, G4 mid comprising seven G-runs of at least three guanines can fold in different ways. In 100 mM 

KCl, G4 mid can fold into a quad-stacked G4 involving G-runs 1, 2, 5, and 6, as proposed in ref. [28]. It embeds, 

however, two contiguous G4 motifs, each of which is potentially able to form a tri-stacked G4. We called them 

G4 mid1 and G4 mid2 (Supplementary Information S4 and Table 1). The CD of G4 mid1 suggests that this 

sequence folds into a parallel G4. Instead, the CD of G4 mid2, showing a strong ellipticity at 260 nm and a 

shoulder at 295 nm, indicates that the sequence might adopt a mixed parallel/antiparallel G4. These G4 structures 

show TM’s in 100 mM KCl of 59 °C (G4 mid1) and 67 °C (G4 mid2) (Figure 2A, Supplementary Information S5). 

The presence in vivo of folded G4 structures in the KRAS promoter has been confirmed by a ChiP-seq analysis 

carried out on transcriptionally active chromatin [12]. 
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Figure 1. KRAS G4-motif sequences located upstream of the transcription start site (TSS). The G4 motifs are located 

in the non-coding strand between -118 and -270 from TSS: G4 32R (sequence in red, -118/-149); G4-mid (sequence 

in green, -163/-217; G4-far (sequence in blue, -229-264). G4 32R and G4 mid form G4 structures with a well-defined 

melting profile. The CD of these sequences (at 25 and 95 °C) suggest the formation of parallel G4 structures. The 

structure of a G-tetrad, where each guanine forms 4 hydrogen bonds with neighboring guanines, is shown. 
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Figure 2. (A) CD spectra at 25 and 95 °C for the G4 mid1 and G4 mid2 sequences; (B) structure of biotinylated G4 

ligand b-6438, which shows much more affinity for G4 DNA than duplex DNA, used in chromatin pull-down 

experiments. Pull down-ChIP experimental scheme. Chromatin fragments with G4 are depicted in black, 

fragments without G4 in blue; (C) the results of the pull down-ChIP experiment show that 8OG and the G4 motif 

co-localize in the region of the KRAS promoter containing G4 32R compared to control regions ctr1 and ctr2, 

located more than 4500 and 2500 bp away from TSS, respectively. Error bars from three experiments, Student t-

test, (*) = p < 0.05;  

 

 Table 1. DNA sequences used in this work  

Oligonucleotide 5’ → 3’ 8OG 

G4 32R AGGGCGGTGTGGGAAGAGGGAAGAGGGGGAGG  

92 AGGGCGGTGTGGGAAGAGGGAAGAGGGGGAGG (1) (3) 1 

96 AGGGCGGTGTGGGAAGAGGGAAGAGGGGGAGG (1) (3)  2 

G4 mid 
CGGGGAGAAGGAGGGGGCCGGGCCGGGCCGGCGGGGG 

AGGAGCGGGGGCCGGGC  
 

G4 mid1 CGGGGAGAAGGAGGGGGCCGGGCCGGGC   

G4 mid2 CGGGCCGGCGGGGGAGGAGCGGGGGCCGGGC   

b-32R b-TTTTAGGGCGGTGTGGGAAGAGGGAAGAGGGGGAGG (2)  

b-92 b-TTTTAGGGCGGTGTGGGAAGAGGGAAGAGGGGGAGG (1) (2) (3) 1 

b-96 b-TTTTAGGGCGGTGTGGGAAGAGGGAAGAGGGGGAGG (1) (2) (3) 2 

b-mid 
b-TTTTCGGGGAGAAGGAGGGGGCCGGGCCGGGCCGGCG- 

-GGGGAGGAGCGGGGGCCGGGC (2) 
 

b-mid1 b-TTTTCGGGGAGAAGGAGGGGGCCGGGCCGGGC (2)  

b-mid2 b-TTTTCGGGCCGGCGGGGGAGGAGCGGGGGCCGGG (2)  

b-midOX 
b-TTTTCGGGGAGAAGGAGGGGGCCGGGCCGGGCCGGCG-  

-GGGGAGGAGCGGGGGCCGGGC (1) (2) 
2 

b-mid1OX b-TTTTCGGGGAGAAGGAGGGGGCCGGGCCGGGC (1) (2) 1 

b-mid2OX b-TTTTCGGGCCGGCGGGGGAGGAGCGGGGGCCGGGC (1) (2) 2 

Cy5.5-32R Cy5.5-AGGGCGGTGTGGGAAGAGGGAAGAGGGGGAGG  

Cy5.5-mid1 Cy5.5-CGGGGAGAAGGAGGGGGCCGGGCCGGGC   

Cy5.5-mid2 Cy5.5-CGGGCCGGCGGGGGAGGAGCGGGGGCCGGGC   

Cy5.5-mid 
Cy5.5-CGGGGAGAAGGAGGGGGCCGGGCCGGGCCGGCG 

GGGGAGGAGCGGGGGCCGGGC  
 

32Y  CCTCCCCCTCTTCCCTCTTCCCACACCGCCCT  

G4 mid Y  
GCCCGGCCCCCGCTCCTCCCCCGCCGGCCCGGCCCGGCC 

CCCTCCTTCTCCCCG 
 

Oligo dT TTTTTTTTTTTTTTTT  

ODN1 Cy5.5-CATCAGAAGGCTAGCAATCA  

ODN2 Cy5.5-AATAGTAATTGCTTAGCCTG  

ODN3 Cy5.5-CCTAATGCTGCTAAACTCCC  

(1) Underlined G = 7,8-dihydro-8-oxoguanine (8OG); (2) b = biotin; (3) 92 and 96 = G4 32R analogues containing 8OG. 

It has been found that guanine, in particular in G-rich sequences, is susceptible to oxidation to 7,8-dihydro-

8-oxoguanine (8OG), due to its low redox potential [31,32]. Indeed, the amount of 8OG in the genome of aerobic 

organisms is considered a biomarker for oxidative stress [33]. We previously have observed that pancreatic 

cancer cells (Panc-1, BxPC3, and MiaPaCa-2), due to their higher metabolic rate, show a higher basal level of 

8OG than non-cancer HEK 293 cells [34]. We also discovered by ChIP experiments that when Panc-1 cells are 

treated with H2O2, 8OG is about 5-fold more abundant in the KRAS promoter region containing the G4-motifs 

than in G-rich non-G4 regions located at least 3000 bp away from TSS [35]. These data suggest that guanines in 

the G4-motifs are more exposed to oxidation than other guanines. Saito et al. [36] reported that contiguous 

guanines are characterized by a higher rate of oxidation than isolated guanines and that the 5’-G in a G-run 

shows the lowest ionization potential. To provide further support that 8OG is more abundant in G4 than non-

G4 motifs, we performed a pull-down/ChIP experiment as outlined in Figure 2B. We synthesized a G4-bait, 
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namely b-6438, by linking biotin to an anthrathiophenedione molecule binding to G4 much more than to duplex 

DNA [37]. 

We previously demonstrated that this molecule efficiently pulls down G4 strands from nucleic-acid 

mixtures [37]. Sheared chromatin obtained from untreated (input Chr) and H2O2-treated (sample Chr) Panc-1 

cells were incubated with b-6438 and pulled down with streptavidin-coated magnetic beads. The recovered 

chromatin enriched with G4-containing fragments obtained from the input Chr and sample Chr were immuno-

precipitated with an antibody specific for 8OG, and analyzed by qPCR with primers specific for the promoter 

G4 region and control ctr1 and ctr2 regions located in the KRAS gene (Figure 2B,C) [35]. The results showed that 

in sample Chr the KRAS promoter region harboring the G4 motifs contains, compared to ctr1 or ctr2, 3-fold more 

8OG than in input Chr. These data further support the notion that ROS increase the level of 8OG more in the 

promoter region harboring the G4 motifs than in G-rich control regions unable to form G4. This is in keeping 

with an 8OG-Seq analysis showing that in the mouse genome, 8OG is 2-fold more abundant in gene promoters 

than in genic and intergenic regions [38,39]. In a previous work we asked if 8OG affects the topology and stability 

of the G4 formed by G4 32R [35]. In brief, we found that when the oxidative lesion lies in a loop (as in sequence 

96, Table 1), both the topology (1/1/12) and the stability (~62 °C) of the resulting G4 did not appreciably change. 

By contrast, when 8OG lies in the G-tetrad core (as in sequence 92, Table 1), the damaged G-run is replaced by 

the additional G-run present in G4 32R, through an alternative folding. This is due to the fact that 8OG 

destabilizes G-tetrad [35] (Supplementary Information S6). The topology of G4 changed from 1/1/12 into 4/4/6 

and the TM decreases by ~10 °C [35]. These data show that the impact of 8OG on G4 depends on the position of 

the oxidized base within the G4 motif [40,41]. The effect of 8OG in G4 mid1 and G4 mid2 is similar to that 

observed with G4 32R. If we assume that G4 mid1 and G4 mid2 form, as observed for G4 32R, a G4 structure 

containing a 1-nt loop and a bulge in one strand, 8OG in G4 mid1OX and G4 mid2OX are expected to fall in the G4 

core, destabilizing the structure. Indeed, we found that the TM’s of G4 mid1OX and G4 mid2OX are respectively 3 

and 4 °C lower than the wild-type analogues (Table 1, Supplementary Information S5). 

 

2.2. Under Oxidative Stress, PARP-1 Is Recruited to the KRAS Promoter where It Binds to G4 32R and G4 mid1 

and G4 mid2  

In the past years, evidence that G4 32R is involved in transcription regulation [9,10] has been provided. G4 

32R is located few helical turns upstream of TSS and is recognized by several transcription factors including 

PARP-1, Ku70, MAZ, and hnRNP A1 [11]. PARP-1 plays two important roles on transcription: It promotes the 

decondensation of chromatin [42] and it acts as a component of the transcription pre-initiation complex [43]. 

Due to its critical role in transcription, we focused here on PARP-1. By electrophoresis mobility-shift assays 

(EMSA), we explored the capacity of recombinant PARP-1 to bind to the G4s formed by G4 32R and G4 mid1, 

G4 mid2 (the entire G4 mid sequence showed little binding, not shown) (Figure 3A). The results obtained by 

incubating the oligonucleotides 5’-labelled with Cy5.5 (50 nM), mimicking the KRAS G4s, with increasing 

amounts of PARP-1 (protein:G4 ratios = 0, 2.2, 4.4, 8.6, 17.2, 34.4), are reported in Figure 3B. The interaction 

between PARP-1 and the G4s is rather strong, as a 4.4-fold excess of PARP-1 over G4 is sufficient to show a 

retarded band in the gel. In contrast, the three unstructured oligonucleotides (at PARP-1/ODN of 34.4) did not 

show any affinity for PARP-1 (negative control). It can be seen that protein:G4 ratios < 4 favor the formation of 

a 1:1 complex, whereas protein:G4 ratios > 4 favor the formation of a 2:1 complex (2 PARP-1 per G4). We reported 

in a plot for each G4, the fraction of bound G4 as a function the PARP-1 concentration (Figure 3C). As the curves 

showed a sigmoidal shape, they have been best-fitted to the Hill equation. We obtained the following KD’s 

values: 0.2  0.03 M for G4 32R; 0.36  0.02 M for G4 mid1; 0.37  0.02 M for G4 mid2. The three best-fits gave 

a cooperativity Hill coefficient of n  3. In a previous study, the KD‘s between PARP-1 and CKIT-1 or Htelo G4s, 

determined by surface plasmon resonance (SPR), were found to be 65 nM for CKIT-1 and 5.8 M for Htelo [44].  
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Figure 3. (A) Sequences of G4 32R, G4 mid1 and G4 mid2; (B) EMSA showing the binding of recombinant PARP-

1 to Cy5.5-labelled G4-mid1, G4 mid2, G4 32R and control oligonucleotides ODN1, ODN2 and ODN3 (50 nM), 

with increasing amounts of PARP-1. Reaction was carried out in 20 mM Tris–HCl pH 8, 30 mM KCl, 1.5 mM 

MgCl2, 1 mM DTT, 8% glycerol, 1% Phosphatase Inhibitor Cocktail I (Sigma, Milan, Italy), 5 mM NaF, 1 mM 

Na3VO4, 2.5 ng/mL poly [dI-dC], 50 mM ZnAc for 30 min at RT. 50 nM Cy5.5-labelled G4 was incubated with 0, 

0.11, 0.22, 0.43, 0.86, and 1.72 M PARP-1; (C) Plots reporting the fraction of G4 bound to PARP-1 as a function of 

the PARP-1 concentration. The data have been best-fitted to the Hill equation. Error bars are from two 

experiments; (D) Typical fluorescence titration of PARP-1 with G4 32R. The titration was carried out in a 500 L 

quartz cuvette containing a solution of PARP-1 (60 nM) in 50 mM Na-cacodylate, pH 7.4, 100 mM KCl, 50 M 

ZnAc, 1 mM DTT. G4 32R was added to the PARP-1 solution and the readings were performed 5 min after 

incubation. The fluorescence spectra were recorded at 20 °C between 310 and 500 nm, excitation at 295 nm. 

