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Embedded loops in the hyperbolic plane with

prescribed, almost constant curvature

Roberta Musina* Fabio Zuddas T

Abstract

Given a constant k > 1 and a real valued function K on the hyperbolic plane
H?, we study the problem of finding, for any € ~ 0, a closed and embedded

curve v° in H? having geodesic curvature k 4 ¢ K (uf) at each point.

1 Introduction

Let ¥ be an oriented Riemannian surface with empty boundary, Riemannian metric
tensor g and Levi-Civita connection V*. The geodesic curvature of a regular loop
u € C*(S', ) is given by
() = (Tt ),

Ju'[3
Here we denoted by 4, : T,,> — T, the isometry that rotates 7T,X, in such a way
that {r,4,7} is a positively oriented orthogonal basis of 7,3, for any 7 # 0.

Given a sufficiently smooth function K : 3 — R, the K-loop problem consists in
finding regular curves u € C*(S!, X)) having geodesic curvature K (u) at each point.

This problem can be faced by studying the system of ordinary differential equations

Vi = F(u)K (u) i,  LF(u) = (][ /|2 d:v)% : (1.1)
St
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Indeed, every nonconstant solution u € C*(S', ) to (ILT)) has constant speed |u|, =
I*(u), use for instance the computations in [14, Chapter 4]. Therefore u is regular,
and has curvature K (u) at each point.

The K-loop problem has been largely studied since the seminal work [4] by
Arnol’d. Most of the available existence results require compact target surfaces >;
we limit ourselves to cite [9, 12} 13| 19, 20, 21] 22], 23] and references therein.

In the present paper we take ¥ to be the (noncompact) hyperbolic plane H?. Tt
turns out that the problem under consideration does not have solutions, in general
(see Subsection 22)). In particular, if —1 < K(q) < 1 for any ¢ € X, then no
K-loop exists. If K = k > 1 is constant (recall that changing the orientation of
a curve changes the sign of its curvature), then any regular parameterization of an

hyperbolic circle of radius

1 1. k+1
Pk :artanh% = ilnk—jl

is a k-loop; conversely, any k-loop in H? parameterizes some circle of radius py.

Our existence results involve curvatures that are small perturbations of a given
constant k£ > 1. In Section [3l we carefully choose a reference parameterization w of a
circle of radius p;. Then we take any point z € H? and compose w with an hyperbolic
translation to obtain a parameterization w, of 9D} (z). Next, given K € C'(H?),
we look for a point zy € H? and for embedded (k + eK)-loops in H? that suitably
approach the circle w,, as e — 0.

The center zy can not be arbitrarily prescribed. In fact, in Theorem [4.1] we prove
that if there exists a sequence of (k + e, K)-loops uy, such that e, — 0 and u; — w,,

suitably, then zy is a critical point for the Melnikov-type function

FE(2) = / K(2)dVyg,  Ff:H?>—R. (1.2)
DE (2)

One may wonder whether the existence of a critical point z for Fjr is sufficient
to have the existence, for € ~ 0, of an embedded (k + ¢K)-loop u. = w,,. We can
give a positive answer in case FI has a stable critical point, accordingly with the
next definition (see also [3, Chapter 2]).

Definition Let X € C*(H?) and let A € H? be an open set. We say that X has
a stable critical point in A if there exists r > 0 such that any function G € C'(A)
satisfying |G — X||crzy <1 has a critical point in A.
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Sufficient conditions to have the existence of a stable critical point z € A for X
are easily given via elementary calculus. For instance, one can assume that one of

the following conditions holds:

i) VX(2) # 0 for any z € 0A, and deg(VX, A,0) # 0, where "deg” is Browder’s
topological degree;
i) min X > min X or max X < max X;
0A A DA A
i17) X is of class C? on A, it has a critical point zy € A, and the Hessian matrix

of X at zy is invertible.

We are in position to state our main result.

Theorem 1.1 Let k > 1 and K € C'(H?) be given. Assume that F¥ has a stable
critical point in an open set A @ H?. Then for every e € R close enough to 0, there
exists an embedded (k + € K')-loop u®.

Moreover, any sequence €, — 0 has a subsequence ey,; such that u™ = w,, in
C%(S',H?) as j — oo, where zg € A is a critical point for FK. In particular, if a
point zy € A is the unique critical point for F& in A, then v — w,, in C*(S', H?)
as e — 0.

Any stable critical point of the perturbation term K gives rise to a stable critical
point for FI¥ at least for k large enough. This is in essence the argument we use
in Theorem to obtain, via Theorem [[L1], the existence of k + ¢ K-loops whenever
the perturbation curvature K admits stable critical points.

The proof of Theorem [I.1] is based on a Lyapunov-Schmidt reduction technique
combined with variational arguments, as proposed in [I] (see also [3, Chapter 2]).

In fact, (k + eK)-loops correspond to critical points of an energy functional
Ejicx(u) = Eyyorc(u), where u runs in the class of nonconstant curves in C?(S', H?)
(see Section 2.1 for details). In particular, critical points of the unperturbed func-
tional E), are circles of radius py. Let S = {w. o £}, where £ is a rotation of S!,
z € H?, and w; is our reference parameterization of 0D}, (z). Clearly S is a smooth
three-dimensional manifold of solutions to the unperturbed problem FEj (u) = 0.

