Università degli studi di Udine

On fractional Laplacians - 3

Original

Availability:
This version is available http://hdl.handle.net/11390/1071096 since 2021-03-15T15:32:20Z

Publisher:

Published
DOI:10.1051/cocv/2015032

Terms of use:
The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The aim is to enable open access to all the world.

Publisher copyright
(Article begins on next page)

On fractional Laplacians - 3

Roberta Musina* and Alexander I. Nazarov ${ }^{\dagger}$

Abstract

We investigate the role of the noncompact group of dilations in \mathbb{R}^{n} on the difference of the quadratic forms associated to the fractional Dirichlet and Navier Laplacians. Then we apply our results to study the Brezis-Nirenberg effect in two families of noncompact boundary value problems involving the Navier-Laplacian .

Keywords: Fractional Laplace operators, Navier and Dirichlet boundary conditions, Sobolev inequality, critical dimensions.

2010 Mathematics Subject Classfication: 47A63; 35A23.

1 Introduction

The Sobolev space $H^{m}\left(\mathbb{R}^{n}\right)=W_{2}^{m}\left(\mathbb{R}^{n}\right), m \in \mathbb{R}$, is the space of distributions $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ with finite norm

$$
\|u\|_{m}^{2}=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{m}|\mathcal{F} u(\xi)|^{2} d \xi,
$$

see for instance Section 2.3.3 of the monograph [19]. Here \mathcal{F} denotes the Fourier transform

$$
\mathcal{F} u(\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} u(x) d x .
$$

[^0]For arbitrary $m \in \mathbb{R}$ we define fractional Laplacian on \mathbb{R}^{n} by the quadratic form

$$
Q_{m}[u]=\left((-\Delta)^{m} u, u\right):=\int_{\mathbb{R}^{n}}|\xi|^{2 m}|\mathcal{F} u(\xi)|^{2} d \xi,
$$

with domain

$$
\operatorname{Dom}\left(Q_{m}\right)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right): Q_{m}[u]<\infty\right\}
$$

Let Ω be a bounded and smooth domain in \mathbb{R}^{n}. We introduce the "Dirichlet" fractional Laplacian in Ω (denoted by $\left.\left(-\Delta_{\Omega}\right)_{D}^{m}\right)$ as the restriction of $(-\Delta)^{m}$. The domain of its quadratic form is

$$
\operatorname{Dom}\left(Q_{m, \Omega}^{D}\right)=\left\{u \in \operatorname{Dom}\left(Q_{m}\right): \operatorname{supp} u \subset \bar{\Omega}\right\} .
$$

Also we define the "Navier" fractional Laplacian as the m-th power of the conventional Dirichlet Laplacian in the sense of spectral theory. Its quadratic form reads

$$
Q_{m, \Omega}^{N}[u]=\left(\left(-\Delta_{\Omega}\right)_{N}^{m} u, u\right):=\sum_{j} \lambda_{j}^{m} \cdot\left|\left(u, \varphi_{j}\right)\right|^{2} .
$$

Here, λ_{j} and φ_{j} are eigenvalues and eigenfunctions of the Dirichlet Laplacian in Ω, respectively, and $\operatorname{Dom}\left(Q_{m, \Omega}^{N}\right)$ consists of distributions in Ω such that $Q_{m, \Omega}^{N}[u]<\infty$.

For $m=1$ these operators evidently coincide: $\left(-\Delta_{\Omega}\right)_{N}=\left(-\Delta_{\Omega}\right)_{D}$. We emphasize that, in contrast to $\left(-\Delta_{\Omega}\right)_{N}^{m}$, the operator $\left(-\Delta_{\Omega}\right)_{D}^{m}$ is not the m-th power of the Dirichlet Laplacian for $m \neq 1$.

