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ABSTRACT 

Oxidative metabolism represents the main energy source for activities related to everyday life and 

work. Functional evaluation of oxidative metabolism during exercise provides important information 

on the physiological responses required by the cardiovascular and respiratory systems to meet the 

skeletal muscle metabolic demand. A better knowledge of the sites of limitations of oxidative 

metabolism would be of utmost importance from a “basic science” point of view. A refinement of 

available tools and methods aimed at enhancing oxidative metabolism and at improving aerobic 

performance would allow to increase the general quality of life of both healthy people and patients. 

 

The two main topics of my PhD research were focused on (i) the effects of aerobic exercise 

prescription based on heart rate (HR) both in healthy population and in population of patients, and on 

(ii) the localization of the main site(s) of impairment in oxidative metabolism during exercise in 

simulated microgravity condition along the O2 pathway from the ambient air to skeletal muscle 

mitochondria, with particular interest to the peripheral level.  

 

The first chapter gives a general introduction about oxidative metabolism in terms of energy 

metabolism during exercise, with a brief overview on the traditional and “more recent” bio-markers 

utilized for a functional evaluation of this metabolic system. The main adaptive physiological 

responses induced by exposure to microgravity on the variables taken into consideration in this 

doctoral research are discussed at the end of the introduction.  

 

Three main studies were conducted in order to evaluate the effects of prescribing aerobic exercise at 

a specific HR target value, in physiological and pathological conditions and after exposure to 

environmental stressors. In Study 1, carried out on 17 male healthy subjects, the hypothesis was that 

during constant work rate exercises (CWR) at different intensities the slow component of HR kinetics 

would occur at lower work rate and would be more pronounced than the slow component of 

pulmonary oxygen uptake (V̇O2) kinetics. As a consequence, we hypothesized that exercise 

prescription at a fixed HR value, slightly above the “gas exchange threshold” (GET), as it is often 

done for training purposes and in clinical studies, would determine a significant decrease in work 

rate. This would significantly affect exercise evaluation and exercise prescription. In Study 2, 16 male 

obese patients were tested in order to verify the above hypotheses also in a population of patients. In 

this study measurements were performed before and after a 3-week multidisciplinary programme 

aimed at reducing body mass. In Study 3 the same hypotheses were tested in 10 healthy male subjects 

evaluated before and after a 10-day horizontal bed rest. 
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The second part of my PhD project intended to identify biomarkers evaluating sites of impairments 

of oxidative metabolism in a simulated microgravity condition, such as bed rest. A preparatory study 

(Study 4) was conducted in physiological conditions in order to modify and improve a recently 

proposed method, aimed at assessing mitochondrial function non-invasively by near-infrared 

spectroscopy (NIRS); this method is based on the measurement of skeletal muscle V̇O2 recovery 

kinetics following exercise. Finally, in Study 5 an integrative approach was utilized to determine the 

sites of impairment of oxidative metabolism during exercise following a 10-day bed rest, spanning 

from systemic variables to markers more specifically related to peripheral vascular function, skeletal 

muscle fractional O2 extraction by NIRS and mitochondrial function. The latter was evaluated by an 

ex vivo approach, that is by high-resolution respirometry (HRR) on permeabilized muscle fibers (in 

conditions of unlimited O2 and substrates availability), and by a non-invasive in vivo approach, based 

on the evaluation by NIRS of muscle V̇O2 recovery kinetics following CWR exercise.  

 

The results of Studies 1, 2 and 3 revealed that both in healthy subjects and obese patients, as well as 

in microgravity, the “translation” of work rates or percentages of V̇O2 peak into HR values is not 

straightforward. Indeed, in all these three different scenarios when exercise was performed at a fixed 

HR value (slightly above that corresponding to GET), both work rate and V̇O2 had to decrease. 

Surprisingly, in obese patients this phenomenon was not more pronounced compared to that observed 

in healthy subjects, and it was mitigated after the 3-week structured exercise training programme; this 

suggests that the work rate decrease is associated with, and can be considered a sign of, exercise 

intolerance. Finally, the decrease in work rate necessary to keep HR constant was again confirmed in 

healthy subjects before bed rest, and it was greater following a 10-day bed rest, with obvious 

implications on exercise evaluation and exercise prescription also in microgravity conditions. 

Interestingly, the reduction in work rate was more pronounced than that necessary to prevent slow 

components of V̇O2 and muscle deoxygenation kinetics. 

 

The results of Study 4 and Study 5 revealed that the whole-body impairment in oxidative metabolism 

following a 10-day horizontal bed rest is associated with an impairment of cardiovascular, peripheral 

vascular and endothelial functions, whereas mitochondrial mass and maximal respiratory functions 

(both in vivo and ex vivo) are substantially unaffected (with the possible exception of an improved 

respiratory response to submaximal ADP stimulation). In other words, after 10 days of bed rest the 

impairment of oxidative metabolism is mainly “upstream” of mitochondrial function. This concept, 

besides being of interest from a basic science point of view, may be of interest also for other 
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pathological conditions characterized by relatively short periods of profound inactivity, and it could 

affect the definition of countermeasures rather than rehabilitative interventions. 
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1 CHAPTER I - INTRODUCTION 

1.1 TRADITIONAL MARKERS OF OXIDATIVE METABOLISM: V̇O2MAX, GAS 

EXCHANGE THRESHOLD, CRITICAL POWER, V̇O2 KINETICS AND THE SLOW 

COMPONENT  

The energy to support life and its changing level of physical activity is mainly obtained from oxidative 

phosphorylation. Oxygen (O2) is indeed the key that unlocks the energy from the metabolic substrates.  

When intense and very short exercises (i.e., 10-15 s all out) are done, breakdown of PCr is the main 

fuel for ATP provision because it requires only one metabolic reaction (PCr+ADP+H+-->ATP + 

creatine) to provide ATP. The maximal power of this system is achieved in a few seconds but in 15-

20 s it reaches a value close to 0. The anaerobic glycolytic capacity is higher and can be depleted in 

30-90 s. For oxidative phosphorylation, the maximal power represented by the maximal oxygen 

uptake (V̇O2 max) is relatively lower, but it can be sustained for much longer periods of time. This 

mechanism is slower in getting to the action, within 3 minutes of starting exercise maximal power is 

achieved and maintained for several minutes (see Fig. 1). 

 

 

 

Figure 1. Schematic representation of muscle ATP regeneration during intense exercise (Modified 

from Grassi 2003). Maximal power output (expressed in watt/kg of body mass) as function of the 

time of exercise.  
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Oxidative metabolism has several advantages with respect to the other mechanisms of ATP 

resynthesis such as phosphocreatine (PCr) hydrolysis and anaerobic glycolysis: (i) the maximal power 

expressed by oxidative metabolism can be sustained for several minutes (7-10 minutes); (ii) a 

relatively large fraction of its maximum power can be maintained at steady state without incurring in 

fatigue; (iii) oxidative metabolism during the recovery period after exercise is the only source for the 

resynthesis of PCr and ATP.  

Physical exercise requires the interaction of different physiological control mechanisms to enable the 

cardiovascular and ventilatory systems to match the increased respiratory demands of the contracting 

muscles (i.e., O2 consumption [V̇O2]), ensuring the delivery of O2 to contracting muscles and the 

transport back into mitochondria for ATP resynthesis of the by-products of ATP utilization in the 

cytoplasm (such as ADP and Pi) (Hargreaves & Spriet, 2020). The reducing equivalents in terms of 

NADH and FADH2, free ADP, Pi and O2 are required by the respiratory or electron transport chain 

(ETC) in the mitochondria in order to produce ATP (see Fig. 2). 

 

 

Figure 2. Schematic representation of metabolic pathways during exercise in skeletal muscle (From 

Hargreaves & Spriet, 2020). 
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The dynamics of the O2 transport systems upstream of the contracting myocytes - pulmonary, 

cardiovascular, and muscle microvascular - are such that ventilation, cardiac output, and skeletal 

muscle vasomotor control ensure that O2 is delivered to the exercising muscle (see Fig. 3). Each of 

these systems has a crucial role in terms of O2 transport and utilization, and adequate interactions 

among these systems are essential to maintain homeostasis.  

The respiratory system moves oxygen from the ambient air to the alveoli and carbon dioxide (CO2) 

from the alveoli to the atmosphere, and exchanges gases across the alveolar-capillary barrier. The 

circulation increases at the rates at which O2 is supplied to the cells and CO2 is removed from the 

cells. Cardiac output increases in proportion to the metabolic requirements in healthy subjects in order 

to pump oxygenated blood to the active muscles and to return blood poor of oxygen and rich of CO2 

to the alveoli. Finally, the O2 utilization from the muscles is obtained by increased extraction of O2 

from the blood perfusing the muscles, and ATP is generated in the mitochondria.  

 

 

Figure 3. Schematic representation of gas transport mechanism of coupling of external to cellular 

respiration (modified from Wasserman 1996). 

 

All these systems are highly coordinated and they work together in proportion to the amount of work 

being performed. Traditional markers for the functional evaluation of oxidative metabolism are: V̇O2 

max, gas exchange threshold and the respiratory compensation point, critical power, V̇O2 kinetics 

and its slow component. 

V̇O2max. The maximal flux of O2 from the ambient air to the mitochondria is defined as maximal O2 

uptake (V̇O2max), corresponding to the maximal mechanical power sustainable by oxidative 

phosphorylation (see Fig 1, see below). The relevant point in terms of exercise tolerance both in 
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physiological and pathological conditions lies in the fact that the mechanical power corresponding to 

V̇O2max can be maintained for relatively longer periods of time (7-10 minutes). 

V̇O2max is the product of maximal cardiac output and the maximal arterio-mixed venous oxygen 

concentration difference (Fick equation). In other words, it is the maximal amount of O2 here and 

elsewhere utilized by the whole body per unit of time (minute).  

 

V̇O2max = Q̇max (CaO2-Cv̅O2)max 

 

where Q̇ is cardiac output, CaO2 is the arterial oxygen content, and Cv̅O2 is the mixed venous oxygen 

content.  

 

A multifactorial model for V̇O2max limitation was proposed by di Prampero & Ferretti (1990). This 

model was based on the concept that each of the multiple steps of the O2 cascade from the ambient 

air to skeletal muscle mitochondria can provide a given fraction of the overall V̇O2max limitation.  

In healthy non-athletic subjects, during whole body exercise performed in normoxia, the 

cardiovascular O2 transport system (i.e., cardiac output and stroke volume) resulted being responsible 

for about 70% of the overall limitation in V̇O2max whereas the remainder was divided between 

peripheral O2 diffusion and mitochondrial capacity.  

Commonly, an easy and widely utilized way to express oxidative energy expenditure resides in the 

Metabolic Equivalent of Task (MET). This parameter represents the physiological concept of 

expressing energy expenditure of physical activities as multiples of resting metabolic rate. One MET 

indeed corresponds to the resting oxidative energy expenditure (i.e., V̇O2 at rest). 

 

V̇O2max represents one of the most important variables of functional evaluation of oxidative 

metabolism during exercise, and it is usually assessed by the cardiopulmonary exercise test (CPET). 

It provides non-invasive measurements of the cardiorespiratory fitness of the subject in response to 

exercise. V̇O2max is usually determined by measuring V̇O2 at the mouth of the subject with an 

indirect calorimetry during an incremental test. Different modalities of tests have been proposed over 

the time (Martin-Rincon & Calbet, 2020). Nowadays, one of the most used tests is the incremental 

test (with 1-3 minutes step or ramp increases) in which the subject is asked to deal with an increasing 

resistance (speed on the treadmill or work rate on the cycle ergometer) over the time while pulmonary 

ventilation, V̇O2 and V̇CO2 are monitored non-invasively breath-by-breath. CPET also involves 

measurements of heart rate, oxygen saturation, muscle deoxygenation by near-infrared spectroscopy, 

electrocardiogram (ECG) and blood pressure. V̇O2 increases linearly during an incremental exercise 
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in relation to the workload up to the V̇O2max. V̇O2 can increase from a resting value of ≈3.5 ml.kg-

1.min-1 to a peak of about 15-20 times the resting values (30-80 ml.kg-1.min-1).  

 

Gas exchange threshold. While a work rate corresponding to V̇O2max can be kept for maximum 7-

10 minutes, exercises of even longer duration (corresponding to most work, recreational, or everyday 

activities) can only be sustained at a power corresponding to a fraction of V̇O2max. Defining this 

fraction, is the objective of the variables introduced below. 

During incremental exercise, pulmonary ventilation increases to deliver O2 to the alveoli and to 

eliminate CO2. V̇CO2 output, in addition to the linear increases associated with a given V̇O2, changes 

its slope with a disproportionate increase in respect to V̇O2. This excess in V̇CO2 is a reflection of the 

buffering by bicarbonate of H+ resulting from the dissociation of lactic acid deriving from anaerobic 

glycolysis. The "ventilatory threshold" (VT) or "gas exchange threshold" (GET) is defined as the 

metabolic rate at which excess CO2 increases proportional to the rate at which muscle and blood 

bicarbonate concentrations decrease as consequence of a metabolic acidosis (Beaver et al., 1986). 

Increases in blood lactate concentration appears proximal to GET. After the onset of the anaerobic 

glycolysis, if the work rate keeps increasing, a second threshold named respiratory compensation 

point (RCP) can be identified. A second increase in V̇CO2 is a consequence of the hyperventilation 

due to the fact that the bicarbonate buffer system becomes insufficient: the working muscles become 

progressively acid and the system responds to the metabolic acidosis by increasing pulmonary 

ventilation and V̇CO2.  

The identification of these thresholds is fundamental in terms of performance and control of the 

physiological systems under investigation (Poole et al., 2020). 

For young, healthy and physically active subjects GET occurs at as early as about 60% of V̇O2max. 

This percentage could be lower in untrained subjects or in patients, and it can be quite higher in 

athletes.  

Critical power. Critical power (CP) is defined as the asymptote of the power-duration curve for high 

intensity exercises. When the time to the limit of tolerance is plotted against speeds or power outputs, 

the relation is not linear, but it follows a hyperbolic profile with the ability to tolerate exercise 

decreasing more suddenly at higher power compared with lower exercise power (Hill 1925; Poole et 

al., 2016). When exercise tolerance is considered, the power asymptote represents CP and the 

curvature constant represents W’ (measured in unites of work done (J)), which reflects the rate of the 

finite work capacity available above CP. The limit of tolerance will coincide with the depletion of W’ 

and with the coincident achievement of V̇O2max. This curvilinear profile defines exercise tolerance 

for locomotory activities in different animal species and in different exercise modalities (Poole et al., 
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1998; Whipp et al., 1999; Lauderdale & Hinchcliff, 1999; Fukuba & Hill, 2003; Billat et al., 2005). 

CP is therefore the highest metabolic rate for which V̇O2 can be stabilized below V̇O2max and it is a 

cardinal feature for the development of exercise intolerance and metabolic instability. 

Disproportionate changes in metabolic variables associated with fatigue and exercise intolerance, 

such as muscle pH, muscle lactate, neuromuscular excitability and rates of changes in PCr 

concentration, are reported following exercises above CP compared to exercises performed below CP 

(Burnley wt al., 2012; Black et al., 2017;). 

CP therefore represents an important physiological threshold indicating a boundary above which 

exercise results in the attainment of V̇O2max. CP separates two domains of exercise which have 

distinct physiological profiles (see below in “V̇O2 kinetics”). In healthy subjects CP occurs at 50% 

of the difference between GET and V̇O2max (ΔGET- V̇O2max) obtained from the incremental 

exercise (Poole & Jones, 2012).  

The maximum speed of progression during a locomotion activity of relatively long duration can also 

be tackled from another point of view: the maximum rate of progression (Smax) can in fact be 

calculated, as a first approximation, using the following equation (Di Prampero et al., 1986) 

 

Smax =
FxV̇O2max

C
 

 

in which F indicates the fraction of V̇O2max utilizable in the exercise test in question, while C 

indicates the energy cost of the type of locomotion in question, (i.e., the amount of energy necessary 

to transport the body over a given distance). C is generally expressed in kJ/km (1 kcal = 4.2 kJ; a liter 

of O2 consumed in the human body develops about 5 kcal or 21 kJ). In practice, the equation indicates 

that the maximum speed that can be developed in a given mode of locomotion, for a given (relatively 

prolonged) duration, is defined by the fraction of the maximum aerobic power that can be developed 

during an activity of that duration, divided by the energy cost of the locomotion in question. Since 

endurance athletes of different specialties have relatively similar values of V̇O2max and F, it follows 

that the very different values of Smax obtainable during different modes of locomotion (which can 

vary between about 23 km/h during 5 km of running and about 51 km/h during 5 km of track cycling) 

depend on substantial differences in the value of C.  

In locomotion on land, the energy expended by the subject per unit of travel is used, in part, to 

overcome the resistance of the air (proportional to the square of the speed) and, in part, against 

gravitational and inertial forces, respectively to lift and lower, accelerate and decelerate the center of 

mass of the body and limbs, and, in part, for the work of the heart and respiratory muscles.  
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V̇O2 kinetics. At the onset of physical and dynamic activities, upon a stepwise or sudden increase in 

work rate, a coincident stepwise or sudden increase in ATP turnover occurs. However, ATP 

resynthesis deriving from oxidative phosphorylation is slower than the total ATP demand and the 

level of oxidative phosphorylation needed to couple the work rate is achieved in 2-3 minutes 

(Cerretelli and Di Prampero 1987). As it is shown in Fig. 4 pulmonary V̇O2 as a function of time 

follows increases as an exponential process in response to constant work-rate exercises (CWR). More 

specifically, at the onset of CWR, there is an early rapid increase (Phase I or cardiodynamic 

component, normally 15-20 seconds) due to the instantaneous increase in cardiac output and 

pulmonary blood flow. This initial phase is followed by a second and fast exponential increase (Phase 

II or primary component) which drives to the actual steady state (Phase III or steady state) within 2-

3 minutes. Phase II largely reflects the kinetics of O2 consumption in the exercising muscles although 

with a temporal leg (time delay, TD, normally 15-20 s). The rate of V̇O2 increases is quantified by 

the time constant (τ, time required to reach 63% of the difference between the steady state and the 

baseline) of the exponential which may span from 10 s in athletes to >100 s in patients (Rossiter, 

2011).  

 

 

Figure 4. Schematic representation of V̇O2 responses following the onset of moderate, heavy and 

severe constant work rate exercises (From Jones at et al., Med Sci Sports Exerc, 2011). 
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The profile of V̇O2 in response to the onset of CWR may be defined with respect to the exercise 

intensity domain in which the exercise is performed because of its specific responses. More 

specifically, for moderate intensity exercise (work rates <GET), after the first increase in V̇O2 within 

the first breaths (phase I), there is an achievement of the steady state after the phase II within about 

2-3 min in a healthy young subject. For cycle ergometry the gain (G) is approximately 10 ml.min-1.W-

1 (Rossiter, 2011). In the heavy intensity domain (work rates between GET and CP) instead, a further 

increase in V̇O2 becomes apparent after 90-120 s and it is superimposed on the primary component. 

This further and progressive increase in V̇O2 is commonly known as slow component (see paragraph 

slow component). This represents an additional O2 cost which increases G to >11 ml.min-1.W-1 thus 

reducing work efficiency and delaying the achievement of the steady state. For the severe intensities 

(work rates >CP) V̇O2 slow component drives V̇O2 to V̇O2peak: it raises rapidly and exponentially 

directly to V̇O2peak. Both profiles heralding imminent fatigue when V̇O2peak is attained (Poole et 

al., 1988).  

The rates of adjustment of oxidative phosphorylation to increases in metabolic requirements are 

directly related to exercise (in)tolerance (Grassi et al., 2011). V̇O2 kinetics are correlated with the size 

of O2 deficit that is the amount of energy that has to be borrowed either from the stored PCr or from 

the ongoing substrate level phosphorylation (i.e., glycolysis) (Cerretelli and Di Prampero 1987). 

Slower adjustments would result in a greater O2 deficit and thus in a greater metabolic acidosis and 

depletion of PCr and glycogen stores, impairing exercise tolerance. On the contrary, rapid response 

kinetics are associated with a lower O2 deficit, greater metabolic homeostasis and they represent a 

sign of the effective integrated function of the pulmonary, circulatory and skeletal muscle systems 

(Koppo et al., 2004; Allen et al., 2008). 

Slow component. As mentioned before, for work rates above GET the attainment of a steady state is 

delayed or even not reached for the emergence of the supplementary and slowly developing 

component of V̇O2 response, the so-called “slow component”. For exercise intensities below CP, the 

eventual V̇O2 steady state is greater than the predicted value derived from the sub GET-V̇O2 work 

rate relationship. When the work rate is above CP, V̇O2 continues to rise with time until reaching the 

V̇O2peak, heralding the cessation of the exercise. This elevation in V̇O2 above the predicted value 

can account for as much as 1.5 l.min-1, representing then >25% of the total increase in V̇O2 with 

respect to the pre-exercise baseline (Poole et al., 1994).  

From a more functional point of view, the V̇O2 slow component is of significance because it seems 

to be closely related to progressive loss of muscle homeostasis and associated with the development 

of fatigue that occurs typically during exercises performed above GET (Rossiter et al, 2002; Burney 

& Jones, 2007). During high intensity dynamic constant work rate exercises, the V̇O2 slow component 
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is associated with a progressive recruitment of additional type II muscle fibers and their low efficiency 

might contribute to the increased O2 cost (Krustrup et al., 2008). Fatigued fibers might also require 

either an increased ATP turnover (unchanged P/O) or an increased O2 cost of ATP turnover 

(decreased P/O) (Barclay, J Physiol, 1996; Woledge, 1998). However, using the isolated dog 

gastrocnemius preparation in situ during a fatiguing high intensity exercise in which fibers are 

maximally activated with tetanic contractions by direct electrical stimulation of the motor nerve, the 

classic increase in V̇O2 with the time above the expected steady was not present, but there was a 

significant decrease (by 15-35 %) in force output (Zoladz et al, 2008). Interestingly, the V̇O2 data 

normalized by unit of force showed a clear slow component with an amplitude of 20% with respect 

to the total response. In other words, in exercising humans during CWR exercise, the external power 

output is conserved (probably by recruiting additional fibers) at the expense of an increase in V̇O2. 

On the contrary, in the isolated muscle in situ model, the muscle cannot recruit more fibers, the force 

decreases as a consequence of fatigue and V̇O2 remains constant. This phenomenon was named as 

mirror image of the V̇O2 slow component. The common point for these two different scenarios is a 

reduced efficiency of muscle contraction: constant mechanical power output with an increase in V̇O2 

or on the contrary, a constant V̇O2 with a decreasing force. Thus there was the demonstration that the 

reduced efficiency of muscle contraction and therefore the putative mechanism responsible for the 

V̇O2 slow component is not necessarily related to a progressive recruitment of muscle fibers. 
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1.2 NEW APPROACHES  

1.2.1 Heart rate (HR) kinetics: work rate decrease in order to keep a constant HR 

In the past, exercise prescription for aerobic exercise was often given in terms of work rates 

corresponding to specific percentages of V̇O2peak (Franklin et al., 2000; Powers & Howley 2004). 

This was based on the concept of a linear relationship between V̇O2 and work rate (see, e.g., Astrand 

et al., 1986). However, it has been demonstrated that a disproportionate increase in V̇O2, usually 

termed ‘‘slow component’’ of the V̇O2 kinetics, is present during constant work rate (CWR) exercise 

above GET, and even more markedly above the CP (Rossiter, 2011; Poole & Jones 2012). As a 

consequence of this, exercise intensities and exercise prescriptions are nowadays usually not 

expressed as a percent of V̇O2peak, but with respect to GET or CP (Poole et al., 2016; Iannetta et al., 

2020). The same type of problem would be present also in terms of HR. Textbook and guidelines 

(Franklin et al., 2000; Powers & Howley 2004) suggest indeed to prescribe exercise at an intensity 

identified as a percentage of HRpeak, mainly on the basis of the facility to measure and record HR. 

However, a slow component is also present for the HR kinetics (Wasserman et al., 1967; Linnarsson 

1974; Orizio et al., 1988; Grassi et al., 1997; Hebestreit et al., 1998; Engelen et al., 1996; Bearden & 

Moffatt 2001), although its amplitude (particularly with respect to the amplitude of the V̇O2 kinetics) 

and the work rate above which this slow component seems to appear have not been formally analyzed. 

According to anecdotal observations (Orizio et al., 1988; Engelen et al., 1996), a slow component of 

HR kinetics may be present also during CWR exercise below GET.  

In the present thesis, we hypothesized that a slow component of HR kinetics would be present also 

during CWR < GET, whereas during CWR > GET, the amplitude of the slow component of the HR 

kinetics would be greater than the amplitude of the slow component of the V̇O2 kinetics and therefore 

in order to keep a constant an HR target value, both work rate and V̇O2 had to decrease. We also 

hypothesized that this phenomenon will also be present also in populations of patients and 

microgravity (simulated by bed rest).  

By negating the presence of a linear relationship between HR and V̇O2 during CWR, these findings, 

if confirmed, would have profound implications on exercise prescription and tolerance. In short, also 

for HR (and possibly more markedly for HR than for V̇O2), the concept of a value corresponding to 

a specific CWR would not hold true, at least above a certain CWR. Exercise prescriptions at specific 

HR values, when carried out for periods longer than a few minutes, could lead to premature fatigue 

and to exercise termination. 
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1.2.2 Near infrared spectroscopy: kinetics of muscle V̇O2 recovery 

Non-invasive near-infrared spectroscopy (NIRS) has been extensively used in exercise physiology 

mostly to study skeletal muscle oxygenation in vivo both in health and disease in exercise physiology 

(Quaresima and Grassi 2016). The main variable evaluated by NIRS is the skeletal muscle fractional 

O2 extraction, which reflects the balance between O2 delivery and O2 utilization (the fraction of 

haemoglobin that is bound to oxygen). NIRS measures light attenuation in media to determine the 

concentration or the relative values of light absorbing chromophores. The main absorber of NIR light 

is heme and it has O2-dependent absorption features. The physical principle of NIRS is based on the 

absorption of the NIR light by haemoglobin (Hb) in small arteries, arterioles, capillaries, venules and 

small veins so the attenuation of the light in media is used to determine the concentration of light 

absorbing chromophores. A NIRS probe is applied on the skin overlying the muscle of interest and 

NIR light penetrates skin and subcutaneous fat to finally reach the underlying skeletal muscle tissue. 

The parameters commonly derived from NIRS measurements are: micromolar (μM) changes of 

deoxygenated haemoglobin (Hb) + myoglobin (Mb) concentrations (Δ[deoxy(Hb + Mb)]) and of 

oxygenated (Hb + Mb) (Δ[oxy(Hb + Mb)]). The sum between the two variables (Δ[deoxy(Hb + Mb)+ 

oxy(Hb + Mb)]) is related to changes in the total Hb volume (blood volume in the investigated tissue). 

An increased Δ[deoxy(Hb + Mb)] or a decreased Δ[oxy(Hb + Mb)], would indicate an increased 

fractional O2 extraction only when Δ[deoxy(Hb + Mb)+ oxy(Hb + Mb)] is constant. This is unlikely 

in exercising muscles. Normally the problem is circumvented, at least in part, by taking as an index 

of deoxygenation the Δ[deoxy(Hb + Mb)] variable, which is relatively insensitive to blood volume 

changes, and has been demonstrated to nicely correlate with other variables related to fractional O2 

extraction (Grassi & Quaresima, 2016). 

As mentioned before, skeletal muscle fractional O2 extraction is the balance between O2 delivery 

(DO2) and O2 utilization (V̇O2m). Although this parameter can yield to relevant information pertinent 

to exercise performance and exercise tolerance, it does not specifically reflect V̇O2m. More recently, 

a new approach to dissociate V̇O2m from DO2 using NIRS has been proposed: the repeated arterial 

occlusion method following exercise in association with NIRS measurements. With the transient 

arterial occlusions provided by a rapid pneumatic cuff during the recovery phase it is possible to 

interrupt the DO2 to the investigated muscle. Based on a concept originally developed by Hamaoka 

et al. (1996) and by Van Beekvelt et al. (2001): in ischemic conditions, the linear rate of increase in 

deoxy-(haemoglobin-myoglobin), or the linear rate of decrease of oxy-(haemoglobin+myoglobin), as 

determined by NIRS (Grassi & Quaresima, 2016; Barstow, 2019), represents an index of V̇O2m. By 

performing a series of repeated short ischemia (blood flow occlusions induced by rapid inflation and 

subsequent deflation of a pneumatic cuff with suprasystolic pressure) during the recovery from 
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exercise, V̇O2m measurements have been obtained with a temporal resolution allowing performance 

of a reliable V̇O2m off-kinetics analysis (Ryan et al., 2012; Adami and Rossiter, 2017). The method 

has been validated against other approaches of functional evaluation of skeletal muscle oxidative 

metabolism, such as [PCr] (squared brackets denote concentrations) recovery kinetics (Ryan et al., 

2013) and high-resolution respirometry of permeabilized skeletal muscle fibers (Ryan et al., 2014). 

This NIRS technique has already been used to investigate differences in oxidative function across a 

wide range of muscles, ages and disease states (Adami & Rossiter, 2017). 
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1.2.3 Peripheral vascular adaptations: blood flow response to passive leg movement 

Exercise achieved without voluntary activation and contraction has a long history in vascular 

medicine (Trinity & Richardson, 2019). The passive exercise evokes little increase in O2 

consumption, allowing for the evaluation of exercise-induced hyperaemia without an increase in 

metabolism.  