The crucial and technically difficult nondegeneracy result is proved in Lemma
B3] via an efficient functional change inspired by [17]. It states that for any z € H?,

the tangent space to S at w, coincides with the set of solutions to the linear problem



El(w.)e = 0. In the last section we carry out the dimensional reduction argument
and complete the proof of Theorem [I.1]

We conclude the paper with a short appendix about the much more easy problem
of finding loops in R? having prescribed, almost constant curvature.

The Lyapunov-Schmidt reduction argument has been successfully used to study

related geometrical problems. We limit ourselves to cite the pioneering paper [24]

by R. Ye, [21 6] [7, 8, [10, [11], 16, [17] and references therein.

2 Notation and preliminaries

The Euclidean space R? is endowed with the scalar product p - ¢ and norm | - |, so
that the disk of radius R centered at p € R? is Dg(p) = {2 € R* | |z—p| < R}. The
canonical basis of R? is e; = (1,0), e, = (0,1).

Let A, C R? be open sets. We write A € Q if A is a compact subset of Q.

We will often use complex notation for points in R%. In particular we write
iz = (—29,21) and 2% = (2 — 22 22129) for 2 = (21, 23) € R?.

Let S' be the unit circle in the complex plane. Any & € St is identified with the

rotation z — &x.

The Poincaré half-plane model

We adopt as model for the two dimensional hyperbolic space the half-plane
H2 = {Z = (21,22) S R2 | 29 > 0}

endowed with the Riemannian metric g;;(2) = 25 %8;;. With some abuse of notation,
we use the symbol H? to denote the Euclidean upper half space as well.

The hyperbolic distance dg(p, ¢) in H? is related to the Euclidean one by

Ip — q|?

coshdyg(p,q) =1+
(P, 4) 2p2qe

and the hyperbolic disk D7 (p) centered at p = (p1, p») is the Euclidean disk of center
(p1, p2 cosh p) and radius ps sinh p.

A loop in the 2-dimensional hyperbolic space H? is a curve u : St — H? of class
C? having nonzero derivative at each point. We say that u is embedded if it is

injective.



If G : H> — R is a differentiable function, then VEG(2) = 22VG(z), where
Vi, V are the hyperbolic and the Euclidean gradients, respectively. In particular,
VG (2) = 0 if and only if VG(z) = 0.

The hyperbolic volume form dV is related to the Euclidean one by dViy = 2, *dz.

The Levi-Civita connection in H? along a curve u in ¥ is given by

Vi =" —uy'T (), (2.1)
where, in complex notation, I'(z) = —iz?. In coordinates we have
[(z) := (22120, 25 — 21) = 292 — 2112 , [:H?> — R2. (2.2)

For future convenience we compute the differential

IM(2)w = 2(wez — wy i2) z € H?, we R (2.3)

Isometries in H?

Hyperbolic translations are obtained by composing a horizontal (Euclidean) transla-
tion w — w + seq, s € R (sometimes called parabolic isometry), with an Euclidean
homothety w +— tw, t > 0 (in some literature, only homotheties are called hyperbolic

translations). We obtain the two dimensional group of isometries H? — H?,

U Uy = 2161 + 20U, z e H?.

Function spaces
Let m > 0, n > 1 be integer numbers. We endow C™(S', R") with the standard
Banach space structure. If f € C'(S',R"), we identify f'(x) = f'(z)(iz), so that
St — R™

In L? = L*(S',R?) we take the Hilbertian norm

1
2 2 4 2
w72 —][|u(:)s)| dr = gy /|u(:):)| dx .
st st

If T C C°%S*, R?), the orthogonal to T with respect to the L? scalar product is
T+ ={p c C°(S",R?) | ][u~g0d:c:O for any uw € T }.
St
We look at C™(S', H?) as an open subset of the Banach space C™(S!, R?), and

identify H? with the set of constant functions in C™(S!, H?). Thus C™(S!, H?) \ H?

contains only nonconstant curves.



2.1 The variational approach

We put
1
L(u) = L (u) = (fu2_2|u’|2d:£> > L:CYSLH?) - R,
St

that is a C'™° functional, with Fréchet differential

1

L'(u)p = 0] ][u2_2( —u" +uy ' T(W)) - pdx, ¢eC*S,R?). (2.4)
u
Sl

When Y = H?, problem (LT reads
u” —uy'T'(v) = L(u) K (u) i’ (Pr)

The system ([Pgl) admits a variational formulation. More precisely, its nonconstant

solutions are critical points of the energy functional of the form
Ex(u) = L(u) + Ag(u) , € C*S',H?) \ H?,

where Ag(u) gives, roughly speaking, the signed area enclosed by the curve u with
respect to the weight K (see Remark 22 below). More precisely, to introduce A g (u)
we take any vectorfield Qx € C*(H? R?) such that

divQg(2) = 2,2 K(2) , z € H?

(here ”div” is the usual Euclidean divergence). A possible choice is

22

T 1
Qx(z1,2) = (52" | K(t, 2)dt — [ 2K (2, t) dt )es .
K\Z1, %2 (222 0/ 29 >61+<2/ 21 )62

1
Then we define

Ag(u) = ][QK(U) < dw A C*(S, H?) — R.
St

By direct computations one gets that the functional Ag is Fréchet differentiable at
any v € C?(S', H?), with differential

Al (u)p = ][ugz K(u)p-iu'dr. ¢ e C*(S'R?), (2.5)
$1
It follows that A (u) does not depend on the choice of the vectorfield Q. Further,
if K € C'(H?) then the area functional Ag is of class C? on C?(S!, R?).