It is well known that for $m>0$ quadratic forms $Q_{m, \Omega}^{D}$ and $Q_{m, \Omega}^{N}$ generate Hilbert structures on their domains, and

$$
\operatorname{Dom}\left(Q_{m, \Omega}^{D}\right)=\widetilde{H}^{m}(\Omega) \subseteq \operatorname{Dom}\left(Q_{m, \Omega}^{N}\right)
$$

where

$$
\widetilde{H}^{m}(\Omega)=\left\{u \in H^{m}\left(\mathbb{R}^{n}\right): \operatorname{supp} u \subset \bar{\Omega}\right\} .
$$

It is also easy to see that for $m \in \mathbb{N}, u \in \widetilde{H}^{m}(\Omega)$

$$
Q_{m, \Omega}^{D}[u]=Q_{m, \Omega}^{N}[u] .
$$

In [12] and [14] we compared the operators $\left(-\Delta_{\Omega}\right)_{D}^{m}$ and $\left(-\Delta_{\Omega}\right)_{N}^{m}$ for non-integer m. It turned out that the difference between their quadratic forms is positive or negative depending on the fact whether $\lfloor m\rfloor$ is odd or even. However, roughly speaking, this difference disappears as $\Omega \rightarrow \mathbb{R}^{n}$.

Namely, denote by $F(\Omega)$ the class of smooth and bounded domains containing Ω. For any $u \in \operatorname{Dom}\left(Q_{m, \Omega}^{D}\right)$ the form $Q_{m, \Omega^{\prime}}^{D}[u]$ does not depend on $\Omega^{\prime} \in F(\Omega)$ while the form $Q_{m, \Omega^{\prime}}^{N}[u]$ does depend on $\Omega^{\prime} \supset \Omega$, and the following relations hold.

Proposition 1 ([14, Theorem 2]). Let $m>-1, m \notin \mathbb{N}_{0}$. If $u \in \operatorname{Dom}\left(Q_{m, \Omega}^{D}\right)$, then

$$
\begin{align*}
& Q_{m, \Omega}^{D}[u]=\inf _{\Omega^{\prime} \in F(\Omega)} Q_{m, \Omega^{\prime}}^{N}[u], \quad \text { if } \quad 2 k<m<2 k+1, \quad k \in \mathbb{N}_{0} ; \tag{1.1}\\
& Q_{m, \Omega}^{D}[u]=\sup _{\Omega^{\prime} \in F(\Omega)} Q_{m, \Omega^{\prime}}^{N}[u], \quad \text { if } \quad 2 k-1<m<2 k, \quad k \in \mathbb{N}_{0} . \tag{1.2}
\end{align*}
$$

The main result of our paper is a quantitative version of Proposition 1
Theorem 1 Assume that $m>0, m \notin \mathbb{N}$. Let $u \in \widetilde{H}^{m}(\Omega)$, and let $\operatorname{supp}(u) \subset B_{r} \subset B_{R} \subset \Omega$. Then

$$
\begin{align*}
& Q_{m, \Omega}^{N}[u] \leq Q_{m, \Omega}^{D}[u]+\frac{C(n, m) R^{n}}{(R-r)^{2 n+2 m}} \cdot\|u\|_{L_{1}(\Omega)}^{2}, \tag{1.3}\\
& \text { if } \quad\lfloor m\rfloor \vdots 2 ; \tag{1.4}\\
& Q_{m, \Omega}^{D}[u] \leq Q_{m, \Omega}^{N}[u]+\frac{C(n, m) R^{n}}{(R-r)^{2 n+2 m}} \cdot\|u\|_{L_{1}(\Omega)}^{2}, \\
& \text { if } \quad\lfloor m\rfloor \nLeftarrow 2 .
\end{align*}
$$

The proof of Theorem 1 is given in Section 2. In Section 3 we apply this result for studying the equations 1

$$
\begin{gather*}
\left(-\Delta_{\Omega}\right)_{N}^{m} u=\lambda\left(-\Delta_{\Omega}\right)_{N}^{s} u+|u|^{2_{m}^{*}-2} u \quad \text { in } \Omega \tag{1.5}\\
\left(-\Delta_{\Omega}\right)_{N}^{m} u=\lambda|x|^{-2 s} u+|u|^{2_{m}^{*}-2} u \quad \text { in } \Omega \tag{1.6}
\end{gather*}
$$

where $0 \leq s<m<\frac{n}{2}$ and $2_{m}^{*}=\frac{2 n}{n-2 m}$. By solution of (1.5) or (1.6) we mean a weak solution from $\operatorname{Dom}\left(Q_{m, \Omega}^{N}\right)$.