The blood flow increase detected in the common femoral artery, by Eco-Doppler, during 1 minute of 

passive leg extension has been identified, in recent years, as a tool of functional evaluation of 

peripheral and muscle blood flow (Gifford & Richardson 2017). The increase in leg blood flow 

elicited by the passive leg movement (PLM) is primarily a product of changes in peripheral arterial 

diameter or tone. Trinity at al. (2012) and Mortensen et al., (2012) have independently demonstrated 

that up to 80% of the overall increase in leg blood flow during PLM is nitric oxide (NO) dependent 

in healthy young subjects. By inhibiting nitric oxide synthase (NOS) via an intra-arterial infusion of 

NG -monomethyl-L-arginine (L-NMMA) the hyperaemic and vasodilatatory response to PLM was 

attenuated by almost 80% (Trinity et al., 2012; Mortensen et al., 2012). It appears that when the leg 

is moving, the release of NO and other dilator mechanisms are initiated in response to the mechanical 

deformation of the leg (Jufri et al., 2015) which produces the dilation of the vascular bed. Thus, the 

blood flow increase, observed by this method, is directly related to nitric oxide (NO)-mediated 

vasodilation, and is therefore considered an index of peripheral endothelial and vascular function in 

vivo. Therefore, the PLM-induced hyperaemic response appeared to be directly related to exercise 

training, to have an age-related attenuation and emerged to be impaired in patient populations, such 

as patients with chronic heart failure (Gifford & Richardson 2017).  
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1.2.4 Mitochondrial respiration in permeabilized skeletal muscle fibers 

The last step along the O2 pathway of oxidative metabolism during exercise is represented by 

oxidative phosphorylation at the mitochondrial level in skeletal muscle fibers. A “state of the art” 

method for the functional evaluation of mitochondrial respiration is high-resolution respirometry 

(HRR) (Pesta & Gneiger 2012), in which permeabilized skeletal muscle fibers obtained by a biopsy 

are exposed, in a chamber of the instrument, to increasing concentrations of ADP and to a sequence 

of saturating levels of substrates, in the presence of saturating levels of O2. Several variables can be 

determined by HRR, such as: “leak respiration”; maximal ADP-stimulated mitochondrial respiration, 

supported by respiratory complex I or by respiratory complexes I and II; maximal uncoupled 

respiration; oxidative phosphorylation coupling; and others more depending on the adopted protocol 

(Pesta & Gneiger 2012). Mitochondrial respiration variables are usually “normalized” with respect to 

mitochondrial mass, estimated by citrate synthase protein content or activity. Compared to similar 

measurements carried out in isolated mitochondria, HRR presents the advantage of substantially 

preserving the cellular architecture of the muscle fiber (Picard et al. 2011). In recent years, our group 

has extensively utilized HRR, on skeletal muscle fibers obtained from subjects undergoing resistance 

training (Salvadego et al. 2013), subjects exposed to chronic hypoxia (Tam et al. 2016), subjects 

undergoing short-term bed rest (Zuccarelli et al. 2020) or hypoxic bed rest (Salvadego et al. 2016, 

Salvadego et al. 2018), transgenic mice with heart failure (Grassi et al. 2017) and mice undergoing 

hindlimb suspension (Cannavino et al. 2011). 
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1.3 EFFECTS OF INACTIVITY – MICROGRAVITY (BED REST) ON OXIDATIVE 

METABOLISM DURING EXERCISE 

Horizontal or head-down bed rest interventions have been utilized over the years as analogues for 

studying the adaptive responses of astronauts exposed to microgravity. As mentioned before, 

oxidative metabolism represents the main energy source for activities related to everyday life and 

work. This applies to activities carried out on Earth, but also to activities performed in microgravity 

conditions. Maximal oxygen consumption (V̇O2max), traditionally considered an index evaluating 

the maximal performance of the integrated respiratory, cardiovascular and muscular factors 

governing oxidative metabolism during exercise, has been shown to be reduced immediately after 

short-duration Space Shuttle missions (8-14 days) (Levine et al., 1996; Moore et al., 2001) and after 

long-duration International Space Station (ISS) missions (typically 6 months) (Moore at al., 2014; 

Ade et al., 2017). Moreover, the decline in V̇O2max and the physiological mechanisms mediating its 

decrease seem to be dependent on the duration of microgravity exposure (Ferretti & Capelli 2009; 

Ade et al., 2015; Salvadego et al., 2018).  

According to the review and meta-analysis by Reid-Larsen et al. (2017) V̇O2max during normoxic 

bed rest declines linearly as a function of the bed rest duration (in the range from a few hours up to 

90 days), at a rate of about 0.3-0.4 % per day. The rate of V̇O2max decrease seems also to be inversely 

related with the level of V̇O2max: higher pre bed rest values are associated with greater declines in 

V̇O2max (Reid-Larsen et al. 2017). The decrease in V̇O2max during prolonged situations of muscle 

inactivity would translate into a significantly reduced exercise tolerance, but also (if it had not been 

transitory) in a significantly increased mortality risk (Myers et al. 2002).  

 

During bed rest, changes in cardiac function occurred immediately upon reclining. Within the first 

24-48 h, stroke volume (SV) and cardiac output (Q̇) decrease in response to the diuresis-induced 

hypovolemia. As the bed rest continues without physical countermeasures, SV and thus Q̇ continue 

to decrease below the pre-bed rest value in response to the reduced blood volume and oxygen demand, 

loss of active muscle mass, decreased cross-sectional area and contractile strength (Fortney at al., 

1996).  

 

During exercise after bed rest, exaggerated cardiovascular responses at a given oxygen uptake are 

reported, such as: increases in heart rate values with a reduced increase in stroke volume, increases 

in V̇E/V̇O2, increases in blood lactate concentrations and in respiratory exchange ratio (Fortney at al., 

1996). V̇O2 kinetics are also reported to be slower after bed rest (Convertino et al., 1984; Capelli et 

al., 2009).  
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The mechanisms responsible for the decline in exercise tolerance observed during bed rest involve 

changes at different levels of the O2 cascade from the ambient air to the skeletal muscle mitochondria: 

from the pulmonary system and the cardiovascular function to the reduced active muscle mass and to 

the altered neuromuscular function (Fortney at al., 1996). Altered function in the pulmonary system 

is thought not to play a great role in limiting V̇O2max, since minimal changes were found in arterial 

saturation and arterial partial pressure of O2 after simulated microgravity up to 90 days of bed rest 

(Capelli et al., 2006; Prisk et al., 2000). As for the cardiovascular system, data from bed rest studies 

as well as from spaceflight missions reported similar decreases in SV and Q̇ during rest and during 

submaximal and maximal exercises (Buderer et al., 1976; Levine et al., 1996; Porcelli et al., 2010). 

A reduction in cardiac mass of 1% per week has also been reported after exposure to microgravity 

(Dorfman et al., 2007). 

 

In addition to these well-known alterations in cardiovascular functions during microgravity condition, 

functional limitations in oxidative metabolism also at peripheral level, localizable at the intramuscular 

level, have been demonstrated.  

The elegant study of Ade et al., (2015) examined the determinants of V̇O2max decrease detected 

following microgravity exposure by retrospectively modelling adaptation within the O2 transport 

system. During a short spaceflight mission with the duration of about 11 days, V̇O2max decreased by 

about 20% (Levine et al., 1996). It has been hypothesized that for this relatively short duration 

spaceflight a decreased plasma volume and subsequent reductions in Q̇ max and haemoglobin 

concentration would lead to impair convective O2 transport (about 23%) with less decreases in 

diffusive O2 transport (about 13%). Instead, the retrospective analysis of prolonged periods of muscle 

disuse such as 90 days of bed rest, revealed that the additional 10% decrease in V̇O2max (Capelli et 

al., 2006) is mediated by about 40% decrease in diffusive O2 transport with very similar decrease to 

short-term microgravity exposure in convective O2 delivery (Ade et al., 2015). 

 

Some recent studies conducted by our group, using bed rest models, have suggested the presence of 

different sites of intramuscular limitations, also depending on the duration of exposure to 

microgravity. Specifically, while after a 10-day exposure to microgravity the main limitation would 

be “upstream” of the mitochondria (Porcelli et al., 2010; Salvadego et al., 2016; Ade et al., 2017), 

such as at the level of microvascular supply of O2, intramuscular matching between O2 delivery and 

O2 uptake, and peripheral O2 diffusion, after a 20-day bed rest also the mitochondrial function would 

be affected (Salvadego et al., 2018). The effects of short periods of bed rest on maximal ADP-

stimulated mitochondrial respiration (as evaluated by high-resolution respirometry [HRR] of isolated 
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and permeabilized fibers obtained by biopsy) are somehow controversial. Whereas Miotto et al. 

(2019) and Dirks et al. (2020) described an impaired mitochondrial function following bed rest 

periods of 3 and 7 days, respectively, other authors (Larsen et al. 2018, Salvadego et al. 2016) did not 

see impairments following 4 and 10 days of bed rest exposure. An impaired mitochondrial respiration 

was seen by HRR after 21 days of bed rest (Salvadego et al. 2018), confirming the impairment of 

skeletal muscle oxidative function described in that study by other methods. Another aspect which 

has been recently investigated by HRR deals with the sensitivity of mitochondrial respiration to 

submaximal (and physiological) ADP concentrations (Holloway et al. 2018). Only one study 

investigated this variable following a very short (7 days) bed rest exposure, describing a decreased 

mitochondrial respiration at submaximal [ADP] (Dirks et al. 2020). 
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2 CHAPTER II - RESEARCH AIM 

The overall objectives of my PhD thesis deal with the implementation of new methods for the 

functional evaluation of oxidative metabolism during exercise allowing the identification of 

biomarkers of functional impairment. 

The two main topics were focused on (i) the effects of aerobic exercise prescription based on heart 

rate (HR) both in healthy population and in population of patients, and on (ii) the localization of the 

main site(s) of impairment in oxidative metabolism during exercise in simulated microgravity 

condition along the O2 pathway from the ambient air to skeletal muscle mitochondria, with particular 

interest to the peripheral level.  

More specific, the projects carried out during the three years of this PhD aimed to:  

- Test in 17 healthy male subjects the hypothesis that during constant work rate exercises 

(CWR) at different intensities the slow component of HR kinetics would occur at lower work 

rate and would be more pronounced than the slow component of pulmonary oxygen uptake 

(V̇O2) kinetics. As a consequence, we hypothesized that exercise prescription at a fixed HR 

value, slightly above the “gas exchange threshold” (GET), as it is often done for training 

purposes and in clinical studies, would determine a significant decrease in work rate (Study 

1) 

- Verify the above hypotheses also in a population of patients. 16 male obese patients were 

tested before and after a 3-week multidisciplinary programme aimed at reducing body mass 

(Study 2). 

- Investigate the same hypotheses in 10 healthy male subjects evaluated before and after 10-

day of horizontal bed rest (Study 3). 

- Modify and improve a recently proposed method, aimed at assessing mitochondrial function 

non-invasively by near-infrared spectroscopy (NIRS). This method is based on the 

measurement of skeletal muscle V̇O2 recovery kinetics following exercise. (Study 4). 

- Determine, with an integrative approach, the sites of impairment of oxidative metabolism 

during exercise following a 10-day bed rest, spanning from systemic variables to markers 

more specifically related to peripheral vascular function, skeletal muscle fractional O2 

extraction by NIRS and mitochondrial function. The latter was evaluated by an ex vivo 

approach, that is by high-resolution respirometry (HRR) on permeabilized muscle fibers (in 

conditions of unlimited O2 and substrates availability), and by a non-invasive in vivo 

approach, based on the evaluation by NIRS of muscle V̇O2 recovery kinetics following CWR 

exercise (Study 5) 
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A better knowledge of the site(s) of impairment in oxidative metabolism and of new parameters for 

the evaluation of exercise (in)tolerance could potentially provide a background for improving 

exercise prescription and therapeutic interventions. 
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3 CHAPTER III - EXPERIMENTAL STUDIES 

3.1 COMPARISON BETWEEN SLOW COMPONENTS OF HR AND V̇O2 KINETICS: 

FUNCTIONAL SIGNIFICANCE – STUDY 1  

This article has been published in "Medicine and Science in Sport and Exercise" 50(8): 1649-1657 

(2018) as "Comparison between slow components of HR and V̇O2 kinetics: functional significance" 

by Lucrezia Zuccarelli, Simone Porcelli, Letizia Rasica, Mauro Marzorati, Bruno Grassi. 

 

ABSTRACT 

Purpose: Aerobic exercise prescription is often based on a linear relationship between pulmonary 

oxygen consumption (V̇O2) and heart rate (HR). The aim of the present study was to test the 

hypothesis that during constant work rate (CWR) exercises at different intensities, the slow 

component of HR kinetics occurs at lower work rate and is more pronounced that the slow component 

of V̇O2 kinetics. Methods: Seventeen male (age, 27 ± 4 yr) subjects performed on a cycle ergometer 

an incremental exercise to voluntary exhaustion and several CWR exercises: 1) moderate CWR 

exercises, below gas exchange threshold (GET); 2) heavy CWR exercise, at 45% of the difference 

between GET and V̇O2 peak (Δ); 3) severe CWR exercise, at 95% of Δ; 4) ‘‘HRCLAMPED’’ exercise 

in which work rate was continuously adjusted to maintain a constant HR, slightly higher than that 

determined at GET. Breath-by-breath V̇O2, HR, and other variables were determined. Results: In 

moderate CWR exercises, no slow component of V̇O2 kinetics was observed, whereas a slow 

component with a relative amplitude (with respect to the total response) of 24.8 ± 11.0% was observed 

for HR kinetics. During heavy CWR exercise, the relative amplitude of the HR slow component was 

more pronounced than that for V̇O2 (31.6 ± 11.2% and 23.3 ± 9.0%, respectively). During 

HRCLAMPED, the decrease in work rate (~14%) needed to maintain a constant HR was associated 

with a decreased V̇O2 (~10%). Conclusions: The HR slow component occurred at a lower work rate 

and was more pronounced than the V̇O2 slow component. Exercise prescriptions at specific HR 

values, when carried out for periods longer than a few minutes, could lead to premature fatigue. 

 

Key Words: SLOW COMPONENT, CONSTANT WORK RATE EXERCISE, V̇O2 KINETICS, 

HR KINETICS, EXERCISE PRESCRIPTION. 
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INTRODUCTION 

In healthy subjects, in older adults, and in populations of patients, exercise prescription needs to be 

specifically performed in terms of exercise intensity and duration (Franklin et al., 2000). Although 

health benefits can be gained from any amount of exercise, several bodies of evidence suggest that 

an individualized exercise prescription is more effective in improving subjects’ health status and 

physical performance. In the past, exercise prescription for aerobic exercise was often given in terms 

of work rates corresponding to specific percentages of peak O2 uptake (V̇O2peak) (Franklin et al., 

200; Powers & Howley 2004). This was based on the concept of a linear relationship between 

pulmonary oxygen consumption (V̇O2) and work rate (see, e.g., Ref. [Astrand et al., 1986]). However, 

it has been demonstrated that a disproportionate increase in V̇O2 is present during constant work rate 

(CWR) exercise above the ‘‘gas exchange threshold’’ (GET), and even more markedly so above the 

‘‘critical power’’ (CP) (Rossiter, 2011; Poole & Jones 2012). Because it is slowly developing during 

CWR exercise, this excess V̇O2 is usually termed ‘‘slow component’’ of the V̇O2 kinetics. The 

mechanistic bases of this phenomenon have been discussed in recent reviews (Rossiter, 2011; Poole 

& Jones 2012; Grassi et al., 2015; Jones et al., 2011). To prevent the occurrence of the V̇O2 slow 

component, which heralds a loss of efficiency and fatigue, and to maintain the prescribed V̇O2, the 

subject/athlete/patient is forced to decrease exercise intensity (Grassi et al., 2015; Gaesser & Poole 

1996). As a consequence of this, exercise intensities and exercise prescriptions are nowadays usually 

not expressed as a percent of V̇O2peak, but with respect to GET or CP (Franklin et al., 2000; Rossiter, 

2011; Poole & Jones 2012). The same type of problem would be present also in terms of heart rate 

(HR). Textbook and guidelines (Franklin et al., 2000; Powers & Howley 2004) suggest indeed to 

prescribe exercise at an intensity identified as a percentage of HRpeak, mainly on the basis of the 

facility to measure and record HR. Whereas the V̇O2 response to different CWR exercise intensities 

has been extensively studied (Rossiter, 2011; Poole & Jones 2012; Grassi et al., 2015; Jones et al., 

2011), the HR response has not received the same attention. However, a slow component is present 

also for the HR kinetics (Wasserman et al., 1967; Linnarsson 1974; Orizio et al., 1988; Grassi et al., 

1997; Hebestreit et al., 1998; Engelen et al., 1996; Bearden & Moffatt 2001), although its amplitude 

(particularly in respect to the amplitude of the V̇O2 kinetics) and the work rate above which this slow 

component seems to have not been formally analyzed. According to anecdotal observations (Orizio 

et al., 1988; Grassi et al., 1997; Hebestreit et al., 1998), a slow component of HR kinetics may be 

present also during CWR exercise below GET. In the present study, we hypothesized that a slow 

component of HR kinetics would be present also during CWR < GET, whereas during CWR > GET, 

the amplitude of the slow component of the HR kinetics would be greater than the amplitude of the 

slow component of the V̇O2 kinetics. By negating the presence of a linear relationship between HR 
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and V̇O2 during CWR, these findings, if confirmed, would have profound implications on exercise 

prescription and tolerance. In short, also for HR (and possibly more markedly so for HR than for 

V̇O2), the concept of a value corresponding to a specific CWR would not hold true, at least above a 

certain CWR. Exercise prescriptions at specific HR values, when carried out for periods longer than 

a few minutes, could lead to premature fatigue and to exercise termination. 

 

METHODS 

Subjects 

Seventeen young healthy male volunteers (age, 27 ± 4 years; height, 181 ± 5 cm; weight, 77 ± 10 kg; 

body mass index, 23.3 ± 2.8 kg.m-2) participated in this study. All participants were moderately 

trained (training sessions = 5.9 ± 4.3 hours.week-1), non-smokers, normotensive and were not taking 

any drugs. The procedures used in this study were approved by the local ethics committee. All 

subjects gave their written informed consent after they received a detailed explanation of the 

experimental procedures before commencement of the study. 

Experimental design 

Subjects were instructed to arrive at the laboratory in a rested and fully hydrated state and to avoid 

strenuous exercise in the 24 hours preceding each testing session. In addition, they were told to avoid 

alcohol and caffeine intake 48 hours before the exercise test and to refrain from food ingestion 3 hours 

before each testing session. Exercise tests were carried out in a well-ventilated laboratory at 19–21 

°C, under continuous medical supervision and 12-lead electrocardiography (ECG; Custo Med 

GmbH). Each subject completed the entire experimental protocol within two weeks from enrollment. 

On their first visit anthropometric measurements were performed, and the subjects completed an 

incremental exercise up to voluntary exhaustion on an electronically braked cycle ergometer (Corival; 

Lode BV). Pedaling frequency was digitally displayed to the subjects, who were asked to keep a 

constant cadence throughout the tests between 70 and 80 rpm. Voluntary exhaustion was defined as 

the incapacity to maintain the imposed load and pedaling frequency despite vigorous encouragement 

by the researchers. The protocol began with a power output of 120 W for 5 min, and then the power 

output was increased by 20 W every minute. The peak values of the main cardiovascular, respiratory 

and metabolic parameters were taken as the highest 30-s mean values attained prior to the subject’s 

voluntary exhaustion. The V̇O2 at the gas exchange threshold (GET) was determined by two 

independent investigators by utilizing the “V-slope” methods and the “secondary criteria” (Beaver et 

al., 1986). In order to identify the work rate corresponding to the V̇O2 at GET, the effect of the delayed 

V̇O2 adjustment to the increased work rate during the incremental test was corrected by shifting the 
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linear V̇O2 vs. time (and work rate) relationship to the left, by an amount corresponding to the mean 

response time of the V̇O2 kinetics determined in each subject (Whipp et al., 1981).  

After the incremental exercise, the subjects completed five repetitions of CWR cycle ergometer 

exercises in a randomized order. Three 20-min bouts were at a moderate intensity (MODERATE) 

corresponding to 70% of GET. The fourth CWR exercise was performed in the heavy intensity 

domain (HEAVY), at 45% of the difference between GET and V̇O2 peak (Δ), and its maximum 

duration was set at 15 minutes (or until exhaustion). The fifth CWR exercise was performed in the 

severe intensity domain (SEVERE), at 95% of Δ until exhaustion.  

The subjects performed also an “HR controlled” exercise (HRCLAMPED) in which a target HR slightly 

above GET was identified as the HR corresponding to GET +10%. During HRCLAMPED the work rate 

was kept constant for the first 3 minutes, or until HR reached its target value, and then it was adjusted 

by the operator every 5 seconds in order to maintain a constant HR at the target value. Before 

performing HRCLAMPED trial, the subjects familiarized with the protocol in practice runs. 

Measurements 

Pulmonary ventilation (V̇E, in BTPS), O2 consumption (V̇O2), and CO2 output (V̇CO2), both in 

STPD, were determined breath-by-breath by a metabolic cart (Vmax29c; SensorMedics). Expiratory 

flow was determined by a mass flow sensor (hot wire anemometer). V̇O2 and V̇CO2 were determined 

by continuously monitoring PO2 and PCO2 at the mouth throughout the respiratory cycle and from 

established mass balance equations. Gas exchange ratio (R) was calculated as V̇CO2/V̇O2. HR was 

determined from the ECG signal.  

Stroke volume (SV) was estimated beat-by-beat by means of transthoracic impedance cardiography 

(Physio Flow; Manatec Biomedical) and averaged every 10 beats during all exercise tests. The 

accuracy of this device has been previously evaluated during incremental exercise in healthy subjects 

against the direct Fick method (Richard et al., 2001). A detailed description of the method has been 

provided elsewhere (Lamarra et al., 1987). Briefly, the Physio Flow emits a 75 kHz 1.8 mA 

alternating electrical current via two sets of electrodes (two “transmitting” and two “sensing” 

electrodes) applied above the supraclavicular fossa at the left base of the neck and next to the spine 

corresponding to the xiphoid process of the subject, respectively. Another set of two electrodes is 

used to monitor a single ECG lead. Verification of the correct signal quality is accomplished by 

visualization of the ECG signal, the impedance waveform, and their first derivatives. Then, the 

subject stands or sits still and relaxed for at least 5 minutes, during which the auto-calibration 

procedure is performed in order to obtain reference curves and data necessary to measure SV 

variations. HR was obtained from the R-R interval determined on the ECG first lead. Cardiac output 

(CO) was then calculated by multiplying SV and HR. 
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At 1, 3, and 5 minutes of recovery, 20 μL of capillary blood were obtained from a preheated earlobe 

for the determination of blood lactate concentration ([La]b) by an enzymatic method (Biosen C-line; 

EKF). 

Kinetics analysis 

V̇O2 kinetics were mathematically evaluated during transitions from rest to MODERATE, HEAVY 

and SEVERE intensity CWR exercises. Breath-by-breath V̇O2 values obtained during exercise were 

time aligned and then superimposed for each subject (Lamarra et al., 1987). Average V̇O2 values 

every 10 s were calculated. Data obtained during the first 20 s of the transition (“cardiodynamic” 

phase [Whipp et al., 2002]) were excluded from analysis. Thus, V̇O2 kinetics analysis dealt mainly 

with the “phase 2” (or “fundamental” component) of the response. To evaluate mathematically the 

V̇O2 kinetics, data were fitted by the function:  

y(t) = yBAS + Af [1 - e (t – TD
f
) / f ]  (1)  

and parameter values (TDf, f) were determined that yielded the lowest sum of squared residuals. In 

equation 1, t is time, yBAS indicates the baseline, Af is the amplitude between the yBAS and the 

steady state during the fundamental component, TDf is the time delay and f the time constant of the 

function for the fundamental component. To check the presence of a slow component (Whipp et al., 

2002) of the kinetics, data were also fitted by the function:  

y(t) = yBAS + Af [1 - e (t – TD
f
) / f ] + As [1 - e (t – TD

s
) / s ]  (2)  

In equation 2, As, TDs, and s indicate the amplitude, the time delay, and the time constant of the 

slow component, respectively. The equation that best fitted the experimental data was determined by 

the F-test (see Statistical analysis). That is to say, when Eq. 2 provided a better fit of the data, a slow 

component of V̇O2 kinetics was present, superimposed on the fundamental component. The slow 

component, however, did not always follow an exponential function, being sometimes linearly related 

to the time of exercise; moreover, its f and As values were devoid of physiological significance. In 

these cases, a third equation (3) was also utilized, with an exponential function for the fundamental 

component and a linear function for the slow component (exponential + linear fitting) (Linnarsson et 

al., 1974): 

y(t) = yBAS + Af [1 - e (t – TD
f
) / f ] + S [t - TDs ]  (3)  

where S (slope) is the angular coefficient of the linear regression of V̇O2 vs. time t. The actual 

amplitude (As’) of the slow component was calculated as the difference between the average V̇O2 

value obtained during the last 20–30 s of CWR exercise and the asymptotic value of the fundamental 

component. The percentage contribution of the slow component to the total amplitude of the response 

(As’/Atot) was also calculated. 
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To confirm the presence/absence of an increase in V̇O2 as a function of time, average V̇O2 values 

were also calculated for each subject every 30 seconds, from the 3rd to the 15th minute of exercise (or 

until exhaustion), and linear regression lines were drawn. The absence of a significantly positive slope 

would indicate that the variable has reached a steady state.  

As for HR, beat-by-beat values obtained during exercise were time aligned and then superimposed 

for each subject (Engelen et al., 1996). Average HR values every 10 beats were calculated. HR 

kinetics were analyzed by applying the same equations described above for V̇O2.  

Statistical analysis 

Results are expressed as mean ± SD values. Data fitting by exponential functions was performed by 

the least-squared residuals method. Comparisons between fitting with different models were carried 

out by the F-test. Statistical significance of differences between HR and V̇O2 slow component 

amplitudes was checked by two-tailed Student’s t-test for paired data. The effects of intensity domains 

(MODERATE, HEAVY and SEVERE) on the main respiratory, cardiovascular, and metabolic end-

exercise values were tested using a one-way repeated measures ANOVA. When significant 

differences were found, a Tukey’s post hoc test was used to determine the exact location of the 

difference. The level of significance was set at P < 0.05. Statistical analyses were carried out by a 

commercially available software package (Prism 6.0; GraphPad).  

  

RESULTS  

All subjects concluded the entire experimental protocol except one, who did not complete the 

SEVERE and the HRCLAMPED exercises for personal reasons. Peak values of the main respiratory, 

cardiovascular, and metabolic variables are shown in Table 1. Mean values of the main variables 

determined during the last 30 s of the three CWR exercises are also given in Table 1. 
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Table 1. Main respiratory, cardiovascular, and metabolic end-exercise values determined during 

incremental and constant work rate exercises. 

 

 INCR MODERATE HEAVY SEVERE 

Work rate, W 288±53*#§ 123±12^#§ 237±49^*§ 269±50^*# 

V̇O2, l·min-1 3.664±0.52* 1.936±0.10^#§ 3.667±0.66* 3.733±0.70* 

V̇O2, ml·kg·min-1 48.5±8.6* 26.0±3.8^#§ 48.5±10.4* 49.0±9.5* 

V̇CO2, l·min-1 4.324 ± 0.55*# 1.744 ± 0.12^#§ 3.694±0.59^*§ 4.201±0.53*# 

V̇E, l·min-1 145.7±21.2* 49.7±4.9^#§ 132.6±28.7*§ 141.5±32.5*# 

R 1.19±0.08*# 0.89±0.04^#§ 1.04±0.06^*§ 1.19±0.10*# 

HR, beats·min-1 188±10*§ 138±15^#§ 184±11* 180±11^* 

SV, ml 134±27 124±19 129±23 124±20 

CO, l·min-1 24.9±4.7* 17.0±3.5^#§ 23.6±4.4* 21.9±3.3* 

[La]b, mM  

RPE, (6-20) 

11.7±1.6* 

18±1*§ 

2.5±1.5^#§ 

12±2^#§ 

11.0±2.0* 

18±1*§ 

12.3±1.8* 

19±1^*# 

Mean values ± SD. V̇O2, oxygen uptake; V̇CO2, CO2 output; V̇E, pulmonary ventilation; R, gas 

exchange ratio; HR, heart rate; SV, stroke volume; CO, cardiac output; [La]b, blood lactate 

concentration; RPE, rate of perceived exertion. INCR, incremental exercise; MODERATE, 

moderate CWR exercise; HEAVY, heavy CWR exercise and SEVERE, severe CWR exercise. 

^P<0.05 vs INCR; *P<0.05 vs MODERATE; #P<0.05 vs HEAVY; §P<0.05 vs SEVERE.  