In conclusion, the following lemma holds.
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Lemma 2.1 Let K € C*(H?). The functional Ex(u) = L(u) + Ag(u) is of class
C? on C?(S',H?) \ H?, and

L(u)Ej(u)p = ][ugz( — " +uy'T (W) + L(u)K (uv) iv) - pdx
St
for any v € C*(S*,H?) \ H?, p € C*(S',R?). In particular, if ug € C*(S', H?) \ H?
is a critical point for the functional Ex(u), then ug solves ([Pgl), hence it is an

hyperbolic K -loop.

Remark 2.2 Let u € C*(S',H?) be an embedded loop. Then u is a reqular param-
eterization of the boundary of an open set Q, @ H?. Assume for instance that u is

positively oriented, so that iu’ gives the inner direction to ,,. Then
M) = =5 [ Quele) vds =~ [ K(av
u) =—— 2) vds = —— z
K 27 K 27 .
o) Q

by the divergence theorem.

2.2 Nonexistence results

We start with a simple result that should be well known. We sketch its proof by
adapting the argument in [I5, p. 194].

Proposition 2.3 Let K € C°(H?). If || K|l < 1 then no K-loop emists.

Proof. Let u € C?*(S', H?) be a K-loop. We need to show that |K| > 1 somewhere
in H2. Take the smallest closed disk D, = DH(z) containing u(S'). Then 0D,
is tangent to u(S') at some point. At the contact point the absolute value of the
curvature of u can not be smaller than the curvature 1/ tanh p of the circle 9D, use

a local comparison principle. The conclusion readily follows from tanh p < 1. O

Next, we point out few necessary conditions for the existence of K-loops.

Lemma 2.4 Let K € C*(H?) and let @ C H? be a bounded open domain. Assume
that O is parameterized by a K-loop v € C*(S*,H?). Then

Q Q Q



Proof. Direct computations based on integration by parts give
L'(u)e; = L'(uw)u = L'(u)i(Tu) = 0, (2.6)
see (24)) and ([Z2). In addition, the curve u solves

—L(u) L' (u)p = ][uz_QK(u)ap i/ dx  for any ¢ € C*(S',R?).
st
Since iu/(z) # 0 is parallel to the outer normal v to §2 at u(z) € 02, we infer that

/ 2K (2)er v = / 2K (2)z v = / 52K (2)i0(2) v = 0.

o0 o0 o0

Recall that we identify iI'(z) = 2%, then use the divergence theorem to get

/ div (22K (2)er) dz = / div (252K (2)z) dz = / div (232K (2)z") dz = 0.

Q Q Q

The conclusion readily follows. 0

Remark 2.5 The identities in (2.0) hold indeed for any curve u, and are related

to the group of isometries in H?. Notice indeed that z + e,z — z,2 +— 2% are

infinitesimal Killing vectorfields in H?2.
Lemma 2.4 readily implies the next nonexistence result.

Corollary 2.6 Let K € C'(H?) be a given curvature function. Assume that one of
the following conditions hold,

i) K is strictly monotone in the e; direction;
ii) K is radially strictly monotone, that is, VK (z) - z never vanishes on H?;
i11) VK(z) - 2% never vanishes on H>

Then no embedded K -loop exists.



3 The unperturbed problem
In this section we take a constant & > 1 and study the system
u’ —uy 'T(u) = L(u)kiu' . (Pr)

We start by introducing the radius

1 1
Ry, :=sinh p, = Z cosh pp = ﬁ
and the reference loop w : S — H?,
w(z) = ! (2 i) r =z +izy €S (3.1)
k — a9 "R ' ’
Notice that
w — kRyea| = Ry, (3.2)

hence w is a (positive) parametrization of the Euclidean circle 9Dg, (kRje2), that coincides

with the hyperbolic circle 8DEL (e2). The next identities will be very useful:

W = woi(w — kRies) (3.3)
wy T (W) = (wo — kRy) iw’ + wy o' (3.4)
wy Hw'| = L(w) = Ry, . (3.5)

By differentiating (8.3) and using (3.0 one easily gets that w solves (Py)). Next, for
z = (21, 22) € H? we parameterize 8DEL (z) by the function

W, = 2161 + 29w .

Notice that w = we,. It is easy to check that for any rotation ¢ € S! and any point z € H?,
the circle w, o € solves ([Pg) as well. Further, by Remark we have

F(2) = / K(2)dVyg = —2m Ak (w.). (3.6)
DE, (2)

We know that any nonconstant solution u to ([Pg) has constant curvature k, hence is
a circle of hyperbolic radius pi. Actually we need a sharper uniqueness result, that is, we

have to classify solutions to ([Pg).

Lemma 3.1 Letu € C?(S',H?) be a nonconstant solution to [Py)). Then p := L(u)/L(w)
is an integer number, and there exist € € S', z = (21, 20) € H? such that u(z) = w,0&. In

particular, u parameterizes 0D, (z), and L(u) = pL(w) = pRy,.