In the basic paper [2] by Brezis and Nirenberg a remarkable phenomenon was discovered for the problem

$$
\begin{equation*}
-\Delta u=\lambda u+|u|^{\frac{4}{n-2}} u \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega, \tag{1.7}
\end{equation*}
$$

which coincides with (1.5) and (1.6) with $n>2, m=1, s=0$. Namely, the existence of a nontrivial solution for any small $\lambda>0$ holds if $n \geq 4$; in contrast, for $n=3$ non-existence phenomena for any sufficiently small $\lambda>0$ can be observed. For this reason, the dimension $n=3$ has been named critical for problem (1.7) (compare with [16], [8).

[^1]As was pointed out in [13], the Brezis-Nirenberg effect is a nonlinear analog of the so-called zero-energy resonance for the Schrödinger operators (see, e.g., [21] and [22, pp.287-288]).

After [2], a large number of papers have been focussed on studying the effect of lower order linear perturbations in noncompact variational problems, see for instance the list of references included in [8, Chapter 7] about the case $m \in \mathbb{N}, s=0$, and the recent paper [13], where a survey of earlier results for the Dirichlet case was given. For the Navier case with non-integer m, the only papers we know consider $m \in(0,1)$ and $s=0$, see [18] and [1]. See also the recent paper [5] and references therein for nonlinear lower-order perturbations.

We consider the general case and prove the following result (see Section 3 for a more precise statement), that corresponds to [13, Theorem 4.2].

Theorem 2 Let $0 \leq s<m<\frac{n}{2}$. If $s \geq 2 m-\frac{n}{2}$ then n is not a critical dimension for the (1.5) and (1.6). This means that both these equations have ground state solutions for all sufficiently small $\lambda>0$.

Let us recall some notation. B_{R} is the ball with radius R centered at the origin, \mathbb{S}_{R} is its boundary. We denote by c with indices all explicit constants while C without indices stand for all inessential positive constants. To indicate that C depends on some parameter a, we write $C(a)$.

2 Proof of Theorem 1

Notice that we can assume $u \in \mathcal{C}_{0}^{\infty}(\Omega)$, the general case is covered by approximation.
Proof of (1.3). Let $m=2 k+\sigma, k \in \mathbb{N}_{0}, \sigma \in(0,1)$. Denote by $w^{D}(x, y), x \in \mathbb{R}^{n}, y>0$, the Caffarelli-Silvestre extension of $(-\Delta)^{k} u$ (see [4), that is the solution of the boundary value problem

$$
-\operatorname{div}\left(y^{1-2 \sigma} \nabla w\right)=0 \quad \text { in } \quad \mathbb{R}^{n} \times \mathbb{R}_{+} ;\left.\quad w\right|_{y=0}=(-\Delta)^{k} u
$$

given by the generalized Poisson formula

$$
\begin{equation*}
w^{D}(x, y)=c_{1}(n, \sigma) \int_{\mathbb{R}^{n}} \frac{y^{2 \sigma}(-\Delta)^{k} u(\xi)}{\left(|x-\xi|^{2}+y^{2}\right)^{\frac{n+2 \sigma}{2}}} d \xi \tag{2.1}
\end{equation*}
$$

In [4] it is also proved that

$$
\begin{equation*}
Q_{m, \Omega}^{D}[u]=Q_{\sigma, \Omega}^{D}\left[(-\Delta)^{k} u\right]=c_{2}(n, \sigma) \int_{0}^{\infty} \int_{\mathbb{R}^{n}} y^{1-2 \sigma}\left|\nabla w^{D}\right|^{2} d x d y . \tag{2.2}
\end{equation*}
$$