Titrations were carried out also with G4 mid1 and G4 mid2; (E) Plots reporting the % Trp quenching induced by 

increasing amounts of G4 32R, G4 mid1, and G4 mid2. Error bars are from two experiments; (F) ChIP showing the 
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recruitment of PARP-1 to the G4 promoter region compared to non-G4 control ctr1 and ctr2 regions, following 

H2O2 treatment of Panc-1 cells. Error bars are from three experiments, (*) = p < 0.05. 

As PARP-1 contains multiple Trp residues in its DNA-binding domain [44], we followed the binding of 

PARP-1 to G4 DNA by measuring the quenching of the Trp fluorescence upon addition of G4 to a PARP-1 

solution. In Figure 3D we report a typical titration obtained by adding increasing amounts of G4 32R to a PARP-

1 solution (60 nM). G4 32R quenched the fluorescence by 50%, whereas G4 mid1 and G4 mid2 by 30%. The 

percentage of quenching (measured at 345 nm) as a function of increasing amounts of G4 gave the curves shown 

in Figure 3E. From these plots we determined the stoichiometry of the interaction by the “tangent” method. The 

results pointed to a stoichiometry of two PARP-1 molecules per G4, in keeping with the results obtained with 

the CKIT G4 [44] and the EMSA shown in panel 3B. 

Next, we explored by ChIP if PARP-1 is recruited to the G4-region of the KRAS promoter when the cells are 

treated with H2O2, i.e. after an increase of oxidative stress (Figure 3F). Panc-1 cells were treated with two doses 

of H2O2, 0.5 and 1.0 mM, the chromatin was extracted, sheared and used for a ChIP assay with an antibody 

specific for PARP-1. Input Chr (from untreated cells) and recovered Chr (from H2O2 treated cells), immuno-

precipitated with antiPARP-1 Ab, were analyzed by qPCR with primers for the KRAS promoter G4 region and 

primers for the ctr1 and ctr2 regions. The data obtained showed that the occupancy of the G4 region by PARP-1 

compared to control ctr1 and ctr2 regions increased up to 4-fold as a function of H2O2, i.e. in a dose-response 

manner (Figure 3F). 

We have previously reported that MAZ and hnRNP A1 too are recruited to the KRAS promoter G4 region 

rich in 8OG, in response to a H2O2 treatment [35]. Indeed, we found by a ChIP-reChiP experiment that MAZ and 

hnRNP A1 localize in the promoter region of KRAS, where the 8OG level is higher than in the control region 

[35]. Moreover, by EMSA we found that MAZ and hnRNP A1 bind to both G4 32R [22,23] and G4 mid sequences 

(Supplementary Information S7, S8). 

 

2.3. G4 32R Forms A Multi-Protein Complex with PARP-1, MAZ and hnRNP A1 

The nuclear factors recruited to the critical KRAS G4-region, located upstream of TSS, following a treatment 

with H2O2, are likely to form the transcription pre-initiation complex. To support this notion, we performed 

biotin-streptavidin pull-down assays with a Panc-1 nuclear extract and as DNA baits biotinylated G4 32R and 

G4 mid, in the wild-type or oxidized form (Figure 4B–D). The G4 baits mimicking G4 32R are wild-type b-32R 

and its oxidized forms b-92 and b-96 (Table 1). We prepared DNA baits also for G4 mid: b-mid, b-mid1 and b-

mid2 and oxidized analogues b-midOX, b-mid1OX and b-mid2OX carrying one or two 8OGs (Table 1). Each G4 bait 

was incubated with 80 g of nuclear extract from Panc-1 cells. The proteins bound to the G4 bait were pulled 

down with streptavidin-coated magnetic beads, eluted with Laemmli buffer and analyzed by immunoblotting 

with antibodies specific for MAZ, hnRNP A1 and PARP-1. It can be seen that the G4 baits mimicking G4 32R (b-

32R, b-92 and b-96), independently from their oxidation state, pulled down all three transcription factors. This 

suggests that G4 32R forms a multiprotein complex, which is presumably the transcription pre-initiation 

complex. The eluates from the beads incubated with the nuclear extract in the absence of G4 bait, contained a 

small amount of proteins due to unspecific interactions between the magnetic beads coated with streptavidin 

and the proteins (lane “beads”). By contrast, the eluates from the beads bound to b-32R, b-92, and b-96 contained 

a higher amount of the target proteins, due to their specific binding to the G4 structures. The nuclear factors 

recognize G4 32R also in the duplex conformation (obtained by hybridizing the biotinylated G4s with the 

complementary strand). Figure 4B shows that MAZ and PARP-1 bind to both wild-type and oxidized G4 32R in 

duplex conformation. 

In agreement with previous studies [22], we found that whereas hnRNP A1 binds only slightly to the wild-

type duplex, it binds clearly to the oxidized duplexes. 

We also performed pull-down experiments with wild-type and oxidized b-mid, b-mid1 and b-mid2 as G4 

baits (Table 1) (Figure 4C). These show that the 53-mer oligonucleotide b-mid, forming a putative quad-stacked 

G4 with a TM = 78 °C, is not bound by the nuclear factors, whereas b-mid1 (TM = 59 °C) and b-mid2 (67 °C) clearly 

bind to PARP-1. Instead, the binding of MAZ and hnRNP A1 to G4 mid1 and G4 mid2 is very weak, as the 

amounts of protein pulled down is comparable to those present in the input. PARP-1 binds to G4 mid1 and G4 
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mid2 also when they include 8OG. Some binding of MAZ to b-midOX is observed. Furthermore, and expectedly, 

we found that G4 mid in duplex conformation interacts with PARP-1 and MAZ but not with hnRNP A1 (Figure 

4D). Together, the pull-down assays show that PARP-1, MAZ and hnRNP A1 form with the critical G4 32R 

sequence of KRAS, localized immediately upstream TSS, a transcription pre-initiation complex. G4 mid1 and G4 

mid2 seems to have the function of recruiting PARP-1 in the promoter region, thus acting as a platform for the 

assembly of the pre-initiation complex. 

 

Figure 4. (A) Structure of the DNA baits used in the pull-down experiments. The scheme of the pull-down 

experiments is illustrated; (B) Pull-down with wild-type and oxidized G4 32R sequence in the G4 or duplex 

conformation. b-32R is wild-type G4 32R, while b-92 bears one 8OG in a G-run, b-96 bears two 8OG bases in the 

12-nt loop (see structure in ref [35]) (Table 1). The biotinylated G4 or duplex baits (80 nM) were incubated with 80 

g of nuclear extract for 30 min at RT. The DNA bait-protein complexes formed were pulled down with 

streptavidin magnetic beads. The pulled-down proteins were recovered and analyzed by Western blot with anti 

MAZ, anti PARP-1 and anti hnRNP A1 primary antibodies and a secondary antibody conjugated to horseradish 

peroxidase; (C,D) Pull-down with wild-type G4 mid sequences b-mid, b-mid1 and b-mid2 or oxidized b-midox, 

b-mid1ox and b-mid2ox, in G4 or duplex conformation. The protocol followed is the same as in (B). We reported 

below each Western blot the band/input ratios. The uncertainty of these values from two experiments is about 20 

%; (*) = the band/input ratios could not be determined. 

 

2.4. PARP-1 Undergoes Autoparylation upon Binding to the KRAS G4  

PARP-1 is a protein that catalyzes poly(ADP-ribosyl)ation (PARylation) of target proteins including itself 

(auto PARylation). Free PARP-1 consists of 6 independent domains one connected to the other by a flexible 

linker [45]. It has been reported that when the protein binds to DNA with a lesion through its two zinc-finger 

domains, it undergoes a structural change that starts the synthesis of ADP-ribose units, by using NAD+ (the 

coenzyme derived from nicotinamide, NAM) as a source of ADP-ribose. PARylation is a heterogeneous reaction 

in terms of length (up to 200 ADP-ribose units) and branching [46–49]. However, PARP-1 can also transfer few 

ADP-ribose unit or even only one [mono(ADP-ribosyl)ation] [48]. Both properties and function of PARP-1 have 

been summarized in a recent review [21]. In the PARylation process, DNA behaves as a positive allosteric 

effector, by upregulating the basal catalytic activity of PARP-1. Considering that PARP-1 associated to the KRAS 

promoter binds to G4 DNA, we wondered if the G4 structures actually behave as activators of PARP-1, as DNA 

with a nick or an abasic site does. There is one report in the literature addressing this issue: The autoPARylation 
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of PARP-1 observed when the protein interacts with the ckit-1 and Htelo quadruplexes [44]. To test if the KRAS 

G4s activate recombinant PARP-1, we performed in vitro autoPARylation assays (Figure 5). 

 

Figure 5. (A) The reaction of PARP-1 autoPARylation. NAM = nicotinamide; (B) AutoPARylation of recombinant 

PARP-1 induced by a-DNA (positive control from supplier). When Veliparib, an enzymatic inhibitor of PARP-1 

(indicated with In), was added to the reaction mixture no PARylation was observed (negative control). The 

Western blot was performed with anti poly/mono ADP-ribose Ab and a secondary Ab conjugated to horseradish 

peroxidase. A membrane replica showing the protein markers (right) is also reported. PP = PARylated PARP-1; 

(C–G) AutoPARylation of recombinant PARP-1 (P) induced by KRAS G4 32R (C), 96 (D) and 92 (E) quadruplexes 

and G4 mid1 (F) and mid2 (G) quadruplexes. The mixtures contained 10, 20 and 40 nM of PARP-1 and 10 nM G4. 

