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Abstract: Heart failure (HF) is one of the major causes of morbidity and mortality worldwide and
represents an escalating problem for healthcare systems. The identification of asymptomatic patients
with underlying cardiac subclinical disease would create an opportunity for early intervention and
prevention of symptomatic HF. Traditional biomarkers are very useful as diagnostic and prognostic
tools in the cardiovascular field; however, their application is usually limited to overt cardiac disease.
On the other hand, a growing number of studies is investigating the diagnostic and prognostic
potential of new biomarkers, such as micro-RNAs (miRNA), long non-coding RNAs, and exosome
cargo, because of their involvement in the early phases of cardiac dysfunction. Unfortunately,
their use in asymptomatic phases remains a distant goal. The aim of this review is to gather the
current knowledge of old and novel biomarkers in the early diagnosis of cardiac dysfunction in
asymptomatic individuals.

Keywords: asymptomatic heart failure; apparently healed patients; cardiovascular diseases; biomark-
ers; diagnostic; long non-coding RNAs; miRNA; exosomes

1. Introduction

Heart failure (HF) is one of the leading causes of morbidity and mortality, affecting
over 64 million people worldwide and representing an economic burden for healthcare
systems [1]. Despite the immense progress that has been made in the cardiology field, the
total number of patients with HF continues to increase alarmingly due to the growing
prevalence of risk factors as well as population aging [2]. Therefore, it is vitally important
for clinicians to be able to accurately identify individuals at risk of HF prior to the onset
of symptoms.

The prevalence of asymptomatic left ventricular (LV) dysfunction in the general
population is estimated between 1% and 4%. These percentages remain debated, raising
up to 15% within the high-risk population [3]. The diagnosis of HF in asymptomatic
subjects usually occurs during medical consultation for other reasons. Unfortunately, in
most cases, due to the scarce adherence of asymptomatic individuals to health screening
programs, the diagnosis is delayed towards overt HF, when symptoms become apparent.
On the other hand, people with a high risk of cardiac diseases, such as individuals with
a genetic predisposition, high blood pressure, or high levels of cholesterol, as well as
cancers survivors, are more likely to be early diagnosed with HF because of the frequent
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check-ups they usually undergo [4]. Beside the above-mentioned risk factors, myocardial
infarction (MI) remains the main cause of HF. The loss of myocardial tissue impairs the
cardiac contractile function and triggers cardiac remodeling, which is characterized by
hypertrophy and fibrosis. Interestingly, only about 25% of patients hospitalized for MI show
signs or symptoms of HF, thus making the discovery of biomarkers capable of identifying
early asymptomatic LV dysfunction an urgent need [5].

Along with asymptomatic patients, it is important to mention individuals classified
as New York Heart Association (NYHA) I. These patients are already diagnosed with HF
without symptoms or limitations to their physical activity.

Unfortunately, despite optimal neurohormonal treatment, over the time, these patients
experience a progressive worsening of their condition, and therefore the prompt identifica-
tion of the subset of individuals with a poorer prognosis is of the utmost importance.

Finally, the asymptomatic population with LV dysfunction includes the subset of
“apparently healed” patients, i.e., patients diagnosed with HF whose clinical conditions
ameliorated after initiating pharmacological therapy. Among “apparently healed” patients
diagnosed with HF, molecular changes are suggestive of a less pathological condition,
although the heart does not return to a healthy state [6,7]. For instance, several pieces of
evidence suggest that in patients affected by idiopathic dilated cardiomyopathy (DCM),
the recovery is only temporary [8]. Moreover, symptoms can appear again following
the withdrawal from pharmacological treatment [9]. Furthermore, even with therapy
adherence, the clinical state tends to worsen over time after an initial stabilization, proving
the necessity of a mandatory follow-up [8,10].

In the current situation, there is an urgent need for new biomarkers able to indicate
the increased probability of HF development and to unveil the undergoing processes
responsible for the deterioration of the cardiac function at its very beginning. Furthermore,
in patients with “apparent healing”, biomarkers should be able to discriminate recovery
from complete remission. The identification of such biomarkers would certainly create an
opportunity for an early treatment as well as for new therapeutic targets and enhance the
progress towards personalized medicine [11].

This review gathers the current knowledge of the biomarkers used in clinical practice
and explores new markers, such as non-coding RNA and exosomes cargo, which may help
in HF diagnosis in the asymptomatic phase.