Proof. We have

wo(—i) = e Pk = IIllSI} wa(r) , w(—i)=ePrey, W(—i)=e P*L(w)e;.
S

Let z, € S' such that

u2(xy) = My := min ug(z) .
xeSt

Now we show that
u (zy) = myL(u)ey. (3.7)

Clearly u)(x,) = 0 and uf(x,) > 0. We first infer that I'(u/(z,)) = —uj(xy) i/ (xy,),
compare with (22). Thus the system ([Pg]) for the second coordinate gives

(L(wk = mg ) (24)) v (24) = uj(u) >0,

that implies u(x,) > 0. On the other hand, u;'|u/| = L(u) on S'. Thus u}(z,) =
|/ (24)] = myL(u), and B1) is proved.
In particular, u solves the Cauchy problem
V' =0 T (W) F EL(w) i, v(zy) = ulry) , v (zh) = myL(u)e;. (3.8)
It is easy to check that the function

() := mye’* w( — z':z:;“:n“) + up(zy)er

solves (B8] as well (use f'(x) = ipxt for f(x) = 2#, f : S' — C). Thus @(x) = u(z) for
any z € S' and hence u(z) = w, o &, where 21 = uy(x,), 22 = myeP*, &€ = —ix,". Finally,

@ is an integer number because u and w are both well defined on S*. O

The linearized problem
By Lemma [B.1] the 3-dimensional manifold

S = {w205 | ceSt, zeH? } c C*(SHLH?), w,=ze + nw
is the set of embedded solutions to (Pg)). The tangent space to S at w, is
T,.S =T,S= (W, e,w).

Every loop in w, 0 £ € S is a critical point for the energy functional

1
Ei(u) = L(u) + Ag(u) = <][u2_2|u/|2d:1:> - k‘][uglu/l dx
St

Sl

on C?(S',H?)\ H?, and Ey(w, o £) = Ej(w) is a constant. More generally one has

Ex(z1€1 + z0uo0 &) = Ex(u) for any ¢ € S, 2z € H2. (3.9)
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In order to handle the differential of Fj, it is convenient to introduce the function
Jo : C%(S',H?) \ H? — C°(S, H?) given by
Jo(u) = —(ux?u) —uy?|u|Pes + L(u)kus % i/

= u2_2( — " Fuy T () + L(u)k ') . (3.10)
By Lemma [ZT] we have
L(u)E(u)p = ][Jo(u) -pdx for any ¢ € C*(S',R?). (3.11)
St

By differentiating (39) at { = 1, z = ey we readily get E} (u)u' = E} (u)e; = Ej(uw)u =0

for any nonconstant curve u € C?(S', H?), that is,
][Jo(u) cu'dr =0, ][Jo(u) cepdr =0, ][Jo(u) ~udr =0. (3.12)
St St St

Now we differentiate ([B1]) with respect to u, at v = w,. From Ej (w,) = 0 we get
L(w)Ey (w2)[p, §] = ][Jé(wz)cp - @dz for any ¢, € C*(S, R?).

Sl

Since Ej, is of class C2, then Jj(w,) is self-adjoint in L?, that means
][Jé(wz)gp ~pdr = ][Jé(wz)gé -pdx for any ¢, p € C*(S',R?). (3.13)
st st

Finally, we differentiate Ej(w, o £) = 0 with respect to the variables £ € S,z € H?
to get T,,,S C kerJj(w,). We shall see in the crucial Lemma below that indeed
T,.S = ker J)(w.).

This will be done via a useful functional change.

A functional change and nondegeneracy
In order to avoid tricky computations, we use in C™(S!, R?), m > 0, the orthogonal frame

W', iw’. We introduce the isomorphism
P(g) = 1w’ + goiww’ | ®: C™ (S, R?) - c™(ShR?)

together with its inverse ® () = R; 2wy 2 (¢ -w'e1 + ¢ - iw' e2) (recall that |w'| = Ryws)

and the differential operator

Bg = —g¢" — kRyig' + R} (g2 — k* ][ggda:)eg , g € C*(SY,R?). (3.14)
Sl
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Lemma 3.2 Let z be any point in H?. The following facts hold.
i) J(w:)(®(g)) = 25 23 ®(Bg) for any g € CX(S!,2);
i7) ][w2_2<1>(g) - P(g) dx = Rz][g - gdz for any g,g € C*(S*,S?)
St st

Proof. Since Jy(w.) = 2, ' Jo(w) = 0 and Jj(w,) = 2y 2J}(w), it suffices to prove i) for

z = e9, that corresponds to w, = w. We have to show that

T (@) == wiJh(w)p = ®(Bg), where ¢ =g’ + goiw'. (3.15)
To compute J () it is convenient to recall [B.I0) and to differentiate the identity

ud Jo(u) = —u” 4+ uy 'T(u') + L(u)k i’
at u = w. Since Jy(w) = 0 and L(w) = Ry, we get
T(p) = —¢" + kR i’ + wy T (w)¢’ — wy*pal' (W) + k(L' (w)ep)iw'.
From (23)) we find I (w)¢’ = 2¢h 0" — 2] iw’. Taking also (B.4]) into account, we obtain
J(p) = —¢" +kRpig' + Ai(p)w — (Aa(p) =k L'(w)p ) i,

where
A1(p) = (2¢h — w1 )wyt, As(p) = (2¢] + (w2 — kRk))wgl.

To compute the differential L'(w) at ¢ we recall that w solves ([Pg). Thus (Z4) gives

L'(w)p = —k:][w2_2<p ciw' dx .
Sl

For the next computations we observe that the loop w solves several useful differential
systems. In particular, from (Pg), B4), BX) and B.3) it follows that

W= Fwaiw, W= (w% — 2wy + kRpwo) w' + 3wiwe iw’. (3.16)

Now we take any ¢ € C?(S', R) and we look for an explicit formula for 7 (yw’). Clearly
L'(w)(yw') =0, as ' - iw’ = 0. Direct computations based on ([BI6]) give

—Wuw)" +kRyi(pw) = (=" — 2wy — (W] — 2w3 + 2kRyws)))
—l-((k‘Rk — QWQ)¢/ + (kRy — 2w2)w1¢) iw'
A(pw) = 2wy — (2w§ — 2kRj,wo — w%)ip
Ary(pw') = 2(kRi — wa)y' — (kRy — 3wa)1),

12



and we find the formula

J (') = ="' — kR i’ (3.17)
Now we handle J (¢ iw’). From (B3] we get

kL(w)(yiw) = —k? ][w2—2\w’\2¢ dr = —k?R} ][1/; dz.