 

All subjects attained peak HR values around 97% of the age predicted maximum (calculated as 208 

- 0.7 x age). Taking into account also R peak, [La]b peak and RPE peak values, it can be assumed that 

exhaustion was indeed reached. GET occurred at a V̇O2 of 2.84 ± 0.50 l·min-1, corresponding to 77% 

of V̇O2peak. HR at GET was 163 ± 12 beats·min-1, corresponding to 88% of HRpeak. The relationship 

between CO and V̇O2 was linear and the slope of the regression line was 5.4 ± 0.2.  

Work rate for MODERATE, HEAVY and SEVERE was 44 ± 7 %, 83 ± 6 % and 92 ± 4 % of Wpeak, 

respectively. All subjects completed the three 20 minutes of MODERATE. Only 6 subjects completed 

the 15 minutes of HEAVY; for the remaining 11 subjects the time to exhaustion was about 9 minutes 

(ranging from 7.5 to 14 minutes). No subjects completed the 15 minutes of SEVERE; the time to 

exhaustion was 5.0 ± 1.2 minutes (ranging from 2.4 to 7.3 minutes). As a consequence of the 
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increasing work rate, V̇CO2, V̇E, R, [La]b and HR increased significantly across the different exercise 

intensity domains. V̇O2 was higher in HEAVY and SEVERE vs. MODERATE. V̇O2 was not different 

between HEAVY and SEVERE, and in both conditions values were not significantly different from 

V̇O2peak. The same behavior was observed for HR, CO, [La]b and RPE. SV increased significantly 

from rest to MODERATE and it did not further increase during HEAVY and SEVERE. 

In Figure 1 V̇O2 and HR kinetics obtained in a typical subject during CWR exercise at the three 

investigated intensity domains are shown. For V̇O2 no slow component was observed in 

MODERATE, whereas a clear slow component (see Equation 2 in Methods) was observed in 

HEAVY. For HR a slow component was already present during MODERATE.  
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FIGURE 1. Pulmonary O2 uptake (V̇O2) and heart rate (HR) kinetics for a representative subject 

during constant work rate (CWR) exercise at three investigated intensity domains MODERATE, 

HEAVY, SEVERE. Each data point indicates breath-by-breath or beat-to-beat values averaged 

every 10 s. The dashed curves indicate the asymptotes of the fundamental component. 
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Pulmonary V̇O2 and HR mean values obtained during MODERATE, HEAVY and SEVERE are 

plotted as a function of time in the upper panels of Figure 2. To obtain this figure (as well as Figures 

3, see below), individual values were grouped for discrete work rate intervals, which were determined 

in order to have, in each interval, each subject represented by one data point. When the subject had 

more than one “original” data point in the interval, mean individual values were calculated, both for 

the x and the y variable, and were taken into consideration to obtain the figure. The general pattern 

confirms what was mentioned above for the typical example, and V̇O2 reached at exhaustion values 

which were substantially identical to the V̇O2peak values determined during the incremental exercise. 

HR slightly but significantly increased as the time of exercise progressed also during MODERATE; 

during HEAVY and SEVERE the increase as a function of time was more pronounced, and values 

close to HR peak were eventually reached when exhaustion ensued. 

 

 

 

FIGURE 2. Group mean (±SD) pulmonary O2 uptake (V̇O2), heart rate (HR), stroke volume (SV) 

and cardiac output (CO) grouped for discrete intervals at three investigated intensity domains 

corresponding to 50% of V̇O2peak (MODERATE), 45% of the difference between GET and 

V̇O2peak (Δ) (HEAVY) and 95% of Δ (SEVERE). 
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Some parameters deriving from the fitting of the V̇O2 and HR kinetics are presented in Table 2.  

 

 

For MODERATE, in all subjects Equation 1 represented the best fit of the data. For HEAVY and 

SEVERE, in all subjects Equation 2 or Equation 3, respectively, represented the best fit of the data. 

As expected, at all investigated work rates the fundamental component of the HR kinetics was faster 

than that of the V̇O2 kinetics (see both the TDf and tf values). During both HEAVY and SEVERE the 

onset of the slow component occurred earlier for HR than for V̇O2 (see TDs values).  

During both HEAVY and SEVERE the amplitude of the slow component, relative to the entire 

responses (As’/Atot), was greater for the HR kinetics than for the V̇O2 kinetics (P=0.008 and P=0.011 

respectively). This observation is confirmed by Figure 3, in which the percentage increases in V̇O2 

and HR, with respect to the value obtained at the end of the fundamental component of the kinetics, 

arbitrarily set equal to 100%, are shown. When no slow component was detected, the 100% value 

was set at the value corresponding to that determined at four times the fundamental  values. During 

MODERATE, only HR showed an increase. During both HEAVY and SEVERE the HR increase was 

more pronounced than the V̇O2 increase.  

SV and CO mean values obtained during MODERATE, HEAVY and SEVERE are plotted as a 

function of time in Figure 2, lower panels. For SV, during both MODERATE and HEAVY the 

variable, after reaching a steady state at about 5-6 minutes, remained substantially constant until 

exhaustion. For CO the pattern was very similar to that described for HR in Figure 2: a slight but 

significant progressive increase from the 3rd to the 20th minute in MODERATE, whereas in both 

HEAVY and SEVERE the variable sharply increased until it reached the exhaustion values, which 

were not different from the peak values determined during the incremental exercise. 
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FIGURE 3. Percent change (%) from the values corresponding to the end of the fundamental 

component of the heart rate (HR) kinetics, and pulmonary O2 uptake (V̇O2) during constant work 

rate (CWR) exercise at three investigated intensity domains MODERATE, HEAVY and SEVERE. 
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HR, work rate and V̇O2 values obtained in a typical subject during the HRCLAMPED exercise are shown 

in the left panels of Figure 4. A work rate corresponding to GET +10% was imposed for the first 3 

minutes, and then the work rate was adjusted in order to maintain HR constant. In the right panels of 

Figure 4 mean values of the variables are presented. The HR target value was reached on average at 

minute 6 (range from 3 to 9 minutes) and it remained substantially constant throughout the test, 

indicating that the task was successfully completed. As hypothesized, work rate had to decrease (by 

about 14%) in order to maintain the target HR. Interestingly, the reduced work rate was associated 

with a decreased V̇O2 (from 3.09 to 2.77 l·min-1). This observation indirectly confirms that the slow 

component of the HR kinetics was more pronounced than the slow component of the V̇O2 kinetics. 

 

 

FIGURE 4. In the left panels, heart rate (HR), work rate (W) and pulmonary O2 uptake (V̇O2), for a 

representative subject during heart rate controlled (HRCLAMPED) exercise. In the right panels, mean 

(± SD) heart rate (HR), work rate (W) and pulmonary O2 uptake (V̇O2) for the HR controlled 

exercise. The horizontal dashed lines indicate mean target values. *Statistically different than 

respective 6-min value (P<0.05). 
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DISCUSSION  

The main results of the present study can be summarized as follows: (i) differently from what 

observed for the V̇O2 kinetics, a slow component of the HR kinetics occurred also during constant 

work rate (CWR) exercise in the moderate-intensity domain (<GET); (ii) during CWR exercise above 

GET the relative amplitude of the HR slow component was greater than the relative amplitude of the 

slow component of the V̇O2 kinetics; (iii) during CWR exercise slightly above GET, in order to keep 

HR constant both work rate and V̇O2 had to decrease, further confirming that the relative amplitude 

of the HR slow component is more pronounced than the relative amplitude of the V̇O2 slow 

component.  

Overall, these data suggest the absence of a linear relationship between V̇O2 and HR during CWR 

exercises in different intensity domains. As a consequence, caution is needed in prescribing exercise 

training programs based on HR values. Whereas for V̇O2 the concept of a value corresponding to a 

specific CWR holds true only for moderate-intensity exercise (below GET), for HR the concept may 

not hold true also for moderate-intensity CWR exercise, in which HR may keep increasing as a 

function of time. This increase is more pronounced during heavy-intensity CWR. Thus, exercise 

prescriptions at specific HR values, when carried out for periods longer than a few minutes, could 

lead to premature fatigue and exercise termination. 

In the present study the subject performed three repetitions of 20-min exercise of moderate intensity, 

and the values were ensemble-averaged into a single response profile. V̇O2 kinetics were 

mathematically represented by a typical mono-exponential increase (after excluding the 

“cardiodynamic phase”) and no slow component was evident in any subject. In terms of the HR 

kinetics, on the other hand, during moderate-intensity exercise a slow component with an amplitude 

corresponding to about 25% of the total response was observed. Previous studies had indeed 

anectdotically reported an increase in HR after the first minutes of exercise for intensities higher than 

30% of V̇O2max (Wassweman et al., 1967; Orizio et al., 1988). For work rates up to ~120 W, 

anecdotal reports of an increase of HR after the first minutes of exercise have been published 

(Wassweman et al., 1967; Orizio et al., 1988; Hebestreit et al., 1998). These studies, however, did not 

analyze the HR kinetics with respect to GET or CP. An exception is represented by a few subjects 

among those studied by Engelen et al. (1996), in whom a slow component of HR kinetics was 

observed during heavy-intensity exercise, but not during moderate-intensity exercise. This last 

observation is not in agreement with the results of the present study. 

In our study, during heavy-intensity exercise subjects cycled up to voluntary exhaustion (which was 

reached in about 11 minutes) and a slow component was observed for both V̇O2 and HR. However, 

the relative amplitude of the HR slow component (estimated as a fraction of the overall response of 
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the variable, that is as As’/Atot [see Methods]) was significantly greater than the relative amplitude of 

the V̇O2 slow component. This feature was further confirmed by the analysis presented in Figure 3, 

as well as by the results of the “HRCLAMPED” trial, in which the subjects, during a prolonged exercise 

slightly above GET, in order to keep HR constant had to decrease the work rate, but to an extent that 

led to a decrease also in V̇O2. This observation represents a sort of a “mirror image” of the notion 

that the slow component of the HR kinetics is more pronounced than the slow component of the V̇O2 

kinetics. 

Previous studies investigated the dissociation among the patterns of responses for various 

physiological variables determined in conditions of constant work rate exercise, such as HR, V̇E, V̇O2 

and RPE (Martin et al., 1979; Ribeiro et al., 1986; Steed et al., 1994; Stoudemire et al., 1996; Herman 

et al., 2003; Lander et al., 2009; Cochrane et al., 2015). For example, Herman et al. (2003) reported 

that 15-min of exercise “clamped” at a constant HR, corresponding to 75% of V̇O2max, resulted in 

decreases in power output and in the amplitude of the V̇O2 slow component. A progressive decrease 

in power output was also described when V̇O2 was maintained constant at a work rate corresponding 

to the “anaerobic threshold” (Ribeiro et al., 1986). Similarly, Stoudemire et al. (1996) reported a 

decreased velocity during a 30-min treadmill run in which the subjects kept a constant RPE value. 

Interestingly, a fall in force output (electrically stimulated isometric tetanic contractions) in 

association with a constant V̇O2 was also observed in the isolated dog gastrocnemius in situ model 

(Zoladz et al., 2008). 

The mechanism(s) responsible for the different behaviors of the slow components of HR and V̇O2 are 

somewhat difficult to hypothesize. The slow components of the two variables likely recognize 

different mechanistic determinants. The mechanisms responsible for the slow component of the V̇O2 

kinetics have been discussed in detail in several recent reviews (Rossiter, 2011; Poole & Jones 2012; 

Grassi et al., 2015; Poole et al., 2016). Several factors have been identified which can lead to a 

decreased efficiency of muscle contractions (with “slow components” of V̇O2, blood lactate 

accumulation, PCr splitting [see Grassi et al., 2015]) and fatigue during exercise carried out above 

GET, and particularly above CP. As for HR, during dynamic exercise the HR adjustments are 

regulated by the autonomic nervous system on the basis of signals arising in a central area of the brain 

("central command") and originating in the contracting skeletal muscles (exercise pressor reflex, 

baro- and chemo-reflexes), eventually modulated by afferent fibers (group III and IV) responsive to 

mechanical and chemical changes in the working muscles (Mitchell, 2013; Nobrega et al., 2014). 

These regulatory mechanisms are directly related to exercise intensity and could in theory be 

responsible for the slow component of the HR kinetics. 
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At the onset of CWR exercise the initial rise in HR has been attributed to parasympathetic withdrawal 

(Rowell & O’Leary, 1990; Fisher et al., 2015). Further increases have been attributed to an increased 

sympathetic nervous activity (Fisher et al., 2015), and follow a bi-exponential function with a fast 

and a much slower component (Linnarsson, 1974; Orizio et al., 1988; Engelen et al., 1996). In our 

study, during moderate-intensity exercise HR kinetics were well described by a bi-exponential 

process with a fast (≅25 s) and a slow (≅500 s) component. A fast (≅26 s) and a slow (≅288 s) 

component were also observed during heavy-intensity exercise. 

The mechanisms responsible for the slow component of the HR kinetics in the present study should 

be different from those associated with the progressive increase of HR and the parallel decrease in 

SV (cardiac output being substantially constant) occurring after ~10 min of moderate-intensity 

exercise (Coyle & Gonzalez-Alonso 2000). This phenomenon is usually associated with hyperthermia 

and dehydration (Gonzalez-Alonso et al., 1997). In the present study, we did not measure core body 

temperature or indices of dehydration. Our data, however, revealed an increase in HR but not a 

decrease in SV during moderate-intensity exercise (see Figure 2), thereby negating the presence of 

the phenomenon mentioned above. Moreover, an increased body temperature is usually associated 

with an increased V̇E (Powers et al., 1982), which was not observed in the present study after the first 

few minutes of exercise (data not shown). Finally, in the present study the HR slow component 

occurred well before the 10th minute of exercise, differently from the hyperthermia and dehydration 

phenomena mentioned above. 

Whereas it is well accepted that the slow component of the V̇O2 kinetics is directly associated with 

reduced efficiency and fatigue (Grassi et al., 2015), at present it is not clear if the slow component of 

HR kinetics, appearing during moderate-intensity exercise, is also somehow related to fatigue, 

possibly of delayed onset. Textbook physiology says that for the same work rate a higher HR indicates 

a reduced exercise tolerance. The potential role on fatigue by the progressive increase in HR, observed 

in the present study, should be investigated in future studies. It could be hypothesized that the effects 

on fatigue could manifest only during really prolonged exercise. If present, the association between 

the HR slow component and fatigue could have a significant impact also on exercise tolerance, and 

not only on exercise prescription.  

Exercise prescription is usually done with respect to indices such as the gas exchange (or lactate) 

threshold or the critical power. The data of the present study suggest that the “translation” of the work 

rates, or of the percentages of V̇O2 peak, associated with these variables into HR values is not 

straightforward. Prescription of an exercise intensity corresponding to a specific V̇O2 could translate, 

for exercises in the moderate- and heavy-intensity exercise domains, into a disproportionate increase 

in HR. As an example, Figure 4 shows that, during exercise carried out just above GET, in order to 
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maintain HR constant work rate must decrease substantially. Further studies are needed in order to 

clarify this critical issue.  

In the present study no supramaximal validation test could be performed to strengthen the confidence 

in the V̇O2peak measurements (as estimates of V̇O2max) obtained during the incremental test, as 

recently suggested by Poole & Jones (2017). Supramaximal tests were not comprehended in the 

ethical approval. However, although no "supramaximal validation" was performed, it should be noted 

that peak V̇O2 values were not different at the end of the incremental test compared to the values 

obtained at the end of the severe-intensity CWR, although in the presence of significantly different 

work rates. This observation represents strong evidence that the observed V̇O2peak values were 

indeed maximal. 

In conclusion, the present study indicates that a “slow component” of the HR kinetics occurs at a 

lower work rate than the slow component of the V̇O2 kinetics and that, at the same absolute work 

rate, the relative amplitude of the slow component of the HR kinetics is greater than the relative 

amplitude of the slow component of the V̇O2 kinetics. The present findings may have profound 

implications on exercise prescription. The data suggest indeed that the “translation” of work rates, or 

of percentages of V̇O2peak associated with variables such as the gas exchange threshold or critical 

power, into HR values (attractive, in practical terms, considering the facility of measurement and 

recording of this variable) is not straightforward. Exercise prescriptions at specific HR values, when 

carried out for periods longer than a few minutes, could lead to premature fatigue and to exercise 

termination. Further studies are needed in order to clarify this critical issue and better understand the 

mechanistic bases of these phenomena. 
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3.2 OBESE PATIENTS DECREASE WORK RATE IN ORDER TO KEEP A CONSTANT 

TARGET HEART RATE – STUDY 2 

This article has been accepted for publication in "Medicine and Science in Sport and Exercise" ahead 

of print (2020) as "Obese patients decrease work rate in order to keep a constant target heart rate" by 

Lucrezia Zuccarelli, Alessandro Sartorio, Roberta De Micheli, Gabriella Tringali, Bruno Grassi. 

 

ABSTRACT  

Purpose: “Slow components” of heart rate (HR) kinetics, occurring also during moderate-intensity 

constant work rate (CWR) exercise, represent a problem for exercise prescription at fixed HR values. 

This problem, described in young healthy subjects, could be more pronounced in obese patients. 

Methods: Sixteen male obese patients (age: 22±7 years; body mass: 127±19 kg; body mass index: 

41.6±3.9 kg.m-2) were tested before (PRE) and after (POST) 3-wk multidisciplinary body mass 

reduction program, entailing moderate-intensity exercise. They performed on a cycle ergometer an 

incremental exercise to voluntary exhaustion (to determine V̇O2peak and gas exchange threshold 

[GET]) and CWR exercises: moderate-intensity (MODERATE) (80% of GET determined in PRE); 

heavy-intensity (HEAVY) (120% of GET determined in PRE); “HRCLAMPED” exercise, in which work 

rate was continuously adjusted to maintain a constant HR corresponding to that at 120% of GET. 

Breath-by-breath V̇O2 and HR were determined. Results: V̇O2peak and GET (expressed as a % of 

V̇O2peak) were not significantly different in PRE vs. POST. In POST, vs. PRE, the HR slow 

component disappeared (MODERATE) or was reduced (HEAVY). In PRE work rate had to decrease 

by ~20% over a 15-min task in order to keep HR constant; this decrease was significantly smaller 

(~5%) in POST. Conclusion: In obese patients a 3-wk multidisciplinary body mass reduction 

intervention: i) increased exercise tolerance by eliminating (during MODERATE) or by reducing 

(during HEAVY) the slow component of HR kinetics; ii) facilitated exercise prescription by allowing 

to translate a fixed submaximal HR value into a work rate slightly above GET.  
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INTRODUCTION 

Exercise intolerance is both a cause and a consequence of obesity (Han et al., 1998; Ortega et al., 

2018), within a vicious circle characterized by obesity → early fatigue → reduced exercise tolerance 

→ reduced physical activity → obesity. Thus, exercise training, in association with nutritional and 

psychological interventions, aimed at reducing body mass and exercise intolerance, is considered a 

cornerstone in obesity treatment (Donnelly et al., 2009; Swift et al., 2018). The positive aspects of 

exercise training in obese patients may go well beyond those related to a reduced body mass. 

According to Gaesser & Blair (2019), for example, a higher level of cardiorespiratory fitness may 

attenuate or eliminate the mortality risk associated with an elevated body mass index.  

Although health benefits can be presumably gained by any regular exercise and physical activity, a 

targeted exercise prescription is needed to elicit specific physiological responses and/or adaptations 

(Black et al., 2017). It has been recently shown that exercise prescription based on fixed percentage 

of maximum values (i.e., V̇O2, heart rate [HR], work rate) does not take into account the specific 

exercise-intensity domain metabolic responses (Iannetta et al., 2020). Exercise prescription, both in 

healthy and diseased populations, is indeed carried out with respect to variables such as the gas 

exchange threshold (GET) (Iannetta et al., 2020; Lansley et al., 2011) or critical power (CP) (Poole 

et al., 2016). By doing so, exercise prescription takes into account the non-linearity (higher slope) of 

the pulmonary O2 uptake (V̇O2) vs. work rate relationship for constant work rate exercises above 

GET, and particularly above CP, as a consequence of the appearance of the V̇O2 “slow component” 

(Jones et al., 2011). GET and CP are however difficult to determine outside an exercise physiology 

laboratory, and therefore the identification of the training intensity is most often done by choosing a 

work rate corresponding to a fixed percentage of peak HR (Franklin et al., 2000; Powers et al., 2004). 

Also the HR vs. work rate relationship, however, shows a non-linear behavior (higher slope) during 

constant work rate exercises above GET and above CP. The issue is further complicated by the recent 

observation by our group (Zuccarelli et al., 2018) of a slow component of the HR kinetics also for 

work rates below GET. In that study, moreover, the relative amplitude of the HR slow component 

was more pronounced that the relative amplitude of the V̇O2 slow component (Zuccarelli et al., 2018). 

Some mechanisms potentially responsible for the HR slow component are mentioned below in the 

Discussion. In any case, as a consequence of the HR slow component, in order to keep HR constant 

at a value slightly above that corresponding to GET the work rate had to be decreased by ~14% during 

a 15-min exercise task (Zuccarelli et al., 2018). In other words, the appearance of HR slow component 

makes exercise prescription based on some percentage of HR peak an inaccurate approach.  

The study by Zuccarelli et al. (2018) was carried out in young healthy physically active subjects. We 

hypothesize that the phenomena discussed above could be more pronounced in diseased populations, 
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such as obese patients. Obese patients are indeed characterized (vs. healthy subjects) by lower 

exercise tolerance, by higher V̇O2 and HR values for the same submaximal work rate, and by a more 

pronounced slow component of the V̇O2 kinetics (Salvadego et al., 2010). Thus, the mentioned 

differences in the metabolic responses to exercise in the obese subjects vs. healthy individuals, lead 

us to hypothesize that in obese patients a more pronounced slow component of HR kinetics as well. 

This would make exercise prescription based on a fixed submaximal HR even more questionable in 

these patients.  

The aim of the present study was to test this hypothesis. More specifically, we hypothesized that in 

obese patients, as a consequence of a more pronounced slow component of the HR kinetics, in order 

to keep HR constant during a work rate slightly above GET the decrease in work rate would be more 

pronounced than that observed in young healthy physically active subjects (Zuccarelli et al., 2018). 

We also hypothesize that in the obese patients a standard 3-wk multidisciplinary body mass reduction 

program, consisting of moderate-intensity exercise, caloric restriction and psychological counseling 

would attenuate the work rate decrease aimed at keeping a constant HR, thereby improving exercise 

tolerance and facilitating exercise prescription, which is often done at work rates slightly above GET. 

 

MATERIALS AND METHODS 

Subjects 

Sixteen male obese subjects, 7 young adults and 9 adolescents (age: 22 ± 7 years [mean ± SD]; height: 

174 ± 7 cm; body mass: 127 ± 19 kg; body mass index: 41.6 ± 3.9 kg.m-2) were hospitalized (Division 

of Metabolic Diseases for young adults and Division of Auxology for adolescents, Istituto 

Auxologico Italiano, IRCCS, Piancavallo, Italy) and tested before and after a 3-wk multidisciplinary 

body mass reduction program. The program included: constant and monitored physical activity (5 

days per week training, including 1 h dynamic aerobic standing and floor exercise with arms and legs, 

at moderate intensity and under the guide of a therapist, and either 20-30 min cycle ergometer exercise 

at 60 W or 3–4 km out-door walking on flat terrain, according to individual capabilities and clinical 

status); psychological counseling; nutritional education and moderate energy restriction. The adult 

patients and both parents of the adolescents provided signed consent statements, after being fully 

advised about the purposes and testing procedures of the investigation, which were approved by the 

ethics committee of the Italian Institute for Auxology, Milan, Italy (reference code: 01C827; 

acronym: COLEESEROB-RC18). All procedures were in accordance with the recommendations set 

forth in the Helsinki Declaration (2001). 

Inclusion criteria were: 1) body mass index (BMI) standard deviation score (SDS) > 2 for age and 

sex (adolescents), using the Italian growth charts (Cacciari et al., 2006) and BMI > 30 for young 
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adults; 2) no involvement in structured physical activity programs (regular activity >120 min.wk-1) 

during the 8 months preceding the study; 3) absence of overt uncompensated diabetes; 4) absence of 

signs or symptoms referable to any major cardiovascular, respiratory, or orthopedic disease 

contraindicating or significantly interfering with the tests; 5) absence of any kind of disease related 

to gastrointestinal tract (i.e., obstruction of the digestive tract, motility disorders, previously surgical 

procedures, swallowing disorders). 

BMI was calculated as body mass (BM) divided by height2, expressed in (kg.m-2). Body composition 

was determined by bioelectrical impedance (Human-IM Scan, DS-Medigroup, Milan, Italy). Whole 

body resistance to an applied current (50 kHz, 0.8 mA) was measured with a tetrapolar device, with 

electrodes placed on the right wrist and ankle of the supine subjects lying comfortably in bed with 

limbs abducted from the body. Fat free mass (FFM) was calculated with equations derived with a 

two-compartment model (Gray et al., 1989). Fat mass (FM) was calculated as the difference between 

total BM and FFM; both the variables were expressed as kg and as a percentage of body mass (see 

Table 1). The same investigators performed all examinations before and after the 3-wk intervention 

period (see below). 

Exercise protocols  

Before (PRE) and after (POST) the 3-wk multidisciplinary body mass reduction program exercise 

tests were conducted in three separate occasions over a four-day period. Exercise tests were carried 

out in a well-ventilated laboratory under continuous medical supervision. 

During the first visit the subjects completed an incremental exercise (INCR) up to voluntary 

exhaustion on an electronically braked cycle ergometer (Corival cpet, Lode, The Netherlands), to 

determine V̇O2peak and GET. The test started with 20 W for two minutes and then 20 W increases 

of work rate were imposed every minute until voluntary exhaustion. Pedaling frequency was digitally 

displayed to the subjects, who were asked to keep a constant cadence throughout the tests at their 

preferred value (between 60 and 80 rpm). Voluntary exhaustion was defined as the incapacity to 

maintain the imposed load and pedaling frequency despite vigorous encouragement by the 

researchers. After the first visit the subjects performed in two different days one repetition of 10-min 

constant work rate (CWR) submaximal exercise corresponding to 80% of GET determined in PRE 

(moderate-intensity, MODERATE), followed by one repetition of 15-min (or until exhaustion) at 

120% of GET determined in PRE (heavy-intensity, HEAVY), and one repetition of 15-min "HR-

controlled" exercise (HRCLAMPED). The HEAVY CWR exercise was performed when subjects reached 

again baseline values of the investigated variables (i.e. after ~30 minutes of recovery). Participants 

performed the CWR exercises (MODERATE + HEAVY) and the HRCLAMPED exercise in a 

randomized order. 
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During HRCLAMPED a target HR corresponding to 120% of GET determined during the incremental 

exercise in PRE was identified. The work rate was kept constant for the first 2 minutes or until HR 

reached its target value, and then it was adjusted by the operator every 5 s to maintain a constant HR 

at the target value (for more details see [Zuccarelli et al., 2018]). Before the trial the subjects were 

familiarized with the protocol. CWR exercises were carried out at the same absolute work rate in PRE 

and POST; the same was true for the initial work rate during HRCLAMPED. 

Measurements 

Pulmonary ventilation (V̇E), V̇O2 and CO2 output (V̇CO2) were determined breath-by-breath by a 

metabolic cart (Ergostick, Geratherm Respiratory, Bad Kissingen, Germany). Expiratory flow 

measurements were performed by a turbine flow meter, calibrated before each experiment by a 3 L 

syringe at different flow rates. V̇O2 and V̇CO2 were determined by continuously monitoring PO2 and 

PCO2 at the mouth throughout the respiratory cycle and from established mass balance equations. 

Calibration of O2 and CO2 analyzers was performed before each experiment by utilizing gas mixtures 

of known composition. Peak values of the main variables were taken as the highest 20-s mean values 

attained prior to the subject’s voluntary exhaustion. Gas exchange ratio (R) was calculated as 

V̇CO2/V̇O2. GET was determined by standard methods (Beaver et al., 1986). In order to identify the 

work rate corresponding to V̇O2 at GET, the effect of the delayed V̇O2 adjustment (Boone & 

Bourgois, 2012; Iannetta et al., 2019) to the increased work rate during the incremental test was 

corrected by shifting the linear V̇O2 vs. time (and work rate) relationship to the left, by an amount 

corresponding to the mean response time of the V̇O2 kinetics (Whipp et al., 1981) previously 

determined by our group in an obese population (30 s) (Salvadego et al., 2010). 

HR was determined continuously by a chest band (Polar Electro, Oulu, Finland); mean values were 

calculated every 5 s. Considering that only one repetition of each CWR exercise was carried out, a 

formal V̇O2 and HR kinetics analysis was not performed (Lamarra et al., 2003). The presence or 

absence of a steady state in V̇O2 and HR after the first minutes of CWR exercise was evaluated by 

fitting linear regressions on the data obtained from the third to the last minute of exercise (Zuccarelli 

et al., 2018). 

Core body temperature was continuously monitored using ingestible telemetric temperature capsules 

(e-Celsius, BodyCap, Caen, France) during each CWR exercise in PRE. The validity and reliability 

of this device have been recently confirmed against a temperature-controlled water bath (Bongers et 

al., 2018). Briefly, the ingestible core body temperature sensor (17.7 mm length, 8.9 mm diameter 

and 1.7 g) wirelessly transmits signals by a radio-frequency of 433 MHz - 434 MHz trough the body 

to the data recorder (e-Viewer, BodyCap, Caen, France), worn on the outside of the body. Each 

capsule was activated and then swelled by the patients 3 hours before the CWR exercises. Sampling 
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rate was set at 5 s and mean capsule temperature values were calculated during the last 30 s of every 

minute of CWR exercise. 