2. Current and Emerging Protein Biomarkers

To date, HF is usually identified when clinical symptoms are apparent [12]. Natriuretic
peptides (NPs), such as B-type or brain natriuretic peptide (BNP) and N-terminal pro-
B-type natriuretic peptide (NT-proBNP), are traditional cardiac biomarkers in use for
distinguishing individuals requiring further clinical investigation, as electrocardiogram
and echocardiography, from those who do not (Figure 1) [12]. Specifically, BNP level
above 100 pg/mL and NT-proBNP level above 300 pg/mL are the suggested cut-offs for
ruling HF in [13]. Noteworthy, the concentrations of BNP and atrial natriuretic peptide
(ANP) in asymptomatic individuals with HF are often higher than in healthy controls,
but still lower than in symptomatic HF [14]. Moreover, the concentration of NT-proBNP
was high among asymptomatic patients with LV dysfunction including those with other
comorbidities usually associated with cardiac issues, such as diabetes or peripheral and
cerebrovascular diseases [14]. However, caution is needed for using NPs as diagnostic
markers, because their concentration varies depending also on other factors including age,
body mass index, or the presence of other conditions such as renal failure or inflammatory
pulmonary disease [10].
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Figure 1. Flow diagram demonstrating the current diagnostic algorithm for HF identification. BNP, B-type or brain natri-
uretic peptide; ECG, Electrocardiogram; HF, Heart failure; NPs, Natriuretic peptides; NT-proBNP, N-terminal pro-B-type 
natriuretic peptide. 

Cardiac troponins (cTn) are a family of proteins widely accepted as the gold standard 
for acute myocardial infarction (AMI), in particular cTnI and cTnT [13,15]. cTn levels were 
elevated not only in patients after AMI, but also in patients with acute and chronic HF 
and are associated with the worst prognosis. Worth mentioning, the increased cTn levels 
predict adverse events in HF with both preserved and reduced ejection fraction [16–18]. 
Beside the role in the diagnosis of AMI [13], cTn can also be elevated independently of the 
ischemic etiology of myocardial injury. The detection of cTn among the general popula-
tion elicited interest in this protein as an indicator of myocardial injury also in asympto-
matic individuals [19]. Since its plasmatic concentration in a healthy population is low, 
the ability to detect cTn is mainly dependent on analytical sensitivity, which is provided 
by high-sensitivity (hs) assays currently required in clinical practice [20]. Data from the 
currently available literature indicate that both cTnI and cTnT are detectable in the general 
population, and it is suggested that an increment in cTn levels could be linked to hyper-
tension, diabetes mellitus, metabolic syndromes, hypercholesterolemia, and genetics [19–
21]. Interestingly, although the association of cTn with LV hypertrophy and underlying 
HF has been established, the definition of universal cut-offs among asymptomatic indi-
viduals might be challenging due to the influence of age, gender, body mass index, and 
systolic pressure on cTnI levels and the effect of diabetes mellitus on cTnT [19,20,22]. 
Therefore, the lack of a clear cut-off might hamper cTn translation to clinical use in the 
asymptomatic population. In parallel, the definition of the frequency cTn plasmatic con-
centration assessment and of the characteristics of the target population needs also to be 
pursued [20]. 

Emerging biomarkers such as soluble suppression of tumorigenicity 2 (sST2), Galec-
tin-3 (Gal-3), and Ghrelin, reflecting different pathophysiological processes closely asso-
ciated with fibrosis, appear to have a valuable diagnostic and prognostic power [19]. sST2 
levels have been found significantly higher among patients with HF compared to healthy 
controls, providing insights into disease severity and predicting the risk of future HF 
events and mortality, independently of NPs levels [19]. Wang et al. were the first to reveal 
the prognostic value of sST2 measurements in the general population, demonstrating that 
some asymptomatic individuals could have higher levels of sST2, thereby suggesting the 

Figure 1. Flow diagram demonstrating the current diagnostic algorithm for HF identification. BNP, B-type or brain
natriuretic peptide; ECG, Electrocardiogram; HF, Heart failure; NPs, Natriuretic peptides; NT-proBNP, N-terminal pro-B-
type natriuretic peptide.