Integrating by parts (2.1), we arrive at following estimates for $|x|>r$:

$$
\begin{equation*}
\left|w^{D}(x, y)\right| \leq \frac{C(n, m) y^{2 \sigma}\|u\|_{L_{1}(\Omega)}}{\left((|x|-r)^{2}+y^{2}\right)^{\frac{n+m+\sigma}{2}}} ; \quad\left|\nabla w^{D}(x, y)\right| \leq \frac{C(n, m) y^{2 \sigma-1}\|u\|_{L_{1}(\Omega)}}{\left((|x|-r)^{2}+y^{2}\right)^{\frac{n+m+\sigma}{2}}} \tag{2.3}
\end{equation*}
$$

Following [12, Theorem 3], we define, for $x \in \bar{B}_{R}$ and $y \geq 0$, the function

$$
\widetilde{w}(x, y)=w^{D}(x, y)-\widetilde{\phi}(x, y)
$$

where $\widetilde{\phi}(\cdot, y)$ is the harmonic extension of $w^{D}(\cdot, y)$ on B_{R}, that is,

$$
-\Delta_{x} \widetilde{\phi}(\cdot, y)=0 \quad \text { in } B_{R} ; \quad \widetilde{\phi}(\cdot, y)=w^{D}(\cdot, y) \quad \text { on } \mathbb{S}_{R}
$$

Clearly, $\left.\widetilde{w}\right|_{y=0}=(-\Delta)^{k} u$ and $\left.\widetilde{w}\right|_{x \in \mathbb{S}_{R}}=0$. Further, we have

$$
\begin{gather*}
\int_{0}^{\infty} \int_{B_{R}} y^{1-2 \sigma}|\nabla \widetilde{w}|^{2} d x d y=\int_{0}^{\infty} \int_{B_{R}} y^{1-2 \sigma}\left(\left|\nabla w^{D}\right|^{2}-2 \nabla w^{D} \cdot \nabla \widetilde{\phi}+|\nabla \widetilde{\phi}|^{2}\right) d x d y \\
=\int_{0}^{\infty} \int_{B_{R}} y^{1-2 \sigma}\left|\nabla w^{D}\right|^{2} d x d y-2 \int_{0}^{\infty} \int_{\mathbb{S}_{R}} y^{1-2 \sigma}\left(\nabla w^{D} \cdot \mathbf{n}\right) \widetilde{\phi} d \mathbb{S}_{R}(x) d y \\
+\int_{0}^{\infty} \int_{B_{R}} y^{1-2 \sigma}|\nabla \widetilde{\phi}(x, y)|^{2} d x d y \tag{2.4}
\end{gather*}
$$

Since $\widetilde{\phi}(\cdot, y)=w^{D}(\cdot, y)$ on \mathbb{S}_{R}, we can use (2.3) to get

$$
\left|\int_{0}^{\infty} \int_{\mathbb{S}_{R}} y^{1-2 \sigma}\left(\nabla w^{D} \cdot \mathbf{n}\right) \widetilde{\phi} d \mathbb{S}_{R}(x) d y\right| \leq \frac{C(n, m) R^{n-1}}{(R-r)^{2 n+2 m-1}} \cdot\|u\|_{L_{1}(\Omega)}^{2}
$$

Now we estimate the last integral in (2.4). It is easy to see that $|\nabla \widetilde{\phi}(\cdot, y)|^{2}$ is subharmonic in B_{R} and thus the function

$$
\rho \mapsto \frac{1}{\rho^{n-1}} \int_{\mathbb{S}_{\rho}}|\nabla \widetilde{\phi}(x, y)|^{2} d \mathbb{S}_{\rho}(x)
$$

is nondecreasing for $\rho \in(0, R)$. This implies

$$
\begin{aligned}
\int_{B_{R}}|\nabla \widetilde{\phi}(x, y)|^{2} d x & =\int_{0}^{R} \int_{\mathbb{S}_{\rho}}|\nabla \widetilde{\phi}(x, y)|^{2} d \mathbb{S}_{\rho}(x) d \rho \\
& \leq \frac{R}{n} \int_{\mathbb{S}_{R}}\left(\left|\nabla_{x} \widetilde{\phi}(x, y)\right|^{2}+\left|\partial_{y} \widetilde{\phi}(x, y)\right|^{2}\right) d \mathbb{S}_{R}(x)
\end{aligned}
$$