Ratings of perceived exertion (RPE) were obtained every minute during exercise using the Borg’s 6-

20 scale (Borg, 1982). 

Statistical analysis 

Results are expressed as mean ± SD values. Statistical significance of differences in PRE and POST 

for the main respiratory, cardiovascular, and metabolic variables during INCR, MODERATE and 

HEAVY were checked using a two-tailed Student's t-test for paired data. Linear regression line and 

correlation analysis were carried out by the last-squared residual method. A two-way analysis of 

variance (ANOVA) with repeated measures (intervention X time) was used to assess changes in V̇O2, 

HR and work rate during CWR and HRCLAMPED exercises. When significant differences were found, 

a Bonferroni post-hoc test was used to determine the exact location of the difference. The level of 

significance was set at P<0.05. Statistical analyses were carried out by a commercially available 

software package (Prism 6.0; GraphPad). Power analysis was conducted a priori taking the work rate 

decrement seen during HRCLAMPED exercise in our previous paper (Zuccarelli et al., 2018) as the main 

variable. In order to identify significant differences, with an α error of 0.05 and a statistical power (1-

β) of 0.90, an n value of 11 subjects resulted to be necessary (G*Power 3.1). 

RESULTS 

All patients carried out the entire protocol except one, who did not complete the INCR exercise in 

POST for medical reasons (this subject was not taken into account for analyses related to the INCR 

exercise). The main anthropometric characteristics of the patients are reported in Table 1.  

 

Table 1. Anthropometric characteristics and age of participants before (PRE) and after (POST)  

a 3-wk multidisciplinary body mass reduction program. 

 PRE POST P value 

Age (years) 22±7 22±7 --- 

Height (m) 1.74±0.09 1.74±0.09 --- 

BM (kg) 127±19.5 121 ±19.3* <0.0001 

BMI (kg.m-2) 41.6±3.9 39.8±3.6* <0.0001 

FFM (% BM) 58.6±8.27 61.8±7.78* 0.0006 

FFM (kg) 74.7±20.32 75.1±19.72 0.67 

FM (% BM) 43.6±3.88 40.7±3.96* 0.003 

FM (kg) 55.6±11.85 49.5±10.74* <0.0001 

Values are mean ± SD. BM, body mass; BMI, body mass index; FFM, fat free mass; FM, fat mas. 
*P<0.05 different from PRE. 
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BM (by ~6 kg, corresponding to ~5% of the initial body mass), BMI and FM were significantly lower 

in POST vs. PRE.  

Peak values of the main respiratory, cardiovascular, and metabolic variables determined during INCR 

are shown in Table 2. Patients attained peak HR values corresponding to ~89% and ~86% of the age-

predicted maximum (calculated as 208 - 0.7 X age [Tanaka & Monahan, 2001]), respectively, in PRE 

and POST. Taking into account also R peak and RPE peak values, it can be assumed that exhaustion 

was indeed reached, although no validation test for determination of maximal V̇O2 (Poole & Jones 

2017) was carried out in the recovery phase. V̇O2 peak values were typical for obese subjects 

(Salvadego et al., 2017; Rasica et al., 2018) and they were not significantly different (P=0.44) in PRE 

(19.4 ± 3.0 ml.kg-1.min-1) vs. POST (20.1 ± 4.3 ml.kg-1.min-1). In PRE GET occurred at 59% of V̇O2 

peak, corresponding to 1.395 L.min-1, not significantly different (P=0.14) from the value in POST 

(61% of V̇O2 peak, corresponding to 1.487 L.min-1). Respiratory compensation point (RCP) was 

higher in POST vs. PRE (1.942 ± 0.262 and 1.805 ± 0.300 L.min-1, respectively; P=0.048). 

Main respiratory, cardiovascular and metabolic end-exercise or steady-state values, determined in 

PRE and POST during MODERATE and HEAVY CWR exercises are also shown in Table 2.  
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Table 2. Main respiratory, cardiovascular, and metabolic end-exercise or steady state values, determined during incremental exercise (INCR), 

constant work rate exercises (MODERATE and HEAVY) and HRCLAMPED exercise, before (PRE) and after (POST)  

a 3-wk multidisciplinary body mass reduction program. 

 

 INCR MODERATE HEAVY HRCLAMPED 

 PRE POST P value PRE POST P value PRE POST P value PRE POST 
P 

value 

Work rate, 

W 
196 ± 28 205 ± 28* 0.03 58 ±13 58 ±13 --- 118 ± 18 118 ± 18 --- 95 ± 23 112 ± 21* 0.0002 

�̇�O2, 

l·min-1 2.400 ± 0.327 2.456 ± 0.380 0.52 1.146±0.257 1.077±0.264 0.14 1.854 ± 0.295 1.846 ± 0.310 0.88 1.566 ± 0.202* 1.679 ± 0.307* 0.04 

�̇�O2, 

ml·kg-1·min-1 
19.4 ± 3.0 20.1 ± 4.3 0.43 9.2 ± 2.1 8.7 ± 1.9 0.17 15.0 ± 3.0 15.1 ± 3.1 0.84 12.6 ± 3.9* 14.0 ± 3.5* 0.04 

�̇�CO2, 

l·min-1 3.018 ± 0.397 2.990 ± 0.417 0.93 1.028 ± 0.228 0.940 ± 0.295 0.15 1.866 ± 0.317 1.837 ± 0.333 0.66 1.573 ± 0.217 1.641 ± 0.314 0.35 

R 1.26 ± 0.06 1.25 ± 0.10 0.87 0.90 ± 0.04 0.88 ± 0.17 0.63 1.01 ± 0.07 1.00 ± 0.05 0.27 1.00 ± 0.09 0.99 ± 0.05 0.71 

�̇�E, 

l·min-1 
101.2 ± 19.4 102.8 ± 20.1 0.57 31.2 ± 7.0 29.5 ± 8.5 0.32 63.7 ± 15.3 60.6 ±14.1 0.23 47.6 ± 14.6 54.7 ± 12.1 0.06 

fR, breaths·min-1 42 ± 6 44 ± 8 0.30 24 ± 4 24 ± 8 0.81 36 ± 8 34 ± 8 0.10 29 ± 9 34 ± 7* 0.02 

HR, beats·min-1 176 ± 11 171 ± 14 0.06 118 ± 9 111 ± 10* 0.0001 157 ± 15 147 ± 17* 0.0001 148 ± 17 146 ± 15 0.17 

RPE, 

6-20 
20 ± 1 20 ± 1 0.87 8 ± 3 8 ± 3 0.36 18 ± 3 16 ± 4* 0.048 13 ± 3 13 ± 4 0.78 

Time exercise, 

min 
10 .7± 1.4 11.3± 1.4* 0.03 10 .0± 0 10.0 ± 0 --- 12.4 ± 4.3 13.5 ± 2.5* 0.0043 14.8 ± 0.8 14.9 ± 0.5 0.33 

 

Mean values ± SD.  �̇�O2, pulmonary oxygen uptake; �̇�CO2, CO2 output; R, gas exchange ratio; �̇�E, pulmonary ventilation; fR, breathing frequency; 

HR, heart rate; RPE, rate of perceived exertion. *P<0.05 different from PRE 

 

 

 

 



Work rates for MODERATE and HEAVY were set to be identical in the two conditions, and they 

were 29 ± 5% and 62 ± 9% of peak work rate, respectively. For MODERATE all patients completed 

the imposed 10-min of exercise. No significant differences were found in V̇O2 end-exercise values in 

PRE vs. POST, whereas HR values determined during the last 20-s were significantly lower in POST 

vs. PRE (-6 %; P=0.005). As for HEAVY, seven patients in PRE and eleven patients in POST 

completed the imposed 15-min exercise. Time to exhaustion was significantly higher in POST vs. 

PRE (+8 %; P=0.004). In Figure 1 HR (upper panel) and pulmonary V̇O2 (lower panel) mean values 

obtained during MODERATE and HEAVY in PRE and POST are plotted as a function of the time 

of exercise. To obtain this figure, individual values were grouped for discrete work rate intervals, 

which were determined in order to have, in each interval, each subject represented by one data point. 

When the subject had more than one "original" data point in the interval, mean individual values were 

calculated, both for the x and the y variables. Data were fitted by linear regression from the 3rd minute 

to the end of exercise. During MODERATE, the slopes of the linear regressions of HR vs. time were 

significantly different from zero in PRE (0.408 ± 0.105 b.min-2; P=0.008) but not in POST (0.166 ± 

0.168 b.min-2; P=0.36). Thus, HR was not in steady-state during the 10-min MODERATE exercise 

in PRE, suggesting the presence of a slow component (Zuccarelli et al., 2018), whereas a steady-state 

was present in POST. HR values were lower in POST vs. PRE (P=0.008; F=9.058) starting from the 

3rd minute of exercise. As for V̇O2, the slopes of the linear regressions were not significantly different 

from zero in both conditions (PRE and POST). In other words, in both conditions V̇O2 values were 

in steady-state. At all time points V̇O2 values were not different in POST vs. PRE. In the lower panel 

of Figure 1, horizontal lines indicating V̇O2peak in PRE (no differences before vs. after training were 

observed for this variable, as well as for GET [see above]), RCP in PRE and POST, and GET in PRE 

are shown. Steady-state V̇O2 values during HEAVY corresponded to RCP in PRE, and were slightly 

below RCP in POST. In both cases, however, V̇O2 values appeared in steady-state between the 10th 

minute and the end of exercise. During HEAVY, the slopes of the V̇O2 vs. time regression lines were 

significantly different from zero both in PRE and in POST (P=0.04 and P=0.0008, respectively), and 

they were not significantly different in POST (0.012 ± 0.001 L.min-2) vs. PRE (0.015 ± 0.004 L.min-

2). The slopes of the HR vs. time linear regressions were significantly different from zero both in PRE 

and in POST (P=0.03 and P=0.004, respectively), and they were lower (P=0.001) in POST (1.103 ± 

0.184 b.min-2) vs. PRE (2.348 ± 0.567 b.min-2). HR values were lower in POST vs. PRE (P=0.0012; 

F=15.73) starting from the 5th minute of exercise. The rate of HR and V̇O2 increases, calculated as 

the percentage increases with respect to the value obtained at the 3rd minute of exercise, arbitrarily 

set at 100%, were greater for HR than for V̇O2, both in PRE (119% and 109% for HR and V̇O2, 

respectively; P=0.001) and in POST (111% and 106% for HR and V̇O2, respectively; P=0.047). The 
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% increases in V̇O2 were significantly correlated with the % increases in HR (r=0.57; r2=0.32; 

P=0.0019).  

Core body temperature at the 3rd and at the end of the exercise was 37.5 ± 0.3 °C and 37.6 ± 0.3 °C 

(P<0.0001), respectively, during MODERATE, and 37.5 ± 0.2 °C and 37.8 ± 0.2 °C (P<0.0001) 

during HEAVY. A positive and significant correlation (r2=0.41; P=0.0001) was found between the 

individual increases in HR and the corresponding increases in core body temperature, both calculated 

as end-exercise values minus values calculated at the 3rd minute of exercise. As mentioned above, 

core body temperature measurements were obtained only in PRE.  
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Figure 1. Mean values (± SD) of heart rate (HR) (upper panel) and oxygen consumption (V̇O2) 

(lower panel), grouped for discrete time intervals, during constant work rate (CWR) exercise at two 

investigated intensity domains, MODERATE and HEAVY, before and after a 3-wk 

multidisciplinary body mass reduction intervention. Vertical lines indicate that exercise started at 

time 0. Horizontal lines indicate V̇O2peak in PRE, RCP in PRE and POST, and GET in PRE. The 

fitted linear regression lines are also shown. *Significantly different (P<0.05) from PRE. See text 

for further details. 
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Figure 2. Shows mean (± SD) HR, work rate, and V̇O2 values obtained during the HRCLAMPED 

exercise in PRE and POST. In the two conditions the work rate imposed at the start of the exercise 

was the same, corresponding to HEAVY (GET +20%) determined in PRE; this work rate was 

imposed for the first 2 minutes, and then the work rate was adjusted to maintain HR constant (see 

METHODS). 
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Main respiratory, cardiovascular and metabolic end-exercise values, determined in PRE and POST 

during HRCLAMPED exercise are shown in Table 2. All patients but one (who terminated the exercise 

for voluntary exhaustion at the 12th minute in PRE and at the 13th minute in POST) completed the 15-

min HRCLAMPED exercise.  

The HR target value was reached on average after 2 minutes in PRE and after 5 minutes in POST, 

and afterwards it remained substantially constant throughout the test (upper panel of the Figure), 

indicating that the HR “clamp” was successful. In PRE, in order to maintain the target HR, work rate 

had to significantly decrease (middle panel of the Figure) from the 5th minute until the end of exercise; 

at the end of the exercise (15 minutes) the percentage decrease in work rate, vs. the value obtained at 

the 3rd minute, was approximately 19%. On the other hand, in POST the decrease in work rate was 

significantly (P=0.0002) less pronounced (~5%), although it was still statistically significant 

(P=0.005). From the 5th minute until the end of exercise work rate was higher in POST vs. PRE 

(P=0.0023; F=13.36). As shown in the lower panel of the Figure, the reduced work rate in PRE and 

POST during HRCLAMPED was associated with a decreased V̇O2 (by ~10% and ~5%, respectively). 

 

DISCUSSION 

The main findings of the present study can be summarized as follows: (i) Differently from V̇O2, 

during-moderate-intensity (<GET) constant work rate exercise HR increased significantly from the 

3rd to the 10th minute of exercise, suggesting the presence of a slow component for this variable also 

in this exercise domain. (ii) During heavy-intensity exercise (>GET), from the 3rd to the 10th minute 

of exercise the percentage increase in HR was greater than the percentage increase in V̇O2, thus, the 

HR slow component was more pronounced than the V̇O2 slow component. (iii) In order to keep a 

constant target HR value, slightly above that corresponding to GET, both work rate (by ~20% over a 

15-min task) and V̇O2 had to decrease. Thus, in untrained obese patients exercise prescription at a 

fixed submaximal HR translates into a work rate which must be progressively decreased during the 

training session; this obviously makes exercise prescription quite problematic. The work rate decrease 

was similar to that (~15%) observed in young healthy physically active subjects (Zuccarelli et al., 

2018). (iv) A 3-wk multidisciplinary body mass reduction program, including moderate-intensity 

exercise, eliminated the HR slow component during exercise <GET and reduced the amplitude of the 

HR slow component during exercise >GET, thereby increasing exercise tolerance (lower HR for the 

same work rate). (v) After the body mass reduction program, the decrease in work rate in order to 

keep HR constant at a value slightly above GET was substantially eliminated, confirming the 

increased exercise tolerance (Clausen, 1977) and facilitating exercise prescription, by allowing to 

translate a fixed submaximal HR into a work rate slightly above GET. 
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To the best of our knowledge this is the first study analyzing the relationship between HR and V̇O2 

responses during CWR exercise carried out in different intensity domains in obese patients. In the 

present study no formal analyses of the V̇O2 and HR kinetics and their different components (Jones 

et al., 2010) were carried out, since only one repetition of each exercise was performed. The presence 

vs. absence of a steady-state (in other words, the absence vs. the presence of a slow component) of 

the investigated variables was evaluated by a simplified approach, as proposed in previous studies by 

our group (see e.g. [Alemayehu et al., 2018]). We fitted a linear function to the data from the 3rd to 

the 10th minute of exercise: a significant positive slope suggests the absence of a steady-state, and 

therefore the presence of a slow component, whereas a slope not significantly different from zero 

suggests a steady-state and negates the presence of a slow component.  

Whereas the slow component of the V̇O2 kinetics reflects a loss of efficiency of oxidative metabolism 

and is associated with fatigue (Grassi et al., 2015), also in obese patients (Salvadego et al., 2010), the 

functional significance of the HR slow component, particularly during moderate-intensity exercise, 

is less clear (Zuccarelli et al., 2018). The results of the present study are, in this respect, of interest: 

the body mass reduction program, which included exercise training, decreased (heavy-intensity 

exercise) or abolished (moderate-intensity exercise) the amplitude of the HR slow component, and 

increased exercise tolerance. This may indirectly suggest that also the HR slow component is 

associated with fatigue and a decreased exercise tolerance, as it occurs for the V̇O2 slow component. 

Although HR responses during CWR exercises in relation to the physiological thresholds have been 

poorly studied so far, a slow component is known to occur also for the HR kinetics (Zuccarelli et al., 

2018; Orizio et al., 1988; Engelen et al., 1996). Increases in core body temperature could have had a 

role in determining the HR increases during constant work rate exercise. In previous studies 

(Gonzalez-Alonso et al., 1997; Coyle & Gonzalez-Alonso 2001), 10 minutes of exercises at ~60% of 

V̇O2peak were associated with ~0.3 °C increases in core body temperature. In the present study we 

have similar data: the increases in core body temperature from the 3rd to the end of exercise in PRE 

were indeed ~0.1 °C during 10 minutes of moderate- and ~0.2 °C during 15 minutes of heavy-

intensity exercise. Core temperature increases were significantly correlated with the HR increases. 

Although a correlation does not imply a cause-effect relationship, it is legitimate to hypothesize that 

the slow component of the HR kinetics could be attributable, at least in part, to the increases in core 

temperature. Unfortunately, the measurements of core temperature could not be repeated in POST for 

logistic reasons, and thus we miss information about the possible effects on this variable by the body 

mass reduction program. 

A causative role in determining the HR slow components could be attributed to blood catecholamine 

levels. Increments in catecholamine concentration were correlated with increments in HR (slow 



 54 

component) during short dynamic exercise at ~45% of V̇O2peak (Orizio et al., 1988). On the contrary, 

no increase in norepinephrine occurred during very low intensity exercise (~23% of V̇O2peak), in 

which no HR slow component was identified (Orizio et al., 1988). Obese patients, however, show 

lower plasma catecholamine concentrations compared with normal weight individuals (Zouhal et al., 

2010); this occurs at rest, during dynamic exercise and after training interventions (Vettor et al. 1997; 

Del Rio, 2000; Zouhal et al., 2010; Salvadori et al., 2015). A reduced epinephrine secretion has been 

described in obese patients (Del Rio, 2000), possibly due to higher plasma levels of leptin, insulin 

and cortisol, and higher catecholamine elimination rate (Zouhal et al., 2010).  

The different behavior of V̇O2 and HR during submaximal exercises was further confirmed during 

the HRCLAMPED exercise. In order to keep HR constant at the target value, the obese patients had to 

decrease the work rate to an extent at which V̇O2 not only did not present a slow component, but 

actually decreased, confirming what previously observed by Zuccarelli et al. (2018) in healthy 

physically active young subjects. This indirectly confirms that the slow component of the HR kinetics 

was more pronounced that the slow component of the V̇O2 kinetics.  

Not confirming our hypothesis, the work rate decrease (-20%) during HRCLAMPED exercise observed 

in the present study was only slightly greater than that described by Zuccarelli et al. (2018) in healthy 

physically active young subjects (-15%). Thus, the uncertainty in exercise prescription and the 

consequences on exercise tolerance deriving from the HR slow components are not more severe in 

obese patients compared to healthy controls. Further studies should be conducted on different patient 

populations. An interesting group would be represented by patients treated with -blockers. 

In the present study the evidence of increased exercise tolerance after the body mass reduction 

intervention, discussed above, did not translate into an increased V̇O2peak. This appears in agreement 

with previous studies carried out in obese patients by our group, in which interventions which 

improved exercise tolerance during submaximal exercise (such as normoxic helium breathing 

[Salvadego et al., 2015] or respiratory muscles endurance training [Salvadego et al., 2017; 

Alemayehu et al., 2018]) did not affect V̇O2peak. This variable, therefore, in obese patients may be 

more resistant to changes compared to other submaximal variables. GET was not significantly 

different in POST vs. PRE, whereas RCP was higher in POST vs. PRE; it cannot be excluded that the 

lack of a significant difference for GET could be related to lack of statistical power. Moreover, V̇O2 

values during HEAVY corresponded to RCP in PRE, and were slightly below RCP in POST. In both 

cases, however, V̇O2 values appeared in steady-state during the last minutes of exercise, and they did 

not show the continuous increase that would characterize the severe exercise domain. Both in PRE 

and in POST, therefore, exercise was at upper boundary of the heavy exercise domain. In any case, it 

should be stressed that even if changes in exercise domain had occurred following training, they 
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would not have detracted from the message of the study: exercise training would improve exercise 

tolerance, as manifested (for the same absolute work rate) by a change in exercise domain, by less 

pronounced slow components of HR and V̇O2 kinetics, and by a less pronounced decrease in work 

rate for the same fixed HR. 

To conclude, in untrained obese patients exercise prescription at a fixed submaximal HR, slightly 

above that corresponding to GET (as it is often done for endurance exercise prescription), translates 

into a work rate which must be progressively decreased during the training session. A 3-wk 

multidisciplinary body mass reduction intervention, including moderate-intensity exercise, increased 

exercise tolerance by eliminating (during moderate-intensity exercise) or by reducing (during heavy-

intensity exercise) the slow component of HR kinetics. As a consequence, the decrease in work rate, 

occurring in order to maintain a constant HR slightly above that corresponding to GET, substantially 

disappeared after the body mass reduction intervention, thereby facilitating exercise prescription, 

universally recognized as a cornerstone in the treatment of obesity.  
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3.3 DECREASE IN WORK RATE IN ORDER TO KEEP A CONSTANT HEART RATE: 

EFFECTS OF A 10-DAY BED REST. PRELIMINARY RESULTS – STUDY 3 

ABSTRACT  

Purpose: Aerobic exercise prescription is usually set at specific heart rate (HR) values. However, it 

has been recently demonstrated that during exercise carried out at a HR slightly above that 

corresponding to the gas exchange threshold (GET), the work rate has to decrease in order to maintain 

HR constant. It is well documented that simulated microgravity (i.e., bed rest, BR) determines a 

significant impairment of skeletal muscle oxidative metabolism and exercise tolerance. This led us to 

hypothesize that the decrease in work rate needed to keep HR constant could be significantly 

aggravated by BR. Testing this hypothesis would significantly affect exercise evaluation and 

prescription in microgravity. Methods: Ten young and healthy men (age, 23 ± 5 yr) were tested 

before (PRE) and after (POST) a 10-day horizontal BR and, performed on a cycle ergometer: a) an 

incremental exercise up to voluntary exhaustion (INCR); b) a 15-min (‘‘HRCLAMPED’’) exercise, in 

which work rate was continuously adjusted in order to maintain HR constant, slightly higher than that 

determined at the “gas exchange threshold” (GET). Pulmonary O2 uptake (�̇�O2) was assessed breath-

by-breath, cardiac output (CO) and stroke volume (SV) were estimated by impedance cardiography. 

Fractional O2 extraction (Δ[deoxy(Hb+Mb)]) was evaluated in muscles of the anterior and posterior 

compartments of the thigh by near-infrared spectroscopy (NIRS). Results: During INCR, Work rate 

(230±41 w vs. 251±50, P=0.02) and V̇O2peak (40.3±6.1 ml.kg-1.min-1 vs. 44.4±7.2, P<0.001) were 

significantly lower in POST vs. PRE, whereas HRpeak remained unchanged (189±6 b.min-1 vs. 187±8). 

Δ[deoxy(Hb+Mb)]peak significantly decreased (p<0.05) in POST compared to PRE. Work rate at GET 

was not different in POST (113±33 W) vs. PRE (118 ±33). During HRCLAMPED (set at 145±11 b.min-

1), the decrease in work rate needed to maintain a constant HR was more pronounced in POST vs. 

PRE (39±10% vs. 29±14%) and it was associated with decreases (both in POST and in PRE) of �̇�O2 

(14% and 13%), Δ[deoxy(Hb+Mb)] (41% and 18%), whereas SV and CO did not change. 

Conclusion: During 15-min cycling initially set at a w corresponding to a HR slightly above GET 

(as frequently done for exercise prescription), in order to keep HR constant, work rate had to decrease 

by ~29% and ~39%, respectively, before and after a 10-day bed rest. The work rate decrease, whose 

cause(s) still need to be determined, is a sign of exercise intolerance, and was more pronounced 

compared to that needed to prevent “slow components” of V̇O2 and muscle fractional O2 extraction 

kinetics. Exercise evaluation and prescription at fixed submaximal HR are problematic, also in 

microgravity. 

Funding: ASI, MARS-PRE Project, n. DC-VUM-2017-006. 
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INTRODUCTION 

The recent observations made by our group (Zuccarelli et al., 2018; Zuccarelli et al., 2019) regarding 

a progressive increase in heart rate (HR) during constant work rate exercise (CWR) for intensities 

below the gas exchange threshold (GET), complected the exercise prescription. Since HR can be 

easily measured and recorded, aerobic exercise is commonly prescribed at specific heart rate values 

mainly because of the practicality of the approach. From a less practical point of view, this common 

practice is based on the linear relationship occurring between HR and V̇O2 (Astrand et al., 1986). 

However, confirming anecdotical observations (Engelen et al., 1996; Orizio et al., 1988), HR and 

V̇O2 show different behaviours during CWR. We have recently demonstrated both in healthy and 

diseased populations (i.e., obese patients) that a “slow component” of HR kinetics occurs also during 

moderate-intensity CWR (below GET), so that HR does not reach a steady-state value but keeps 

increasing as a function of the time of exercise (Zuccarelli et al., 2018; Zuccarelli et al., In press). 

This issue is further complicated by the observations that the relative amplitude (or slope) of the HR 

slow component is more pronounced than the relative amplitude of the well-known slow component 

of V̇O2. This translates into the fact that when healthy people and obese subjects are asked to perform 

an exercise of 15-20 minutes keeping constant an HR target value slightly higher than that 

corresponding to GET, they are forced to decrease the exercise intensity to an extent of which also 

V̇O2 decreases. Interestingly, when measurements on obese patients were done before and after a 3-

week body mass reduction program, the decrease in work rate needed to keep HR constant following 

the intervention was less pronounced. Thus, the decreases in work rate were interpreted as a “new” 

marker of exercise (in)tolerance. Having the opportunity to be part of a10-day horizontal bed rest 

campaign in Summer 2019, allowed us to test the above-mentioned interpretation also in simulated 

microgravity (i.e., bed rest), a condition which significantly effects oxidative metabolism and exercise 

tolerance. The aim of the present study was therefore to identify, in the needed decrease in work rate 

in order to keep HR constant, a systemic biomarker of impairment of oxidative metabolism, possibly 

more sensitive than traditional ones, such as V̇O2peak or GET. Moreover, if confirmed also in 

microgravity, the phenomenon mentioned above would stress the need to reconsider the whole 

approach to exercise prescription and exercise evaluation in microgravity. 

METHODS  

This study was part of the 10-day horizontal bed rest campaign financed within the “MARS-PRE Bed 

Rest SBI 2019” project by the Agenzia Spaziale Italiana (ASI) whose aim was to monitor adaptations 

to simulated microgravity in different organs and systems of living organisms, in order to identify 

early biological and functional biomarkers of altered state of health. Detailed data related to 

participants and exercise protocols are reported in paragraph 3.5. 
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Briefly, ten healthy recreationally active men participated in this study, and their main physical 

characteristics at baseline were as follows: age, 23 ± 5 yr (mean ± SD); height, 1.81 ± 0.04 m; body 

mass, 77.5 ± 10.0 kg; body mass index, 23.6 ± 2.5 kg∙m-2. Subjects were tested before (PRE) and 

after (POST) a 10-day horizontal bed rest without countermeasures, carried out at the General 

Hospital of Izola, Slovenia. Measurements included in this study were performed over the last 2 days 

before subjects were put to bed, and over the first 2 days after they arose from bed. Participants 

completed during the first day, an incremental exercise on an electronically braked cycle ergometer 

(Monark 818E; Stockholm, Sweden) to determine V̇O2peak and GET. During the test cycling clip-in 

pedals and shoes were used, thereby allowing to utilize hamstring muscles to a greater extent in the 

pedal upstroke, and thus generating power through the entire rotation of the crank. During the second 

day the subjects performed, after an initial 2-min of unloaded pedaling, a 15-min ‘‘HR-controlled’’ 

exercise (HRCLAMPED), in which work rate was continuously adjusted to maintain a constant HR, 

slightly higher than that determined at GET (GET + 10 %) in PRE (see Zuccarelli et al. 2018). During 

the exercise the work rate was kept constant for the first 2-3 minutes, or until HR reached its target 

value, and then it was adjusted by the operator every 5 s in order to maintain HR constant throughout 

the exercise.  

Gas exchange parameters were assessed breath-by-breath by a metabolic cart (Quark PFTergo, 

Cosmed, Rome, Italy).  

At the end of the incremental exercise and at specific time intervals (5, 10, 15 min) during the 

HRCLAMPED exercise the rate of perceived exertion (RPE) was determined using the Borg 6-20 scale 

(Borg, 1973). Both at rest and at specific time intervals (1, 3, 5 min) during the recovery period 

following the incremental exercise, or during the HRCLAMPED exercise (5, 10 and 15 min), 20 μL of 

capillary blood was collected from a pre-heated earlobe for the determination of blood lactate 

concentration ([La]b) by means of an automated electro-enzymatic analyzer (Biosen C-line, EKF, 

Germany). At the same time points during the HRCLAMPED exercise, systolic (SBP) and diastolic blood 

pressure (DPB) were measured using an automatic sphygmomanometer placed over the brachial 

artery of the right arm (Omron M6; Omron Healthcare Ltd., Milton Keynes, United Kingdom). 