Cardiac troponins (cTn) are a family of proteins widely accepted as the gold stan-
dard for acute myocardial infarction (AMI), in particular cTnI and cTnT [13,15]. cTn
levels were elevated not only in patients after AMI, but also in patients with acute
and chronic HF and are associated with the worst prognosis. Worth mentioning, the
increased cTn levels predict adverse events in HF with both preserved and reduced
ejection fraction [16–18]. Beside the role in the diagnosis of AMI [13], cTn can also be
elevated independently of the ischemic etiology of myocardial injury. The detection of
cTn among the general population elicited interest in this protein as an indicator of
myocardial injury also in asymptomatic individuals [19]. Since its plasmatic concentra-
tion in a healthy population is low, the ability to detect cTn is mainly dependent on
analytical sensitivity, which is provided by high-sensitivity (hs) assays currently re-
quired in clinical practice [20]. Data from the currently available literature indicate that
both cTnI and cTnT are detectable in the general population, and it is suggested that an
increment in cTn levels could be linked to hypertension, diabetes mellitus, metabolic
syndromes, hypercholesterolemia, and genetics [19–21]. Interestingly, although the
association of cTn with LV hypertrophy and underlying HF has been established, the
definition of universal cut-offs among asymptomatic individuals might be challenging
due to the influence of age, gender, body mass index, and systolic pressure on cTnI lev-
els and the effect of diabetes mellitus on cTnT [19,20,22]. Therefore, the lack of a clear
cut-off might hamper cTn translation to clinical use in the asymptomatic population.
In parallel, the definition of the frequency cTn plasmatic concentration assessment and
of the characteristics of the target population needs also to be pursued [20].
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Emerging biomarkers such as soluble suppression of tumorigenicity 2 (sST2), Galectin-
3 (Gal-3), and Ghrelin, reflecting different pathophysiological processes closely associated
with fibrosis, appear to have a valuable diagnostic and prognostic power [19]. sST2 levels
have been found significantly higher among patients with HF compared to healthy controls,
providing insights into disease severity and predicting the risk of future HF events and
mortality, independently of NPs levels [19]. Wang et al. were the first to reveal the
prognostic value of sST2 measurements in the general population, demonstrating that
some asymptomatic individuals could have higher levels of sST2, thereby suggesting the
association of this marker with the presence of undergoing processes that could lead to
adverse outcomes [23]. Furthermore, given its lower biological variation compared to NPs
and the fact that its increase can be observed several weeks before a cardiac event, sST2 is a
suitable marker for the follow-up of patients with HF [24,25].

Gal-3 levels have been shown to increase in pre-symptomatic HF animal models as
well as during HF progression in both animal models and humans [26,27]. Nevertheless,
the use of Gal-3 as a biomarker for asymptomatic LV dysfunction is still debated, mainly
due to its low specificity [27]. In fact, because Gal-3 is not organ-specific, the increase of
its concentration in plasma could be the consequence of several inflammatory and fibrotic
processes in organs other than the heart.

Finally, studies indicate that the interaction of Ghrelin with its receptor differs between
early and end-stage HF [28,29]. In a previous study, we showed that Ghrelin levels were
reduced in patients with DCM in comparison with healthy controls [29]. However, among
DCM patients, we observed that early diagnosed patients had higher Ghrelin levels than
patients with longer duration of the disease [26]. Furthermore, Ghrelin plasmatic levels
were found to be higher in the presence of a more compromised LV function, probably
due to a compensatory mechanism [29]. Indeed, Ghrelin possesses documented properties
improving cardiac function in HF [30]. In addition, it has been reported that changes in
Ghrelin myocardial axis could be detectable even before overt changes in LV function, thus
supporting its role as a biomarker [28].

Given the fact that biomarkers report on a multitude of harmful pathophysiological
processes associated with HF, control screening for NPs and troponin could possibly allow
the timely identification of asymptomatic patients at high risk of developing HF [13,14,31].
Furthermore, since asymptomatic subjects (population at high risk of LV dysfunction,
“apparently healed” patients with DCM, as well patients with HF in NYHA class I) progress
overtime and develop symptoms of overt HF, it would be of paramount importance to
assess the concentration of biomarkers and define cut-offs values that would indicate
undergoing processes such as biomechanical stress, hypertrophy, and fibrosis that further
lead to the deterioration of LV function and overt HF. Recognition of those processes before
overt symptoms would be a tremendous achievement. In this context, elevated levels of
sST2 and Gal-3 could be “red flags” of ongoing hemodynamic stress and fibrotic processes.
sST2 could be an ideal biomarker for monitoring NYHA I patients and individuals at
high risk of HF, providing insights into underlying mechanical strain, inflammation, and
fibrosis that could later lead to worsening outcomes. In the same context, given its role
in cardiac remodeling, Gal-3 elevated concentrations could indicate a worsening of the
cardiac condition. Therefore, periodical measurement of Gal-3 should be mandatory during
follow-up. Table 1 summarizes the advantages and disadvantages of classical biomarkers
in use in the cardiovascular field, as well as those of emerging ones.
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Table 1. Traditional and emerging protein biomarkers, considering their advantages and disadvantages. BNP, B-type
or brain natriuretic peptide; cTn, cardiac troponin; Gal-3, Galactin-3; NPs, Natriuretic peptides; NT-proBNP, N-terminal
pro-B-type natriuretic peptide; sST2, soluble suppression of tumorigenicity 2.

Traditional Biomarkers

Biomarkers Advantages Disadvantages Ref.