As positive control we used a PARP-1 activator, a-DNA (a lesioned DNA), supplied with the “PARP-1 

Enzyme Activity Assay” kit (Merck Life Science, Milano, Italy). PARP-1 is a 113 kDa protein, whereas its 

autoPARylated form induced by a-DNA has a molecular weight > 245 kDa, suggesting an extensive auto 

PARylation synthesis. We then used as DNA activator KRAS G4s, both in the wild-type or oxidized form. The 

G4 activators (10 nM) were incubated with increasing amounts of PARP-1 (10, 20 and 40 nM) in a buffer 

containing NAD+. After incubation, the mixtures were blotted and analyzed with an anti poly/mono ADP-ribose 

Ab. The results show that the G4 activators promote to a different extent auto PARylation of PARP-1. The 

strongest activator is wild-type G4 32R; its oxidized variants 92 and 96 are weaker effectors. Indeed, auto 

PARylation induced by 92 and 96 is observed only in the presence of 40 nM PARP-1, while auto PARylation 

promoted by 32R is detected at 20 nM PARP-1. As expected, when Veliparib [50] (Supplementary Information 

S9), an inhibitor of PARP-1, is added to the reaction mixture, the autoPARylation is not observed. G4 mid1 and 

G4 mid2, wild-type and oxidized, promote autoPARylation of PARP-1 as well, but to a lesser extent than G4 

32R. Together, these data demonstrate that both G4 32R and G4 mid1/G4 mid2, in wild-type and oxidized forms, 

activate PARP-1 auto PARylation. Next, we asked if PARylation is also observed within the cell context. We 

investigated if the proteins recruited to the KRAS promoter, recognizing the G4 structure of G4 32R, are 

PARylated. To address this issue, we followed the scheme outlined in Figure 6 Panc-1 cells were treated with 

H2O2 to induce guanine oxidation and stimulate the recruitment of PARP-1, MAZ and hnRNP A1 to the KRAS 

promoter. The nuclear extracts were treated with biotinylated b-32R, b-92 and b-96. The pulled down samples 

were analyzed by Western blot with anti poly/mono ADP-ribose Ab. It can be seen that all three G4 baits pulled 

down PARylated proteins. Compared to untreated cells, the results show that PARylation increases with the cell 

exposure to H2O2. We also report in the figure the membrane replicas showing the molecular weight of the 

protein markers. The molecular weight of the markers loaded in the gel show that the PARylation involves a 
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protein of ~115 kDa, suggesting that this is most likely PARP-1. Note that H2O2 gave in the input (protein extract 

untreated with b-G4) PARylated proteins in the range between ~130–250 kDa, while the PARylated protein 

captured by the G4 baits gave only a sharp band, corresponding to a protein of the size of PARP-1. This suggests 

that PARP-1 captured by G4 is characterized by a limited auto PARylation, if not a mono (ADP-ribosyl)ation 

[48]. 

 

Figure 6. Western blots showing that b-32R and its oxidized variants b-92 and b-96, pulled down PARylated 

proteins, from Panc-1 cells treated with H2O2. Pulled-down PARylated proteins migrate in the gel with a strong 

band of approximately 120–125 kDa. In contrast, the input, composed by proteins that have not been pulled down 

with a G4 bait, shows PARylated proteins that have molecular weights > 125 kDa. Membrane replicas showing 

the protein markers are also reported, PP = PARylated proteins. 

2.5. The Transcription Pre-Initiation Complex Formed at G4 32R Contains Parylated PARP-1  

The experiment described above showed that there are proteins bound to G4 32R that are PARylated. 

Although we had an indication that the main PARylated protein could be PARP-1, we wanted to unambiguously 

confirm it. An insight was obtained by the experiment reported in Figure 7. Nuclear extract from Panc-1 cells 

untreated or treated with 0.5 or 1.0 mM H2O2 was pull-down with anti poly/mono-ADP ribose Ab. The recovered 

PARylated proteins were separated by SDS-PAGE and blotted on nitrocellulose. Using specific antibodies we 

tested for the presence of PARP-1, MAZ and hnRNP A1 within the PARylated proteins. Only PARP-1 turned 

out to be PARylated, while MAZ and hnRNP A1 did not. The PARylation of PARP-1 occurs in a dose-response 

manner as, compared to untreated cells, auto PARylation increases with the amount of H2O2 used. The amount 

of PARylated PARP-1 in the cells treated with 0.5 and 1.0 mM H2O2 is 4-fold more abundant than in the input 

(see bar plot). We concluded that upon binding to the KRAS G4 motif, PARP-1 undergoes autoPARylation. 

According to the data reported in this and previous studies, we are convinced that PARP-1 plays a key role in 

the mechanism controlling the expression of KRAS in pancreatic cancer cells. The crucial experimental 

observation supporting the mechanism proposed in Figure 8A is that an increase of intracellular ROS results in 

the upregulation of KRAS up to 2.5-fold, following H2O2 treatment. A similar result was obtained also when 

Panc-1 cells were phototreated with TMPyP4: A cationic porphyrin producing ROS upon irradiation [34]. As 

stated before, an increase of ROS enhances the level of 8OG in the G4-region of KRAS and stimulates the 

recruitment of PARP-1, MAZ, and hnRNP A1 to the promoter [35]. Pull-down experiments of chromatin with 

biotinylated G4 ligand b-6438 followed by a ChIP with anti 8OG Ab showed that 8OG and G4 DNA co-localize 

in the same promoter region (at 0.2 kb resolution). If we assume that 8OG is present in the G4 motifs, because 
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of their high guanine content, the recruitment stimulated by H2O2 increases the occupancy of the promoter G4 

motifs by the transcription factors. This is indeed in keeping with pull-down and Western blot assays showing 

that the G4 motifs of the KRAS promoter form together with PARP-1, MAZ and hnRNP A1 the transcription 

pre-initiation complex. It is possible that 8OG behaves as an epigenetic mark for the recruitment to the promoter 

of the transcription factors [51–53]. We observed that PARP-1 binds to both G4 32R and G4 mid, either in a wild-

type or oxidized form. When PARP-1 binds to G4 32R and G4 mid, it undergoes a structural change that makes 

the protein catalytically active, capable of auto PARylation. The auto PARylation process promoted by G4 has 

been confirmed in vitro, while cell-based experiments with anti poly/mono-ADP ribose and anti PARP-1 Abs 

showed that only few ADP-ribose units are present on PARylated PARP-1. The units of ADP-ribose attached on 

the surface of the protein assign a negative charge to PARP-1, which becomes anionic in nature. By contrast, 

MAZ and hnRNP A1, having isoelectric points (pI) of 8.1 and 9.2, respectively, are cationic in nature under 

physiological conditions. Thus, a possible function of PARP-1 bound to the G4 motifs is to recruit, through 

electrostatic interactions, the two transcription factors (Figure 8B). In this way MAZ and hnRNP A1 spatially 

accumulate in the promoter region where the transcription pre-initiation complex will be formed. According to 

this model, KRAS transcription is expected to be inhibited if MAZ or hnRNP A1 are suppressed. This has indeed 

been reported in previous works [22,24,35]. Moreover, given the important role attributed to PARP-1, the 

suppression or inhibition of its catalytic activity should strongly inhibit KRAS expression. This central issue will 

be addressed in the next and last section. 

 

Figure 7. Anti-PAR immunoprecipitation assay. (Left) Experimental scheme; (Right) Western blot showing that among 

the PARylated proteins present in Panc-1 cells treated with 0.5 and 1 mM H2O2, there is only PARP-1 and not MAZ and 

hnRNP A1. The bar plot reports the ratio PARP-1 (pulled down)/PARP-1 (input) as a function of the H2O2 concentration. 

Error bars are from two experiments. 
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B 

 
 

Figure 8. (A) Western blots of lysates obtained from Panc-1 cells treated with 0, 0.25, and 0.5 mM H2O2 for 2, 6, 

and 12 h. The cell lysates were obtained to determine the level of expressed KRAS protein respect to -actin. Band 

density was assessed with ImageJ Software. The bar plot, reporting the average KRAS/-actin values from the 

three treatments, shows that KRAS transcription is stimulated by ROS; (B) Proposed mechanism of KRAS 

activation caused by an increase of oxidative stress. A1 = hnRNP A1, pI = isolectric point. 

  

A 
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2.6. PARP-1 and G4 Are Essential for KRAS Expression  

Besides regulating transcription through the modification of chromatin structure [17], PARP-1 interacts 

with the promoter of KRAS, thus acting as a classical transcription factor. Previous studies have reported that 

PARP-1 is associated with RNA Pol II in open chromatin [54]. We therefore asked what the impact of PARP-1 is 

on the KRAS promoter. We treated Panc-1 cells for 24 and 48 h with a PARP-1 specific siRNA and analyzed by 

Western blot the expression of PARP-1, KRAS and -actin. After 48 h the siRNAs suppressed PARP-1 to ~30% 

of the control (siRNA ctr) and indirectly KRAS to ~10% of the control (Figure 9B). Such a result clearly shows 

that the expression of KRAS dramatically depends on PARP-1. We also asked if G4 DNA might play a central 

role in the formation of the transcription pre-initiation complex. We therefore transfected Panc-1 cells with a 

decoy oligonucleotide mimicking the G4 formed by G4 32R and measured by Western blot the level of KRAS 

protein (Figure 9C). The Western blot shows that 72 h after transfection with 600 nM G4 32R, the expression of 

the KRAS protein is completely suppressed. This result suggests that the exogenous G4 32R oligonucleotide 

transfected in the cells sequesters the transcription factors that normally form the transcription pre-initiation 

complex at the promoter G4 32R sequence. Finally, according to our model, transcription activation involves 

autoPARylation of PARP-1 bound to G4 32R and G4 mid1/G4 mid2 in order to favor the electrostatic recruitment 

of cationic MAZ and hnRNP A1 on the promoter. To test if PARP-1 PARylation is an important step in the 

mechanism activating KRAS transcription, we used inhibitors of the poly/mono(ADP-ribosyl)ation catalyzed by 

PARP-1, Olaparib and Veliparib [50,55]. Panc-1 cells were treated with 30 and 70 M Olaparib and Veliparib for 

48 h and the levels of the KRAS and -actin proteins were measured by Western blot. The results reported in 

Figure. 9E,F indicate that Veliparib decreases the expression of KRAS by 60% compared to the control 

(untreated cells). This behavior is fully consistent with our hypothesis that the autoPARylation of PARP-1 plays 

a critical role in activating the expression of the KRAS oncogene under oxidative stress.  

 

Figure 9. (A,B) Western blot assays showing that 10 and 20 nM PARP-1 siRNA suppress PARP-1 and KRAS as 

well, in Panc-1 cells, control siRNA-ctr does not. The analysis was carried out 24 and 48 h after siRNA treatment; 

(C) Western blot showing that Panc-1 cells treated with G4 32R inhibits the expression of KRAS by acting as a G4 

decoy which sequester the transcription factors. As a control an oligo dT was used; (D) Mechanism of action of 

G4 32R acting as a G4 decoy; (E,F) Western blot experiment. Panc-1 cells treated with 30 and 70 M Veliparib 

(VEL) and Olaparib (OLA), small-molecules inhibiting the catalytic activity of PARP-1, result in >50% down-

regulation of KRAS protein compared to control (untreated cells). Bands density were assessed with ImageJ 

Software. The bar plot reports KRAS/-actin ratios. Error bars are from two independent experiments. 
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3. Materials and Methods 

3.1. Oligonucleotides 

The non-modified oligonucleotides used in this study have been purchased from Microsynth-AG, Balgach, 

Switzerland. 8-oxoG-substituted oligonucleotides were synthesized from 8-oxo-dG CEP from Berry & 

Associates in 1-μmol scale on solid support by standard procedure, except using concentrated ammonia in the 

presence of 2-mercaptoethanol (0.25 M) in the deprotection step, as described by Bodepudi et al. [56]. The 

oligonucleotides were purified by reverse-phase high pressure (or high performance) liquid chromatography 

on a Water system 600, equipped with a C18 column (XBridge OST C18, 19 × 1000 mm, 5 μm). The composition 

of the oligonucleotides was verified by Matrix Assisted Laser Desorption Ionization-Time of Flight (MALDI-

TOF). Sequences are reported in Table 1. 

 

3.2. Cell Culture 

Human pancreatic ductal adenocarcinoma cells (Panc-1), bearing a heterozygous missense G12D mutation 

in the KRAS gene, were maintained in exponential growth in Dulbecco’s modified Eagle’s medium High Glucose 

(DMEM-High Glucose) containing 100 U/mL penicillin, 100 mg/mL streptomycin, 20 mM L-glutamine and 10% 

fetal bovine serum. All reagents were purchased from EuroClone S.p.A.,Pero (Milano), Italy. 