St St
Then we use (3.2H3.3]) and (B.I6]) to compute

—(T/J iw,)u + kR Z(l/) z'w’)’ = ((20.)2 - kRk)wl + (30.)2 - kRk)w1¢) W
+( =" = 2wt — (W] — 2w5 + 2k Ryws) ) i

A1 (¢ iw/) = —2(&)2 — k’R[J?ﬁl — (3&)2 - k’R[JWﬂﬁ
As(Wi) = =2 + (W3 — K2RZ — 2w},

Since Ri = |w — kRpea|* = |w|? — 2k Ry wo + k*RE by [B2)), we arrive at

T(id) = kR o + (— o + B3 — KR} ][¢ de) ic,
St

that together with ([BI7) gives

T +giw') = (—gi —kRrgh)w'
+( =95 + kRigi + Rigs — K* Ry ][ g2 dz) i

Sl

and concludes the proof of [BI5). The proof of i) is complete; the formula in i) is

immediate, because w’ - iw’ = 0 and || = Ryws. O
We are in position to prove the main result of this section.

Lemma 3.3 (Nondegeneracy) Let z be any point in H?. The following facts hold.

i) kerJ (w,) = T,S;

it) If Jy(w2)p € T,,S, then ¢ € T,,S;
iii) For any u € T,,S* there exists a unique ¢ € C%(S', R)NT,S* such that Jh(w.)e = u.

Proof. We start by studying the kernel of the operator B in ([8.I4]). In coordinates, the

linear problem Bg = 0 becomes

—g{ + kRegy =0, — g5 — kRygy + R}, <92 — kK ][926“’) =0,
Sl
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that is clearly equivalent to
]él godw =0, —g{ +kRigh =0, —g5—kRygy+ Riga =0 (3.18)

because k > 1. The system (BI8]) can be studied via elementary techniques. The conclu-
sion is that kerB = (e1,~,'), where v = R%c( kRyxz1,—x2). Since ®(e1) = w', ®(7) = w
and ®(7') = e; — w’, thanks to Lemma [3.2] we have

kerJj(w.) = ®(ker B) = ®({e1,7,7")) = TS,
and the first claim is proved.

Now we prove ii). If 7 := Jj(w.)p € T,,8 = ker J'(w;), then Jj(w,)T = 0. Taking
B13)) into account, we obtain

F el de = f Jifwndo - e = f Jyfw)r - pdz =0,
st st st
Thus J}(w.)p = 0, that means ¢ € T,,S.

It remains to prove iii). If u € T,8*, then ®~!(w3u) is orthogonal to kerB by i) in
Lemma One can compute the Fourier coefficients of the unique solution g, € ker B+
of the system Bg, = ® }(w3u). Then J{(w)(23®(g,)) = u by i) in Lemma The
function ¢ defined as the L?-projection of 22®(g,) on T,,S8* solves Jj(w)p = u as well,
and is uniquely determined by wu.

The lemma is completely proved. O

4 The perturbed problem

Let k > 1, K € C'(H?) be given, and let ¢ € R be a varying parameter. In this section
we study the system
u’ —uy'T(u') = L(u)(k + e K (u)) iu’ . (Prtek)

We start with a necessary condition for the existence of solutions to having

some prescribed behavior as € — 0.

Theorem 4.1 Let k > 1, K € CY(H?), and ¢, — 0 be given. For any integer h, let
up, € C%(SY,H?) \ H? be a solution to

upy = (un)y ' T(up) + Lup) (k + ep K (up)) i, (Pe;,)
and assume that
L(up) = Lo >0, up, — U uniformly, for some U € CO(St, H?).
Then there exist u € N, € € S* and a critical point z € H? for FIX, such that U(z) =

W, (§x“).
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Proof. We have |u},| = L(up)(up)2, thus the sequence |u}| is uniformly bounded. It follows
that wy is uniformly bounded as well, because uy, solves (P.,])). Thus, uj is bounded in
C%* for any s € (0,1) and using again we infer that the sequence uy converges in
C?% for any s € (0,1). In particular, U € C?(S',H?), Lo, = L(U) and U solves

U =U;'T(U) + LU)kU'.

Lemma [B.1] applies and gives the existence of ¢ € S', 2 € H?, u € N such that U(z) =
wy(&xH) and Lo = L(U) = pL(w).
It remains to prove that z is a critical point for FI. We rewrite in the form

Jo(un) + 6hL(uh)(uh)2_2K(uh) iuy, =0, (4.1)

see (BI0). Then we test (£I]) with the functions e; and wy. Taking (BI2]) into account,
we find

][(uh)2_2K(uh) ey -iuy, dr =0, ][(uh)2_2K(uh) up, - iujp, dx = 0.

st st

Since up, — U(x) = w,(&x*), in the limit as h — oo we obtain

u][(wz)2_2K(wz) e -iwldr =0, u][(wz)2_2K(wz)wz ciwldr =0,

St St
that is,
0, Ak (w,) = A (w.)er =0, 0., Ak (w,) = A (w,)w = 0.
Thus z is a critical point for F& because of (B.0). O

4.1 Finite dimensional reduction

By Lemma 21] k& + ¢K-loops are the critical points of the functional
Erpex(u) = Ep(u) + eAg(u) = L(u) + kA; (u) + eAx(u) , we C*(SYH?)\H2.