BNP, NT-proBNP
− Higher values in
asymptomatic individuals than
healthy subjects

− Influenced by age, body mass
index, and other conditions (e.g.,
renal failure, inflammatory
pulmonary disease)

[10,14]

Emerging Protein Biomarkers

Biomarkers Advantages Disadvantages Ref.

cTn − Highly sensitive detection

− Difficult definition for
cut-offs

− Influenced by age, gender,
body max index, systolic
pressure, diabetes mellitus

[19,20,22]

sST2

− Higher values in
asymptomatic individuals
than healthy subjects

− Low biological variation vs
NPs

− Suitable for follow-up

− Useful only in combination
with other NPs [24,25]

Gal-3 − Higher in pre-symptomatic
individuals

− Low specificity
− Useful only in combination

with other NPs
[26,27]

Ghrelin − Differentiation according to
HF stage

− Useful only in combination
with other NPs [28,29]

3. Non-Coding RNAs

The 90% of the human genome is transcribed in non-coding RNAs, which are classified
according to their length in microRNAs (miRNA) and long non-coding RNAs (lncRNA) [32].
Both of them have recently been identified as contributors to HF development [32–34].

3.1. microRNAs

Nowadays, it is widely accepted that circulating miRNA expression profiles can
provide new insights in predicting HF among asymptomatic patients. MiRNAs are short,
single-stranded, non-coding RNA molecules, packaged into membranous vesicles such
as exosomes, microvesicles, and apoptotic bodies, playing a major role in negative post-
transcriptional regulation of gene expression [33,34]. Given their presence and high stability
in human fluids such as plasma and serum, they are attractive candidates for disease
identification and monitoring [33,35]. Multiple studies have identified cardiac-specific
miRNAs involved in cardiac development and function, whereas dynamic changes of
cardiac miRNAs have been recognized in pathophysiologic heart conditions. Thus, their
diagnostic potential as biomarkers in cardiovascular morbidity and mortality is under
intensive investigation nowadays [36–38].

Despite the identification and thorough investigation of a large number of miRNAs
involved in heart remodeling, the use of those miRNAs as indicators of the onset of cardiac
changes in asymptomatic individuals remains a rather distant goal and represents an
important unmet clinical need. Numerous miRNAs play a key role in the regulation
of the processes underlying LV diastolic dysfunction such as fibrosis, hypertrophy, and
ischemia. For instance, miR-1 and miR-133a, which are known to have a protective role
against cardiac hypertrophy, are downregulated in hypertrophic heart, whereas miR-155,
which promotes pro-hypertrophic pathways, is upregulated in the same condition [39].
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In the same context, increased expression of miR-21 has been recognized as responsible
for fibroblast activation and development of fibrosis [37]. Interestingly, a recent study
involving asymptomatic patients with type II diabetes demonstrated that miR-21 levels
were significantly decreased in patients with cardiac dysfunction in comparison with those
without [40]. Given that diabetic cardiomyopathy affects 12% of diabetic patients and
currently lacks a specific biomarker, the opposite behavior of miR-21 in the general and
the diabetic populations has important potential implications in the clinical setting [40].
Further, supporting the therapeutic potential of miR-21 as a cardiac biomarker, Tao et al.
reported that overexpression of miR-21 improved mitochondrial biogenesis and reduced
cell apoptosis in animal models [40].

Research performed by D’Alessandra et al., including healthy individuals and pa-
tients with chronic heart failure (CHF), demonstrated that a combined score based on the
expression profile of miR-221, miR-21, miR-409-5p, miR-376a, and miR-154 has the highest
discrimination power in terms of separating early stage asymptomatic patients with HF
(NYHA class I) from healthy controls [41]. Another study proposed miR-499 as a candidate
marker for early diagnosis of AMI, showing that the plasma concentration of miR-499 in
patients with AMI was significantly higher in comparison with that in healthy controls and
correlated with cTnI [42].

miR-624 and miR-340 were significantly upregulated in patients with premature
coronary artery disease (CAD) when compared with healthy controls, supporting the use
of specific miRNAs for early detection of asymptomatic CAD [43]. Since CAD can lead to
heart failure over time, its timely identification would have a relevant impact on the clinical
management of patients with CAD. Another study, in which CAD was diagnosed on the
basis of coronary CT angiography and patients were stratified according to Framingham
Risk Score (FRS), demonstrated that miR-17-5p, miR-21-5p, miR-210-3p, miR-29b-3p, miR-
7-5p, and miR-99a-5p were upregulated by greater than twofold in groups with CAD
compared with those without, pointing out again the role of miRNA profiling in early
detection of CAD [44].

Since MI is among the most common causes of HF, He and et al. investigated the
association of two miRNAs, miR-328 and miR-134, with the acute phase of MI and their
relationship with increased risk of mortality or development of HF during follow-up [45].
Indeed, the plasma levels of both miRNAs were found to be increased in 359 MI patients,
when compared to 30 healthy subjects. Interestingly, further analyses indicated that
miR-328 and miR-134 had a good predictive value as indicators of higher mortality and
risk of developing post-MI HF. Thus, these two miRNAs were indicated as important
biomarkers for the initial diagnosis and prognosis of negative complications following MI.
Unfortunately, the authors failed to indicate the number of patients experiencing either HF
onset or early mortality during MI follow-up; thus, no specific assessment could be done for
the association of circulating miRNAs and the presence of asymptomatic LV dysfunction.