Using the fact that $\partial_{y} \widetilde{\phi}(x, y)=\partial_{y} w^{D}(x, y)$ for $x \in \mathbb{S}_{R}$ and the well known estimate

$$
\int_{\mathbb{S}_{R}}\left|\nabla_{x} \widetilde{\phi}(x, y)\right|^{2} d \mathbb{S}_{R}(x) \leq C(n) \int_{\mathbb{S}_{R}}\left|\nabla_{x} w^{D}(x, y)\right|^{2} d \mathbb{S}_{R}(x)
$$

we can apply (2.3) and arrive at

$$
\int_{0}^{\infty} \int_{B_{R}} y^{1-2 \sigma}|\nabla \widetilde{\phi}(x, y)|^{2} d x d y \leq \frac{C(n, m) R^{n}}{(R-r)^{2 n+2 m}} \cdot\|u\|_{L_{1}(\Omega)}^{2}
$$

In conclusion, from (2.4) we infer

$$
\begin{equation*}
\int_{0}^{\infty} \int_{B_{R}} y^{1-2 \sigma}|\nabla \widetilde{w}|^{2} d x d y \leq \int_{0}^{\infty} \int_{B_{R}} y^{1-2 \sigma}\left|\nabla w^{D}\right|^{2} d x d y+\frac{C(n, m) R^{n}}{(R-r)^{2 n+2 m}} \cdot\|u\|_{L_{1}(\Omega)}^{2} \tag{2.5}
\end{equation*}
$$

Now we use the Stinga-Torrea characterization of $Q_{\sigma, \Omega}^{N}$. Namely, a quite general result of [17] implies that

$$
\begin{equation*}
Q_{m, \Omega}^{N}[u]=Q_{\sigma, \Omega}^{N}\left[(-\Delta)^{k} u\right]=c_{2}(n, \sigma) \inf _{\substack{\left.w\right|_{x \in \partial \Omega}=\left.0 \\ w\right|_{y=0}=(-\Delta)^{k} u}} \int_{0}^{\infty} \int_{\Omega} y^{1-2 \sigma}|\nabla w|^{2} d x d y \tag{2.6}
\end{equation*}
$$

Relations (2.6), (2.5) and (2.2) give us

$$
\begin{aligned}
& Q_{m, \Omega}^{N}[u] \leq Q_{m, B_{R}}^{N}[u] \leq c_{2}(n, \sigma) \int_{0}^{\infty} \int_{B_{R}} y^{1-2 \sigma}|\nabla \widetilde{w}|^{2} d x d y \\
& \leq c_{2}(n, \sigma) \int_{0}^{\infty} \int_{B_{R}} y^{1-2 \sigma}\left|\nabla w^{D}\right|^{2} d x d y+\frac{C(n, m) R^{n}}{(R-r)^{2 n+2 m}} \cdot\|u\|_{L_{1}(\Omega)}^{2} \\
& \leq Q_{m, \Omega}^{D}[u]+\frac{C(n, m) R^{n}}{(R-r)^{2 n+2 m}} \cdot\|u\|_{L_{1}(\Omega)}^{2}
\end{aligned}
$$

and (1.3) follows.
Proof of (1.4). Let $m=2 k-\sigma, k \in \mathbb{N}, \sigma \in(0,1)$. Denote by $w^{-D}(x, y), x \in \mathbb{R}^{n}, y>0$, the "dual" Caffarelli-Silvestre extension of $(-\Delta)^{k} u$ (see [3] and [14]), that is the solution of the boundary value problem