We introduce the C' function J. : C?(R,H?) \ H? — C°(R, H?),

Je(u) Jo(u) + eL(u)us 2 K (u) i’

= u2_2( — " +uy ' T (W) + L(u)(k + e K (u)) iu')
compare with BI0), so that

L) B elu)p = f Je(w) - pdo . we CHSLED), pe CELRY). (42
Sl

We will look for critical points for Fy .k by solving the problem J(u) = 0.

15



First, we notice that Ej .x(uo&) = Ey.x(u) for any & € S!, that implies
][Jg(u) ' dr =0 for any € € R, u € C*(S', H?) \ H?. (4.3)
St

In the next crucial lemma we carry out the Lyapunov-Schmidt procedure, in which we
take advantage of the variational structure of problem (Piick])-

Lemma 4.2 Let Q € H? be a given open set. There exist € > 0 and a C' function

[-2,8] x Q = C*(SL,HA)\H? , (g,2) — uS

z

such that the following facts hold.
i) u is an embedded loop and u® = w.;

i) uS —w, € T,8*;

iii) Jo(uf) € T,S. More precisely,

1
= Je(ul) = 0z (Bpgerc (ul)) €1 + ][\WPCM’ 0, (Brge () ws - (4.4)

iw) Ase — 0, we have
Eryex(uy) — Epqer(wz) = o(e) (4.5)

uniformly on €, together with the derivatives with respect to the variable z.

Proof. In order to shorten formulae, for » > 0, m € {0,2} and ¢ > 0 we write

Q, = {z € R? | dist(2,Q) < 7},
C™=C™SYR?), Us:={neC?||nx) <d forany z € S'}.

Take 7,0 > 0 small enough, so that Qo C H? and w, +n € C*(S',H?) \ H? for any
2 € Qa,, n € Us. Consider the differentiable function

F i (Rx Qo) x Usx (RxR?) — COx (RxR?) , F = (Fy, F),
whose coordinates
Fi:(Rx Qo) x Usx (RxR?) = C%,  Fy: (R x Qo) x Us x (RxR?) — RxR?
are given by

File,zmt,0) = Je(w. +n) —tw' — 161 — Vow,
Faole,zym;t,9) = ][77 W' dx ][mda: ][77 wdm
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Take z € Qg, and notice that F(0, z;0;0,0) = 0 because Jy(w,) = 0. The next goal is to
solve the equation F(g,z;n;t,9) = (0,0) in a neighborhood of (g,z) = (0,2), (n;t,9) =
(0;0,0) via the implicit function theorem. Let

L=(L1,L2):C?x (RxR?) = C%x (R xR?

be the differential of 7(0,2; - ; -, - ) computed at (n;t,9) = (0;0,0) € C? x (RxR?).
We need to prove that £ is invertible. Explicitly, we have

L1:0%x (R xR?) — CY, Li(p;a,p) = Jy(wz)p — aw’ — pre; — pow

Lo:0%x (RxR?) =R xR2 Ly(p;a,p) = (fgp-w'dx,][goldx,][gp-wdx).
st st st

If £1(p;a,p) = 0 then Jj(w,)¢ € T,,S, hence p € 1,8 by i) in LemmaB3l If Lo(p;a,p) =
0 then ¢ € T,,8*. Therefore, the operator £ is injective.

To prove surjectivity take u € C?,(b,q) € R x R2. We have to find ¢ € C?, (a,p) €
R x R? satisfying £1(p;a,p) = u and La(p;a,p) = (b,q1,q2), that is,

Jo(ws)p = u + aw’ + prer + paw (4.6)
][go'w/dx:b, ][gplda::ql, ][gp-wda::qg. (4.7)
St ! St

By BI3), for any ¢ € C?, 7 € T,,S = (W', e1,w) = kerJ}(w,) we have
][Jé(wz)go -Tdr = ][J(’)(wz)T ~pdr =0.
St St
Thus the unknowns a € R and p = (p1, p2) € R? are determined by the condition
][U-de+a][w’-7dx+p1][el ’Td$+p2][w'7'dﬂf:0 for any 7 € T,,S. (4.8)
st st st st

Now we look for the L? projection of the unknown function ¢ on 7,,S and its L? projection
on T,,S*. The tangential component ¢ ' € T,,S = (', e1,w) is uniquely determined by
[@T). Next, we notice that u + aw’ + pre; + pow € T,S* by @S); then we use 4ii) in
Lemma to find - € C?NT,S* such that

J(/)(WZ)(PJ_ =u+ aw' + pre; + pow .

The function ¢ = ¢! + p* solves (@8] because J)(w,)p = J)(w,)p", and surjectivity is

proved.
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We can now apply the implicit function theorem for any fixed z € Q9,. Actually, thanks

a compactness argument we have that there exist ¢/ > 0 and (uniquely determined) C!

functions
n:(—e, Y xQ —UsCC? t:(—e)xQ =R I:(=€,¢)xQ — R?
n:(e,z) —n(z) t: (e, 2) = t5(z2), (g, 2) — 9°(2)

such that

We introduce the C! function
(_5,75,) X QT — 02(817H2) \H2 9 (57 Z) = ’LLZ =Wy + Ua(z) 9

that clearly satisfies u? = w,. Since w, is embedded, then u£ is embedded as well, provided

that ¢’ is small enough. Moreover we have

Je(ul) = t°(2)w" +95(2)e1 + 95(2)w € T, S (4.9)
][(ui —w,) wdr = ][(ui —wy)-erdr = ][(ui —wy) -wdzr =0, (4.10)
st st st

and ([£I0) shows that 4i) is fulfilled.