In the case of high-risk patients with hypertension, hyperlipidemia, obesity, and
diabetes mellitus, miRNAs could provide additional indications concerning the status of
the cardiovascular system [46]. For instance, the plasma levels of miR-122 and miR-370
were found to be increased in patients with hyperlipidemia compared with controls and
were associated with the presence and severity of CAD, proving their putative biomarker
potential for risk stratification [46,47].

Another interesting field of research is the use of miRNAs as a marker of cardiotoxicity
in oncologic patients undergoing chemotherapy or immunotherapy. Gioffrè et al. have
already suggested to use plasma miRNAs as biomarkers of cardiac dysfunction onset
upon specific anthracyclines treatment [48]. In their manuscript, they identified a clus-
ter of circulating miRNAs (miR-122-5p, miR-499a-5p, and miR-885-5p) as predictors of
doxorubicin-induced cardiac damage which could possibly develop into cardiotoxicity
and/or HF. Despite being a pilot study, this investigation introduced, for the first time, the
concept of miRNA-based selection of potentially cardiac-harmful drugs before their actual
administration. In a way, the identified miRNAs could be indicators of a predisposition to



Int. J. Mol. Sci. 2021, 22, 4937 7 of 16

HF onset upon doxorubicin treatment due to the synergy between cancer presence and
genetic and/or epigenetic background. Similarly, a previous work identified miR-1 as a
circulating biomarker in the setting of doxorubicin-induced reduction of LVEF in 56 breast
cancer patients who showed late cardiotoxicity onset [49]. Furthermore, the plasmatic levels
of miR-1254 and miR-579 were found to be significantly higher in patients diagnosed with
bevacizumab-induced cardiotoxicity compared to those of healthy bevacizumab-treated
controls [50].

Lastly, despite the recent improvement in radiation techniques, chest radiation can still
be responsible for radiation-induced heart disease. Several miRNAs have been found to be
up- or downregulated in patients who underwent radiotherapy. However, their association
with radiation-induced heart disease remains to be elucidated. For instance, miRNA-29a
levels were found to be reduced in patients treated with thoracic radiotherapy, and the
reduction was proportional to the dose of radiotherapy. Therefore, this finding suggests
the negative impact of radiation on vascular inflammation [51].

Further clinical investigations are needed to fully understand and exploit the potential
of miRNAs as pathophysiology-based diagnostic markers for the identification of cardiac
disease in its early asymptomatic phases.

3.2. Long Non-Coding RNAs

Long non-coding RNAs (lncRNAs) are over 200-nucleotide long and are classified, ac-
cording to their genomic location and polarity, in intronic, intergenic, bidirectional, sense, and
antisense [52]. The potential use of lncRNAs as future biomarkers for HF is eliciting an in-
creasing interest because they are differentially regulated during HF progression, are easily
detectable and quantifiable in blood samples, and are more stable than proteins [53–55].

Among the currently identified lncRNAs, CDKN2B-AS1 (ANRIL) represses the tran-
scription of the genes in the INK4 locus, thus it is likely to play a role in inflammation [54].
Even if its transcription increases in HF, ANRIL has not been evaluated as a biomarker in a
large population yet [54]. Similarly, the Myosin Heavy-Chain-Associated RNA Transcripts
(MHRT) levels are higher in HF than in non-HF individuals [56,57]. To date, published data
about MHRT sensitivity in discriminating asymptomatic individuals are uncertain [56,57].
Furthermore, Sirtuin 1 (Sirt1) long non-coding RNA binds to Sirt1 mRNA mediating its
stabilization and the increase of protein level [58]. Currently, the effects of Sirt1 protein
expression on HF development seem contrasting: some studies suggest that Sirt1 protein
promotes hypertrophy, whereas others indicate reduction of both hypertrophy and fibro-
sis [53,58]. Patients with reduced ejection fraction (HFrEF) have a higher Sirt1 protein
concentration than patients with preserved ejection fraction (HFpEF). However, in this
model, differences in Sirt1 expression were not able to discriminate healthy controls from
HFpEF [53]. Taken together, these data still question the potential of Sirt1 lncRNA in
discriminating HFpEF patients.

A number of studies have investigated the role of lncRNAs in cardiac physiology
and pathology, identifying a set of new candidate biomarkers. β secretase-1 antisense
(BACE1-AS) lncRNA stabilizes β secretase-1 (BACE1) mRNA leading to cardiomyocytes
and endothelial cells cytotoxicity in HF [59]. To date, the eligibility of BACE1-AS as
a biomarker in HF has not been investigated yet. Similarly, recent data indicate the
involvement of the antisense lncRNAs CTBP1-AS2 and VIM-AS1 in HF comorbidities
beside their known role in cancer pathogenesis [60]. Specifically, CTBP1-AS2 mediates
cardiomyocyte hypertrophy, whereas VIM-AS1 is responsible for fibrosis [61,62]. Therefore,
their pathological role in HF might be plausible but remains to be confirmed.