 

3.3. Chromatin Immunoprecipitation and Quantitative PCR 

ChIP was carried out by using the ChIP-IT® Express Shearing Kit (Active Motif, Carlsbad, CA, USA). In 

brief, 8 × 105 Panc-1 cells were seeded in 6-well plates and after 24 h some plates were treated with 1 or 0.5 mM 

H2O2 for 30 min in serum-free DMEM-High Glucose. Then, the cells were washed with phosphate buffered saline 

(PBS) and fixed for 10 min in serum-free DMEM-High Glucose containing 1 % formaldehyde. After fixing, the 

cells were washed with cold PBS and Glycine Stop-Fix Solution was added to arrest the fixing reaction. The cells 

were then washed again with cold PBS, treated with Scraping Solution and centrifuged at 720 g for 10 min at 4 

°C. The pellet was re-suspended in ice-cold lysis buffer supplemented with PMSF and PIC (protease inhibitor 

cocktail) and incubated for 30 min on ice. The cells were transferred to an ice-cold dounce homogenizer for 10 

strokes to release the nuclei. The homogenate was centrifuged for 10 min at 2400 g at 4 °C, to pellet the nuclei. 

The nuclei were re-suspended in Shearing Buffer and the chromatin sheared by sonication (10 × (30 s pulse on/30 

s pulse off)) on Bioruptor Plus (Diagenode, Seraing, Belgium) into DNA fragments of about 300–400 bp. The 

sheared chromatin was centrifuged at maximum speed for 15 min, 4 °C. The chromatin concentration was 

determined with a spectrophotometer by UV absorption at 260 nm. Ten micrograms of chromatin were treated 

overnight at 4 °C with 1 g PARP-1 specific antibody (Santa Cruz Biotechnology, Heidelberg, Germany). In 

addition to the antibody, the mixtures were added with Protein G Magnetic Beads, ChIP buffer-1 and PIC, 

following the Active Motif Kit protocol. After overnight incubation at 4 °C, the mixtures were spun and the 

chromatin bound to the antibody collected with a magnetic bar. The collected beads were washed once with 

ChIP buffer-1 and twice with ChIP buffer-2. The beads were then re-suspended in Elution Buffer AM2 and let 

to incubate on shaking for 15 min at room temperature. The beads were treated with Reverse Crosslinking Buffer 

and the supernatant with the chromatin was collected. 1 g of chromatin was used as “input” to assess G4 

enrichment after incubation with Ab-PARP-1; in addition to the chromatin, the mixtures were added with ChIP 

Buffer-2 and 10 mM NaCl. Both input and immuno-precipitated chromatins were heated at 95 °C for 15 min, 

added with Proteinase K and incubated at 37 °C for 1 h. Finally, Proteinase K Stop Solution was added to halt 

the reaction. The DNA fragments were amplified by qPCR using primers specific for genomic KRAS (accession 

number NG_007524): 

G4-plus 5′-GTACGCCCGTCTGAAGAAGA-3′ (nucleotides (nt) 4889–4908, 0.2 μM), 

G4-minus 5′-GAGCACACCGATGAGTTCGG-3′ (nt 4958–4977, 0.1 μM), 

Ctr1-plus 5′-ACAAAAAGGTGCTGGGTGAGA-3′ (nt 12–32, 0.2 μM), 

Ctr1-minus 5′-TCCCCTTCCCGGAGACTTAAT-3′ (nt 248–268, 0.2 μM), 
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Ctr2-plus 5′-CTCCGACTCTCAGGCTCAAG-3′ (nt 7536–7555, 0.15 μM), 

Ctr2-minus 5′-CAGCACTTTGGGAGGCTTAG-3′ (nt 7692–7711, 0.15 μM). 

The KRAS G4 region is located upstream TSS in the non-coding strand, ctr1 is about 5 k-bp upstream TSS while 

ctr2 is in an intron, about 3 k-bp downstream TSS. The % GC contents of the G4, ctr1, and ctr2 regions are 65, 44 

and 59 %, respectively. The lower GC content of ctr1 is only apparent because it contains three 29-mer sequences 

with a GC content of 55, 59, and 60 %. The G4, ctr1, and ctr2 sequences are within chromatin fragments of 300–

400 bp; the length of the amplified sequences are 91, 256, and 176 bp, respectively. The qPCR reactions were 

carried out with a CFX-96 real-time PCR apparatus controlled by Optical System software (version 3.1) (Bio-Rad 

Laboratories, Segrate (Milano), Italy) on 1 μl of immuno-precipitated chromatin or input, which were mixed to 

Sybr Green mix following manufacturer instructions (Kapa Sybr Fast QPCR Mix, Kapa Biosystems, MA, USA) 

and primers. For G4-region amplification cycles were: 3 min at 95 °C, 40 cycles 30 sec at 95 °C and 40 sec at 59 

°C. For controls amplification cycles were: 3 min at 95 °C, 40 cycles 10 s at 95 °C and 30 s at 57 °C (ctr1) or 61 °C 

(ctr2). All reactions have been validated before amplification for each target and couple of primers. The Ct-values 

(number of cycles required for the fluorescent signal to cross the threshold) given by the instrument (Bio-Rad, 

CFX96 Real-time PCR detection System) were used to evaluate the difference between sample and input. The 

adjusted Ct input was obtained by Ct input – log2 (input dilution factor). Then ΔCt = Ct sample − Adjusted Ct 

input. The % Input for each sample was calculated as follows: % Input = 100 × 2−ΔCt . The % Input was obtained 

for the G4 region and also for the non-G4 regions (ctr1 and ctr2). The enrichment in 8-oxoG or MAZ or hnRNP 

A1 or OGG1 of the G4 region respect to the non-G4 regions was determined by the ratio: 

[% Input (G4 region)]/[% Input (non-G4 region)]  

3.4. Mobility Shift Assays 

Recombinant PARP-1 was purchased by Antibodies-online GmbH, Germany and provided as powder; the 

lyophilized protein was reconstituted with dH2O following manufacturer instructions. 

Recombinant MAZ and hnRNP A1 proteins were obtained as reported in Supplementary Information S1. 

Before EMSA, 5’Cy5.5 G4 oligonucleotides (G4 32R, G4 mid1 and G4 mid2) were allowed to form their structure 

in 50 mM Tris–HCl, pH 7.4, 100 mM KCl, heated at 95 °C for 5 min and incubated overnight at RT. Cy5.5-

oligonucleotides (50 nM) were treated for 30 min at 25 °C with different amounts of PARP-1/hnRNP A1/MAZ, 

([protein]/[oligonucleotide] ratios reported in the text) in 20 mM Tris–HCl pH 8, 30 mM KCl, 1.5 mM MgCl2, 1 

mM DTT, 8% glycerol, 1% Phosphatase Inhibitor Cocktail I (Merck Life Science, Milano, Italy), 5 mM NaF, 1 mM 

Na3VO4, 2.5 ng/mL poly [dI-dC], 50 M ZnAc. After incubation, the reaction mixtures were loaded in 5% TB (1×) 

polyacrylamide gel and run at 300 V, 50 mA, 30 W for 2 h at 20 °C. After running, the gel was analyzed with 

Odyssey CLx Imaging System (Li-COR Biotechnology, Bad Homburg, Germany). 

 

3.5. Nuclear Extract and Biotin-Streptavidin Pull Down Assay  

To obtain nuclear extracts, 6 plates of 15 cm diameter of Panc-1 cells at a given confluence were collected 

and exposed to 0.5 M ADP-HPD, an inhibitor of PARG enzyme (Merck Life Science, Milano, Italy) for 1 h. 

Subsequently, the cells were washed with PBS and treated with 1mM H2O2 in serum free DMEM-High Glucose 

for 2, 4, and 8 min. The cells were collected in PBS buffer, centrifuged at 800 g for 10 min at 4 °C. Next, the cells 

were resuspended in hypotonic buffer (10 mM HEPES-KOH, pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.2 mM PMSF, 

0.5 mM DTT, 5 mM NaF, 1 mM Na3VO4) and kept in ice for 10 min. The swollen cells were homogenized with a 

Dounce homogenizer and the nuclei, pelleted by centrifugation and resuspended in low-salt buffer (20 mM 

HEPES-KOH, pH 7.9, 25 % glycerol, 1.5 mM MgCl2, 20 mM KCl, 0.2 mM EDTA, 0.2 mM PMSF, 0.5 mM DTT). 

Release of nuclear proteins was obtained by the addition of a high-salt buffer (low-salt buffer containing 1.2 M 

KCl). Protein concentration was measured according to the Bradford method. Biotinylated 32R, 92, 96, mid1, 

mid2, mid, midox mid1ox and mid2ox were folded in 50 mM Tris-HCl, pH 7.4 and 100 mM KCl by heating the 

solutions at 95 °C for 5 min and successive incubation at RT overnight. The corresponding duplexes were 

obtained by annealing (5 min at 95 °C and overnight at RT) the G4 oligonucleotides with the complementary 

strands in 50 mM Tris–HCl pH 7.4, 100 mM NaCl. 80 g of Panc-1 nuclear extract were incubated for 30 min at 
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RT with 80 nM biotinylated 32R, 92, 96, mid1, mid2, mid, midox, mid1ox and mid2ox in 20 mM Tris–HCl, pH 

7.4, 150 mM KCl, 8 % glycerol, 1 mM DTT, 0.1 mM ZnAc, 5 mM NaF, 1 mM Na3VO4 and 2.5 ng/μL poly[dI-dC]. 

Then 80 μg of Streptavidin MagneSphere Paramagnetic Particles (Promega Italia, Milano, Italy) were added and 

let to incubate for 30 min at RT. The beads were captured with a magnet and washed two times. The proteins 

were denatured and eluted with Laemmli buffer (4% SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.004% 

bromophenol blue and 0.125 M Tris–HCl). 

 

3.6. Western Blots 

Protein samples were separated in 10–12% SDS-PAGE and blotted onto nitrocellulose membrane at 70 V 

for 2 h. The nitrocellulose membrane was blocked for 1 h with 5 % fat dried milk in PBS and 0.1 % Tween (Merck 

Life Science, Milano, Italy) at room temperature. The primary antibodies used were: Anti-MAZ (clone 133.7, IgG 

mouse, Santa Cruz Biotechnology, Dallas, TX, USA), anti-hnRNP A1 (clone 9H10, IgG mouse, Merck Life 

Science, Milano, Italy), anti-PARP-1 (polyclonal antibody, IgG rabbit, Cell Signalling Technology, Leiden, The 

Netherlands), anti-PAR (Poly/Mono-ADP Ribose (E6F6A) Rabbit mAb #83732, Cell Signalling Technology, 

Leiden, The Netherlands), anti--actin [Anti-Actin (Ab-1) Mouse mAb (JLA20)], (Merck Life Science, Milano, 

Italy), anti-KRAS (Mouse monoclonal Anti-KRAS, clone 3B10 2F2, Merck Life Science, Milano, Italy). The 

membranes were incubated overnight at 4 °C with the primary antibodies, then washed with 0.1% Tween in PBS 

and incubated for 1 h with the secondary antibodies conjugated to horseradish peroxidase: Anti-mouse IgG 

(diluted 1:5000), anti-rabbit IgG (diluted 1:5000) and anti-mouse IgM (diluted 1:5000) (Merck Life Science, 

Milano, Italy). The signal was developed with Super Signal® West PICO, and FEMTO (Thermo Fisher Scientific, 

Waltham, MA, USA) and detected with ChemiDOC XRS, Quantity One 4.6.5 software (Bio-Rad Laboratories, 

Segrate, (Milano), Italy). Bands quantification was performed with the ImageJ software. 