Oxygenation changes in 4 different sites of both the anterior and posterior compartments of the right 

thigh were evaluated by near-infrared spectroscopy (NIRS) (Grassi & Quaresima, 2016; Barstow, 

2019;), thereby allowing an evaluation of the distribution of the variables in different portions of the 

same muscles or in different muscles. A portable near-infrared continuous-wave instrument 

(OctaMon M; Artinis Medical Systems, The Netherlands) was used in this study, which consists of 8 

light transmitters/channels (2 wavelengths at 760 and 850 nm), separated by 35 mm from the 

receiving optode (1 receiver every 4 transmitters). One probe was firmly attached to the skin 
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overlying the quadriceps femoris muscle, more precisely the vastus lateralis and rectus femoris 

muscles, whereas the other one was situated on the hamstring muscles, more specifically over the 

biceps femoris and sartorious muscles. Adipose tissue thicknesses (ATT) at the sites of application 

of the NIR probes were estimated by a caliper (Gima, Milan, Italy). During HRCLAMPED exercise, 

changes of measured variables were calculated as the difference between the highest mean value 

(over about 30 seconds) obtained during the first minutes of exercise and the mean value calculated 

at the end of exercise. To confirm the absence of an increase/decrease in HR as a function of time, a 

linear regression from the second minute to the end of exercise was calculated. The absence of a slope 

significantly different from zero would confirm that the variable remained constant throughout 

exercise, as planned by the experimental protocol. 

Statistical analysis 

Results are expressed as mean ± SD values. Statistical significance of differences between the two 

conditions (PRE vs. POST) was checked, for variables of the incremental tests, by two-tailed 

Student’s paired t-tests. Dependent variables measured over several time periods during HRCLAMPED 

exercises were analyzed using a two-way (condition–time) repeated measures ANOVA. Significant 

interaction effects were followed up by Bonferroni-corrected paired t-tests. Regression analysis was 

performed by the least-squared residuals method. The level of significance was set at 0.05. Statistical 

analyses were carried out with a commercially available software package (Prism 8.0; GraphPad). 

RESULTS 

Peak values of the main respiratory, cardiovascular and metabolic variables obtained during the 

incremental exercises are shown in Table 1. Work ratepeak, V̇O2peak, COpeak and SVpeak were 

significantly lower in POST vs. PRE. Mean values of GET expressed as absolute V̇O2 values, as a 

percentage of V̇O2peak, as HR and ẇ are shown in Figure 1. In all cases GET was not significantly 

different in the two conditions. HRpeak [corresponding to 94 and 96 % of the age-predicted maximum 

values (calculated as 208 - 0.7 x age (Tanaka et al. 2001)), in PRE and POST, respectively], Rpeak, 

[La]b peak and RPEpeak were not significantly different in POST vs. PRE. These data confirm that in 

both conditions the exercises were maximal from a cardiorespiratory perspective.  

The adipose tissue thickness (ATT) at the sites overlying quadriceps and hamstrings muscles where 

NIRS probes were positioned were (PRE vs. POST) 5.4 ± 1.3 vs. 4.7 ± 0.7 mm (P = 0.03) and 4.1 ± 

1.5 vs. 3.6 ± 1.2 mm (P = 0.16), respectively. Δ[deoxy(Hb+Mb)]peak of muscles of the anterior (8.9 ± 

3.1 vs. 7.9 ± 3.0 µM, P = 0.02) and of the posterior compartments of the thigh (6.1 ± 4.9 vs. 4.9 ± 3.4 

µM, P = 0.04) significantly decreased after BR. Values were significantly higher (P < 0.001) in the 

anterior compartment vs. the posterior compartment.   
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Table 1. Peak values of the main respiratory, cardiovascular and metabolic variables determined 

during incremental exercises before (PRE) and after (POST) bed rest. 

 PRE POST 

Work rate peak (W) 251 ± 50 230 ± 41* 

V̇O2peak (L·min-1) 3.436 ± 0.67 3.039 ± 0.46*** 

V̇O2peak (mL·kg-1 ∙min-1) 44.4 ± 7.2 40.3 ± 6.1*** 

V̇CO2peak (L·min-1) 4.020 ± 0.76 3.527 ± 0.56** 

Rpeak 1.17 ± 0.07 1.16 ± 0.07 

V̇Epeak (L·min-1) 150.5 ± 20.5 133.2 ± 20.3* 

HRpeak (b·min-1) 187 ± 8 189 ± 6 

SVpeak (mL) 134 ± 28 101 ± 17** 

COpeak (L∙min-1) 25.2 ± 5.8 19 ± 3.2** 

SaO2 (%) 97.7 ± 1.3 98.1 ± 1.3 

[La]b peak (mM) 11.9 ± 2.7 11.2 ± 3.1 

RPEpeak (6–20) 18.6 ± 0.9 19 ± 0.9 

Data are means ± SD. �̇�O2 pulmonary oxygen uptake; �̇�CO2, CO2 output; R, gas exchange ratio; 

�̇�E, pulmonary ventilation; HR, heart rate; SV, stroke volume; CO, cardiac output; SaO2, arterial 

blood O2 saturation; [La]b, blood lactate concentration; RPE, rate of perceived exertion. Asterisks 

denote differences from PRE by means of Student’s paired t-test: * P < 0.05; ** P < 0.01; *** P < 

0.001. 
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Figure 1. Individual and mean (± SD) values of gas exchange threshold (GET), expressed as 

absolute V̇O2 values, as a percentage of V̇O2peak, as HR and work rate at GET (w ̇GET), obtained 

before (PRE) and after (POST) bed rest. 

 

In Figure 2 mean values of HR, work rate and V̇O2 obtained during the HRCLAMPED exercise are 

shown. Both in PRE and in POST HR mean target value (set at 145 ± 11 b∙min-1, corresponding to 

GET +10% in PRE) was reached within the first 2-3 minutes of exercise and remained substantially 

constant throughout the test. The slopes of the linear regression lines were not significantly different 

from zero (P > 0.05). Both in PRE and in POST work rate decreased in order to maintain HR constant. 

The work rate decrease was more pronounced and occurred earlier during the 15-min task in POST 
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vs. PRE. At the end of the task the work rate decrease was 39 ± 10 % in POST vs. 29 ± 14% in PRE 

(P < 0.01), and was associated with a decreased V̇O2 (Figure 2) (-14 ± 7 % in POST vs. -13 ± 8 % in 

PRE, P > 0.05).  

 

 

 

Figure 2. Mean (± SD) values of HR, work rate and �̇�𝐎2 during HRCLAMPED exercises, before 

(PRE) and after bed rest (POST). The horizontal dashed line indicates HR mean target value. 

UL=unloaded pedalling; *statistically different from PRE; +,# statistically different from respective 

1-min value (for work rate); + statistically different from respective 6-min value (for �̇�O2);  
# statistically different from respective 2-min value (for �̇�O2). 

 

Initial and end exercise values of the other respiratory, cardiovascular and metabolic variables 

determined during HRCLAMPED exercises before and after BR are given in Table 2. V̇E, V̇CO2, R, [La]b 

and SBP significantly decreased during the 15-min task, both in PRE (14, 22, 13, 12 and 7%, 

respectively) and in POST (18, 26, 14, 23 and 10%, respectively). RPE, SV and DBP did not decrease 

at the end of the exercise in both conditions, whereas CO decreased significantly only in POST (-7%, 

P = 0.01) (see Table 2). 
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Table 2. Initial and final values of the main respiratory, cardiovascular and metabolic variables 

determined during HRCLAMPED exercises before (PRE) and after (POST) bed rest. 

 PRE POST 

 Initial Final Initial Final 

V̇E (L·min-1) 67.1 ± 13.0 57.0 ± 10.1* 60.5 ± 9.8 49.2 ± 6.6*** 

V̇CO2 (L·min-1) 2.371 ± 0.4 1.867 ± 0.4*** 2.171 ± 0.3 1.604 ± 0.3*** 

R 0.99 ± 0.05 0.86 ± 0.04*** 0.97 ± 0.05 0.83 ± 0.03*** 

SV (mL) 140.8 ± 24 140.7 ± 26 121.9 ± 15 118 ± 17 

CO (L∙min-1) 20.5 ± 4 20.7 ± 4 18.6 ± 3 17.3 ± 3* 

[La]b (mM) 3.7 ± 1.4 3.2 ± 1.3* 3.3 ± 0.8 2.6 ± 0.8*** 

RPE (6–20) 13 ± 3 13 ± 4 11 ± 2 13 ± 1 

SBP (mmHg) 165 ± 17 153 ± 20* 164 ± 15 146 ± 11* 

DBP (mmHg) 94 ± 18 80 ± 13 93 ± 14 93 ± 19 

Data are means ± SD.  Highest values obtained during the first minutes of HRCLAMPED exercise 

(Initial). Values obtained during the last minute of exercise (Final). �̇�E, pulmonary ventilation; 

�̇�CO2, CO2 output; R, gas exchange ratio; HR, heart rate; SV, stroke volume; CO, cardiac output; 

[La]b, blood lactate concentration; RPE, rate of perceived exertion; SBP, systolic blood pressure; 

DPB, diastolic blood pressure.  * denote differences from respective initial value by means of 

Student’s paired t-test: * P < 0.05; ** P < 0.01; *** P < 0.001. 

 

Figure 3 shows mean (± SD) values of skeletal muscle fractional O2 extraction (∆[deoxy(Hb+Mb)]) 

of quadriceps femoris (anterior compartment) and hamstring (posterior compartment) muscles during 

HRCLAMPED exercise. To obtain this figure, data of the four sites overlying the anterior and posterior 

compartments of the thigh were averaged. In muscles of the anterior compartment, a decrease of 

fractional O2 extraction was observed both in PRE and POST (-22 ± and -43 %, respectively). 

Δ[deoxy(Hb+Mb)] values in muscles of the posterior compartment were significantly lower than 

those of the anterior compartment (P < 0.001), and decreased to a similar extent by the end of the 

exercise both in PRE and POST. During the first 2 minutes of exercise values were slightly but 

significantly greater in POST compared to PRE. 
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Figure 3. Mean (± SD) values of the near-infrared spectroscopy (NIRS)-obtained muscle 

oxygenation variable (∆[deoxy(Hb+Mb)]), in muscles of the anterior and posterior compartments of 

the tight, during HRCLAMPED exercise PRE and POST BR. UL=unloaded pedalling; *statistically 

different from PRE; # statistically different from respective 2-min value. 
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DISCUSSION 

The main finding of the present study was that the work rate decrease necessary to keep HR constant 

at a value slightly above GET was significantly greater (by ~40%) after vs. before (~30%) 10 days 

of bed rest (BR). This finding can be considered a “systemic biomarker” of impaired exercise 

tolerance following BR and has profound implications on exercise evaluation and exercise 

prescription, in microgravity conditions or after a period of immobilization. The results confirm the 

concept, put forward by recent studies by our group (Zuccarelli et al. 2018, Zuccarelli et al. in press), 

that exercise prescription at fixed submaximal HR slightly above GET (as it is frequently done when 

submaximal “aerobic” training is involved) is not associated with a specific work rate, and 

demonstrate that the problem is more significant following microgravity/immobilization exposure. 

In the present study subjects performed a 15-min ‘‘HRCLAMPED’’ trial initially set at a work rate 

corresponding to a HR slightly above GET, which was continuously adjusted to maintain HR 

constant. Confirming our hypothesis and recent studies by our group (Zuccarelli et al. 2018, 

Zuccarelli et al. in press), in order to keep the fixed value of HR, work rate had to decrease both in 

PRE and POST, but more markedly POST. This phenomenon was also associated with V̇O2 decreases 

of 14% and 13%, respectively, in POST and PRE. Overall, these data suggest the absence of a linear 

relationship between HR, V̇O2 and work rate, which makes aerobic exercise prescription at fixed 

submaximal HR values problematic, particularly during or immediately after exposure to 

microgravity. As discussed before, the behaviours of HR and V̇O2 observed during HRCLAMPED 

exercises were different, suggesting that the slow components of these two variables likely recognize 

different mechanistic determinants. Whereas the slow component of the V̇O2 kinetics has been widely 

studied (see e.g. the reviews by Rossiter et al. 2011; Poole & Jones, 2012; Jones et al. 2011, Grassi 

et al. 2015), and seems to be related to a decreased efficiency of oxidative metabolism and with 

muscle fatigue, the HR slow component has not received the same attention in literature. In previous 

studies (Zuccarelli et al. 2018) we demonstrated that, differently from the V̇O 2 slow component, the 

HR slow component occurs also during moderate intensity exercise (below GET), and that above 

GET it is more pronounced than the V̇O2 slow component. But, is the HR slow component associated 

with fatigue? In the present study during the HRCLAMPED trial we observed decreases of variables 

whose continuous increase is generally associated with muscle fatigue (Grassi et al. 2015), namely 

V̇O2, [La]b, R, skeletal muscle fractional O2 extraction. This suggests that during HRCLAMPED the work 

rate decrease in order to keep HR constant, was greater than that needed to prevent a progressive 

increase of the variables associated with fatigue described above. This leaves the search of the 

cause(s) responsible for the work rate decrease during HRCLAMPED still open.  
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In conclusion, in the present study, after a 10-day horizontal BR we documented an important 

impairment of oxidative metabolism as demonstrated by a significant decrease in V̇O2peak, CO peak, as 

well as in the peak of fractional O2 extraction in skeletal muscles located in the anterior and posterior 

compartments of the thigh. Secondly, confirming our hypothesis, during 15-min cycling initially set 

at a work rate corresponding to a HR slightly above GET (as frequently done for exercise 

prescription), in order to keep HR constant, work rate had to decrease more markedly after BR 

compared to before. The work rate decrease, whose cause(s) still need to be determined, is a sign of 

exercise intolerance, which may significantly affect exercise tolerance evaluation as well as exercise 

prescription, especially during and after exposure to microgravity. Our data demonstrated indeed that 

prescribing exercise at fixed HR values, slightly higher than that corresponding to GET, would 

correspond to decreasing work rate by ~40%; hence, the concept of a HR value corresponding to a 

specific CWR does not hold true. Consequently, caution is needed in prescribing aerobic exercise 

training programs based on HR values, also during and after exposure to microgravity. 
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3.4 SKELETAL MUSCLE V̇O2 KINETICS BY THE NIRS REPEATED OCCLUSIONS 

METHOD DURING THE RECOVERY FROM CYCLE ERGOMETER EXERCISE – 

STUDY 4 

This article has been published in the "Journal of Applied Physiology" 123(3): 534-544 (2020) as 

"Skeletal muscle V̇O2 kinetics by the NIRS repeated occlusions method during the recovery from 

cycle ergometer exercise" by Lucrezia Zuccarelli, Paulo Cesar do Nascimento Salvador, Alessio Del 

Torto, Riccardo Fiorentino, Bruno Grassi. 

ABSTRACT 

Near-infrared spectroscopy (NIRS) has been utilized as a non-invasive method to evaluate skeletal 

muscle mitochondrial function in humans, by calculating muscle V̇O2 (V̇O2m) recovery (off-) kinetics 

following short light-intensity plantar flexion exercise. The aim of the present study was to determine 

V̇O2m off- kinetics following standard cycle ergometer exercise of different intensities. Fifteen young 

physically active healthy males performed an incremental exercise (INCR) up to exhaustion and two 

repetitions of constant work-rate (CWR) exercises at 80% of gas exchange threshold (GET) 

(MODERATE) and at 40% of the difference between GET and peak pulmonary V̇O2 (V̇O2p) 

(HEAVY). V̇O2p and vastus lateralis muscle fractional O2 extraction by NIRS (Δ[deoxy(Hb+Mb)]) 

were recorded continuously. Transient arterial occlusions were carried out at rest and during the 

recovery for V̇O2m calculation. All subjects tolerated the repeated occlusions protocol without 

problems. The quality of the monoexponential fitting for V̇O2m off- kinetics analysis was excellent 

(0.93≤ r2≤0.99). According to interclass correlation coefficient the test-retest reliability was moderate 

to good. V̇O2m values at the onset of recovery were ~27, ~38 and ~35 times higher (in MODERATE, 

HEAVY and INCR, respectively) than at rest. The time constants (τ) of V̇O2m off-kinetics were lower 

(P<0.001) following MODERATE (29.1±6.8 s) vs. HEAVY (40.8±10.9) or INCR (42.9±10.9), 

suggesting an exercise intensity dependency of V̇O2m off-kinetics. Only following MODERATE the 

V̇O2m off-kinetics were faster than the V̇O2p off-kinetics. V̇O2m off-kinetics, determined non-

invasively by the NIRS repeated occlusions technique, can be utilized as a functional evaluation tool 

of skeletal muscle oxidative metabolism also following conventional cycle ergometer exercise. 

"NEW & NOTEWORTHY"  

This is the first study in which muscle V̇O2 recovery kinetics, determined non-invasively by near-

infrared spectroscopy (NIRS) by utilizing the repeated occlusions method, was applied following 

standard cycle ergometer exercise of different intensities. The results demonstrate that muscle V̇O2 

recovery kinetics, determined non-invasively by the NIRS repeated occlusions technique, can be 

utilized as a functional evaluation tool of skeletal muscle oxidative metabolism also following 
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conventional cycle ergometer exercise, overcoming significant limitations associated with the 

traditionally proposed protocol. 

INTRODUCTION 

The functional evaluation of skeletal muscle oxidative metabolism is crucially important in the 

assessment of exercise tolerance in normal subjects, athletes and patients affected by many chronic 

diseases such as heart failure and chronic obstructive pulmonary disease (Grassi et al., 2016; Poole 

& Jones 2012; Rossiter et al., 2011). Since the pioneering studies by Meyer (see e.g. Meyer, 1988), 

the rate of phosphocreatine (PCr) recovery following exercise, as determined by 31P nuclear magnetic 

resonance spectroscopy (31P-MRS), has been traditionally considered a valuable functional 

evaluation tool of skeletal muscle oxidative performance (Kent & Fitzgerald 2016). The main 

limitations of this approach are represented by the cost of the equipment and by the limited exercise 

paradigms which can be performed in the NMR magnet.  

Since PCr resynthesis is accomplished solely by oxidative phosphorylation (Kent & Fitzgerald 2016), 

however, the kinetics of PCr recovery (off- kinetics) should be closely related to the off- kinetics of 

muscle O2 uptake (V̇O2m) decrease during the same recovery period. The importance of the V̇O2m 

off-kinetics following exercise as a functional evaluation tool is underlined by the fact that in single 

muscle fibers the velocity constant of this variable is directly related to maximal O2 uptake (V̇O2max) 

(Wüst et al., 2013). Direct measurements of V̇O2m off- kinetics, however, have been traditionally 

difficult to perform in humans, and implied invasive measurements (see e.g. Krustrup et al., 2009). 

A proxy of V̇O2m kinetics could be pulmonary V̇O2 (V̇O2p) kinetics. Although the two variables 

appear reasonably similar during the on- (rest-to-exercise) transition (Grassi et al., 1996), however, 

different results have been seen during the off- (exercise-to-recovery) transition (Krustrup et al., 

2009). 

A reliable and non-invasive method to determine V̇O2m off- kinetics in exercising humans would 

therefore be highly desirable. An answer to this need could derive from a method recently proposed 

by two groups (Ryan et al., 2012; Adami & Rossiter 2018), based on a concept originally developed 

by Hamaoka et al. (1996) and by Van Beekvelt et al. (2001): in ischemic conditions, the linear rate 

of increase in deoxy-(hemoglobin+myoglobin), or the linear rate of decrease of oxy-

(hemoglobin+myoglobin), as determined by near-infrared spectroscopy (NIRS) (Grassi & Quaresima 

2016; Barstow 2019), represent an index of V̇O2m. By performing a series of repeated short ischemia 

(blood flow occlusions induced by rapid inflation and subsequent deflation of a pneumatic cuff with 

suprasystolic pressure) during the recovery from exercise, V̇O2m measurements have been obtained 

with a temporal resolution allowing to perform a reliable V̇O2m off- kinetics analysis (Ryan et al., 

2014; Adami & Rossiter 2018). The method has been validated against other approaches of functional 
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evaluation of skeletal muscle oxidative metabolism, such as [PCr] (squared brackets denote 

concentrations) recovery kinetics (Ryan et al., 2013) and high-resolution respirometry of 

permeabilized skeletal muscle fibers (Ryan et al., 2014). 

In a recent review Adami and Rossiter (2018) have summarized the key methodological issues of the 

repeated ischemia approach to determine V̇O2m off- kinetics. Some limitations, in our opinion, should 

be acknowledged in the proposed protocols. According to Adami and Rossiter (2018), in order for 

the method to effectively evaluate skeletal muscle oxidative metabolism, mitochondrial enzymes 

should be "maximally activated". In our opinion it is not clear if this actually happens with the 

proposed protocol (Ryan et al., 2012; Adami & Rossiter 2018). A short (about 15 s) cyclical plantar 

flexion/relaxation exercise against a "manually applied resistance" (Adami et al., 2017a) is usually 

performed. Fifteen seconds of contractions are not enough to reach a V̇O2m steady state. No 

measurement of external work rate can be performed. No inferences on exercise intensity can be 

made. The extent of the V̇O2m increase during exercise, with respect to the resting baseline, is not 

known. Since the involved muscle mass is relatively small, and the exercise is very short, no systemic 

measurements of exercise intensity (in order to identify exercise intensity domains, which 

characterize the physiological responses to exercise [Rossiter et al., 2011; Poole & Jones 2012; Grassi 

et al., 2016]) can be made. Moreover, no comparisons with V̇O2p kinetics (on- and off- transients) 

are possible. No inferences on O2 availability (another pre-requisite for the measurement, see Adami 

& Rossiter 2018), or on its consequences, can be directly made, although some cautionary rules have 

been proposed by the authors (Adami & Rossiter 2018). 

 

The aim of the present study was to provide some answers to the issues raised above. More 

specifically, we applied the repeated ischemia approach in order to determine V̇O2m off- kinetics 

during the recovery from standard cycle ergometer exercise, carried out for several minutes at 

moderate-intensity, below the gas exchange threshold (GET), at heavy-intensity above GET and 

during the recovery from an incremental exercise. V̇O2p off- kinetics were concurrently determined, 

as well as muscle deoxygenation off- kinetics by NIRS (see Grassi & Quaresima 2016) in the opposite 

leg compared to the one in which the repeated ischemia protocol was performed. We hypothesized 

an exercise intensity dependency of V̇O2m off- kinetics (slower kinetics as a function of exercise 

intensity), paralleled by an exercise intensity dependency of V̇O2p off- kinetics. Faster V̇O2m vs. 

V̇O2p off- kinetics were expected at all exercise intensities. 

The obtained results, besides clarifying some of the issues/doubts discussed above, would allow 

insights into basic physiological mechanisms during metabolic transitions, and would allow to put 
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the repeated ischemia approach to determine V̇O2m kinetics in the "real life" context of cycle 

ergometer exercise in different intensity domains.  

MATERIALS AND METHODS 

Subjects 

Fifteen healthy, habitually active males (age 25 ± 4 years; height 180 ± 6 cm; body mass 77 ± 8 kg; 

body mass index 23.8 ± 2.1 kg.m-2) were tested. All participants were moderately trained and attained 

the American College of Sports Medicine (ACSM) exercise recommendations for adults (at least 150 

min.week-1). Subjects were instructed to arrive at the laboratory in a rested and fully hydrated state 

and to avoid strenuous exercise in the 24 h preceding each testing session. Subjects abstained from 

drinking alcohol (24 h) and caffeine (5 h) before the exercise test, and had their last meal at least 3 h 

before each testing session. The procedures used in this study were approved by the local Institutional 

Review Board, and were conducted in accordance with the Declaration of Helsinki. The subjects were 

fully informed of any potential risk associated with the experiments before verbal and written 

consents were obtained. 

Exercise protocols  

Exercise tests were carried out in a well-ventilated laboratory at 19–21 °C, under continuous medical 

supervision and 12-lead electrocardiography (Quark C12x, Cosmed). The participants were required 

to report to the laboratory on three separate occasions over a two-week period. On their first visit, 

anthropometric measurements were performed and subjects completed a ramp incremental exercise 

(INCR) (30 W.min-1) up to voluntary exhaustion on an electronically braked cycle ergometer 

(Ergomedic 839 E, Monark), to determine V̇O2peak and GET. Pedaling frequency was digitally 

displayed to the subjects, who were asked to keep a constant cadence throughout the tests at their 

preferred value (between 70 and 90 rpm). Voluntary exhaustion was defined as the incapacity to 

maintain the imposed load and pedaling frequency despite vigorous encouragement by the 

researchers. Peak values of the main variables were taken as the highest 15-s mean values attained 

prior to the subject’s voluntary exhaustion. V̇O2p at GET was determined by two independent 

investigators by standard methods (Beaver et al., 1986). In order to identify the work rate 

corresponding to V̇O2p at GET, the effect of the delayed V̇O2p adjustment to the increased work rate 

during the incremental test was corrected by shifting the linear V̇O2p vs. time (and work rate) 

relationship to the left, by an amount corresponding to the individual mean response time of the V̇O2p 

kinetics (21.8 ± 8.9 s) (Whipp et al., 1981). 

After the first visit the subjects performed in two different days two repetitions of 6-min constant 

work rate (CWR) submaximal exercise corresponding to 80% of GET (MODERATE) and 40% of 
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the difference between GET and V̇O2p peak (HEAVY). MODERATE was always carried out before 

HEAVY. HEAVY exercise was performed when subjects reached again baseline values of the main 

investigated variables (about 30 minutes of recovery). 

Measurements 

Pulmonary ventilation (V̇E), V̇O2 and CO2 output (V̇CO2) were determined breath-by-breath by a 

metabolic cart (Quark PFTergo, Cosmed, Rome, Italy). Expiratory flow measurements were 

performed by a turbine flow meter calibrated before each experiment by a 3 L syringe at different 

flow rates. V̇O2p and V̇CO2 were determined by continuously monitoring PO2 and PCO2 at the mouth 

throughout the respiratory cycle and from established mass balance equations. Calibration of O2 and 

CO2 analysers was performed before each experiment by utilizing gas mixtures of known 

composition. Gas exchange ratio (R) was calculated as V̇CO2/V̇O2p. HR was determined from the 

electrocardiogram signal.  

Oxygenation changes in a superficial portion of vastus lateralis muscles of both limbs were evaluated 

by near-infrared spectroscopy (NIRS). The main advantages and limitations of this technology have 

been recently discussed in reviews (Grassi & Quaresima 2016; Barstow, 2019). Portable continuous-

wave, spatially-resolved near-infrared (NIR) light photometers (PortaLite, Artinis Medical Systems, 

Netherlands) were utilized. The PortaLite probe consists of three light transmitters (each emitted two 

wavelengths of 760 nm and 850 nm) separated by 3, 3.5 and 4 cm from the receiving optode. The 

deepest signal (4 cm) was taken into account for the analysis. Thus, the light penetration depth can 

be estimated to be at least 2 cm (i.e., at least about half of the source detector distance (Hamaoka et 

al., 2007). The instruments provide measurements of micromolar (μM) changes in deoxygenated 

hemoglobin (Hb) + myoglobin (Mb) concentrations (Δ[deoxy(Hb + Mb)]) and in oxygenated (Hb + 

Mb) (Δ[oxy(Hb + Mb)]). The sum between the two variables (Δ[deoxy(Hb + Mb)+ oxy(Hb + Mb)]) 

is related to changes in the total Hb volume (blood volume in the investigated tissue). An increased 

Δ[deoxy(Hb + Mb)] or a decreased Δ[oxy(Hb + Mb)], would indicate an increased fractional O2 

extraction (ratio between V̇O2m and O2 delivery in the investigated tissue, see [Grassi & Quaresima 

2016]) only when Δ[deoxy(Hb + Mb)+ oxy(Hb + Mb)] is constant. This is unlikely in exercising 

muscles. In the past the problem was circumvented, at least in part, by taking as an index of 

deoxygenation the Δ[deoxy(Hb + Mb)] variable, which is relatively insensitive to blood volume 

changes, and has been demonstrated to nicely correlate with other variables related to fractional O2 

extraction (Grassi & Quaresima 2016). In the present study the problem was solved by utilizing, for 

values during exercise, the method proposed by Ryan et al. (Ryan et al., 2012), which allows to 

correct the deoxy Δ[deoxy(Hb + Mb)] variable for changes in blood volume.  
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The probes were firmly attached to the skin overlying the lower third of vastus lateralis muscles (~10 

cm above the knee joint) of the right and left limbs, parallel to the major axis of the thigh, by a belt 

secured by Velcro straps and by adhesive tape. The skin was carefully shaven prior to the 

experimentation. The places where the probes were attached were recorded using a skin marker and 

reproduced throughout the tests. Black clothes were put around the probes and the skin to prevent 

contamination from ambient light. The sampling frequency was set at 10 Hz. Skinfold thicknesses at 

the sites of application of the NIR probes were determined by a caliper (Gima, Milan, Italy) in order 

to estimate adipose tissue thickness (ATT). The averaged values of skin and subcutaneous tissue 

thickness were 3.6 ± 1.0 and 4.1 ± 1.0 mm for the right and left limb, respectively. The NIRS probe 

on the left leg was utilized to determine muscle deoxygenation changes during recovery, whereas the 

NIRS probe on the right leg was utilized to determine muscle oxygenation changes during exercise 

and for the repeated ischemia protocol and the determination of the V̇O2m off- kinetics during the 

recovery (see below). 