The aforementioned data suggest that antisense lncRNA use for early identification of
asymptomatic LV dysfunction, although warranted, is still uncertain, and further studies
on large populations are needed.

An interesting work from Kumarswamy et al. on transcriptomic analyses conducted in
plasma RNA from MI patients showed that the circulating levels of the lcnRNA uc022bqs.1,
named LIPCAR lncRNA, were found to predict adverse cardiac remodeling following
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MI. These results, beside showing the possibility to reproducibly detect lncRNAs in the
plasma, indicated LIPCAR as a good candidate prognostic biomarker for HF upon ischemic
events [63].

A very recent cross-sectional study was conducted on post-AMI patients either devel-
oping or not HF symptoms within 72 h from revascularization by percutaneous coronary
intervention (PCI). In this setting, the blood levels of lncRNA necrosis-related factor NRF
(lncRNA-NRF) were shown to be increased in AMI patients with HF compared with AMI
patients without HF and had a good predictive value for the diagnosis of HF. The authors
calculated the diagnostic potential for HF of lncRNA-NRF, obtaining an AUC value of 0.975,
while the same analysis conducted for N-terminal pro-brain natriuretic peptide resulted
in an AUC of 0.720. These findings seem to suggest that lncRNA-NRF may represent a
marker of risk for the development of HF post-AMI, although the study was conducted on
a limited population (n = 134) and HF onset was not evaluated longer than 72 h post PCI
in non-HF patients [64].

A relatively new class of ncRNA is represented by circular RNAs (circRNA). These
molecules consist of a circular, single-strand RNA lacking both 5′ and 3′ free termini and
presenting a higher stability. CircRNAs are generated from back-splicing events in which
a downstream 5′ splice donor joins an upstream 3′ splice acceptor and can be composed
either of multiple exons or of a mix of exons and introns. CircRNAs have several and
different molecular functions, similarly to all components of the ncRNA family, the most
common consisting in acting as microRNA sponges, regulating transcription and splicing,
and acting as a molecular adaptor for protein–protein interactions and ribosomal RNA
processing [65]. Despite their importance, circRNA are not abundant but are present in
all kinds of cells and tissues, including blood, where they can also be used as biomarkers.
In this regard, one very interesting candidate is represented by circRNA MICRA, which
was indicated by Vausort et al. as a predictor of LV dysfunction after MI, based on its
expression in peripheral blood samples 3 to 4 months post reperfusion [66].

4. Exosomes

Exosomes are extracellular vesicles (EV) of 30–150 nm which bear a cargo consisting of
DNA, RNA (including mRNA, miRNA, rRNA, lncRNA, PIWI-interacting RNAs, transfer
RNAs, mitochondrial RNAs, Y RNAs, and vault RNAs), lipids, and proteins [67,68].
Exosomes are secreted by all cell types as a means to maintain homeostasis via cell-to-cell
communication [69]. In people at high risk of cardiac diseases, exosomes cargo exhibits
maladaptive variations [70]. During HF, cardiomyocytes, endothelial cells, fibroblasts,
immune cells, and smooth muscle cells are all exosome producers and recipients causing
HF progression, but their role in apparent healing is still unexplored. For instance, studies
on therapeutic approaches suggest that mesenchymal stem/stromal cells (MSCs) release
exosomes whose content is likely to contribute to myocardial healing [71–75].

Because of the cell ability to modify their cargo for rapidly adapting to novel patho-
physiological conditions, exosomes might have a relevant diagnostic significance [76].
Changes in exosomes cargo have seemed to occur prior to the increase of HF traditional
biomarkers, suggesting that exosomes monitoring could result in earlier detection of
HF [71]. Specifically, among RNA subtypes in EV, exosomal miRNA (exo-miRNAs) evalua-
tion seems promising for the search of new biomarkers. Increased levels of exo-miRNA-
192, exo-miRNA-194, and exo-miRNA-34a were detected around 18 days after the acute
event [77]. The role of all these exo-miRNAs in the p53 pathway mediating cardiomyocytes
apoptosis warrants their involvement in HF pathogenesis [78,79]. Although these observa-
tions support the possible use of exo-miRNA-192, exo-miRNA-194, and exo-miRNA-34a
for early HF diagnosis, their clinical evaluation is still lacking. In line with this, an increase
in both extracellular vesicle release and cardiac-specific miRNAs (miR-1, miR-24, miR-
133a/b, and miR-210) were documented to occur in the plasma of patients undergoing
coronary artery bypass–graft surgery [80]. Intriguingly, although cardiac Troponin-I did
not significantly correlate with cardiac miRNAs, it positively correlated with the plasma
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exosome level and exosomal cardiac miRNAs. To date, many other exo-miRNAs involved
in HF initiation and progression have been identified [69,81]. Specifically, it has been shown
that exo-miRNA-21-3p, exo-miRNA-132, exo-miRNA-200 participate in cardiac hypertro-
phy, whereas exo-miRNA-29 family members mediate fibrosis, and exo-miRNA-146a is
causative of angiogenesis alterations [69]. However, none of them has been evaluated
for diagnostic feasibility. On the contrary, even though its role in HF is still unknown
and it is upregulated in patients with HF, exo-miRNA-92a has been proposed as a clinical
biomarker because of its upregulation in patients with HF, high sensitivity/sensibility,
and correlation with echocardiographic indices for LV dilation and dysfunction [82]. It
is noteworthy that a recent study calls into question the exosomal origin of miRNA-92a,
warranting further investigations [83]. Overall, the confirmation of miRNAs presence in
exosomes together with the knowledge of their function in HF pathogenesis are emerging
as important starting points for the clinical translation of exo-miRNAs.