 

3.7. PAR Immunoprecipitation Assay  

Panc-1 cells were seeded onto 15 cm diameter plates. At a confluence of 80%, the cells were treated with 1 

and 0.5 mM H2O2 in serum-free DMEM High Glucose medium for 30 min. Then the nuclear proteins were 

extracted and quantified as described in the “Nuclear extract and biotin-streptavidin pull down assay”. For 

immunoprecipitation, 1.5 mg of Protein A-Dynabeads (ThermoFisher Scientific-Invitrogen, Waltham, MA, USA) 

were incubated with 3 g of PAR antibody (Poly/Mono-ADP Ribose (E6F6A) Rabbit mAb #83732, Cell Signalling 

Technology, Leiden, The Netherlands) and 3 g of IgG Rabbit (ThermoFisher Scientific-Invitrogen, Waltham, 

MA, USA) as negative control in 20 mM Tris-HCl, pH 7.4, 150 mM KCl, 8% glycerol, 1mM DTT and 0.1 mM 

ZnAc for 15 min at RT. After one wash with the same buffer, 80 g of nuclear extracts were allowed to react with 

anti-PAR- and IgG rabbit-derivatized Dynabeads for 30 min at RT. The beads were captured with a magnet and 

washed twice with the same buffer. The proteins were denatured and eluted with Laemmli buffer (4% SDS, 20% 

glycerol, 10% 2-mercaptoethanol, 0.004% bromophenol blue and 0.125 M Tris–HCl). 

 

3.8. PARP-1 AutoPARylation and Inhibition Assays  

Oligonucleotides 32R, 92, 96, mid1, mid2, and mid sequences were allowed to fold into G-quadruplex as 

reported previously. 0, 10, 20, and 40 nM rPARP-1 (Antibodies-online, Aachen, Germany) was incubated with 

10 nM biotinylated sequences in 50 mM Tris-HCl, pH 7,4, 50 mM KCl, 2 mM MgCl2, 1 mM DTT, 50 M ZnAc 

and 150 M NAD+ in 15 L final volume for each reaction. Samples include both positive (PARP-1 incubated 

with activating-DNA from “PARP-1 Enzyme Activity Assay”, Merck Life Science, Milano, Italy) and negative 

control (PARP-1 incubated with 400 M Veliparib inhibitor, purchased from Selleckchem, Munich, Germany). 

Incubation was carried out for 30 min at RT and stopped with the addition of Laemmli buffer (4% SDS, 20 % 

glycerol, 10% 2-mercaptoethanol, 0.004% bromophenol blue and 0.125 M Tris–HCl). 
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3.9. Inhibition of KRAS by G4 Decoys, siRNA and Veliparib 

To evaluate KRAS expression by Western blot, 5 × 105 cells/well were seeded onto a 6-well plate and 

transfected with 600 nM 32R or 600 nM oligodT (control) by jetPEITM. The cells were collected 72 h after 

transfection in Laemmli Buffer (4% SDS, 20% glycerol, 0.125 M Tris–HCl, pH 7.4) and lysed by Bioruptor Plus 

(Diagenode, Seraing, Belgium) (30 sec on/30 sec off) repeated 20 times. The proteins in the lysates were 

determined by Markwell assay [57]. 

To evaluate the expression level of KRAS following siRNA or PARP-1 inhibitor treatments, we seeded Panc-

1 cells (4 × 105 cells/well) onto 6-well plate. After 24 h cells were exposed to either PARP-1 siRNA (Santa-Cruz 

Biotechnology, Heidelberg, Germany) (10 or 20 nM, 24 and 48 h) or Veliparib/Olaparib (30 or 70 M, 48 h) 

(Selleckchem, Munich, Germany) diluted in DMSO. SiRNA were delivered with INTERFERin siRNA 

transfection reagent (Polyplus Transfection, Illkirch, France). After treatment, the cells were washed with PBS 

and collected in Laemmli Buffer (4% SDS, 20% glycerol, 0,125 M Tris–HCl). Cell lysates were obtained as 

described above.  

 

3.10. Panc-1 Nuclear Extract 

Untreated or treated Panc-1 cells (8 × 105) (treated with the various molecules used in this study) were 

seeded onto a 6-well plate. The following day, the cells were treated with 0, 0.25, and 0.5 mM H2O2 in serum-

free DMEM High Glucose for 2, 6, and 12 h. The medium was then removed, the cells washed with PBS and 

collected in Laemmli Buffer (4% SDS, 20% glycerol, 0.125 M Tris–HCl, pH 7.4). The cells were lysed on Bioruptor 

Plus (Diagenode, Seraing, Belgium), by adopting as lysis protocol, 30 sec on/30 sec off, repeated 20 times. The 

lysates were quantified with Markwell assay [57]. 

 

3.11. UV-Melting and CD  

UV-melting was performed by using Jasco V-750 UV-visible spectrophotometer equipped with a Peltier 

temperature control system (ETCS-761) (Jasco Europe, Cremella, Italy). The spectra were analyzed with Spectra 

Manager (Jasco Europe, Cremella, Italy). The oligonucleotides (5 μM) were annealed in 50 mM Na-cacodylate, 

pH 7.4 and 100 mM KCl, (5 min at 95 °C, overnight at RT). The melting curves were recorded at 295 nm in a 0.5 

cm path length quartz cuvette, heating (25–95 °C) at a rate of 0.5 °C/min. 

Circular Dichroism (CD) spectra were obtained on a JASCO J-600 spectropolarimeter, equipped with a 

thermostated cell holder, with 5 μM oligonucleotide solutions in 50 mM Na-cacodylate, pH 7.4, 100 mM KCl. 

The spectra were recorded in 0.5 cm quartz cuvette at 25 and 95 °C and reported as ellipticity (mdeg) versus 

wavelength (nm). Each spectrum was smoothed and subtracted to the baseline. 

 

3.12. Fluorescence Experiments 

32R, mid1 and mid2 were allowed to fold into quadruplex in 50 mM Na-cacodylate, pH 7.4, 100 mM KCl, 

(5 min at 95 °C, overnight at RT). The Trp fluorescence was titrated by adding to a 60 nM of recombinant PARP-

1 solution (500 L) in 50 mM Na-cacodylate, pH 7.4, 100 mM KCl, 50 M ZnAc, 1 mM DTT, increasing amounts 

of G4 (see plots). A solution (without PARP-1) was used as blank. The aliquots of G4 were directly added to the 

PARP-1 solution and reading was performed 5’ after the incubation between PARP-1 and G4s. The fluorescence 

was measured on a Cary Eclipse Fluorescence Spectrophotometer (Agilent Technologies Italia, Cernusco sul 

Naviglio, Italy), equipped with a thermostated cell holder. The spectra were recorded at 20 °C between 310 and 

500 nm, excitation at 295 nm. Each spectrum was smoothed and subtracted to the baseline. 
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3.13. Biotinylated-Anthrathiophenedione Pull-Down Assay 

The pull down of chromatin fragments containing G4 structures with a G4-specific ligand b-6438 is 

described in Supplementary Information S2. 

 

4. Conclusion 

In this work we have examined the role of PARP-1 in the activation of the transcription of KRAS in 

pancreatic cancer cells. The function of this oncogene is essential in PDAC, as it reprograms the glucose and 

glutamine metabolism with the aim of fueling an increased anabolic demand, typical of rapidly dividing cells 

[4,5]. Since cancer cells are characterized by a high metabolic rate, they produce higher levels of ROS than normal 

cells do. So, we asked what the impact of an enhanced level of ROS is in maintaining the transformed phenotype 

of PDAC. The starting points of our study are: (i) ROS increase the level of 8OG in the genome, in particular in 

the G4 motifs composed by contiguous runs of guanines; (ii) ROS stimulate the expression of KRAS, the 

oncogene to which PDAC cells are addicted [8]. Burrows and co-workers reported that the oxidation of guanine 

to 8OG in the VEGF G4 motif located upstream of Rluc reporter gene increases gene expression by 4-fold [51)]. 

If this may be considered as a general behavior and if it is applicable to the KRAS gene too, our work describes 

a possible mechanism through which 8OG in KRAS promoter upregulates gene expression. We have 

hypothesized that an increase of intracellular ROS, due to endogenous (metabolism) or exogenous (oxidants) 

sources, may oxidize guanine into 8OG in the G4-motif of the KRAS promoter located upstream of TSS. The 

oxidized G-rich sequence provides a platform for the assembly of the transcriptional machinery [35,52,58]. We 

already have found that the upregulation of KRAS occurring in the presence of oxidative stress stimulates the 

expression of Nrf2 [34]: The master regulator of cellular redox which activates the detoxification program by 

bringing down the ROS level for optimal cell proliferation [59,60]. We present experimental evidence that the 

activation of KRAS occurs through a mechanism involving the enrichment in 8OG of the promoter region with 

the G4 motifs recognized by transcription factors PARP-1, MAZ, and hnRNP A1. The enrichment of 8OG in the 

KAS G4 32R region produces an increase in the same region of the occupancy by PARP-1, MAZ, and hnRNP A1. 

This is in agreement with two facts: (i) Recombinant PARP-1 binds in vitro to G4 32R and G4 mid1/G4 mid2 

sequences, (ii) biotinylated G4 32R in the G4 conformation pulls down a multi-protein complex containing the 

three transcription factors. The binding of PARP-1 to the KRAS promoter activates the catalytic property of this 

protein, which by utilizing NAD+ undergoes a limited auto PARylation. This process changes the net charge of 

the protein, that becomes anionic. It also favours the recruitment to the promoter of cationic transcription factors 

necessary for KRAS transcription, like MAZ and hnRNP A1. Several reports have indeed assigned to PARP-1 a 

role in the assembly of regulatory complexes at the promoter of the genes [17,61]. In keeping with our results 

Chowdhury and co-worker found that zinc-finger transcription factors, such as PARP-1 and MAZ, are closely 

associated to the G4 motifs in the promoter of the human genes [62]. In conclusion, our study shows that the 

increase of KRAS transcription observed in the presence of enhanced levels of oxidative stress is mediated by 

PARP-1. 
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Abbreviations 

KRAS Kirsten ras gene  

MAZ MYC associated zinc finger protein 

hnRNP A1 Heterogeneous nuclear ribonucleoprotein A1 

PARP-1 Poly[ADP-ribose] polymerase 1 

PDAC Pancreatic ductal adenocarcinoma 

8OG 8-Oxoguanine 

TSS Transcription start site 

ChIP Chromatin immunoprecipitation 

PARylation Poly(ADP-ribosyl)ation 
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Supplementary Information S1: Recombinant proteins 

 
Recombinant MAZ and hnRNP A1 proteins tagged to glutathione S-tranferase (GST) were 

expressed in Escherichia coli DE3/BL21 by using, respectively, plasmid pGEX-hMAZ and pGEX- 

hnRNPA1. The bacteria were grown at 37 °C in LB broth plus ampicillin 100 g/mL to an A600 of 

0.8–1.0 prior to induction with either 1.0 mM (for MAZ) or 0.1 mM (for hnRNP A1) isopropyl 1- 

thio-β-D-galactopyranoside. Cells carrying pGEX-hMAZ were allowed to grow with 4M ZnAc 

overnight at 37°C before harvesting. The cells were centrifuged at 4230 g at 4°C, the supernatant 

was removed and the cells washed twice with PBS. The pellet was resuspended in a solution of PBS 

with 1 mM phenylmethylsulfonyl fluoride (PMSF). The bacteria were lysed by sonication (cells 

containing pGEX-hnRNP A1 were added with 1% Triton X-100 and incubated for 30 min on a 

shaker at 4 °C) added with 0,1mM PMSF and 0,5mM DTT. The lysate was then centrifuged for 30 

min at 4 °C at 34500 g. Glutathione Sepharose 4B resin (GE Healthcare) (50 % slurry in PBS) was 

added to the supernatant from the previous step and incubated for 1 h at 4 °C on a shaker. The mix 

was centrifuged for 5 min at 500 g and the pellet was washed 3 times with PBS. The protein was 

eluted from the resin with 50mM Tris-HCl pH 8, 10mM GSH and stored at -80 °C in the same 

buffer added with 0,1mM PMSF and 0,5mM DTT. 