Since integration by parts gives
][wz'w'dx:O, ][wz'eldazzzl, ][wz-wdx:,ZQJ[]w\de,
St St St St
we can rewrite the orthogonality conditions ([AI0]) in the following, equivalent way:
][ui-w'da::o, ][ui-elda::zl, ][ui-wdx:zgj[|w|2dx. (4.11)
St St St St

Our next aim is to show that t°(z) = 0 for any z € €, provided that e is small enough.
We have that ||(uS) — w.|eo = o(1) as ¢ — 0, uniformly for z € Q. Thus

][(ui)/ cWdr = ][w; ~wWdr +o(1) = 2 ][ |w'|? dz + o(1).

St St St

In particular, there exists € € (0,&’) such that / (us) - ' dx is bounded away from 0 if
_ St
(e,2) € [-E,E] x Q. On the other hand, using (Z3]), (£9), integration by parts and (ZII)),

18



we have

0 = fuuz)-(uz)'dx

J

~ () ][(ug)' o da+ 9 (2) ][(ug)' cerda + 05() ][(ug)’ cwdz
st St st

— #(2) ][(uz)' o da — 95(2) ][u W d = 15(2) ][(ug)' o da.
st st st

We see that t°(z) = 0 for any (e, z) € [~£,2] x Q, and therefore
Je(ul) =¥ (2)er + 95(2)w . (4.12)

Now we compute the derivatives of the function z — Ej . (us) via (£2) and [@I2]). For

7 = 1,2 we obtain

L(uf)0zy (Bpperc (uf)) = L(uS) By g (ul)0:,us = ][ Je(u3) - Oz du
St

— 79?(2)][323-1;2 ey dx + 795(2)][823_@ cwdr
st st

= ¥1(2)0;; (fui ey d:z:) + 95(2)0;, <][u§ ‘w dm) .

St St

Then we use (ZIT]) to infer

L(u3)0z (Brier (uf)) = 97(2) s L(u2) 0z (Bpyex (u7)) = 75“3(2)(][ jw[? dz) ,
Sl

that compared with (£12]) give (£4)).

It remains to prove iv). Take z € Q and consider the function
f:(€) = Braex(u5) = Bp(uf) + eAx(u),  f. € C'(-5,8).

Clearly f.(0) = Ep(w.). To compute f.(0) notice that 0.uS remains bounded in C?(Q)
as € — 0, because the function (g,z) — u is of class C'. Thus A% (u$)(d-uS) remains
bounded as well. Further, E (uS) — E}(w;) = 0 in the norm operator because u5 — w,

in C? and since w, is a k-loop. We infer that
£2(0) = B (w2)(9eul) + Ak (uf) + o(1) = Ag (w:) + o(1)
uniformly on Q. In fact we proved that
f2(€) = Brqerc(ul) = Eg(w:) + Ak (uZ) +o(1)
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uniformly on  as e — 0. That is, (X)) holds true "at the zero order”.

To conclude the proof we have to handle 9, (Ek+5K(u§) — Ek+€K(wz)) for j = 1,2.
Since J.(u) = Jo(u) + eL(u)uy K (u) iu/, we can rewrite (&4 as follows,

O (Brorerc(u5)) 1 + (][ wf? dz) 1 0y (B erc (4))
Sl
1

=T P+ e(uf)y K (ug)i(us)'. (4.13)

Recall that Jy(u) is orthogonal to e; in L2, see the second identity in (B12)). We test
(13]) with ey to obtain

0. (Burercul)) = ¢ f (2K ()er i) do = eieluder (419
Sl
by (23). Since 9., (Ek+€K(wz)) =0, (Ek(w) + EAK(wz)) = Al (w;)er, we get
Oy (Brter (uZ) — Eprer (ws)) = e(Ak (uf)er — A (w:)er) = o(e)

because of the continuity of A’ (-) and since uf — w..
To handle the derivative with respect to zo we test [AI3]) with u. Since Jy(uf) is
orthogonal to u¢ in L? by (312, using also (@II) we obtain

210z (Biperc (u3)) + 220z (Epser (u5)) = ¢ ][ (u2)3* K (uf)us - i(us)' dr = e Al (uf)us ,
st

that compared with ([@I4]) gives
290z, (Brserc (u5)) = e A (uf) (us — z1e1).

From 200, (Eptex (w2)) = 2202 (Ep(w)+eAg (w.)) = 20 Al (w2)w = e Al (w2) (w2 — 21€1),

we conclude that

220z (Bpyerc (U2) = Bpyer (w2)) = & (A (uS) (uf — z1e1) — A (w2) (W — z1€1)) = 0(e) -

The lemma is completely proved. O

4.2 Existence results

Proof of Theorem [I.I1 We are assuming that there exists r > 0 such that any function
G € CY(A) satistying ||G + FK o1y < r has a critical point in A. We recall also formula
B6)), that in particular gives

Erirer(ws) = By(ws) + eAg(w,) = By(w) — % FE(2). (4.15)
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Take an open set {2 € H? such that A € Q € H?, and let (¢, 2) — uS, (¢, 2) € [-5,E] xQ
be the function given by Lemma For € # 0 consider the function

G(2) = Z(Brrerc) = ()

and use ([LI5) together with iv) in Lemma [£2] to get
2m
I6° + Filloagny = 2 Buecr(u) — Brsercl)]| = o)

as ¢ — 0. We see that for € small enough the function G® has a critical point 2° € A.
Since the derivatives of the function z — Ej .k (uS) vanish at z = 2¢, then J.(ui:) =0
by (&4]). That is, uS: is and embedded k 4 e K loop.