Besides miRNAs, exosomes are also enriched in proteins. Some of them are common to
almost all exosomes regardless of cell type or conditions because biogenesis-related, whereas
other proteins are pathophysiological state-specific [69]. Proteins on the exosome surface
allow the correct interaction of the EV with target cells, while protein cargo affects the ac-
tivity of recipient cells [70,84]. Published data indicate that protein cargo influences the
development of cardiovascular diseases [85,86]. In HF, heat shock protein 60 and 90 (Hsp60,
Hsp90) participate in cardiomyocyte death and cardiac fibrosis, respectively [69]. Further-
more, exosomes contain tumor necrosis factor-alpha (TNF-α), which causes cardiomyocyte
death, as well as angiotensin-converting enzyme (ACE) and Angiotensin II (Ang-II), which
elicit hypertrophy [69,70]. The previously cited exosomal proteins have been suggested as
biomarkers; nevertheless, their diagnostic value has not been appraised yet. A valuable and
very promising exception is the work of Castellani et al., who analyzed plasma-derived EV
surface protein profiles as a biomarker for the early diagnosis of cardiac allograft rejection. In
their work, authors built and validated in an external cohort of patients a diagnostic model
based on EV markers that were differentially expressed in controls and patients undergoing
either antibody-mediated or acute cellular rejection [87]. The model was able to identify
patients who underwent rejection with an accuracy of 86.5%.

Exosomes are present in different biological fluids and are stable in various conditions
of temperature and pH [76,88,89]. Therefore, they seem suitable for maintaining their
characteristics unchanged until sample preparation and analysis.

Besides the promising results that suggest exosome suitability for diagnostic purposes,
several limitations hamper their use in clinical practice [73]. In particular, the majority of the
current data are based on a high variety of pre-clinical treatments and isolation/analytical
procedures which are not officially recognized for clinical use [76]. Despite current data
being still inconclusive in defining the value of exosomes in clinical practice, the theo-
retical potential of exosomes supports further clinical evaluation to determine their role
as biomarkers.

5. Promising New Biomarkers

The previously cited miRNA, lncRNA, and exosomes seem promising biomarkers for
understanding patients’ conditions and predicting cardiac deterioration. This opportunity
is even more tempting for “apparently healed” and NYHA I patients. Pathologic conditions
such as CAD, hypertension, and diabetes cause myocardial damage and increase the
likelihood of HF development. The aforementioned data suggest miRNAs involved in
CAD (e.g., miR-624, miR-340, miR-15-5p, miR-21-5p, miR-210-5p, miR-29b-3p, miR-7-
5p, miR-99a-5p), diabetes (e.g., miR-21), and hyperlipidemia (e.g., miR-122, miR-370) as
promising biomarkers (Figure 2) (Table 2). Similarly, antisense lncRNA such as CTBP1-AS2
and VIM-AS1 are associated with a higher incidence of diabetes, proving their potential
as prognostic and diagnostic biomarkers. However, further clinical studies are needed
to evaluate the prognostic power of these non-coding RNAs in the timely recognition of
cardiac deterioration at its initial stage among asymptomatic individuals.
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Heart failure; LV, Left ventricular.

Table 2. Summary of miRNAs suggested as possible biomarkers. AMI, acute myocardial infarction; CAD, coronary artery
disease; miRNA, micro-RNA; LV, Left ventricular.