 

 
Supplementary Information S2: Biotinilated-anthrathiophenedione pull-down assay 

 
Panc-1 cells (8 x 105) were seeded onto a 6-well plate and after 48 h some wells were treated with 1 

mM H2O2 for ½ h in in serum-free DMEM High Glucose. The cells were then washed with 

phosphate buffered saline (PBS) and fixed for 10 min in serum-free DMEM High Glucose 

containing 1% formaldehyde. After fixing, the cells were washed with cold PBS and added with 

Glycine Stop-Fix Solution to arrest the fixing reaction. The cells were washed again with cold PBS, 

treated with Scraping Solution and centrifuged at 2500 rpm for 10 min at 4°C. The pellet was 

resuspended in ice-cold lysis buffer supplemented with PMSF, PIC (protease inhibitor cocktail) and 

incubated for 30 min on ice. The cells were transferred to an ice-cold dounce homogenizer for 20 

strokes to release the nuclei. The homogenate was centrifuged for 10 min at 5000 rpm, 4 °C, to 

pellet the nuclei. The nuclei were resuspended in Shearing Buffer and the chromatin sheared by 

sonication [10 × (30 s pulse on/30 s pulse off)] on Bioruptor Plus (Diagenode, Seraing, Belgium) 

into DNA fragments of about 300–400 bp. The sheared chromatin was centrifuged at maximum 

speed for 15 min, 4◦C. The chromatin concentration was determined with a spectrophotometer by 
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ultraviolet (UV) absorption (260 nm) and 20 mg were folded in 100 mM KCl, 50 mM Tris-HCl, pH 

7.4 (5 min at 95 °C, overnight at RT). The folded chromatin mixed with biotinylated ligand b-6438 

(0.8 mM) was incubated at 4 °C for 6h. We incubated the magnetic beads, after saturation with 

Salmon Sperm DNA (Invitrogen, USA), with chromatin for 30 min at RT. The supernatant was 

removed and the beads washed three times with 50 mM Tris-HCl, pH 7.4, 50 mM KCl. We then 

recovered the bound chromatin with a solution 0.8 M NaCl. The following Chromatin 

Immunoprecipitation experiment was carried out treating the eluted chromatin overnight at 4 °C 

with 1 mg antibody specific for 8-oxoG (Bioss Antibodies, Woburn, MA, USA), following the 

Active Motif Kit protocol previously reported in “Chromatin immunoprecipitation and quantitative 

PCR” section. 

 

 
Supplementary Information S3: Structure of the G-quadruplex formed by sequence 32R (G4- 

near) located in the KRAS promoter, upstream of TSS. The structure has been determined by DMS- 

footprinting (ref. 11) and NMR (ref. 30). This 1/1/12 G4 is in equilibrium with a 1/3/11 conformer 

(ref. 30). 

 

 
 

 

 
Supplementary Information S4: Putative structures of the G-quadruplexes formed by sequences 

G4 mid1 (TM= 59 °C) and G4 mid2 (TM = 67 °C) located in the KRAS promoter, upstream of TSS. 

For analogy with 32R we propose for both sequences a structure with a bulge and a 1-nt double- 
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chain reversal loop (loops 4/1/2). This is in keeping with the fact that replacing in G4-mid1 G10 

with 8OG, the TM decreases to 56 °C, because the G-run GOXGAG is replaced by GGG at the 3’end 

and the G4 assumes a 9/2/2 loop topology. A similar behaviour was observed with 32R (Ref. 27). 

As with G4 mid1, also G4 mid2 assumes a G4 with a bulge and 1-nt double-chain reversal loop 

(loops 2/1/6). When G7 and G15 are replaced with 8OG, the TM goes down to 63 °C, suggesting 

that G7 is indeed involved in the formation of a G-tetrad. 
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Supplementary Information S5: CD spectra and melting curves of G4 mid, G4 mid1 and G4 mid2 

in 50 mM Na-cacodylate, pH 7.4 and 100 mM KCl. The TM are: 78 °C (G4 mid), 59 (G4 mid1) and 

67 (G4 mid2). 

 

 

 

TM of G-quadruplex structures formed by G4-near and G4-mid wild-type and oxidised (sequences are in Table 

1). 

 

32R* 62 °C G4mid 78 °C G4mid1 59 °C G4mid2 67 °C 
92* 51 °C G4 midox 74 °C G4 mid1ox 56 °C G4 mid2ox 63 °C 

96* 61 °C    

*Data from ref. 27 
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Supplementary Information S6: 8OG destabilizes a G-tetrad: there is the loss of one Hoogsteen 

hydrogen bond within a G-tetrad and a potential steric hindrance between –NH2 of G and –NH- of 

8OG. 

 

 
 

 

 

Supplementary Information S7: The results obtained incubating oligonucleotides labelled with Cy5.5 at 

the 5’end (50 nM), mimicking the KRAS G4 mid, G4 mid1 and G4 mid2, with increasing amounts of 

hnRNP-A1. Reaction was carried out in 20 mM Tris–HCl pH 8, 30 mM KCl, 1.5 mM MgCl2, 1 mM DTT, 8% 

glycerol, 1% Phosphatase Inhibitor Cocktail I (Merck Life Science, Milano, Italy), 5 mM NaF, 1 mM Na3VO4, 

2.5 ng/ml poly [dI-dC], 50 M ZnAc for 30 min at RT. 50nM Cy5.5-labelled G4 was incubated with 0, 0.71, 

1.43, 2.85 and 5.7 M hnRNP A1. 

. 
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Supplementary Information S8: The results obtained incubating oligonucleotides labelled with Cy5.5 at 

the 5’end (50 nM), mimicking the KRAS G4 mid, G4 mid1 and G4 mid2, with increasing amounts of MAZ. 

Reaction was carried out in 20 mM Tris–HCl pH 8, 30 mM KCl, 1.5 mM MgCl2, 1 mM DTT, 8% glycerol, 1% 

Phosphatase Inhibitor Cocktail I (Merck Life Science, Milano, Italy), 5 mM NaF, 1 mM Na3VO4, 2.5 ng/ml 

poly [dI-dC], 50 M ZnAc for 30 min at RT. 50nM Cy5.5-labelled G4 was incubated with 0, 0.79, 1.57, 3.15 

and 6.3 M MAZ. 

 

 

 

 

Supplementary Information S9: Structures of Veliparib and Olaparib, two PARP-1 inhibitors 
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Abstract: We recently reported that PARP1 binds to the KRAS promoter at a G4 motif called 32R 

with regulatory functions. Upon binding to 32R, PARP1 undergoes auto-PARylation acquiring a net 

negative charge that functions as a platform for the recruitment of transcription factors cationic in 

nature.  Here we demonstrate that the two G4 conformers made by 32R, namely G25T and G9T, are 

both able to bind to PARP1. In particular, G25T seems to efficiently form a multi-protein complex 

involving transcription factors essential for the transcription of the KRAS oncogene. 

 

Human Kirsten ras (KRAS) holds two G4 motifs named 32R (between −148/−116 from TSS, 

also known as G4-near) and G4-middle (−207/−175) forming stable G4 structure. 1-3 The vast 

majority of the studies reported in literature focused on 32R, as this G-rich motif is a hypersensitive 

nuclease element playing a key role in transcription.1 This critical promoter element is recognized by 

several nuclear factors including PARP1, Ku70, MAZ and hnRNP A1.4  The first evidence that 32R 

spontaneously folds into a G4 structure was observed by running primer-extension experiments using 

as DNA templates two plasmids: one bearing the human G-rich motif, the other the highly 

homologous murine amalogue.1,5 The finding that DNA polymerase I paused at the 3’-end of the G-

rich motif suggested the formation of a folded G4 structure by both sequences. To determine the 

guanines of the G-rich motif involved in the formation of the two G4 structures DMS footprinting 

experiments were carried out.4,5 In Figure 1 we report a typical cleavage pattern. The nucleotides of 

32R have been numbered from 1 to 32, starting from the adenine at the 5’-end. The analysis of the 

cleavage pattern surprisingly showed that the expected folding involving G-runs I, III, IV and V, each 

composed by three guanines, was not observed. The footprinting showed that: (i) G-run IV (G18-

G19-G20) located in the middle of the sequence is strongly reactive to DMS, suggesting that it does 
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not contribute to the G-tetrad core; (ii) guanines G6 and G7 are fully protected from DMS, while 

guanine G9 is only partially protected, indicating that the G-run GGTG takes part to the formation of 

the G-tetrads, despite being interrupted by a thymidine; (iii) guanines in G-runs I, II, III and V are 

protected from DMS and form the G-tetrads. As 32R exhibits a CD spectrum with positive and 

negative ellipticities at 260 and 240 nm respectively, typical of a parallel G4,6  we proposed for the 

critical 32R sequence of KRAS a tri-stacked parallel G4 structure with two 1-nt and one 11-nt loop 

(1/1/11 topology) and a T-bulge in one strand.1,4 

 

 

Figure 1: (A) Sequence of 32R. The five G-runs contained in the sequence are numbered I-V. The guanines are numbered 

from adenine at the 5’end of the G-rich strand; (B) DMS-footprinting of 32R at increasing KCl concentrations; (C) 

Structures of the G4 proposed on the basis of the DMS-footprinting profiles and of conformers G25T and G9T determined 

by NMR corresponding the two structured in equilibrium each other formed by 32R.  

 

According to the proposed G4 structure (i) guanine G9 in G-run GGTG should have been 

expected protected from DMS, but the footprinting showed only a partial protection; (ii) G25 should 

be completely protected and G28 should not be partially protected. These features suggested that the 

folding of 32R is more complex than the one proposed. Recently we carried out a deep NMR analysis 

to gain insight into the folding of 32R.7 We found that: (i) G→T mutations on G2 and G11 strongly 

disrupted the imino folding pattern suggesting that these guanines take part to the G-tetrad core; (ii) 
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mutations on G16 and G23, which are expected  to be not implicated in the G-tetrad core did not have 

indeed much affect on the imino pattern; (iii) mutations on guanine expected to form the G-tetrad 

core such as G9 and G25 showed well resolved spectra.  Two groups of imino patterns called G9T 

and G25T were distinguished: the first composed by G9, G18-G23, G29, the second by G25T, G25, 

G26, G27 and G28. The two groups of imino protons indicated that 32R forms two major 

conformations, the structures of which are reported in Figure 1C. One conformer, defined G25T has 

a structure substantially similar to that proposed for 32R on the basis of CD and DMS-footprinting. 

It is a tri-stacked G4 with a T-bulge in one strand, two 1-nt loops, an extended 12-nt loop and all 

guanines in the anti conformation. This structure is fully supported by the DMS footprinting profile 

except for the fact that G9 should not be reactive to DMS as it is instead observed. A behaviour that 

before the NMR analysis we could not rationalized. Now we know thanks to the NMR analysis that 

G9 is reactive because 32R folds in two conformers: G25T and G9T. The structure of G9T is singular 

showing a fold-back guanine in syn conformation (G32) and a triad (G28, A30 and G31) capping the 

3′-end. The topology of G9T is 1/3/11 and G9 falls in the 3-nt loop. Reported structure for G9T 

implies that glycosidic bond between base and sugar G32 adopts syn conformation; despite 

predominance of anti conformation in DNA, guanines were found in the last decades to adopt syn 

conformation especially in non canonical DNA structure, i.e. DNA G4s. 8  As the DMS-footprinting 

reflects the folding of 32R in the two conformers it is to be expected that G9 appears only partially 

protected.  Interestingly, the footprinting shows that in the G25-G29 run, guanines G26 and G27 are 

protected, while G25 and G28 are only partially protected while G29 is not protected. This is due to 

that fact that conformer G25T involves in the G-tetrad core the triad G26-G27-G29, while conformer 

G9T involves the triad G25-G26-G27.  