The last conclusion in Theorem [Tl follows via a simple compactness argument and
thanks to Theorem 11 O

In the next result we apply Theorem [L.1] to obtain the existence of k + ¢K-loops that

shrink to a stable critical point for the curvature function K, as k — oo.

Theorem 4.3 Let K € C'(H?). Assume that K has a stable critical point in an open set
A € H2. There exists kg > 1 such that for any k > ko and for every € close enough to 0,
there exists an embedded (k + eK)-loop.

Moreover, let kp, — co,ep — 0 be given sequences. There exist subsequences kp;,ep,,
a point zoo € A that is critical for K, and an embedded (k‘hj + €n; K)-loop u? such that u’

converges in C*(SY,H?) to the constant curve zo0, as h — oc.
Proof. Recall that Ry, = (k> — 1)~'/2. In order to simplify notations we put
28 = (21, kRp20) = z + (kRy, — 1)z0ey  for z = (21, 2) € H2.

Since DEi (2) = DR, 2, (%) we have

FE(2) = / Py 2K (p) dp = / (g2 + ERy) 2K (20 + %) dg . (4.16)
DRy 2y (%) D, (0)
We put ¢x(q) = q5 2K (q) and rewrite [@I0) as follows:
L K k
W%Fk('z): ][ ¢K(22q+2)dq
Dg, (0)
Trivially kRy, = k/vVk?2 -1 — 1 and |2* — 2| = (kR — 1)20 — 0 uniformly on A, as
k — oo. Since ¢ € C'(H?), it is easy to show that

1

1
TR F(2) = ¢x(2) = Z—gK(Z)

in C'(A). It follows that for k large enough, FX has stable critical point in A € H2.
Theorem [Tl applies and gives the conclusion of the proof. O

21



A Loops in the Euclidean plane

The argument we used to prove Theorem [[LT] applies also in the easier Euclidean case. It
is well known that the only embedded loops in R? having prescribed constant curvature

k > 0 are circles of radius 1/k. We take as a reference circle the loop

1
w(m)zzx, z €S CcR?

that solves .
' = L(u)kiu' , where L(u):= (7[ | |? d:z:) ’
Sl

(in fact, L(w)k =1 and w”’ = —w = iw’).

Let K € C'(R?) be given. If a nonconstant function v € C?(S!, R?) solves
v = L(u)(k +eK(u))iu, (A1)

then |u’| = L(u) is constant, and u parameterizes a loop in R? having Euclidean curvature
k + K at each point. Further, problem (Al admits a variational structure, see [5], [18].

More precisely, its nonconstant solutions are critical points of the energy functional
1
Brerc() = (f WP dn)* e f Q- . we 2L B\ B,
st st

where the vectorfield Q € C'(R?,R?) satisfies divQ = K.
Arguing as for Theorem [L] one can prove a necessary conditions for the existence of
solutions to (A) for e =&, — 0.

Theorem A.1 Let uy be a (k+ e, K)-loop solving (A1) for e = ep,, and assume that
L(up) = Lo > 0, up, — U uniformly, for some U € C°(S',R?).

Then U(z) = w({x“) + 2 for some p € N, € € S! and z € R?, that is a critical point for
the Melnikov function

FE(2) = / K(q)dg, FE:R?®-SR.

D1 (=)
k

In the Euclidean case we have the following existence result.

Theorem A.2 Letk >0 and K € C1(R?) be given. Assume that F? has a stable critical
point in an open set A € R%. Then for every e € R close enough to 0, there exists an
embedded (k + eK)-loop uf : S* — R2.

Moreover, any sequence e, — 0 has a subsequence ep; such that uhi — Wy N
C?(SY,R?) as j — 0o, where zy € A is a critical point for F?
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Sketch of the proof. We introduce the 3-dimensional space of embedded solutions to

the unperturbed problem, namely
S:{w05+z|5681, z € R? },
and the functions J. : C?(R,R?) \ R? — C°(R,R?), € € R, given by
Jo(u) = —u” + L(u)(k + eK (u)) iv' = Jo(u) + L(u) K (u) iv'.

We have S C {Jo = 0}. Since Ji(w + 2)p = —¢" + iy’ — /<;2(][cp -wdz)w, it is quite easy

Sl
to check that

Twr-S = (W e1,e2) = ker Ji(w + 2),

and that J(w + 2) : Ty .St — T,,4.S* is invertible. The remaining part of the proof

runs with minor changes. (]

Theorem 3] has its Euclidean correspondent as well. We omit the proof of the next

result.

Theorem A.3 Let K € CY(R?). Assume that K has a stable critical point in an open
set A € R%. Then there exists ko > 1 such that for any fized k > ko, and for every ¢ close
enough to 0, there exists an embedded (k + eK)-loop uF= : S' — R2.

Moreover, there exist sequences kp — oo, e, — 0 such that uFery w,, in C%(SY,R?)

as j — 0o, where zy € A is a critical point for K.
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