$$
-\operatorname{div}\left(y^{1-2 \sigma} \nabla w\right)=0 \quad \text { in } \quad \mathbb{R}^{n} \times \mathbb{R}_{+} ;\left.\quad y^{1-2 \sigma} \partial_{y} w\right|_{y=0}=-(-\Delta)^{k} u
$$

given by the formula

$$
\begin{equation*}
w^{-D}(x, y)=c_{3}(n, \sigma) \int_{\mathbb{R}^{n}} \frac{(-\Delta)^{k} u(\xi)}{\left(|x-\xi|^{2}+y^{2}\right)^{\frac{n-2 \sigma}{2}}} d \xi . \tag{2.7}
\end{equation*}
$$

Note that the representation (2.7) is true also for $n=1<2 \sigma$ while for $n=1, \sigma=1 / 2$ it should be rewritten as follows:

$$
w^{-D}(x, y)=c_{3}(1,1 / 2) \int_{\mathbb{R}^{n}}(-\Delta)^{k} u(\xi) \ln \left(|x-\xi|^{2}+y^{2}\right) d \xi
$$

It is also shown in 14 that

$$
\begin{align*}
Q_{m, \Omega}^{D}[u] & =Q_{-\sigma, \Omega}^{D}\left[(-\Delta)^{k} u\right] \tag{2.8}\\
& =\frac{1}{c_{2}(n, \sigma)}\left(2 \int_{\mathbb{R}^{n}}(-\Delta)^{k} u(x) w^{-D}(x, 0) d x-\int_{0}^{\infty} \int_{\mathbb{R}^{n}} y^{1-2 \sigma}\left|\nabla w^{-D}\right|^{2} d x d y\right) .
\end{align*}
$$

Integrating by parts (2.7), we arrive at following estimates for $|x|>r$:

$$
\begin{equation*}
\left|w^{-D}(x, y)\right| \leq \frac{C(n, m)\|u\|_{L_{1}(\Omega)}}{\left((|x|-r)^{2}+y^{2}\right)^{\frac{n+m-\sigma}{2}}} ; \quad\left|\nabla w^{-D}(x, y)\right| \leq \frac{C(n, m)\|u\|_{L_{1}(\Omega)}}{\left((|x|-r)^{2}+y^{2}\right)^{\frac{n+m+1-\sigma}{2}}} . \tag{2.9}
\end{equation*}
$$

Now we define, as in [14, Theorem 2],

$$
\widehat{w}(x, y)=w^{-D}(x, y)-\widehat{\phi}(x, y), \quad x \in \bar{B}_{R}, y \geq 0
$$

where

$$
-\Delta_{x} \widehat{\phi}(\cdot, y)=0 \quad \text { in } B_{R} ; \quad \widehat{\phi}(\cdot, y)=w^{-D}(\cdot, y) \quad \text { on } \mathbb{S}_{R} .
$$

Clearly, $\left.\widehat{w}\right|_{x \in \mathbb{S}_{R}}=0$. Arguing as for (1.3) and using (2.9) instead of (2.3), we obtain

$$
\begin{equation*}
\int_{0}^{\infty} \int_{B_{R}} y^{1-2 \sigma}|\nabla \widehat{w}|^{2} d x d y \leq \int_{0}^{\infty} \int_{B_{R}} y^{1-2 \sigma}\left|\nabla w^{-D}\right|^{2} d x d y+\frac{C(n, m) R^{n}}{(R-r)^{2 n+2 m}} \cdot\|u\|_{L_{1}(\Omega)}^{2} . \tag{2.10}
\end{equation*}
$$

We can use the "dual" Stinga-Torrea characterization of $Q_{-\sigma, \Omega}^{N}$. It was proved in [14 that

$$
\begin{align*}
Q_{m, \Omega}^{N}[u] & =Q_{-\sigma, \Omega}^{N}\left[(-\Delta)^{k} u\right] \tag{2.11}\\
& =\frac{1}{c_{2}(n, \sigma)} \sup _{\left.w\right|_{x \in \partial \Omega=0}}\left(\int_{\Omega}(-\Delta)^{k} u(x) w(x, 0) d x-\int_{0}^{\infty} \int_{\Omega} y^{1-2 \sigma}|\nabla w|^{2} d x d y\right) .
\end{align*}
$$