In 2008 we found by pull-down experiments, with G4-oligonucleotide as baits, combined with 

mass spectrometry that the G4 structure of 32R is bound by several nuclear proteins including 

PARP1, Ku70 and hnRNP A1.4 In addition, by means of a  “Protein-DNA Binding” software we 

found that the MYC-associated zinc-finger protein (MAZ) should also bind to the 32R G4 motif. This 

was indeed confirmed by EMSA and chromatin immunoprecipitation assays.9,10 Further studies 

supported the notion that G4 may form a sort of platform for the recruitment to the KRAS promoter 

of the transcription factors forming the transcription initiation complex. Indeed, by silencing PARP1 

or MAZ with specific shRNA, we observed a clear downregulation of KRAS transcription.11  Recently 

we reported that PARP1 on binding 32R undergoes auto-PARylation and thus we proposed that the 

net negative charge acquired by PARylated PARP1 should behave as a platform for the recruitment 

to the promoter of transcription factors with a pI > 7.4, i.e. with a net positive charge under 

physiological conditions. So, in the light of our recent NMR findings and on the putative pivotal role 
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played by PARP1 in recruiting the transcription factors, we asked whether both the G25T and G9T 

conformers are able to bind to PARP1 and contribute to the recruiting platform.  To address this issue 

we carried out electrophoretic mobility shift assays (EMSA). We incubated for 30 min the two G4 

conformers G25T an G9T and wild-type 32R G4, 5’-labeled with Cy5.5 (50 nM), with increasing 

amounts of PARP1 (protein/G4, r-value, of 0, 4, 8, 12, 16, 32, 48 [0, 0.25, 0.5, 0.75, 1, 2 and 3 g] 

in 50 mM Tris-HCl, pH 8, 30 mM KCl, 1.5 mM MgCl2, 1 mM DTT, 8% glycerol, 1% PIC, 50 M 

ZnAc, 5 mM NaF, 1 mM Na3VO4, 2.5 ng/ml poly dI/dC (binding buffer) at room temperature. After 

incubation we loaded the samples in 5 % PAGE in Tris-borate. The results are shown in Figure 2. 

The interaction between PARP1 and the G4s appears rather strong, as a 4-fold excess of PARP1 over 

G4 is sufficient to show a retarded band in the gel with all three sequences. In contrast, three 

unstructured oligonucleotides (at PARP1/oligo of  34) did not show any affinity for PARP1 

(negative control, ref. 12). It can be seen that at low protein/G4 ratios − i.e. at r values up to 12 for 

G25T, up to 8 for G9T and up to 4 for wild type 32R − a 1:1 complex is formed, whereas at higher r-

values a 2:1 complex (2 PARP1 per G4) is observed.  

 

 

Figure 2. EMSA showing the binding of recombinant PARP1 to Cy5.5-labelled G25T, G9T, 32R G-quadruplexes (50 

nM), with increasing amounts of PARP1. Reaction was carried out in 20 mM Tris–HCl pH 8, 30 mM KCl, 1.5 mM 

MgCl2, 1 mM DTT, 8% glycerol, 1% Phosphatase Inhibitor Cocktail I (Sigma, Milan, Italy), 5 mM NaF, 1 mM Na3VO4, 

2.5 ng/mL poly [dI-dC], 50 M ZnAc for 30 min at RT. 50 nM Cy5.5-labelled G4 was incubated with protein/G4 [0, 

0.25, 0.5, 0.75, 1.0, 2, and 3 g PARP1 (Protein/G4 of 0, 4, 8, 12, 16, 32, 48). 
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For each EMSA we determined the fraction of bound G4 versus the concentration of PARP1. 

By plotting the data we obtained sigmoidal curves suggesting cooperative binding. We best-fitted the 

curves to the Hill equation and found KD values of 0.22±0.012 for G25T (cooperative coefficient 

n=4.9), 0.18±0.06 for G9T (n=3.1); 0.25±0.03 for 32R (n=3).  

As mentioned above, the G4 structures in the KRAS promoter are likely to behave as a platform 

for the recruiting of transcription factors to the promoter near TSS. So, we asked if both G4 

conformers are able to form a multiprotein complex when they are incubated with a nuclear protein 

extract from Panc-1 cells. To address this point we used a streptavidin-biotin pulldown approach. We 

synthesized sequences G25T, G9T and 32R linked to biotin and let them to fold into G4 in a buffer 

containing 100 mM KCl.  The biotinylated oligonucleotides in G4 conformation were used for the 

pulldown experiments (Figure 3A). Each biotinylated G4 was incubated with 80 μg of nuclear extract 

for 30 min and the proteins bound to the G4 bait were pulled down with streptavidin-coated magnetic 

beads.  The pulled down proteins were eluted from the beads with Laemmli buffer and analysed by 

immunoblotting with antibodies specific for MAZ, hnRNP A1, Ku70 and PARP1. It can be seen that 

G4 32R pulled down all four transcription factors, suggesting that it forms a multi-protein complex 

upstream TSS that is expected to be the transcription pre-initiation complex. The eluates from the 

streptavidin-coated beads incubated with the nuclear extract in the absence of the G4 bait, contained 

a small amount of proteins due to unspecific interactions between the magnetic beads coated with 

streptavidin and the nuclear proteins (lane “coated beads”). By contrast, the eluates from the beads 

bound to the G4 bait pooled down an amount of target proteins higher than that present in the input. 

The result obtained with bait G25T is rather similar to that observed with bait 32R, while conformer 

G9T appears less efficient in pulling down the proteins. It can be seen that G9T binds tightly to 

PARP1. This may indicate that independently from the G4 conformation adopted by 32R under 

cellular conditions, a site of high affinity for PARP1 is constantly present in the KRAS promoter near 

TSS. The distribution of the transcription factors in the nucleus is dynamic and their recruitment to a 

specific region of the promoter is expected to be the result of the balance between protein-protein 

interactions and DNA binding. We therefore asked if some proteins recruited to the KRAS promoter 

behave independently or are somehow linked one another by weak interactions. To investigate this, 

we carried out immunoprecipitation assays (Figure 3C).  We treated Panc-1 cells with 0.1 mM H2O2, 

to stimulate the machinery activating the expression of KRAS, then extracted the nuclear proteins. 

The extract was incubated one by one with the monoclonal antibodies (Abs) specific for the proteins 

binding to the KRAS promoter.  
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Figure 3. (A) Structure of the DNA baits used in the pull-down experiments. The scheme of the pull-down experiments 

is illustrated; (B) Pull-down with  biotinylated G9T, G25T and 32RG-quadruplexes. The biotinylated G4 (80 nM) were 

incubated with 80 μg of nuclear extract for 30 min at RT. The DNA bait-protein complexes formed were pulled down 

with streptavidin magnetic beads. The pulled-down proteins were recovered and analyzed by Western blot with anti MAZ, 

anti PARP1 and anti hnRNP A1 primary antibodies and a secondary antibody conjugated to horseradish peroxidase; (C) 

Immunoprecipitation (IP) with antibodies specific for poly/mono-ADP ribose (PAR), PARP1, Ku70, MAZ and hnRNP 

A1. The recovered proteins from the pulldown were analysed by Western blots. Left: IP from Panc-1 nuclear extract; 

Right: IP from 0.1 mM H2O2 treated Panc-1 nuclear extract 

 

Untreated Treated with 0.1 mM H2O2 

C 
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The proteins binding directly and indirectly to the Abs were pulled down by magnetic beads coated 

with protein A and analysed by Western blots. It can be seen that Ab-PARP1 pulled down in addition 

to PARP1 also Ku70, suggesting that these two proteins are in contact one another. 

Ab-Ku70 gave a similar result, i.e both Ku70 and PARP1 were pulled down by Ab-Ku70, confirming 

that the two proteins are associated one another. Ab-MAZ pulled down only MAZ, while Ab- hnRNP 

A1 pulled down MAZ and hnRNP A1 in large amount and PARP1 and Ku70 in lower amounts. 

Together, the data suggest that MAZ and hnRNP A1 are strongly associated each other. It’s worth 

noting that, upon H2O2 treatment, Ab-MAZ did not pull down MAZ itself, this may be due to the fact 

that the association between MAZ and hnRNP A1 hides the epitope recognized by its own antibody. 

In Figure 4 we propose a mechanism for KRAS transcription activation. Under enhanced oxidative 

stress, typical of cancer cells, PARP1 and its associated Ku70 protein are recruited to the KRAS 

promoter where it binds to the G4 motif. 12,13 Upon binding to G4, PARP1 undergoes auto PARylation 

and acquires a negative net charge. Ku70, which is associated with PARP1, having a pI=6.23 is also 

anionic under physiological conditions. Despite the negative charge these two proteins display, 

caused either by PARylation or the anionic isoelectric point, they maintain a tight contact to the DNA. 

The explanation for PARP1 lies in the folding feature, as the Zn domains wraps tightly to the DNA 

thanks to their electrostatic interactions; in doing so, the protein changes its conformations shielding 

DNA phosphate groups, thus allowing auto- and etero-PARylation to occur. 14 On the other hand, Ku 

ring (made of the heterodimer Ku70/Ku80) binding to the DNA is kept by a polarization of positive 

electrostatic charge focused on the inner surface of the ring and along the DNA-binding cradle. 15  On 

the whole, the G4:PARP1:Ku70 complex forms an anionic platform capable to recruit cationic 

transcription factors such as hnRNP A1 (pI= 9.2).  The recruitment of hnRNP A1 to the promoter 

driven by the electrostatic attraction should also affect MAZ that, being strictly in contact with hnRNP 

A1, follows the route of hnRNP A1 to the promoter. The enrichment of the transcription factors in 

the neighbouring of G4 should facilitate the formation of the multi-protein complex.  Due to unfolding 

capacity of  MAZ and hnRNP A1, 16,17 the DNA in the multi-protein complex should be in the double-

stranded form, recognized by RNA polymerase II.  
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Figure 4. Proposed mechanism for the activation of KRAS transcription. First PARP1 binds to the KRAS promoter at 

the G4 motif. After binding the protein undergoes auto-PARylation becoming anionic. The G4:PARP1 complex behaves 

as a platform for the recruiting of the transcription factors. Protein hnRNP A1 should unfold the G4, thus promoting the 

G4 to duplex transformation at the promoter near TSS and the initiation of transcription.  