Δ[deoxy(Hb + Mb)] values with respect to an initial value arbitrarily set equal to zero, were calculated 

and expressed in arbitrary units. Before the exercise period, an ischemic/hyperemia calibration of the 

right limb (i.e., physiologic normalization) was utilized to normalize Δ[deoxy(Hb + Mb)] values 

(McCully et al., 1994) by inflating a pressure cuff (~300 mmHg) positioned at the inguinal crease of 

the thigh (subjects in the sitting position on the cycloergometer) for a few minutes (from 2 to 4) until 

a signal plateau (indicating maximal deoxygenation) was reached. Δ[deoxy(Hb + Mb)] values 

obtained during exercise were then expressed as a percentage of the values obtained during the 

ischemic calibration. All subjects were seated on the cycle ergometer during the recovery period. 

They were instructed to place the leg on which the occlusions were performed on a wooden platform 

(height 10 cm), with the foot fixed to the pedal, and to keep the other leg relaxed, with the foot fixed 

to the pedal.  

V̇O2p and HR kinetics  

V̇O2p kinetics were mathematically evaluated during transitions from rest to low (MODERATE), and 

high (HEAVY) intensity CWR exercises (on- kinetics) and during the recovery from MODERATE, 

HEAVY and INCR exercises (off- kinetics). Breath-by-breath V̇O2p values were initially examined 

to exclude outlier values caused by sighs, swallowing, and coughs, time aligned and then 

superimposed for each subject (Lamarra et al., 1987). Average V̇O2p values every 10 s were 

calculated. Data obtained during the first 20 s of the on- transition (cardiodynamic phase [Whipp et 

al., 2002]) were excluded from analysis. Thus, on- V̇O2p kinetics analysis dealt mainly with the phase 

2 (or fundamental component) of the response. To evaluate mathematically the V̇O2p kinetics, data 

were first fitted by the function:  
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y(t) = yBAS + Af [1 - e (t – TD
f
) / f ]        (1) 

 

and parameter values (TDf, f) were determined that yielded the lowest sum of squared residuals. In 

equation 1, t is the time, yBAS indicates the baseline, Af is the amplitude between the yBAS and the 

steady state during the fundamental component, TDf is the time delay, and f is the time constant of 

the function for the fundamental component. To check the presence of a slow component (Whipp et 

al., 2002) of the kinetics, data were also fitted by other two functions. For details, please see Zuccarelli 

et al. (2018).  

 

Average HR values every 5s were calculated. HR kinetics were analyzed by applying the same 

equations described above for V̇O2p, as suggested by previous authors (see e.g. Engelen et al., 1996; 

Zuccarelli et al., 2018). 

 

For the V̇O2p off- kinetics, a mono-exponential function based on previous literature (29) was 

utilized:  

 

y(t) = yEND – A [1 - e (t – TD) /  ]      (2) 

 

where y(t) represents the V̇O2p value at a given time (t), yEND is the average value over the last 60 s 

of exercise, A is the amplitude of the exponential term describing changes in V̇O2p from exercise to 

its asymptote during the recovery,  is the time constant and TD is the time delay of the function.  

Equation 2 was also used for the analysis of skeletal muscle reoxygenation off- kinetics (Δ[deoxy(Hb 

+ Mb)]) in the leg without occlusions.  

V̇O2m off- kinetics  

Following the method proposed by Ryan et al. (2012) and Adami and Rossiter (2018), V̇O2m was 

estimated by calculating the slope of the initial linear increase (~3 s) in NIRS-measured Δ[deoxy(Hb 

+ Mb)] during short (5-10 seconds) bouts of ischemia induced by rapid (less than 1 s) inflation and 

deflation (DN 200/10/5, Stanley) of a pneumatic cuff during the recovery from MODERATE, 

HEAVY and INCR exercises. A repeated arterial occlusion method (see Ryan et al., 2012; Adami & 

Rossiter 2018) was carried out at the end of each exercise protocol (i.e., INCR, MODERATE and 

HEAVY). When muscle reached a desaturation target of 50% of the physiological normalization 

(Adami et al., 2017a) (see below), several intermittent arterial occlusions were performed: 6 
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occlusions lasting 5 s each, separated by 10 s, and subsequently 6 occlusions lasting 10 s separated 

by 30-60 s. When the target of 50% was not reached at the end of the exercise protocol the first arterial 

occlusion was performed after 10 s.  

V̇O2m values were then fit by a monoexponential function according to equation 3 (Ryan et al., 2014):  

 

y(t) = yEND – A × e-kt           (3) 

 

where y(t) represents the value of V̇O2m at a given time (t), yEND the V̇O2m immediately after the 

cessation of the exercise, A is the amplitude of the response, k is the exponential recovery rate 

constant (k = [1/]; expressed in min-1) and t is time. Resting V̇O2m values were estimated by the 

same approach, described above, on the data obtained during an arterial occlusion carried out at rest 

before the physiologic normalization procedure (see above). 

Statistical analysis 

Results are expressed as mean ± SD. Data fitting by exponential functions was performed by the 

least-squared residuals method. Statistical significance of differences between HR and V̇O2p slow 

component amplitudes was checked by two-tailed Student’s t-test for paired data. A one-way 

ANOVA with repeated measures was used to analyze the differences of V̇O2m, V̇O2p and muscle 

deoxygenation parameters at the different exercise intensities. Assumptions of sphericity were 

assessed using the Mauchly test, and any violations were corrected using the Geisser-Greenhouse 

correction factor. When significant effects were observed a Tukey’s post hoc test was used to 

determine the exact location of the difference. The level of significance was set at P < 0.05. Statistical 

analyses were carried out with a commercially available software package (Prism 7.0; GraphPad). 

Coefficient of variation (CV) and intraclass correlation coefficient (ICC) were utilized to analyze 

test-retest reliability. ICC estimates were calculated using SPSS statistical package version 23 (SPSS 

Inc, Chicago, IL) based on a mean-rating (K=2), absolute-agreement, 2-way mixed-effects model. 

Bland-Altman test for repeated measurements was used to assess the agreement between the two 

evaluations of the V̇O2m off- kinetics. 

RESULTS 

All subjects completed the entire protocol, with no adverse events. Adipose tissue thickness was not 

significantly different in the right when compared to the left limb (P=0.30). Main respiratory, 

cardiovascular, and metabolic end-exercise or steady-state values, determined during INCR (peak 

values) and MODERATE and HEAVY CWR exercises are shown in Table 1.  
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Table 1. Main respiratory, cardiovascular, and metabolic end-exercise values or steady state values, 

determined during incremental exercise (INCR) and constant work rate exercises (MODERATE 

and HEAVY). 

 INCR MODERATE HEAVY 

Work rate, W 315 ± 45*# 118 ± 28§# 201 ± 36§* 

�̇�O2p, l·min-1 3.596 ± 0.442*# 2.067 ± 0.297§# 3.183 ± 0.356§* 

�̇�O2p, ml·kg-1·min-1 47.5 ± 6.7*# 28.0 ± 5.4§# 41.0 ± 6.0§* 

�̇�CO2, l·min-1 4.351 ± 0.428*# 1.994 ± 0.243§# 3.145 ± 0.313§* 

R 1.21 ± 0.06*# 0.93 ± 0.06§# 1.00 ± 0.04§* 

�̇�E, l·min-1 143.6 ± 28.5*# 52.8 ± 7.5§# 88.7 ± 11.1§* 

VT, l 2.95 ± 0.33*# 2.04 ± 0.28§# 2.61 ± 0.29§* 

fR, breaths·min-1 49.4 ± 11.3*# 26.4 ± 4.5§# 34.2 ±5.8§* 

PETO2, mmHg 114.5 ± 4.8*# 100.1 ± 4.2§# 104.7 ± 4.2§* 

PETCO2, mmHg 36.6 ± 5.2*# 43.8 ± 2.3§# 41.80 ± 3.3§* 

HR, beats·min-1 181 ± 10*# 124 ± 17§# 162 ± 14§* 

RPE, 6-20 19 ±1.06*# 8±2.03§# 16±1.60§* 

Δ[deoxy(Hb+Mb)], %ischemia 68.3 ± 31.9* 20.7 ± 19.6§# 71.2 ± 19.9* 

Mean values ± SD.  �̇�O2p, pulmonary oxygen uptake; �̇�CO2, CO2 output; R, gas exchange ratio; 

�̇�E, pulmonary ventilation; VT, tidal volume; fR, breathing frequency; PETO2, end-tidal O2 partial 

pressure; PETCO2, end-tidal CO2 partial pressure; HR, heart rate; RPE, rate of perceived exertion; 

Δ [deoxy(Hb+Mb)], changes in deoxygenated Hb and myoglobin Mb concentrations, muscle 

oxygenation index obtained by near-infrared spectroscopy. *P<0.05 vs MOD; #P<0.05 vs HEAVY; 
§P<0.05 vs INC 

 

V̇O2p peak values were typical for young physically active subjects. R peak, HR peak (corresponding 

to 96% of the age-predicted maximum [calculated as 208 - 0.7 X age] [Tanaka et al., 2001]), and RPE 

peak values indirectly confirm that the INCR exercise was maximal. GET occurred at 58% of V̇O2p 

peak. Work rates for MODERATE and HEAVY were 37 ± 6% and 64 ± 5% of peak work rate, 

respectively. Mean values of V̇O2p and HR determined during the last 30 s of MODERATE were 58 

± 6% of V̇O2p peak and 69 ± 9% of HR peak, respectively, whereas during HEAVY values were 89 

± 6% of V̇O2p peak and 90 ± 6% of HR peak. Skeletal muscle fractional O2 extraction (as indicated 
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by Δ[deoxy(Hb + Mb)]) during the last 10 s of MODERATE, HEAVY and INCR was about 21%, 

71% and 68% of the ischemic/hyperemia calibration, respectively. Δ[deoxy(Hb + Mb)] values were 

significantly lower in MODERATE compared to INCR and HEAVY (F=39.80; P<0.01). No 

significant differences were observed between HEAVY and INCR. 

 

 

Figure 1. Pulmonary O2 uptake (V̇O2p) (left panels) and heart rate (HR) (right panels) on- kinetics 

for a representative subject during constant work rate (CWR) exercise at two investigated intensity 

domains, MODERATE and HEAVY. The fitted functions are also shown. The dashed lines indicate 

the continuation of the monoexponential fitting; vertical distances between experimental data and 

the dashed lines indicate the amplitude of the slow components of the responses. The first two 

V̇O2p data points (cardiodynamic phase) were excluded from the fitting. The vertical lines indicate 

the transitions from rest to the imposed work rate. See text for further details. 

 

In HEAVY slow components were detected both for V̇O2p and HR. In Table 2, parameters deriving 

from the fitting of V̇O2p and HR on- kinetics are presented. For MODERATE, equation 1 represented 

the best fit for the V̇O2p data in all subjects with the exception of one, who did show a slow component 

with an amplitude relative to the entire responses (A's/Atot) equal to 7.8%. For HR, confirming the 

data obtained in a recent study by our group (Zuccarelli et al., 2018) a slow component with a relative 

amplitude of 21.4 ± 13.0% of A's/Atot was detected in 12 subjects out of 15. For HEAVY a slow 

component was observed in all subjects, both for V̇O2p and HR. The relative amplitude of the HR 
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slow component was greater than the relative amplitude of the V̇O2p slow component (23.0 ± 11.0 

and 13.3 ± 6.4%, respectively); also these data confirm those obtained in a previous study by our 

group. 

 

 

 

Representative V̇O2p and V̇O2m off- kinetics curves for a typical subject following MODERATE, 

HEAVY and INCR are shown in Figure 2. A monoexponential decrease was observed in all 

conditions for both variables. For V̇O2m, individual values of the coefficient of determination (r2) 

ranged between 0.93 and 0.99. For V̇O2p, the r2 range was 0.96-0.99. In the panel with the V̇O2m off- 

data, values obtained at rest before the exercise are also shown (dashed horizontal line). Δ[deoxy(Hb 

+ Mb)] values during the first occlusion following MODERATE, HEAVY and INCR were about 

11%, 49% and 48%, respectively, of the ischemic/hyperemia calibration. V̇O2m values at the onset 

of recovery (extrapolated to time = 0 s according to the fitted monoexponential curve) were about 27, 

38 and 35 times higher than those determined at rest (dashed horizontal line) for MODERATE, 

HEAVY and INCR, respectively. 
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Figure 2. In panel A, muscle V̇O2 (V̇O2m) recovery kinetics for a representative subject following 

INCR, MODERATE and HEAVY exercises are shown. Panel B shows pulmonary V̇O2 (V̇O2p) 

recovery kinetics following INCR, MODERATE and HEAVY exercises for a representative 

subject. In both panels experimental data and fitted functions are shown. The dotted horizontal lines 

indicate the resting baseline values. See text for further details. 

 



 79 

As mentioned above, following MODERATE and HEAVY each subject performed two repetitions 

of the protocol for V̇O2m off- kinetics determination: individual test-retest reproducibility was 

moderate and good for MODERATE and HEAVY, respectively (interclass correlation coefficient 

[ICC] = 0.65; coefficient of variation [CV] = 43.5% for MODERATE and ICC = 0.76, CV = 29.9% 

for HEAVY). Corresponding Bland-Altman plot revealed mean bias of -2.76 s and a 95% confidence 

interval of -24.91, 19.38 s. Parameters of the V̇O2p and V̇O2m off- kinetics are reported in Table 3.  

 

Table 3. Muscle (V̇O2m) and pulmonary O2 uptake (V̇O2p) kinetics parameters determined in the 

recovery from incremental exercise (INCR) and constant work rate (CWR) exercises. 

 
MODERATE 

(95%CI) 

HEAVY 

(95%CI) 

INCR 

(95%CI) 

 
�̇�𝑂2m 

(95%CI)  

�̇�𝑂2p 

(95%CI) 

�̇�𝑂2m 

(95%CI) 

�̇�𝑂2p 

(95%CI) 

�̇�𝑂2m 

(95%CI) 

�̇�𝑂2p 

(95%CI) 

TD, s -- 
1.08±1.35 

(0.33-1.84) 
-- 

1.6±2.0 

(0.47-2.58) 
-- 

1.9±1.7 

(0.93-2.84) 

, s 
29.1±6.8*# 

(25.3-32.9) 

37.5±6.2# 

(34.0-40.9) 

40.8±10.9 

(34.8-46.8) 

42.1±6.0 

(38.8-45.2) 

42.2±10.9 

(36.2-48.2) 

44.7±5.1 

(41.8-47.5) 

MRT, s -- 
38.6±7.1# 

(34.7-42.5) 
-- 

43.5±6.9 

(39.7-47.4) 
-- 

46.5±5.0 

(43.8-49.3) 

k, min-1 
2.16±0.45* 

(1.91-2.41) 

1.64±0.25# 

(1.50-1.77) 

1.58±0.44 

(1.33-1.82) 

1.45±0.22 

(1.34-1.57) 

1.51±0.38 

(1.30-1.72) 

1.36±0.15 

(1.28-1.44) 

Mean values ± SD. TD, Time delay; , time constant; MRT, mean response time; k, recovery rate 

constant. CI, confidence interval. *Significantly different (P<0.05) from corresponding value for 

V̇O2p; #P<0.05 vs HEAVY and INCR. 

 

For both V̇O2p off- and V̇O2m- off,  and mean response time (MRT =  + time delay) values were 

significantly lower in MODERATE (see statistical details in Table 3) vs. HEAVY and INCR, whereas 

no significant differences were observed between HEAVY and INCR.  of V̇O2m off- and V̇O2p off- 

values are also presented in Figure 3.  V̇O2m off- was significantly lower (faster kinetics) than the 

 V̇O2p off- following MODERATE, whereas no significant differences were observed following 

HEAVY or INCR.  
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Figure 3. Time constant () values (individual values and mean ± SD values) of muscle V̇O2 

(V̇O2m) and pulmonary V̇O2 (V̇O2p) recovery kinetics following MODERATE, HEAVY and 

INCR. *Significant difference (P<0.05). See text for further details. 
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The same conclusions applied to k (k = [1/]). A significant correlation between individual values of 

the  V̇O2p off- and the  of V̇O2m off- was observed following MODERATE, but not following 

HEAVY or INCR (Figure 4). In Figure 4 the identity lines (y = x) are also shown. Following 

MODERATE, all experimental points (with the exception of one) lied above the identity line, 

confirming that the  V̇O2p off- overestimated the  V̇O2m off-. A significant correlation (r = 0.43, p 

= 0.003) between individual values of k of V̇O2m off- and V̇O2p peak values during INCR, HEAVY 

and MODERATE was found (Figure 5).  

For V̇O2p off- the asymptotic values of the monoexponential functions were higher in INCR (0.673 

± 0.076 L.min-1) vs. HEAVY (0.516 ± 0.053 L.min-1) and MODERATE (0.411 ± 0.061 L.min-1), and 

were higher in HEAVY vs. MODERATE. The same trend was also observed for V̇O2m off- values. 
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Figure 4. Individual values of the time constant () of the pulmonary V̇O2 (V̇O2p) recovery kinetics 

as a function of the  of the muscle V̇O2 (V̇O2m) recovery kinetics, following MODERATE, 

HEAVY and INCR. The identity lines (y = x) are also shown. Only following MODERATE a 

significant linear correlation (shown in the Figure) was observed between the two variables. See 

text for further details. 
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Figure 5. Individual values of the recovery rate constant (k) of muscle V̇O2 (V̇O2m) recovery 

kinetics following MODERATE, HEAVY and INCR as a function of pulmonary V̇O2 peak. Dashed 

lines indicate the 95% confidence intervals.  

 

The kinetics of vastus lateralis deoxygenation (Δ[deoxy(Hb+Mb)]) off- kinetics in the leg which did 

not undergo the repeated occlusions protocol, fitted by a monoexponential function, were 

significantly faster following MODERATE (TD = 11.3 ± 4.9 s;  = 22.3 ± 14.0 s; MRT = 33.6 ± 17.7 

s) vs. following HEAVY (TD = 19.8 ± 8.1 s;  = 48.5 ± 24.9 s; MRT = 68.3 ± 28.2 s) and INCR (TD 

= 17.2 ± 11.5 s;  = 59.4 ± 25.8 s; MRT = 76.4 ± 30.8 s). No significant differences were observed 

between HEAVY and INCR. The MRT of the Δ[deoxy(Hb+Mb)] off- kinetics was not different from 

the  of V̇O2m off- following MODERATE, whereas is was substantially slower following HEAVY 

and INCR. 

In Figure 6 typical examples of the off- kinetics of Δ[deoxy(Hb+Mb)], Δ[oxy(Hb+Mb)] and 

Δ[oxy+deoxy(Hb+Mb)] obtained on the vastus lateralis muscles of the leg undergoing (upper panels) 

and not undergoing (lower panels) the repeated occlusions protocol are shown. As expected, in the 

leg undergoing the repeated occlusions, during each occlusion (vertical lines) an increase in 

Δ[deoxy(Hb + Mb)] and a decrease in the Δ[oxy(Hb + Mb)], with no significant change in 

Δ[oxy+deoxy(Hb+Mb)], were observed. The pattern of the three variables is typical for an increased 

fractional O2 extraction, induced by the occlusion of blood flow. Interestingly, in the contralateral 
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leg, not undergoing the repeated occlusion protocol, in the period corresponding to the occlusions 

occurring in the contralateral leg Δ[deoxy(Hb+Mb)] decreased, whereas Δ[oxy(Hb+Mb)] and 

Δ[oxy+deoxy(Hb+Mb)] increased, following a pattern typical for vasodilation. In other words, the 

occlusions in one leg induced a reflex vasodilation in the contralateral leg. 

 

 

Figure 6. Typical individual examples of  [deoxy(Hb+Mb)],  [oxy(Hb+Mb)] and  

[oxy+deoxy(Hb+Mb)] NIRS derived signals during the recovery from HEAVY exercise in the leg 

in which the ischemia protocol was performed (leg with occlusions) and in the leg in which the 

occlusions were not performed. The vertical lines indicate the beginning and the cessation of each 

period of ischemia. See text for further details. 

 

DISCUSSION 

To the best of our knowledge, this is the first study to analyze V̇O2m off- kinetics by NIRS, by 

applying the repeated occlusions approach, during the recovery of constant work rate (CWR) cycle 

ergometer exercise carried out at moderate-intensity (MODERATE), at heavy-intensity (HEAVY), 

and during the recovery from an incremental exercise (INCR). The study demonstrates the feasibility 

of proposed approach and negates the need to perform a specific protocol of plantar flexion exercise, 

as proposed by Ryan et al. (2012) and by Adami and Rossiter (2018). In other words, V̇O2m off- 

kinetics can be effectively determined following standard cycle ergometer exercises carried out for 

other purposes (V̇O2p peak, GET, V̇O2p on-kinetics evaluation). As discussed in the Introduction, 
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V̇O2m off- kinetics represents a valuable functional evaluation tool of skeletal muscle oxidative 

metabolism, which can be utilized in normal subjects, athletes and in patient populations. 

 

More specifically, the quality of the monoexponential fitting utilized for V̇O2m off- kinetics analysis 

was excellent (r2 values between 0.93 and 0.99). All subjects tolerated the repeated occlusions 

protocol without significant problems, even following the intense or exhaustive exercise, and the 

study had no drop-outs. Based on the ICC results, the test-retest reliability was moderate to good. The 

values of the time constant (τ) of the V̇O2m off- kinetics were significantly lower (indicating a faster 

kinetics) following MODERATE compared to HEAVY and INCR. No significant differences were 

observed between  values in HEAVY and INCR. The mechanisms responsible for the slower V̇O2m 

off- kinetics at higher work rates could be similar to those responsible for the slow component of 

V̇O2p on- kinetics: the recruitment of intrinsically slower fibers, in terms of oxidative metabolism; 

the presence of acidosis; reduced efficiency/fatigue; a relative lack of O2 (Jones et al., 2012; Grassi 

et al., 2015). In the present study, however, no significant correlation was observed between the 

relative amplitude of the slow component of V̇O2p on- kinetics and the difference in  of the V̇O2m 

off- kinetics determined following MODERATE and HEAVY. The individual values of skeletal 

muscle rate constant (k) correlated with V̇O2p peak, confirming the data obtained by Wüst et al. 

(2013) in an animal model, as mentioned in the Introduction. The observation confirms the role of 

V̇O2m off- kinetics as a functional evaluation tool of oxidative metabolism. 

 

In terms of O2 availability during the recovery phase, our study allows to make some indirect 

inferences. According to Adami and Rossiter (2018), adequate O2 availability is a pre-requisite for a 

reliable functional evaluation of oxidative metabolism by the determination of the V̇O2m off- kinetics. 

Following the recommendations by Adami and Rossiter (2018), in order to assure adequate O2 

availability the repeated occlusions protocol was initiated at specific percentages of the physiologic 

calibration (the range between Δ[deoxy(Hb + Mb)] at the end of the sustained arterial occlusion and 

the peak value reached during the reactive hyperemia, see Methods). Whereas the occlusions 

following MODERATE exercise were conducted under conditions of almost maximum O2 

availability (first occlusion occurring at approximately 10% of the distance between maximum 

oxygenation and maximum deoxygenation; the following occlusions at even lower percentages), for 

HEAVY and INCR the availability of O2 was relatively minor (first occlusion at about 50% of the 

physiologic calibration range). According to Adami and Rossiter (2018), this percentage should 

correspond to an adequate O2 availability, but no experimental data have been provided to support 

this concept. Thus, in strict terms it cannot be excluded that the slower V̇O2m off- kinetics observed 
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following HEAVY and INCR, with respect to MODERATE could be attributable, at least in part, to 

a reduced availability of O2. In any case, the exercise-intensity dependency of the  of V̇O2m off- 

observed in the present study underscores the need to quantify the absolute and relative (i.e. with 

respect to GET, critical power, V̇O2p peak) intensity of the exercise preceding the recovery phase 

during which the V̇O2m off- kinetics is determined. This quantification was impossible following the 

experimental approach proposed by Adami and Rossiter (2018) and by Ryan et al. (2012), whereas it 

was feasible by following the approach utilized in the present study.  

 

Another methodological aspect which remained unresolved with the approach proposed by Ryan et 

al. (2018) and by Adami and Rossiter (2012) is the following: how much, in quantitative terms, was 

V̇O2m increased (vs. rest) during the exercise preceding the recovery phase? The issue is critical, 

since, as suggested by Adami and Rossiter (2018), only in the presence of a significant activation of 

oxidative metabolism the determination of the V̇O2m off- kinetics would represent a valid functional 

evaluation tool. The data of the present study allow to give an indirect answer to this question, based 

on two assumptions: (i) The back-extrapolation to time 0 of the monoexponential function describing 

V̇O2m off- kinetics represents a reliable estimate of the V̇O2m at the end of exercise. Considering the 

very precise fitting of V̇O2m data, and since the adopted monoexponential functions substantially 

yield no time delay, the mentioned assumptions appear legitimate. (ii) V̇O2m values obtained during 

the ischemia carried out with the subject in resting conditions (see Materials and Methods) represent 

a reliable estimate of the resting oxidative metabolism of the muscle. When it was calculated for 

MODERATE, HEAVY and INCR the ratio between the V̇O2m extrapolated to the end of exercise 

and the resting V̇O2m (horizontal dashed lines in Figure 2a), values equal to ~27, 35 and 38 were 

obtained. In other words, at the end of the exercise V̇O2m values were ~25-40 times higher than at 

rest. These values appear to be compatible with literature data (Andersen & Saltin 1985; Bangsbo et 

al., 2000; Krustrup et al., 2009), and confirm the significant increase in oxidative energy expenditure 

during the exercise preceding the off- kinetics. The resting V̇O2m values indicated by the dashed line 

in Figure 2 allow us to make a further observation. At the end of the recovery phase considered in 

the present study (~7 minutes), the V̇O2m values (see the asymptote of the function describing V̇O2m 

off- kinetics) were still significantly higher than the V̇O2m values at rest. In other words, a very slow 

component of the V̇O2m -off kinetics was presumably present, and it could not be considered by our 

analysis (Margaria et al., 1933). 

 

By utilizing the velocity constant k as the parameter to evaluate the V̇O2m off- kinetics, we were able 

to compare the data obtained in the present study, following the three investigated work rates (2.16 
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min-1 following MODERATE, 1.58 min-1 following HEAVY, 1.51 min-1 following INCR), with 

literature data obtained in different populations by utilizing the plantar flexion exercise protocol (see 

Introduction), and summarized by Adami and Rossiter (2018). Since k = 1/, a faster kinetics is 

indicated by a lower value of   (time constant) or by a higher value of k (velocity constant). The k 

data of the present study (see above) substantially correspond to the higher (MODERATE) and lower 

(HEAVY and INCR) ends of the spectrum for "normal" subjects reported by Adami and Rossiter 

(2018). As expected, the V̇O2m off- kinetics of the present study were significantly slower than those 

observed in endurance athletes (Brizendine et al., 2013), and significantly faster than those observed 

in patient populations (chronic heart failure [Southern et al., 2015; Zamani et al., 2015], spinal cord 

injury [Erickson et al., 2013; Erickson et al., 2017], chronic obstructive pulmonary disease [Adami 

et al., 2017a; Adami et al., 2017b ]). As mentioned above, our data underscore the exercise intensity 

dependency of the V̇O2m off- kinetics. On the other hand, an exercise intensity dependency could not 

be identified by the plantar flexion protocol proposed by Ryan et al. (2012) and by Adami and 

Rossiter (2018), in which exercise intensity cannot be quantified.  

A slightly slower V̇O2m off- kinetics following sprint vs. moderate running was described by 

Buchheit et al. (2011) by utilizing an experimental approach similar to that of the present study. On 

the other hand, no difference in V̇O2m off- kinetics, determined by a different method (invasive 

measurements and Fick equation to calculate V̇O2m across the exercising muscles), was described by 

Krustrup et al. (2009) following moderate- vs. heavy-intensity knee extension exercise. Rossiter et 

al. (2002) observed no difference in  for the PCr off- kinetics (considered a close proxy of V̇O2m -

off, see Introduction) following moderate- vs. heavy-intensity knee-extension exercise. After 

considering that following heavy-intensity exercise a slow component of PCr off- was observed in 

the study by Rossiter et al. (2002), the results of the present study (slower V̇O2m off- following heavy-

intensity exercise) appear in substantial agreement with those obtained by Rossiter et al. (2002). Ryan 

et al. (2013) observed no differences in V̇O2m off- kinetics (NIRS + repeated occlusions, as in the 

present study) following plantar-flexion exercises carried out with increasing contraction frequencies; 

the difference with the results of the present study could relate, at least in part, with the very short 

duration (15 s) of the exercise employed by Ryan et al. (2013), which obviously precluded the 

reaching of a steady-state for V̇O2m.  