Relations (2.11), (2.10), (2.8) and the evident equality

$$
\int_{B_{R}}(-\Delta)^{k} u(x) \widehat{\phi}(x, 0) d x=0
$$

give us

$$
\begin{aligned}
Q_{m, \Omega}^{N}[u] \geq & Q_{m, B_{R}}^{N}[u] \geq \\
c_{2}(n, \sigma) & 1 \\
\geq & \frac{1}{c_{2}(n, \sigma)}\left(2 \int_{B_{R}}(-\Delta)^{k} u(x) \widehat{w}(x, 0) d x-\int_{B_{R}}^{\infty} \int_{B_{R}} y^{1-2 \sigma}|\nabla \widehat{w}|^{2} d x d y\right) \\
& \quad-\frac{C(n, m) R^{n}}{(R-r)^{2 n+2 m}} \cdot\|u\|_{L_{1}(\Omega)}^{2} \leq Q_{m, \Omega}^{D}[u]-\frac{C(n, m) R^{n}}{(R-r)^{2 n+2 m}} \cdot\|u\|_{L_{1}(\Omega)}^{2},
\end{aligned}
$$

and (1.4) follows. The proof is complete.

3 The Brezis-Nirenberg effect for Navier fractional Laplacians

We recall the Sobolev and Hardy inequalities

$$
\begin{align*}
& Q_{m}[u] \geq \mathcal{S}_{m}\left(\int_{\mathbb{R}^{n}}|u|^{2_{m}^{*}} d x\right)^{2 / 2_{m}^{*}} \tag{3.1}\\
& Q_{m}[u] \geq \mathcal{H}_{m} \int_{\mathbb{R}^{n}}|x|^{-2 m}|u|^{2} d x \tag{3.2}
\end{align*}
$$

that hold for any $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $0<m<\frac{n}{2}$. The best Sobolev constant \mathcal{S}_{m} and the best Hardy constant \mathcal{H}_{m} were explicitly computed in [6] and in [10], respectively.

It is well known that \mathcal{H}_{m} is not attained, that is, there are no functions with finite left- and right-hand sides of (3.2) providing equality in (3.2). In contrast, it has been proved in (6) that \mathcal{S}_{m} is attained by a unique family of functions, all of them being obtained from

$$
\begin{equation*}
\phi(x)=\left(1+|x|^{2}\right)^{\frac{2 m-n}{2}} \tag{3.3}
\end{equation*}
$$

by translations, dilations in \mathbb{R}^{n} and multiplication by constants.

A standard dilation argument implies that

$$
\inf _{\substack{u \in \operatorname{Dom}\left(Q_{m, \Omega}^{D}\right) \\ u \neq 0}} \frac{Q_{m, \Omega}^{D}[u]}{\left(\int_{\Omega}|u|^{2 *} d x\right)^{2 / 2_{m}^{*}}}=\mathcal{S}_{m} .
$$

The key fact used in further considerations is the equality

$$
\begin{equation*}
\inf _{\substack{u \in \operatorname{Dom}\left(Q_{m, \Omega}^{N}\right) \\ u \neq 0}} \frac{Q_{m, \Omega}^{N}[u]}{\left(\int_{\Omega}|u|^{2_{m}^{*}} d x\right)^{2 / 2_{m}^{*}}}=\mathcal{S}_{m}, \tag{3.4}
\end{equation*}
$$

that has been established in [15] (see also earlier results [9, 20] for $m=2$, [8] for $m \in \mathbb{N}$ and [12] for $0<m<1)$. Clearly, the Sobolev constant \mathcal{S}_{m} is never achieved on $\operatorname{Dom}\left(Q_{m, \Omega}^{N}\right)$.