 

 

Materials and methods 

Oligonucleotides 

The oligonucleotides have been purchased from Microsynth-AG, Balgach, Switzerland. Sequences 

are reported in Table 1. 
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Table 1. Oligonucleotides used in this study 

Name Sequence 5’ → 3’ 

(1)b-32R Biotin -TTTTTAGGGCGGTGTGGGAAGAGGGAAGAGGGGGAGG 

(1)b-G9T Biotin -TTTTTAGGGCGGTTTGGGAAGAGGGAAGAGGGGGAGG 

(1)b-G25T Biotin -TTTTTAGGGCGGTGTGGGAAGAGGGAAGATGGGGAGG 

(2)Cy5.5-32R Cy5.5 -TTTTTAGGGCGGTGTGGGAAGAGGGAAGAGGGGGAGG 

(2)Cy5.5-G9T Cy5.5 -TTTTTAGGGCGGTTTGGGAAGAGGGAAGAGGGGGAGG 

(2)Cy5.5-G25T Cy5.5 -TTTTTAGGGCGGTGTGGGAAGAGGGAAGATGGGGAGG 

  (1) = biotin; (2) = Cy5.5 fluorophore  

 

Nuclear Extract and Biotin-Streptavidin Pull Down Assay  

To obtain nuclear extracts, 6 plates of 15 cm diameter of Panc-1 cells at a given confluence were 

washed with PBS and treated with 0,1mM H2O2 in serum free DMEM-High Glucose for 30 min. The 

cells were collected in PBS buffer, centrifuged at 800 g for 10 min at 4 °C. Next, the cells were 

resuspended in hypotonic buffer (10 mM HEPES-KOH, pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.2 

mM PMSF, 0.5 mM DTT, 5 mM NaF, 1 mM Na3VO4) and kept in ice for 10 min. The swollen cells 

were homogenized with a Dounce homogenizer and the nuclei, pelleted by centrifugation and 

resuspended in low-salt buffer (20 mM HEPES-KOH, pH 7.9, 25 % glycerol, 1.5 mM MgCl2, 20 mM 

KCl, 0.2 mM EDTA, 0.2 mM PMSF, 0.5 mM DTT). Release of nuclear proteins was obtained by the 

addition of a high-salt buffer (low-salt buffer containing 1.2 M KCl). Protein concentration was 

measured according to the Bradford method. Biotinylated 32R, G9T and G25T were folded in 50 mM 

Tris-HCl, pH 7.4 and 100 mM KCl by heating the solutions at 95 °C for 5 min and successive 

incubation at RT overnight. 80 g of Panc-1 nuclear extract were incubated for 30 min at RT with 80 

nM biotinylated 32R, G9T and G25T in 20 mM Tris–HCl, pH 7.4, 150 mM KCl, 8 % glycerol, 1 mM 

DTT, 0.1 mM ZnAc, 5 mM NaF, 1 mM Na3VO4 and 2.5 ng/μL poly[dI-dC]. Then 80 μg of 

Streptavidin MagneSphere Paramagnetic Particles (Promega Italia, Milano, Italy) were added and let 

to incubate for 30 min at RT. The beads were captured with a magnet and washed three times. The 

proteins were denatured and eluted with Laemmli buffer (4% SDS, 20% glycerol, 10% 2-

mercaptoethanol, 0.004% bromophenol blue and 0.125 M Tris–HCl). 
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Mobility Shift Assays 

Recombinant PARP1 was purchased by Antibodies-online GmbH, Germany and provided as powder; 

the lyophilized protein was reconstituted with dH2O following manufacturer instructions. 

Before EMSA, 5’Cy5.5 G4 oligonucleotides (Cy5.5-32R, Cy5.5-G9T and Cy5.5-G25T) were 

allowed to form their structure in 50 mM Tris–HCl, pH 7.4, 100 mM KCl, heated at 95 °C for 5 min 

and incubated overnight at RT. Cy5.5-oligonucleotides (50 nM) were treated for 30 min at 25 °C with 

increasing amounts of PARP1 (0, 0.25, 0.5, 0.75, 1.0, 2 and 3 g) in 20 mM Tris–HCl pH 8, 30 mM 

KCl, 1.5 mM MgCl2, 1 mM DTT, 8% glycerol, 1% Phosphatase Inhibitor Cocktail I (Merck Life 

Science, Milano, Italy), 5 mM NaF, 1 mM Na3VO4, 2.5 ng/mL poly [dI-dC], 50 M ZnAc. After 

incubation, the reaction mixtures were loaded in 5% TB (1×) polyacrylamide gel and run at 300 V, 

50 mA, 30 W for 2 h at 20 °C. After running, the gel was analyzed with Odyssey CLx Imaging System 

(Li-COR Biotechnology, Bad Homburg, Germany). 

 

Immunoprecipitation Assay  

Panc-1 cells were seeded onto 15 cm diameter plates. At a confluence of 80%, the cells were treated 

with 0.1 mM H2O2 in serum-free DMEM High Glucose medium for 30 min. Then the nuclear proteins 

were extracted and quantified as described in the “Nuclear extract and biotin-streptavidin pull down 

assay”. For immunoprecipitation, 1.5 mg of Protein A-Dynabeads (ThermoFisher Scientific-

Invitrogen, Waltham, MA, USA) were incubated with 3 g of anti-PAR (Poly/Mono-ADP Ribose 

(E6F6A) Rabbit mAb #83732, Cell Signalling Technology, Leiden, The Netherlands), anti-PARP1 

(46D11, Cell Signalling Technology, Leiden, The Netherlands), anti-Ku70 (D10A7, Cell Signalling 

Technology, Leiden, The Netherlands), anti-MAZ (clone 133.7, IgG mouse, Santa Cruz 

Biotechnology, Dallas, TX, USA), anti-hnRNP A1 (clone 9H10, IgG mouse, Merck Life Science, 

Milano, Italy) and IgG Rabbit (ThermoFisher Scientific-Invitrogen, Waltham, MA, USA) as negative 

control in 20 mM Tris-HCl, pH 7.4, 20 mM KCl, 8% glycerol, 1mM DTT and 0.1 mM ZnAc for 15 

min at RT. After one wash with the same buffer, 80 g of nuclear extracts were allowed to react with 

anti-PAR- and IgG rabbit-derivatized Dynabeads for 30 min at RT. The beads were captured with a 

magnet and washed three times with the same buffer. The proteins were denatured and eluted with 

Laemmli buffer (4% SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.004% bromophenol blue and 

0.125 M Tris–HCl). 
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Western Blots 

Protein samples were separated in 10% SDS-PAGE and blotted onto nitrocellulose membrane at 70 

V for 2 h. The nitrocellulose membrane was blocked for 1 h with 5 % fat dried milk in PBS and 0.1 

% Tween (Merck Life Science, Milano, Italy) at room temperature. The primary antibodies used 

were: anti-MAZ (clone 133.7, IgG mouse, Santa Cruz Biotechnology, Dallas, TX, USA), anti-hnRNP 

A1 (clone 9H10, IgG mouse, Merck Life Science, Milano, Italy), anti-PARP1 (polyclonal antibody, 

IgG rabbit, Cell Signalling Technology, Leiden, The Netherlands), anti-PAR (Poly/Mono-ADP 

Ribose (E6F6A) Rabbit mAb #83732, Cell Signalling Technology, Leiden, The Netherlands) and 

anti-Ku70 (Cell Signalling Technology, Leiden, The Netherlands). The membranes were incubated 

overnight at 4 °C with the primary antibodies, then washed with 0.1% Tween in PBS and incubated 

for 1 h with the secondary antibodies conjugated to horseradish peroxidase: anti-mouse IgG (diluted 

1:5000), anti-rabbit IgG (diluted 1:5000) and anti-mouse IgM (diluted 1:5000) (Merck Life Science, 

Milano, Italy). The signal was developed with Super Signal® West PICO, and FEMTO (Thermo 

Fisher Scientific, Waltham, MA, USA) and detected with ChemiDOC XRS, Quantity One 4.6.5 

software (Bio-Rad Laboratories, Segrate, (Milano), Italy).  
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9 Conclusions  
 

Over 90% of pancreatic tumours display a mutant of form of KRAS where it promotes initiation 

and progress of the disease. Despite the important goals achieved over the last decades, several 

aspects on KRAS biology are not yet clear and further studies are needed to develop targeted 

strategies against this oncogene for the treatment of PDAC. Previous work from our laboratory 

showed that the KRAS promoter contains a G- rich region located upstream of the transcription 

start site (TSS). This sequence being composed by runs of guanines (G4 motif) folds into a G-

quadruplex (or G4) structure that, despite some scepticism, studies revealed to be present in 

the cell. This unusual conformation is recognized by several transcription factors such as MAZ, 

PARP1 and hnRNP A1: our hypothesis is that G4 serves as a recruitment platform for these 

proteins that, once bound, they unwind G4 and promote KRAS transcription. Recent studies 

have reported that pancreatic cancer cells are addicted to KRAS because it reprograms the 

metabolism (in particular glutamine and serine breakdown) in order to fuel a high metabolic 

rate, typical of cancer. A detrimental by-product of the metabolism are the so-called ROS 

species, indeed free radical reactive oxygen species that, if not readily tackled, they may cause 

severe damage to cells. Because of the rapid metabolism of cancer cells, their level of ROS rises 

above the one of their physiological counterpart. ROS are strong oxidizing agents and may 

affect the cellular biomolecules including DNA. It is worth noting that guanine is the 

nucleobases that displays the lowest redox potential, thus being more susceptible to oxidation, 

turning into 8-oxoguanine; moreover, when guanines stuck one upon others (i.e. in G4s), redox 

potential decreases furtherly.  

By the way, level of ROS must be kept under a threshold over which cells trigger apoptosis. The 

major cellular response to oxidative stress is the activation of Nrf2 (nuclear factor erythroid 2-

related factor 2), a redox-sensitive transcription factor that regulates the expression of 

antioxidant response element (ARE)-regulated genes. Our lab previously demonstrated that 

KRAS expression is controlled by Nrf2, which brings down ROS level resulting in the 

upregulation of pro-survival Snail and the downregulation of pro-apoptotic RKIP [104]. 

Together with this paper, my work brought additional evidence that ROS induce KRAS 

expression in a concentration dependant manner. 
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PARP1 is a nuclear enzyme that catalyses the transfer of mono or poly ADP-ribose units onto 

itself and/or other target proteins. PARP1 is also known to take part in almost all DNA repair 

pathways: in this context, base excision repair (BER) accounts for recognition and removal of 

oxidized bases and repair of ensuing DNA lesions. It has been established that PARP1 plays a 

key role in BER by sensing DNA nicks and recruiting factors required for repair [137]. ChIP 

experiments carried out in this lab confirmed this trend in PDAC: when Panc-1 cells were 

treated with H2O2, PARP1 recruitment onto KRAS promoter increases in a concentration 

dependent manner. As reported in literature, PARP1 is involved in oncogene recognition at their 

G4 forming sites (i.e. CKIT, CMYC, telomeres); together with hnRNP A1 and MAZ, we established 

that PARP1 is recruited at KRAS G4-near and G4-middle sites under oxidative stress. Despite in 

vitro experiments clearly indicate that 8OG in KRAS promoter G4 region enhances proteins 

recruitment, this trend is not reflected by pull down assays. According to our data, recruitment 

in pull down assays seems to be affected by different elements: (i) in G4 near region it’s the 

position of 8OG in the 12-nt loop (i.e. MAZ and hnRNP A1 display less affinity toward b-96); (ii) 

in G4 mid the length of the bait is the key element (54-nt long bait pulls down a reduced amount 

of proteins). Further analysis would be desirable to shed light to this aspect. Upon DNA 

recognition, PARP1 undergoes conformational exchange that turns this enzyme into its active 

form promoting either MARylation or PARylation. These post-translational modification have 

been receiving greater and greater attention over the last decades, given their involvement in 

a huge number of cellular processes i.e. including DNA repair, genomic stability, chromatin 

remodelling, apoptosis, aging and transcription regulation. In our hypothesis, when PARP1 

binds to G4 motifs, it gets self-PARylated, so negatively charged: this favours the recruitment 

of those nuclear factors which display a cationic pI under physiological conditions like MAZ (pI 

= 8.1) and hnRNP A1 (pI = 9.2); once this multiprotein complex gets assembled onto G4s, it 

resolves this non canonical structure restoring DNA duplex conformation that allows KRAS 

transcription.  

FDA and EMA approved some PARP inhibitors for tackling tumours progression, with ovarian 

carcinoma and breast cancer on the top of the list (reviewed in [191]). Common in these 

tumours are mutations either on BRCA1/2 genes or in homologous recombination mechanism, 

which account for PARP inhibition efficacy in the context of synthetic lethality. None of the four 

driver genes that promote malignant transformation in pancreas are used as therapeutic target 

(KRAS, Tp53, SMAD4, CDKN2A). Nonetheless, PDCA can be tackled by targeting downstream 
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genes involved in SSBR including BRCA1/2, PALB and ATM, the last of which is a known 

PARylation target. In our experimental settings we confirmed this trend: silencing PARP1 by 

siRNA-mediated treatment or blocking its activity by the use of validated inhibitors (Veliparib 

and Olaparib) we found that KRAS expression was dramatically reduced. Taken together, these 

results furtherly prove that PARP inhibition is a validated strategy to arrest PDAC cell 

proliferation.  
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