 

Regarding the V̇O2p off- kinetics, they followed a pattern similar to that described above for V̇O2m 

off-: the kinetics were faster following MODERATE vs. following HEAVY or INCR, with no 

significant difference between these last two conditions. As far as the comparison between the V̇O2m 

off- and the V̇O2p off- kinetics, no significant differences were described following HEAVY and 



 88 

INCR, whereas following MODERATE the V̇O2m off- kinetics was faster. On the other hand, only 

following MODERATE a significant correlation between the  of V̇O2p off- and the  of V̇O2m off- 

was observed. In other words, following MODERATE the  of V̇O2p off- was correlated with, but 

overestimated, the  of V̇O2m off-. Following HEAVY and INCR no correlations between the two 

variables were observed. Thus, following all exercise intensities the V̇O2p off- kinetics cannot be 

utilized as a proxy for the V̇O2m off- kinetics. This confirms the conclusions by the study of Krustrup 

et al. (2009), in which V̇O2m off- kinetics were determined, by a different method, following knee-

extension exercise. The mechanisms responsible for the discrepancies between the two kinetics are 

likely attributable to the influence of cardio-circulatory adjustments (cardiac output is exponentially 

decreasing in the period taken into consideration by the off- kinetics analysis) and/or of changes in 

O2 stores between skeletal muscles and the subject's mouth. The faster of V̇O2m off- compared to the 

V̇O2p off- kinetics described in the present study following MODERATE confirms the observations 

by Krustrup et al. (2009) following knee-extension exercise. 

 

As illustrated in Figure 6, during the recovery following exercise ischemia applied to one leg induced 

a reflex vasodilation in the contralateral leg. To the best of our knowledge, this represents a novel 

observation. It has been described before that voluntary contraction in another limb (Ishii et al., 2012), 

mental stress (Blair et al., 1959), immobile alerting and fighting behavior, imagery of voluntary 

exercise (Ishii et al., 2012) induce vasodilation and increase blood flow in another limb. The 

mechanism(s) responsible for the metaboreflex observed in the present study are not clear. Increased 

shear stress and increased nitric oxide (NO) and prostacyclin release by endothelial cells (Shoemaker 

et al., 2015) must be excluded, since the metabolic signal(s) arose from an ischemic maneuver. β2-

mediated vasodilatory effects, as a result of adrenaline release by the adrenal medulla (Shoemaker et 

al., 2015), must be excluded as well, since the vasodilation occurred almost immediately during the 

ischemia in the other limb. It can be hypothesized that metabolic signals induced by the ischemia in 

one limb, superimposed on metabolic signals associated with the recovery phase following exercise, 

reached the cardiovascular control center through group III and IV afferent fibers. The efferent arm 

of the metaboreflex, responsible for the neurogenic vasodilation, is less clear. Conflicting evidence 

is present in the literature in favor or against the occurrence of a withdrawal of sympathetic 

vasoconstriction (see the discussion in Ishii et al., 2012). The idea of a sympathetic cholinergic 

vasodilation (presumably involving nitric oxide) has been around for decades (see Joyner & Dietz 

2003; Shoemaker et al., 2015), and would be supported by the observation that the initial vasodilation 

in the non-exercising limb is blocked by atropin but not by propanolol (Sanders et al., 1989). A strong 

argument against this possibility, however, lies in the lack of anatomical or histochemical evidence 
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for any cholinergic neural pathway in human skeletal muscles (Joyner & Dietz 2003; Shoemaker et 

al., 2015). In any case, the metaboreflex was present only transiently, since it disappeared after about 

90 s into the recovery (see Fig. 6). 

In conclusion, V̇O2m off- kinetics determination by the NIRS repeated occlusions approach, carried 

out following standard cycle ergometer exercise at different intensities, is a feasible and useful 

functional evaluation tool for skeletal muscle oxidative metabolism. With respect to the original 

approach (plantar flexion exercise) proposed by Ryan et al. (2012) and by Adami and Rossiter (2018), 

the approach proposed in the present study can be applied during the recovery following standard 

cycle ergometer exercises conducted for the evaluation of other relevant variables of oxidative 

metabolism (V̇O2p peak, gas exchange threshold, critical power, V̇O2p kinetics), without the need of 

performing an additional protocol. 
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3.5 PERIPHERAL IMPAIRMENTS OF OXIDATIVE METABOLISM AFTER A 10‐DAY 

BED REST ARE UPSTREAM OF MITOCHONDRIAL RESPIRATION. 

PRELIMINARY RESULTS – STUDY 5 

ABSTRACT 

Exposure to simulated microgravity by bed rest (BR), leads to an impairment of oxidative 

metabolism. The sites of this impairment are still debated. Aim of this study was to identify markers 

of impaired oxidative metabolism along the O2 pathway, from ambient air to skeletal muscle 

mitochondria, following 10 days of BR. Methods: Before (PRE) and after (POST) 10 days of 

horizontal BR, ten recreationally active young males (age 23 ± 5 years [mean±SD]) performed on a 

cycle ergometer an incremental exercise (INCR)  up to exhaustion (to determine peak pulmonary 

V̇O2 [V̇O2p] and the gas exchange threshold [GET]) and two repetitions of constant work-rate (CWR) 

exercises at 80% of GET (MOD). V̇O2p and vastus lateralis muscle fractional O2 extraction by near-

infrared spectroscopy (NIRS) (Δ[deoxy(Hb±Mb)]) were recorded continuously. Peripheral vascular 

and endothelial functions were evaluated by the blood flow response (Doppler ultrasound) in the 

femoral artery during 1-min passive leg movements (PLM). Mitochondrial respiration was evaluated: 

(i) ex vivo by high-resolution respirometry on permeabilized vastus lateralis fibers obtained by biopsy 

and (ii) non-invasively in vivo by NIRS by calculating skeletal muscle V̇O2 (V̇O2m) recovery kinetics 

(repeated transient occlusions method) following MOD. The time constants (τ) of the 

monoexponential V̇O2m kinetics during the first 7 minutes of recovery were determined. Results: 

Peak V̇O2p was lower (P=0.001) in POST (41.5 ± 6.5 ml.kg-1.min-1) vs. PRE (44.5 ± 7.4). The area 

under the blood flow vs. time curve during PLM was lower (P=0.038) in POST (274 ± 233 mL) vs. 

PRE (427 ± 291). Skeletal muscle citrate synthase activity, an estimate of mitochondrial mass, was 

not different (P=0.115) in POST (131.2 ± 15.9 mU.mg-1 protein) vs. PRE (137.9 ± 18.8). Maximal 

ADP stimulated mitochondrial respiration (66.4 ± 17.5 pmol.s-1.mg-1 wet weight [POST] vs. 72.3 ± 

14.0 [PRE], P=0.127) and oxidative phosphorylation coupling efficiency (respiratory control ratio, 

4.10 ± 1.19 [PRE] vs. 3.59 ± 1.11 [POST], P=0.443) were not affected by BR. τ of V̇O2m recovery 

was not different (P=0.079) in POST (22.2 ± 5.9 s) vs. PRE (21.7 ± 5.7). Conclusions: These 

preliminary data suggest that the whole-body impairment of oxidative metabolism during exercise, 

following 10 days of horizontal BR, is associated with an impairment of peripheral vascular and 

endothelial functions whereas mitochondrial volume and maximal respiratory function are 

unaffected. Funding: ASI, MARS-PRE Project, n. DC-VUM-2017-006.  
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INTRODUCTION  

 

It is well established that prolonged inactivity affects almost all the physiological systems (Teasel & 

Dittmer, 1993). Bed rest studies offer a unique opportunity to evaluate the effects of prolonged muscle 

disuse and unloading, conditions regularly experienced in patients with injuries, chronic disease or in 

astronauts during spaceflight missions in microgravity. Exposure to microgravity or prolonged 

physical inactivity lead to impairment of oxidative metabolism. However, the sites of this impairment 

are still debated. Whereas cardiovascular impairments associated with (or responsible for) the 

decreased peak pulmonary oxygen uptake (V̇O2peak) usually detected following bed rest or 

spaceflights have been well described (Ade et al., 2015; Capelli et al., 2009), more peripheral 

impairments have been relatively less observed. In this regard, Capelli et al., (2016) and Ferretti al., 

(2009) utilizing the multifactorial model of V̇O2peak limitation, originally developed by Di Prampero 

and Ferretti (1990), arrived at the conclusion that the fractional limitation imposed by peripheral 

factors was about 30% after 42 days of bed rest and about 40% after 90 days. More recent 

investigations reinforced the peripheral factors as contributors to decreased V̇O2peak (Ade at al., 

2015). 

Aim of the present study was to identify early functional biomarkers that indicate changes in oxidative 

metabolism during exercise following a 10-day exposure to microgravity, with a particular interest to 

the peripheral level.  

METHODS 

Ethical approval 

The study was part of the Italian Space Agency (ASI) project “MARS-PRE Bed Rest SBI 2019”. It 

was approved by the ethical committee and was performed in accordance with the standard set by the 

Helsinki declaration. All participants were informed about the aims, procedures and potential risks of 

the investigations before written consent was obtained. 

Subjects 

Ten young healthy, recreationally active males (age, 23±5 yr; height, 1.81±0.04 m; weight, 78±10 kg; 

body mass index, 23.5±2.5 kg.m-2) participated in this study. Participants' characteristics at baseline 

are given in Table 1. Subjects underwent a medical screening before being considered for this study. 

Experimental protocol 

Each subject was evaluated before (PRE) and after (POST) 10-day of strict horizontal bed rest (BD) 

without countermeasures. The experiments were carried out at Izola General Hospital, Slovenia. 

Participants arrived at the hospital 3 days before BD and immediately after the pre-measurements 
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were finished, they entered the BD. Measurements after BD were carried out during the first 2 days 

after subjects arose from bed. During BD intervention no deviation from lying position, muscle 

stretching, or static contraction were allowed. Adherence to the assigned protocol was ensured using 

continuous closed-circuit television surveillance and constant supervision by researchers and medical 

staff. Subjects consumed an individually tailored, standardized diet and were allowed to drink water 

ad libitum. All tests were conducted under close medical supervision and following standard safety 

procedures. Exercise tests were carried out in a well-ventilated laboratory at 19–21 °C, under 

continuous medical supervision and 12-lead electrocardiography (ECG; Custo Med GmbH). Each 

subject completed the entire experimental protocol. 

Before data collection, subjects familiarized with the investigators, experimental arrangement, and 

with the exercise protocols by means of short preliminary practice runs. For the purposes of the present 

study, subjects performed during day 1 a passive leg movement (PLM) and an incremental exercise 

(INCR) up to voluntary exhaustion on an electronically braked cycle ergometer (ErgoMedic 839 E; 

Monark). For PLM, measurements were made according to the recently provided guidelines (Gifford 

& Richardson 2017; Limberg et al., 2020). The subjects remained seated with their legs extended and 

supported for 15 min before the data collection. Resting doppler data were recorded for 2 min followed 

by 60 s of cyclical passive knee extension and flexion. The movements were performed across 90° 

range of motion (180°-90°-180°) at 1 Hz. The same trained researcher manually moved the subjects' 

leg. The protocol was repeated after 20 minutes of recovery.  

Pedaling frequency was digitally displayed to the subjects, who were asked to keep a constant cadence 

throughout the tests between 70 and 90 rpm. Voluntary exhaustion was defined as the incapacity to 

maintain the imposed load and pedaling frequency despite vigorous encouragement by the 

researchers. The protocol began after an initial 1 minute of unloading pedaling (0-40 W) with a power 

output increasing by 20-40 W every minute. The peak values of the main cardiovascular, respiratory 

and metabolic parameters were taken as the highest 20-s mean values attained prior the subject’s 

voluntary exhaustion. The V̇O2 at the gas exchange threshold (GET) was determined by one or two 

independent investigators by utilizing the “V-slope” methods and the “secondary criteria” (Beaver et 

al., 1986). In order to identify the work rate corresponding to the V̇O2 at GET, the effect of the delayed 

V̇O2 adjustment to the increased work rate during the incremental test was corrected by shifting the 

linear V̇O2 vs. time (and work rate) relationship to the left, by an amount corresponding to the 

individual mean response time of the V̇O2 kinetics determined in each subject (Whipp et al., 1981). 

At day 2, two repetition of 6 minutes constant work rate (CWR) exercise (MODERATE) of moderate 

intensity were performed at 80% of GET previously determined during INCR.  
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Each repetition was separated by 10 to 15 minutes recovery period. CWR exercises were carried out 

at the same absolute work rate in PRE and POST. Both before and after BR, experiments were 

conducted on 2 consecutive days: INCR during day 1 and MODERATE during day 2. At day 3, at the 

beginning of bed rest, muscle biopsies were taken from vastus lateralis. 

MEASUREMENTS 

Anthropometry  

Body mass (BM), regional and whole body composition were assessed before and immediately after 

the campaign with dual-energy X-ray absorptiometry (DEXA) using a fan-beam densitometer 

(Discovery W – QDR series; Hologic, Marlborough, MA, USA). Skinfold measurements were made 

by a caliper at the site of placement of the NIRS probe on the vastus lateralis muscle, aiming to 

estimate skin and subcutaneous adipose tissue thickness. 

Cardiopulmonary and metabolic variables 

Pulmonary ventilation (V̇E), V̇O2 and CO2 output (V̇CO2) were determined breath-by-breath by a 

metabolic cart (Quark PFTergo, Cosmed, Rome, Italy). Expiratory flow measurements were 

performed by a turbine flow meter calibrated before each experiment by a 3 L syringe at different 

flow rates. V̇O2p and V̇CO2 were determined by continuously monitoring PO2 and PCO2 at the mouth 

throughout the respiratory cycle and from established mass balance equations. Calibration of O2 and 

CO2 analyzers was performed before each experiment by utilizing gas mixtures of known 

composition. Gas exchange ratio (R) was calculated as V̇CO2/V̇O2p. HR was determined from the 

electrocardiogram signal and using a heart rate monitor (RS 400; Polar, Kempele, Finland). 

Stroke volume (SV) was estimated beat-by-beat by means of transthoracic impedance cardiography 

(Physio Flow; Manatec Biomedical) and averaged every 10 beats during all exercise tests. The 

accuracy of this device has been previously evaluated during incremental exercise in healthy subjects 

against the direct Fick method (Richard et al., 2001). Heart rate was obtained from R-R interval 

determined on the ECG first derivative. Cardiac output (CO) was then calculated by multiplying 

stroke volume with heart rate. Blood pressure (BP) was measured using a standard cuff 

sphygmomanometer. At 1, 3, and 5 minutes of recovery, 20 μL of capillary blood were obtained from 

a preheated earlobe for the determination of blood lactate concentration ([La]b) by an enzymatic 

method (Biosen C-line; EKF). Ratings of perceived exertion (RPE) were obtained every minute 

during exercise using the Borg’s 6-20 scale (Borg, 1982).  

Skeletal muscle oxygenation 

Oxygenation changes in a superficial portion of vastus lateralis muscle of the dominant limb were 

evaluated by near-infrared spectroscopy (NIRS) (Grassi & Quaresima, 2016; Barstow, 2019). 
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A portable near-infrared continuous-wave instrument (OctaMon M; Artinis Medical Systems) was 

used in this study. One light transmitters/channels (which emitted 2 wavelengths of 760 and 850 nm), 

separated by 35 mm from the respective receiving optode. The instrument measures non-invasively 

micromolar (µM) changes in oxygenated hemoglobin (Hb) + myoglobin (Mb) concentrations 

(∆[oxy(Hb+Mb)]), and in deoxygenated [Hb+Mb] (∆[deoxy(Hb+Mb)]) with respect to an initial value 

arbitrarily set equal to zero and obtained during the resting condition preceding the test. The sum of 

the two variables (∆[total(Hb+Mb)]) reveals changes in the total Hb+Mb volume in the muscle region 

of interest. An increased ∆[deoxy(Hb+Mb)] or a decreased ∆[oxy(Hb+Mb)], would indicate an 

increased fractional O2 extraction in the in the tissue under consideration (Grassi & Quaresima, 2016) 

only if (∆[total(Hb+Mb)]) is constant, which is not always the case in exercising skeletal muscles. In 

previous studies (see e.g. Refs. Ferreira et al. 2007, Porcelli at al. 2010, Salvadego et al. 2016; 

Salvadego et al. 2018) the problem was partially overcome, by considering changes in 

[deoxy(Hb+Mb)], which unlike (∆[oxy(Hb+Mb)]) are relatively less influenced by changes in blood 

volume, and which have been considered an estimate of fractional O2 extraction (Grassi & Quaresima, 

2016). However, in the present study, the problem was solved by correcting NIRS signals for changes 

in blood volume, as proposed by Ryan et al. (2012). Before the exercise period a 5-min ischemic 

calibration (physiological normalization) was performed by inflating a pressure cuff (300 mmHg) 

positioned at the inguinal crease of the thigh. The probe was firmly attached to the skin overlying the 

lower third of vastus lateralis muscle of the dominant limb. The skin overlying the investigated muscle 

regions was carefully shaven before the experimentation, and the places where the probes were 

attached were recorded using a skin marker, thereby positioning the probe in a similar position during 

all the tests. Adipose tissue thicknesses (ATT) at the site of application of the NIR probe were 

estimated by a caliper (Gima, Milan, Italy). Furthermore, black clothes were put around the probes 

and the skin to prevent contamination from ambient light. The sampling frequency was set at 10 Hz. 

Femoral artery blood flow 

Blood flow in the common femoral artery was estimated by measurements of blood flow velocity and 

vessel diameter distal to the inguinal ligament, 2.0-2.5 cm proximal to the bifurcation of the 

superficial and deep femoral artery using an ultrasound system (Vivid IQ, General Electric Medical 

Systems, Milwaukee, WI, USA) with a linear array transducer operating at the imaging frequency of 

9 MHz. Two-dimensional measurements of the arterial lumen were made from B-mode image in 

longitudinal view. Measurements of the vessel diameter were taken at the same time point in the 

cardiac cycle (peak of the R wave derived from the integrated ECG system). Blood flow velocities 

were collected with the sample volume covering more than 75% of the arterial lumen, and with the 

insonation angle always kept <60°. Arterial blood flow was automatically calculated second by 
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second by commercially available software multiplying arterial cross-sectional area mean blood flow 

velocity. 

Mitochondrial respiration in vivo. 

V̇O2m was estimated by calculating the slope of the initial linear increase (3 s) in NIRS-measured 

Δ[deoxy(Hb + Mb)] during short (5 s) bouts of ischemia induced by rapid (less than 1 s) inflation and 

deflation of a pneumatic cuff (Hokanson E20 cuff inflator, Bellevue, WA, USA) during the recovery 

from constant work rate exercises. A repeated arterial occlusion method (see Ryan et al., 2014, Adami 

& Rossiter 2018, Zuccarelli et al., 2020) was carried out at the end of each MODERATE exercise. 

When muscle reached a desaturation target of 50% of the physiological normalization (Adami et al., 

2017), several intermittent arterial occlusions were performed: the first 5 occlusions lasting 5 s each 

were separated by 5 s, other 5 occlusions lasting 5 s each were separated by 10 s and finally the last 

5 occlusions lasting 5 s were separated by 20 s. When the target 50% was not reached at the end of 

the exercise protocol the first arterial occlusion was performed after 5-10 s.  

V̇O2m values were then fit by a monoexponential function according to equation 1 (Ryan et al., 2014):  

 

y(t) = yEND – Delta × e-1/τ         (1) 

 

where y(t) represents the value of V̇O2m at a given time (t), yEND the V̇O2m immediately after the 

cessation of the exercise, Delta is the change in V̇O2m from rest to end exercise and  is the fitting 

rate constant (k = [1/] expressed in min-1). Resting V̇O2m values were estimated by the same 

approach, described above, on the data obtained during the first 60 s of the physiologic normalization 

procedure (see above). 

Mitochondrial respiration ex vivo. 

Skeletal muscle biopsies were obtained from the vastus lateralis muscle under local anaesthetic (2% 

lidocaine). The biopsy was taken immediately before bed rest intervention and after the bed rest 

period. Following the application of the anaesthetic, a 1.0-1.5 cm incision was made to the skin, 

subcutaneous tissue and muscle fascia, and the tissue sample was harvested with a Rongeur-

Conchotome (GmbH&Co, Zepf Instruments, Dürbheim - Germany). The collected muscle tissue was 

dissected free of fat and connective tissue and rapidly divided in several portions. One portion (15-20 

mg wet weight) was immediately frozen in liquid nitrogen and stored at -80°C until determination of 

citrate synthase (CS) activity (see below). Another small portion (2.0-6.5 mg ww) was then used 

immediately to evaluate mitochondrial respiration ex vivo (Pesta and Gnaiger, 2012). Measurements 

were performed in duplicate. The small portion of tissue was immediately placed in an ice-cold 
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preservation solution (BIOPS; Oroboros Instruments, Innsbruck, Austria) (4°C) containing: EGTA-

calcium buffer (10 mM) (free Ca2+ concentration 100 nmol L−1), imidazole (20 mM), taurine (20 

mM), K+/4 morpholinoethanesulphonic acid (50 mM), dithiothreitol (0.5 mM), MgCl2 (6.56 mM), 

ATP (5.77 mM) and phosphocreatine (15 mM) (pH 7.1). Fiber bundles were trimmed from the 

connective and fatty tissue excess (if present) and separated with sharp-ended needles under 

magnification (70 x) (Stereomicroscope CRYSTAL-PRO, Konus-optical & sports systems, Italy). 

After this, fibers bundles were incubated into 2 mL of BIOPS containing 20 μg.ml-1 saponin for 30 

min at 4°C (Kuznetsov et al., 2003) with continuous gentle stirring to ensure complete 

permeabilization. Samples were washed with the respiration medium (MIR05; Oroboros Instruments, 

Innsbruck, Austria) containing 0.5 mM EGTA, 60 mM potassium lactobionate, 3 mM MgCl2 6H2O, 

20 mM taurine, 10 mM KH2PO4, 20 mM Hepes, 110 mM sucrose and 1 g L−1 BSA, pH 7.1, weighed 

in a balance-controlled scale (Shimatzdu) Therefore permeabilized fibers were measured for wet 

weight and immediately transferred into the respirometer (Oxygraph-2k Oroboros Instruments) 

chambers for O2 consumption analysis. Mitochondrial respiratory function was evaluated by 

measuring O2 consumption polarographically by high resolution respirometry (Pesta & Gnaiger, 

2012). Data were digitally recorded using DatLab4 software (Oroboros Instruments). The 

instrumentation allows for O2 consumption measurements with small amounts of sample in closed 

respiration chambers containing 2 mL of air-saturated respiration medium (MIR06; MIR05 + catalase 

280 IU.mL-1) at 37 °C. Standardized instrumental and chemical calibrations were performed to correct 

for back-diffusion of O2 into the chamber from the various components (e.g. leak from the exterior, 

O2 consumption by the chemical medium and by the sensor O2) (Pesta & Gnaiger, 2012). The O2 

concentration in the chamber was maintained between 300 and 400 μM (average O2 partial pressure 

250 mmHg) to avoid O2 limitation of respiration. Intermittent reoxygenation steps were performed 

during the experiments by injections of 1-3 μl of 0.3 mM H2O2, which was instantaneously dismutated 

by catalase, already present in the medium, to O2 and H2O. Experiments were performed in the 

presence of the myosin II-ATPase inhibitor (Blebbistatin, 25 μM, dissolved in DMSO 5mM stock) 

(Perry et al. 2011) in order to prevent spontaneous contraction in the respiration medium.  

A substrate-uncoupler-inhibitor-titration protocol, with a substrate combination that matches 

physiological intracellular conditions, was applied (Salvadego et al. 2013; Pesta & Gnaiger, 2012; 

Salvadego et al. 2016). Non-phosphorylating resting mitochondrial respiration was measured in the 

presence of malate (4 mM) and glutamate (10 mM) and in the absence of adenylates, so that O2 

consumption was mainly driven by the back leakage of protons through the inner mitochondrial 

membrane (“leak” respiration).  
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Succinate (10 mM) was added to support convergent electron flow into the Q-junction through 

complexes I and II. This was followed by submaximal titration of ADP (12.5, 25, 175, 250, 500, 1000, 

2000, 4000, 6000, 8000, 10000 μM) to assess complex I+II-linked ADP sensitivity and maximal 

oxidative phosphorylation (OXPHOS) capacity.  

Cytochrome C (10 µM) was added to test mitochondrial outer membrane integrity. The addition of 

cytochrome C had no significant additive effects on respiration, with minor increases of <5%, thereby 

confirming the integrity of the outer mitochondrial membrane. Maximal electron transport system 

capacity was measured by stepwise additions of chemical uncoupler protonophore carbonylcyanide-

p trifluoromethoxyphenylhydrazone (FCCP). Rotenone (1 μM) and anti-mycin A (2.5 μM) were 

added to inhibit complexes I and III, providing a measure of residual O2 consumption, indicative of 

non-mitochondrial O2 consumption. Mitochondrial respiration indices were then corrected for O2 flux 

resulting from residual O2 consumption. The degree of coupling of oxidative phosphorylation for a 

specific substrate supply (glutamate and malate and succinate) was determined by calculating the ratio 

between state 3 respiration minus leak respiration and state 3 respiration [(OXPHOS-leak) / 

OXPHOS] (Pesta & Gnaiger 2012). The obtained values were also normalized by citrate synthase 

activity (see above), taken as an estimate index of mitochondrial mass (Jacobs et al., 2013). 

Citrate synthase activity 

In order to carry out citrate synthase activity, muscle samples were thawed and underwent a motor 

driven homogenization in a pre-cooled 1 ml glass-glass potter (Wheaton, USA). The muscle specimen 

was suspended 1:50 w/v in a homogenization buffer containing sucrose (250 mM), Tris (20 mM), 

KCl (40 mM) and EGTA (2mM) with 1:50 v/v protease (P8340-Sigma) inhibitors. The specimen was 

homogenised in an ice-bath with 20 strokes at 500 rpm, but before the last hit, Triton X-100 (0.1% 

v/v) was added to the solution. After this, the sample was left in ice for 30 minutes. The homogenate 

was centrifuged at 13000 rpm for 10 minutes in order to discard cellular debris. The supernatant was 

used to evaluate protein concentration according to method of Lowry (Lowry et al., 1951). 5-10-15 

µg of protein extracts were added to each well of a 96-well-microplate along with 100 µl of 200 mM 

Tris, 20 µl of 1 mM 5, 5’-dithiobis-2-nitrobenzoate (DTNB) freshly prepared, 6µl of 10 mM acetyl-

coenzyme A (Acetyl-Co-A) and mQ water to a final volume of 190 µl. A background ΔAbs, to detect 

any endogenous activity by acetylase enzymes, was recorded for 90 seconds with 10 seconds interval 

at 412 nm at 25°C by an EnSpire 2300 Multilabel Reader (PerkinElmer). The ΔAbs was subtracted 

from the one given after the addition of 10 µl of 10 mM oxalacetic acid that started the reaction. All 

assays were performed at 25 °C in triplicate on homogenates. Activity was expressed as mU 
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(nanomoles/min) per mg of protein. This protocol was modified from (Srere, 1969; Spinazzi et al., 

2012). 

Statistical analysis  

All data are presented as mean ± SD. Statistical significance of differences between POST and PRE 

was checked by two-tailed Student’s t-test for paired data. Apparent Km (Michaelis constant) values 

were determined using a double exponential model and then the [ADP] at 50% of the Complex I-II 

linked respiration was extrapolated. The level of significance was set at P < 0.05. Statistical analyses 

were carried out with a commercially available software package (Prism 6.0; GraphPad).  

RESULTS  

Anthropometric and body composition characteristics are reported in Table 1. BM and BMI decreased 

by 2% after bed rest. Skin and adipose tissue thickness measured at the site of NIRS probe ranged 

between 8.0 and 16.8 mm and it was reduced after bed rest (P=0.03).  

 

Table 1. Anthropometric characteristics and age of participants before (PRE) and after (POST) a 

10-day horizontal bed rest. 

 PRE POST P value 

Age (years) 23±5 23±5 --- 

Height (m) 1.81±0.04 1.82±0.04 0.07 

BM (kg) 77.5±10.0 76.0±19.4* 0.02 

BMI (kg.m-2) 23.6±2.5 23.0±2.4* 0.009 

Lean body mass (%) 80.9±5.6 80.8±6.0 0.74 

Fat body mass (%) 19.1±5.6 19.2±6.0 0.74 

Values are mean ± SD. BM, body mass; BMI, body mass index. *P<0.05 different from PRE. 

 

Main cardiovascular, ventilatory, and metabolic variables determined in PRE and POST during INCR 

(peak values) and MODERATE are shown in Table 2. HRpeak corresponded to 95% of the age-

predicted maximum both in PRE and POST (calculated as 208-0.7 X age (Tanaka et al., 2001) and 

was unaffected after the intervention. On the contrary, SV and CO were reduced in POST (101 ± 17 

ml and 19 ± 3.2 l.min-1, respectively) vs. PRE (134 ± 28 ml and 25.2 ± 5.8 l.min-1, respectively) of 

about 25%. Both work ratepeak and V̇O2peak decreased about 9% in POST vs. PRE (P<0.001). GET 
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was not different in POST (1.909 ± 0.388 l.min-1 and 63 ± 9% of V̇O2peak) vs. PRE (2.092 ± 0.425 

l.min-1 and 61 ± 3% of V̇O2peak).  

Vastus lateralis muscle oxygen extraction values obtained by NIRS (as indicated by Δ[deoxy(Hb + 

Mb)]) at exhaustion expressed as micromolar changes with respect to the initial value arbitrarily set 

equal to zero, significantly decreased after bed rest (17%; P=0.02). 