Condition miRNA Ref

LV diastolic dysfunction

Hypertrophy

miR-1, miR-133a, miR-155,
miR-21

exo-miRNA-21-3p, exo-miRNA-132,
exo-miRNA-200

[39]
[40]
[69]

Fibrosis exo-miRNA-29 [69]

Cell death exo-miRNA-192, exo-miRNA-194,
exo-miRNA-134a [77]

Chronic heart failure miR-221, miR-21, miR-409-5p,
miR-376a, miR-154 [41]

AMI miR-499
miR-328, miR-134

[42]
[45]

CAD
miR-624, miR-340

miR-17-5p, miR-21-5p, miR-210-3p,
miR-29b-3p, miR-7-5p, miR-99a-5p

[43]
[44]

Hyperlipidaemia miR-122, miR-370 [46,47]

Medical treatment
miR-122-5p, miR-499a-5p, miR-885-5p

miR-1
miR-1254, miR-579

[48]
[49]
[50]

Radiotherapy miRNA-29a [51]

HF is a progressive disorder involving cellular, interstitial, and molecular changes,
causing inflammation and pathological remodeling [90]. Alterations in metabolic pathways
and hypoxia cause cardiomyocyte death and trigger subsequent alterations. BACE1-AS
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and exosomes cargo, consisting of exo-miRNA-192, exo-miRNA-194, and exo-miRNA-134a
and, might be indicators of cardiomyocyte death. In order to remove damaged cells, the
inflammatory response is activated, and ANRIL could be used as one of the indicators of
inflammation, given the fact that this specific process influences ANRIL expression. For
adapting to myocardial injury, the renin–angiotensin system stimulates protein production
in fibroblasts and cardiomyocytes, contributing to fibrosis and hypertrophy [90]. Fibrosis
consists in the accumulation of collagen, entailing increased myocardial stiffness and
systolic and diastolic dysfunction [90]. The interstitial changes might be identified by early
using Ang II, as well as exo-miRNA-29, contained in exosomes. Similarly, we deem that
exosome cargo consisting of exo-miRNA-21-3p, exo-miRNA-132, and exo-miRNA-200 and
non-coding RNAs such as miR-1, miR-133a might be promising indicators for the early
detection of hypertrophy.

Noteworthy, the cohort of “apparently healed” patients describes a group of patients
that have been diagnosed with cardiac disease but are asymptomatic and show signs
of “reverse remodeling” due to the optimization of pharmacological therapy, that, as
indicated by guidelines for HF treatment, relies on ACE inhibitors, beta-blockers, and
aldosterone antagonists for their ability to reduce myocardial remodeling [90]. Interesting
results were obtained among patients with DCM in whom, after symptom resolution
and cardiac function recovery due to the therapy, the discontinuation of treatment led
to worsening of the clinical condition [9]. In the same context, it is worth mentioning
the category of NYHA I individuals, who could suffer the worsening of conditions over
time because of the ongoing remodeling processes that continue to occur in their heart.
Previously suggested miRNAs, antisense lncRNAs, and exosomes could be promising
biomarkers in patients’ monitoring also in these circumstances, revealing the beginning
and/or worsening of existing fibrosis and hypertrophy [39]. However, further investigation
is needed to determine their exact role in pathophysiological pathways.

Given the complexity of HF, it is unlikely that relying on a single prognostic factor
would suffice to satisfy unmet needs in the diagnosis of individuals with HF. Hence,
a multimarker approach including biomarkers involved in various pathophysiological
processes might represent a promising opportunity for an early identification of patients at
risk of HF. Achieving these goals would be a radical step forward in personalized medicine.

6. Conclusions

The identification of asymptomatic individuals at risk of developing HF would be an
amazing achievement in terms of reduction in HF morbidity and mortality, as well as for the
economy, given the fact that patients with HF impose a significantly high economic burden.
However, most evidence concerning the use of biomarkers is related to overt cardiac
diseases, and further studies are needed regarding their possible informative character in
asymptomatic individuals. In the same context, non-coding RNA and exosomes cargo are
paving their way in the cardiology field as biomarkers, providing insight into undergoing
processes that could lead to HF. Therefore, further investigations should evaluate the
expression levels of those new markers in the general population, define cut-offs, and
identify their dynamic changes in pathophysiological conditions, which later on could be
useful in detecting asymptomatic phases at the very beginning of the morbidity.
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Abbreviations

ACE angiotensin-converting enzyme
AMI acute myocardial infarction
Ang-II angiotensin II
ATP atrial natriuretic peptide
BACE1 β secretase-1
BACE1-AS β secretase-1 antisense
BNP B-type or brain natriuretic peptide
CAD coronary artery disease
CHF chronic heart failure
cTn cardiac troponin
DCM dilated cardiomyopathy
EV extracellular vesicles
exo-miRNAs exosomal miRNAs
FRS Framingham Risk Score
Gal-3 Galectin-3
HF heart failure
HFpEF heart failure with preserved ejection fraction
HFrEF heart failure with reduced ejection fraction
Hsp60 heat shock protein 60
Hsp90 heat shock protein 90
lncRNAs long non-coding RNAs
LV left ventricular
MI myocardial infarction
miRNA micro-RNA
MSCs mesenchymal stem/stromal cells
NPs natriuretic peptides
NT-proBNP N-terminal pro-B-type natriuretic peptide
NYHA New York Heart Association
sST2 soluble suppression of tumorigenicity 2
TNF-α tumor necrosis factor-alpha
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