Work rate for MODERATE was 32 ± 7 % of peak work rate in PRE and 35 ± 6 % in POST. Mean 

values of V̇O2 and HR of MODERATE were 53 ± 5 % of V̇O2peak and 69 ± 7 % of HRpeak in PRE and 

they did not change in POST. Skeletal muscle fractional O2 extraction at the end of MODERATE was 

18% of the physiological calibration in PRE and it did not change in POST.  

 

Table 2. Main respiratory, cardiovascular, and metabolic end-exercise or steady state values, 

determined during incremental exercise (INCR) and constant work rate exercise (MODERATE) 

before (PRE) and after (POST) a 10-day horizontal bed rest. 

 
INCR MODERATE 

PRE POST P value PRE POST P value 

Work rate, 

W 

251 ± 50 230 ± 41 0.02 81 ± 26 81 ± 26 --- 

�̇�O2, 

l·min-1 
3.436 ± 0.673 3.039 ± 0.463 <0.001 1.795 ± 0.296 1.797 ± 0.286 0.96 

�̇�O2, 

ml·kg-1·min-1 
44.4 ± 7.2 40.3 ± 6.1 <0.001 ± ± 1 0.17 

�̇�CO2, 

l·min-1 
4.020 ± 0.761 3.527 ± 0.557 0.001 1.606 ± 0.269 1.597 ± 0.253 0.76 

R 1.17 ± 0.07 1.16 ± 0.07 0.60 0.90 ± 0.02 0.89 ± 0.02 0.15 

�̇�E, 

l·min-1 
150.5 ± 20.5 133.2 ± 20.3 0.01 46.4 ± 6.0 46.9 ± 7.6 0.67 

fR, 

breaths.min-1 
57 ± 9 50 ± 7 0.003 26 ± 3 27 ± 4 0.23 

HR, beats·min-1 187 ± 8 189 ± 6 0.90 127 ± 11 131 ± 16 0.17 

SV, 

ml 
134 ± 28 101 ± 17 0.003 137 ± 23 135 ± 20 0.69 

CO, 

ml.min-1 
25.2 ± 5.8 19.0 ± 0.9 0.004 17.4 ± 3.5 17.7 ± 2.9 0.40 

Mean values ± SD.  �̇�O2, pulmonary oxygen uptake; �̇�CO2, CO2 output; R, gas exchange ratio; �̇�E, 

pulmonary ventilation; fR, breathing frequency; HR, heart rate; SV, stroke volume; CO, cardiac 

output. *P<0.05 different from PRE. 
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Peripheral vascular and endothelial responses 

Baseline leg blood flow was not affected by bed rest (443 ± 100 ml.min-1 POST vs. and 429 ± 96 

respectively; P=0.55), on the contrary baseline femoral arterial diameter was reduced after bed rest of 

about 5% (0.90 ± 0.11 cm in POST vs. 0.94 ± 0.12 in PRE; P=0.02). The PLM results are presented 

in Figure 1. Leg blood flow increased immediately after the onset of PLM, reaching a peak both in 

PRE (1310 ± 467 ml.min-1) and POST (1107 ± 472) after about 10 s. There was not a significant 

difference in peak leg blood flow in POST vs. PRE (P=0.19). The area under the blood flow vs. time 

cure during PLM was lower (P=0.03) in POST (274 ± 233 mL) vs. PRE (427 ± 291).  

 

 

Figure 1. On the left, mean leg blood flow in response to passive leg movement (PLM) before 

(PRE) and after (POST) 10-day of bed rest is shown. Data are presented as mean  SE. On the 

right, individual and mean values of the area under the curve (AUC) in response to PLM are given. 

Data are presented as mean  SD. * indicates P<0.05 (paired t-test). 
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Representative V̇O2m off- kinetics curves for a typical subject following MODERATE, is shown in 

Figure 2. A monoexponential decrease was observed for all participants before and after the 

intervention. For V̇O2m, individual values of the coefficient of determination (r2) ranged between 

0.90 and 0.95. In the panel with the V̇O2m off- data, values obtained at rest before the exercise are 

also shown (dashed horizontal line). V̇O2m at rest was reduced in POST (0.078 ± 0.02 µM*s-1) vs. 

PRE (0.057 ± 0.02; P=0.006). Parameters of the V̇O2m off- kinetics are also reported in Figure 2. 

V̇O2m  and k values were not significantly different in POST vs. PRE.  

 

 

Figure 2. Assessments of in-vivo mitochondrial function. In the upper panel, muscle V̇O2 (V̇O2m) 

recovery kinetics for a representative subject following MODERATE exercise and fitted function 

are shown. The dotted horizontal line indicates the resting baseline value. In the lower panel, 

individual and mean ( SD) values of time constant () and recovery rate constant (K) of muscle 

V̇O2 (V̇O2m) recovery kinetics before (PRE) and after (POST) bed rest are shown.  
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Ex vivo 

The main data related to mitochondrial respiration ex vivo obtained by high-resolution respirometry 

are presented in Figure 3. The data were expressed per mg of wet weight. There were no significant 

changes in substrate-controlled mass-specific states in POST vs. PRE. Mitochondrial leak respiration, 

which represent the non-phosphorylating resting mitochondrial respiration sustained by Complex I 

and Complex II, was 19.2 ± 5.3 pmol.s-1.mg-1 in POST and 18.7 ± 5.7 pmol.s-1.mg-1 in PRE (P=0.85). 

Maximal ADP-stimulated mitochondrial respiration (OXPHOS), supported by complex I and 

Complex II, was 66.4 ± 17.5 pmol.s-1.mg-1 wet weight in POST and 72.3 ± 14.0 in PRE, P=0.41. High-

resolution respirometry was also used to assess ADP sensitivity of respiration by ADP titrations from 

12.5 to 10000 μM in the presence of glutamate, malate and succinate. The collected data were 

analysed according to a bi-exponential model (see statistical analysis). Titration of ADP showed that 

submaximal ADP-stimulated respiration was lower following bed rest (Figure 4). Km was indeed 

reduced of about 50% (P=0.04) following bed rest. The maximal capacity of electron transport system 

(ETS) did not change significantly after bed rest (63.7 ± 22.5 pmol.s-1.mg-1 in POST vs. 78.4 ± 17.4 in 

PRE), P=0.10. The degree of coupling of oxidative phosphorylation efficiency (respiratory control 

ratio, 4.10 ± 1.19 [PRE] vs. 3.59 ± 1.11 [POST], P=0.443) was not affected by bed rest. Skeletal 

muscle citrate synthase activity, an estimate of mitochondrial mass, was not different (P=0.12) in 

POST (131.2 ± 15.9 mU.mg-1 protein) vs. PRE (137.9 ± 18.8) (see Figure 4). When the respirometric 

data were normalized for CS activity, no change in any substrate-controlled state was observed.  
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Figure 3. Variables of mitochondrial respiratory function and volume. Individual and mean values 

are shown  SD. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Assessments of mitochondrial ADP sensitivity. On the left, ADP-stimulated respiration 

before (PRE) and after (POST) 10-day of bed rest is shown. Data are presented as mean  SD. On 

the right individual and mean values ( SD) of the estimated apparent ADP Km. 
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DISCUSSION  

The main results observed in the present study after a 10-day horizontal bed rest can be summarized 

as follows: (i) a whole-body impairment in vivo oxidative function as evaluated by decreases in 

V̇O2peak, peak work rate, CO peak and SV was observed; (ii) a less pronounced blood flow increase 

during passive leg movement and a reduction in the diameter of the common femoral artery was 

detected; (iii) skeletal muscle citrate synthase was not affected by bed rest; (iv) skeletal muscle 

mitochondrial function evaluated both non-invasively in vivo by near-infrared spectroscopy (NIRS) 

and invasively ex vivo by high-resolution respirometry (HRR) was unchanged. 

 

Overall, these data suggest that the whole-body impairment of oxidative metabolism during exercise 

following 10 days of horizontal bed rest was associated with an impairment of cardiovascular function 

such as COpeak and SV, but also with an impairment of peripheral vascular and endothelial function 

whereas mitochondrial mass and maximal mitochondrial respiratory function were unaffected. 

 

As regards incremental exercises, V̇O2peak and peak work rate decreased about 10% after bed rest. 

Considering the duration of the bed rest in the present study (10 days), the decreases are in line with 

other previous studies. For example, Porcelli et al. (2010) described a decrease of ~18% in both 

variables, after a 35-day bed rest, results almost equal to those observed by Ferretti et al. (1997) (~17 

and ~19 % for V̇O2max and peak work rate, respectively) during a 42-day bed rest; whereas Capelli et 

al. (2006) reported V̇O2peak and peak work rate values of 14% and 22% lower, respectively, after a 

bed rest of 14 days. However, our results are in part in contrast with a recent review and meta-analysis 

of Reid-Larsen et al. (2017), where authors described a much lower rate of decline of V̇O2max after 

BR (-0.3/-0.4 % per day). In this regard, a possible reason might be that our values have been 

overestimated because of the small sample size used (n = 10), as explained by the authors themselves 

(Reid-Larsen et al. 2017). 

 

COpeak was ~25 % lower in POST vs. PRE, whereas HRpeak remained unaffected. This almost twofold 

decrease in COpeak compared to that in V̇O2peak, is in line with the concomitant and identical 

percentage wise decrease in SV observed in the present study, which can be essentially considered 

the only responsible for COpeak decrease (Ferretti et al. 1997). These findings confirm results of 

Ferretti et al. (1997), who reported reductions in V̇O2peak, COmax and SV of 16.6, 30.8 and 30.9%, 

respectively, after a 42-day head-down tilt BR. Moreover, also in the study of Capelli et al. (2006), 

COmax and SV showed a faster average daily rate of decay than V̇O2 in the two shortest bed rests (14 
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and 42 days). More precisely, for the 14-day bed rest the decays amounted for 1.63, 1.61 and 0.99% 

per day, respectively, for COmax, SV and V̇O2peak.  

 

Whereas cardiovascular impairments associated with (or responsible for) the decreased V̇O2peak 

following bed rest have been well described (Ferretti et al. 1997; Capelli et al., 2006), more peripheral 

impairments have been relatively less investigated. For short term exposure to microgravity, some 

recent studies conducted by our group identified limitations at the peripheral level such as the level 

of microvascular supply of O2, intramuscular matching between O2 delivery and O2 uptake, and 

peripheral O2 diffusion (Porcelli et al. 2010, Salvadego et al. 2011, Salvadego et al. 2016). 

For example, Salvadego et al. (2016) reported after a 10-day exposure to microgravity a significant 

impairment of oxidative performance as evaluated by V̇O2peak, peak skeletal muscle fractional O2 

extraction and profiles of O2 extraction during CWR exercise. This occurred during cycle ergometer 

but also during one-leg knee extension exercises, in which central cardiovascular constraints are 

removed or significantly attenuated; suggesting that the impairments to oxidative function were 

downstream of cardiovascular O2 delivery.  

In this study with the aim of gaining more insights into the limitation in oxidative metabolism at the 

peripheral level, we have evaluated peripheral vascular and endothelial functions before and after a 

10-day bed rest. We have utilized the method recently proposed by Gilford & Richardson (2017), 

evaluating by Eco-Doppler the blood flow increase in the femoral artery during a 1-min period of 

passive extension of a lower limb (PLM) which has been utilized to evaluate young untrained and 

trained subjects, untrained and trained older adults, patients with chronic heart failure (Gilford & 

Richardson, 2017) and patients with chronic obstructive pulmonary disease (Ives et al., 2020). The 

blood flow increase during PLM was higher in the trained vs. the untrained subjects, higher in the 

young vs. the old subjects, lower in the patients vs. healthy controls. Moreover, the blood flow 

increase during PLM, was well correlated with indices of nitric oxide availability and endothelial 

function (Gilford & Richardson, 2017), a critical index of general cardiovascular health. In our study 

we observed a less pronounced blood flow increase during PLM after 10 days of bed rest, suggesting 

an early impairment of peripheral/endothelial function following microgravity – inactivity. 

Interestingly, the blood flow increase during PLM observed in our young subjects after 10 days of 

bed rest was not substantially different from that described by Gilford & Richardson (2017) in 

subjects of 60-70 years of age. Moreover, the less pronounced increase in blood flow during PLM 

after bed rest was associated with an inward structural remodeling of the femoral common artery. In 

the present study, 10 days of bed rest led to a reduction in lumen diameter of 5%, a very similar 

decrease (i.e., 6%) was detected after 7 days of leg casting (Sugawara et al., 2004). This phenomenon 
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has also been reported across a spectrum of different modalities of physical inactivity, ranging from 

spinal cord injury patients to bed rest and unilateral lower limb suspension (Thijssen et al., 2011). 

Changes in femoral artery diameter are also associated with increases in wall thickness with the result 

of promoting atherosclerotic progression (Thijssen et al., 2011).  

In the present study skeletal muscle mitochondrial function was evaluated both ex vivo in 

permeabilized vastus lateralis fibers by HRR (Pesta & Gnaiger 2012) and in vivo, non-invasively, by 

NIRS by calculating the skeletal muscle V̇O2 recovery kinetics following CWR exercise (Ryan et al., 

2014; Adami & Rossiter 2018; Zuccarelli et al., 2020).  

Mitochondrial function evaluated by HRR on isolated and permeabilized non-contracting skeletal 

muscle fibers obtained by biopsy on the vastus lateralis (Pesta & Gnaiger 2012; Perry et al., 2011), 

showed similarly to what observed Salvadego et al., (2016), that none of the respirometric parameters 

were modified in the present study (see Fig. 4). “Leak” respiration which represents the dissipation 

on H+ gradient across the inner mitochondrial membrane non associated with phosphorylation of 

ADP was not different following bed rest. Maximal ADP-stimulated mitochondrial respiration 

(OXPHOS) supported by complex I and complex II determined in presence of saturating ADP levels 

and unlimited substrates and O2 availability, was unchanged. Also maximal capacity of electron 

transport system (ETS) uncoupled from the phosphorylating system, and oxidative phosphorylation 

coupling did not detect significant changes after 10 days of bed rest. The scenario could be different 

with prolonged exposure to microgravity where both respirometric (Salvadego et al., 2018) and 

proteomic data (Brocca et al., 2012) are in favor of an altered mitochondrial function and structure. 

However, the effects of short periods of bed rest on maximal ADP-stimulated mitochondrial 

respiration are somehow controversial. Whereas Miotto et al. (2019) and Dirks et al. (2020) described 

an impaired mitochondrial function following bed rest periods of 3 and 7 days, respectively, other 

authors (Larsen et al. 2018, Salvadego et al. 2016) did not see impairments following 4 and 10 days 

of bed rest exposure. 

Free ADP concentration in skeletal muscle ranges between 25 and 250 µM (Howlett et al., 1998), 

way below the unlimited concentration of ADP utilized to evaluate OXPHOS. In order to put these 

measurements in a more “real” biological environment, ADP mitochondrial respiration sensitivity 

was evaluated. The apparent Km was estimated using a biexponential model which better fitted our 

data and which to our understanding might give us insights into cellular mechanisms regulating 

mitochondrial respiration (this hypothesis has to be verified). In the present study, while OXPHOS 

remained unchanged after bed rest, ADP sensitivity was enhanced, as expressed by the reduction in 

Km (see Fig. 4), indicating a greater sensibility of respiration to [ADP]. A conclusive interpretation 
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of these data is still lacking, but they confirm similar data obtained by Dirks et al. (2019) following 

a bed rest period of similar duration.  

Mitochondrial content of the tissue, as estimated by CS activity, was not affected with bed rest, 

indicating that then no quantitative or functional changes occurred.  

The data obtained ex vivo by HRR on isolated fibers, were also confirmed in vivo, and non-invasively, 

by the kinetics of muscle V̇O2 recovery following cycle ergometer exercise at moderate intensity 

(Ryan et al., 2012; Adami & Rossiter 2018; Zuccarelli et al., 2020). The values of the time constant 

() muscle V̇O2 recovery kinetics were indeed not affected by bed rest intervention, thus confirming 

that skeletal muscle mitochondrial function after 10 days of bed rest was not compromised.  

Another interesting finding of the present study is related to the resting muscle V̇O2, measured non-

invasively on the basis of change in muscle oxygenation determined by NIRS. A decreased resting 

muscle V̇O2 was observed following 10 days of bed rest. A decrease in whole body basal V̇O2 of 

about 7% after 7 weeks of immobilization has already been reported by Deitrick et al. (1948) and 

confirmed also by other studies (Teasell & Dittmer, 1993; Downs et al. 2020). Disuse/immobilization 

is known to decrease muscle protein synthesis and increase protein degradation leading to skeletal 

muscle atrophy (Crossland et al., 2019; Degens et al., 2019). As far as we know, we have reported 

for the first time that immobilization induced by bed rest decreases the relative basal muscle V̇O2. A 

reduction of muscle protein synthesis decreases the energy needed in the muscle, which can lead to 

an attenuation of global as well as relative (per muscle unit) basal V̇O2. The reduction in basal muscle 

V̇O2 observed in the present study could be the result of (i) the decreased energy demand expressed 

per muscle mass of the immobilized muscle or (ii) a higher muscle oxidative phosphorylation 

efficiency of at rest (i.e., lower oxygen cost of ATP synthesis). At this regard, Kang & Ji, (2013) have 

shown that a 2-week period of immobilization significantly downregulated the PGC-1α signaling and 

the mitochondrial biogenesis pathway in mice skeletal muscles with a concomitant suppression of 

mitochondrial transcription factor A and cytochrome-c content by 57 and 63%, respectively and 

cytochrome-c oxidase activity by 58%. Furthermore, the immobilization-induced direction of the 

transformation of type I towards the less efficient type IIA and IIX muscle fibers, suggests that 

immobilization plays a lore in decreasing the energy needed per muscle mass, rather than increasing 

muscle mitochondrial efficiency.  

In conclusion, the main limitations to oxidative metabolism after a 10-day horizontal bed rest study 

were “upstream” of mitochondria function, at the level of central and peripheral O2 delivery. 

Substantial impairments to oxidative function were observed at the peripheral vascular and 

endothelial function (see PLM) whereas mitochondrial content and maximal respiration were 

unaffected.  



 108 

 

 

Acknowledgements 

The authors thank all the stuff involved in the “MARS-PRE Project”. The authors also thank Dr. 

Jerzy Zoladz for constructive inputs for the data interpretation.  

Funding 

This work was supported by the Italian Space Agency (ASI, MARS-PRE Project, Grant No. DC-

VUM-2017-006) and by the Ministero dell’Istruzione dell’Università e della Ricerca, PRIN Project 

2017CBF8NJ.  

 

 

  



 109 

4 CONCLUSIONS 

The research work presented in this PhD thesis deals, in general terms, with the implementation of 

new methods for the functional evaluation of oxidative metabolism during exercise, which could be 

ultimately utilized in normal subjects, athletes, patients and subjects exposed to environmental 

stressors. The proposed methods allow to identify biomarkers of functional impairment (or 

improvement) which would substantially increase our capacity to evaluate exercise tolerance and to 

prescribe exercise as a therapeutic / rehabilitation intervention. 

 

In the first set of studies, we proposed a new and simple method to evaluate exercise (in)tolerance, 

that is the work rate decrease at a fixed HR, slightly above that corresponding to the gas exchange 

threshold (GET), which demarcates the moderate-intensity exercise domain (below GET) and the 

high-intensity exercise domain (above GET). Exercise at a HR value slightly above that at GET is 

often utilized for moderate-intensity exercise training in healthy subjects and particularly in patients 

(Lansley et al., 2011; Iannetta et al., 2020). This approach is based on the assumption of a linear 

relationship between HR and work rate. In our study we demonstrated that this approach is 

substantially flawed. Both in healthy subjects (Study 1), in obese patients (Study 2), and in subjects 

exposed to a 10-day bed rest (Study 3) exercise at a fixed HR value slightly higher than that at GET 

is associated with a substantial decrease in work rate, ranging from about -15-20% (healthy subjects, 

obese patients before exercise training) to -40% (healthy subjects after a 10-d bed rest) over a 15–20-

minute period. What happens during exercises of longer duration has not been investigated and should 

be evaluated in future studies. Textbook physiology states that a lower work rate for the same HR 

indicates a reduced exercise tolerance. In other words, the proposed method could represent a new 

tool for evaluating exercise tolerance, more sensitive than other variables such as V̇O2peak and GET 

(see Studies 1, 2, 3). This is further confirmed by the observations that the work rate decrease at a 

fixed HR was substantially reduced after exercise training in obese patients (Study 2), in the absence 

of significant changes of V̇O2peak and GET, and was substantially aggravated after 10 days of bed 

rest (Study 3), in the absence of changes of GET. 

Interestingly, the work rate decrease at a fixed HR was associated with decreases of variables whose 

increase during a constant work rate exercise (V̇O2, R, [La]b, muscle deoxygenation) would represent 

a sign of fatigue. One could expect (see Jones et al. 2012) that a work rate decrease during fatiguing 

exercise would be aimed at preventing increases of the above-mentioned variables, and in particularly 

of V̇O2, whose increase during constant work rate exercise (“slow component”) is a warning sign for 

a reduced efficiency of oxidative metabolism and of impending fatigue (Jones et al. 2012; Grassi et 

al. 2015). In our studies (Studies 1, 2, 3), on the other hand, the work rate decrease was so pronounced 
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that it actually determined a decreased V̇O2. That is to say, the work rate decrease was more 

pronounced than that expected to prevent the V̇O2 slow component. What drives this apparently 

excessive work rate decrease is not clear. Muscle or whole-body temperature increases, or blood 

catecholamine levels may be involved. 

In any case, the work rate decrease at a fixed HR is inevitably linked with “slow components” of HR 

during constant work rate exercise, which were anecdotally described in the past. In our Study 1 we 

demonstrated the presence of a HR slow component also during constant work rate exercise below 

GET, i.e. in an exercise domain in which no V̇O2 slow component is present. In the same study we 

also demonstrated that during constant work rate exercise above GET the HR slow component is 

more pronounced (percentage wise) than the V̇O2 slow component. 

The observations described above have profound implications on exercise prescription. Let’s imagine 

an astronaut during a spaceflight or living in a planetary station. She/he receives an exercise 

prescription to perform 30 minutes of exercise per day on a cycle ergometer at a HR slightly above 

that previously determined at GET during an incremental exercise. After 10 days of exposure to 

microgravity, the work rate corresponding to that HR has decreased by 40%, moving from a heavy-

intensity exercise domain to a moderate-intensity exercise domain. Is the training still effective? What 

happens to the work rate decrease after 30 minutes of exercise? What happens after 20 days of 

microgravity exposure? Or after 1 or 2 months? All questions that need to be answered, and that 

represent a direct consequence of our studies.  

 

In the second set of studies (Study 4 and 5), we concentrated on the search of new biomarkers of 

impaired oxidative metabolism during exercise following exposure to microgravity. To perform these 

studies (as well as Study 3 discussed above) our group has participated, together with several other 

research groups, to a 10-day horizontal bed rest campaign organized in the Summer of 2019, by the 

Koper Science and Research Center (ZRS Koper), at the Izola General Hospital, in Slovenia. The 

campaign was financed within the “MARS-PRE Bed Rest SBI 2019” project by the Agenzia Spaziale 

Italiana (ASI). Besides allowing to investigate on Earth conditions of microgravity, bed rest studies 

offer a unique opportunity to evaluate the effects of profound deconditioning. 

Whereas cardiovascular impairments associated with (or responsible for) the decreased V̇O2peak 

following bed rest have been well described, more peripheral impairments have been relatively less 

investigated. Over the last 10-15 years, our group has significantly contributed to the study of skeletal 

muscle impairments of oxidative metabolism following bed rest (Porcelli et al 2010, Salvadego et al 

2011, Salvadego et al. 2016, Salvadego et al 2018). In the present PhD work we focused on the search 
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of biomarkers of impairment related to peripheral vascular and endothelial function, the intramuscular 

matching between O2 delivery and O2 uptake and mitochondrial function. 

In a preliminary study (Study 4) we implemented a new method for the non-invasive evaluation of 

skeletal muscle oxidative function by the analysis of the kinetics of muscle V̇O2 during the recovery 

phase following cycle ergometer exercise of different intensities. The method is based on the general 

concept that the rate of muscle deoxygenation determined non-invasively by near-infrared 

spectroscopy (NIRS) (Grassi & Quaresima 2015) during a transient ischemia of the limb allows to 

determine muscle V̇O2. A series of brief ischemic periods during the recovery from exercise allows 

to the evaluate muscle V̇O2 kinetics, a classic variable of functional evaluation of oxidative 

metabolism. 

In the last study (Study 5) of the present PhD we first evaluated, before and after the 10-day bed rest, 

peripheral vascular and endothelial functions. To this aim, we utilized the method recently proposed 

by Gilford & Richardson (2017), evaluating by Eco-Doppler the blood flow increase in the femoral 

artery during a 1-min period of passive extension of a lower limb (passive leg movement, PLM). The 

method has been utilized to evaluate young untrained and trained subjects, untrained and trained older 

adults, patients with chronic heart failure (Gilford & Richardson, 2017) and patients with chronic 

obstructive pulmonary disease (Ives et al., 2020). The blood flow increase during PLM was higher in 

the trained vs. the untrained subjects, higher in the young vs. the old subjects, lower in the patients 

vs. healthy controls. Moreover, the blood flow increase during PLM, moreover, was well correlated 

with indices of nitric oxide availability and endothelial function (Gilford & Richardson, 2017), a 

critical index of general cardiovascular health. In our study we observed a less pronounced blood 

flow increase during PLM after 10 days of bed rest (see Study 5 and Zuccarelli et al. 2020), suggesting 

an early impairment of peripheral/endothelial function following microgravity – inactivity. 

Interestingly, the blood flow increase during PLM observed in our young subjects after 10 days of 

bed rest was not substantially different from that described by Gilford & Richardson (2017) in 

subjects of 60-70 years of age. It would of course be of interest to follow this variable during longer 

bed rest periods, following the adoption of countermeasures, or following the termination of the bed 

rest exposure. 

On the other hand, the evaluation of classical variables of mitochondrial function (“leak” respiration, 

maximal ADP-stimulated mitochondrial respiration, maximal uncoupled respiration, oxidative 

phosphorylation coupling, and others), carried out by high-resolution respirometry (HRR) on isolated 

and permeabilized skeletal muscle fibers obtained by biopsy, did not detect significant changes after 

10 days of bed rest (see Study 5 and Zuccarelli et al. 2020). The same was true for the activity of 

citrate synthase, taken as an estimate of mitochondrial mass. In other words, mitochondrial mass and 
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function were not significantly affected by the relatively short bed rest period, confirming previous 

observations by our group (Salvadego et al. 2016) following a similar bed rest period. The main 

limitations to oxidative metabolism, in other words, would be “upstream” of mitochondria, at the 

level of central and peripheral O2 delivery. The data obtained ex vivo by HRR on isolated fibers, were 

also confirmed in vivo, and non-invasively, by the approach described above (Study 4), which was 

applied also on the subjects exposed to the bed rest (Study 5). In these experiments, as discussed 

above, mitochondrial oxidative function was evaluated by the kinetics of muscle V̇O2 recovery 

following cycle ergometer exercise at different intensities.  

Interestingly, further analyses carried out by HRR on the biopsies obtained before and after the bed 

rest, allowed us to evaluate another variable: the sensibility of mitochondrial respiration to 

submaximal (and physiological) ADP concentrations ([ADP]). This variable was slightly but 

significantly enhanced following bed rest, indicating a greater sensibility of respiration to [ADP]. A 

conclusive interpretation of these data is still lacking, but they confirm similar data obtained by Dirks 

et al. (2019) following a bed rest period of similar duration.  

Our data of a substantially preserved mitochondrial function following 10 days of bed rest may seem 

in contradiction with data obtained by other groups during the same bed rest campaign. Sandri et al. 

(personal observations), for example, observed a substantial impairment of the “trascriptome” of 

mitochondrial genes after as early as 5 days of bed rest. However, the contradiction with our results, 

however, could be only apparent, in the sense that changes at the level of the trascriptome may 

become evident before functional changes are observed. In a previous study by our group carried out 

by HRR we indeed observed impairments of mitochondrial function after 21 days of bed rest 

(Salvadego et al. 2018). 

An aspect of skeletal muscle oxidative metabolism which showed a significant change following the 

10 days of bed rest was represented by the resting muscle V̇O2, measured non-invasively on the basis 

of the change in muscle oxygenation determined by NIRS during a transient limb ischemia (rapid 

inflation of a pneumatic cuff). We observed a significant decrease (by about 15%) of resting muscle 

V̇O2 following bed rest (see Study 5). A decreased resting muscle V̇O2 following bed rest is, to the 

best of our knowledge, a novel finding. It could represent an adaptive (or maladaptive) phenomenon 

in response to microgravity – inactivity, attributable to the fact that muscle catabolic processes within 

muscles (the subjects underwent a decrease in muscle mass of about 5% during the period, Narici et 

al personal observations) are less expensive, in terms of energy, than anabolic ones. 

The concepts mentioned above, besides being of interest from a basic science point of view, may be 

of interest also for other pathological conditions characterized by relatively short periods of profound 

inactivity, and it could affect the definition of countermeasures or of rehabilitative interventions.  
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