The corresponding equality for the Hardy constant, that is,

$$
\begin{equation*}
\inf _{\substack{u \in \operatorname{Dom}\left(Q_{m, \Omega}^{N}\right) \\ u \neq 0}} \frac{Q_{m, \Omega}^{N}[u]}{\int_{\Omega}|x|^{-2 m}|u|^{2} d x}=\mathcal{H}_{m}, \tag{3.5}
\end{equation*}
$$

was proved in [15] as well (see also [11] and [7] for $m \in \mathbb{N}$).
We point out that the infima

$$
\begin{equation*}
\Lambda_{1}(m, s):=\inf _{\substack{u \in \operatorname{Dom}\left(Q_{m, \Omega}^{N}\right) \\ u \neq 0}} \frac{Q_{m, \Omega}^{N}[u]}{Q_{s, \Omega}^{N}[u]}, \quad \widetilde{\Lambda}_{1}(m, s):=\inf _{\substack{u \in \operatorname{Dom}\left(Q_{m, \Omega}^{N} \\ u \neq 0\right.}} \frac{Q_{m, \Omega}^{N}[u]}{\int_{\Omega}|x|^{-2 s}|u|^{2} d x} \tag{3.6}
\end{equation*}
$$

are positive and achieved. Since $\operatorname{Dom}\left(Q_{m, \Omega}^{N}\right)$ is compactly embedded into $\operatorname{Dom}\left(Q_{s, \Omega}^{N}\right)$, this fact is well known for $\Lambda_{1}(m, s)$ and follows from (3.5) for $\widetilde{\Lambda}_{1}(m, s)$.

Weak solutions to (1.5), (1.6) can be obtained as suitably normalized critical points of the functionals

$$
\begin{gather*}
\mathcal{R}_{\lambda, m, s}^{\Omega}[u]=\frac{Q_{m, \Omega}^{N}[u]-\lambda Q_{s, \Omega}^{N}[u]}{\left(\int_{\Omega}|u|^{2 *} d x\right)^{2 / 2_{m}^{*}}}, \tag{3.7}\\
\widetilde{\mathcal{R}}_{\lambda, m, s}^{\Omega}[u]=\frac{Q_{m, \Omega}^{N}[u]-\lambda \int_{\Omega}|x|^{-2 s}|u|^{2} d x}{\left(\int_{\Omega}|u|^{2 *} d x\right)^{2 / 2_{m}^{*}}}, \tag{3.8}
\end{gather*}
$$

respectively. It is easy to see that both functionals are well defined on $\operatorname{Dom}\left(Q_{m, \Omega}^{N}\right) \backslash\{0\}$.
In fact, we prove the existence of ground states for functionals (3.7) and (3.8). We introduce the quantities

$$
\mathcal{S}_{\lambda}^{\Omega}(m, s)=\inf _{\substack{u \in \operatorname{Dom}\left(Q_{m, \Omega}^{N}\right) \\ u \neq 0}} \mathcal{R}_{\lambda, m, s}^{\Omega}[u] ; \quad \widetilde{\mathcal{S}}_{\lambda}^{\Omega}(m, s)=\inf _{\substack{u \in \operatorname{Dom}\left(Q_{m, \Omega}^{N}\right) \\ u \neq 0}} \widetilde{\mathcal{R}}_{\lambda, m, s}^{\Omega}[u] .
$$

By standard arguments we have $\mathcal{S}_{\lambda}^{\Omega}(m, s) \leq \mathcal{S}_{m}$. In addition, if $\lambda \leq 0$ then $\mathcal{S}_{\lambda}^{\Omega}(m, s)=\mathcal{S}_{m}$ and it is not achieved. Similar statements hold for $\widetilde{\mathcal{S}}_{\lambda}^{\Omega}(m, s)$.

We are in position to prove our existence result that includes Theorem [2 in the introduction.
Theorem 3 Assume $s \geq 2 m-\frac{n}{2}$.
i) For any $0<\lambda<\Lambda_{1}(m, s)$ the infimum $\mathcal{S}_{\lambda}^{\Omega}(m, s)$ is achieved and (1.5) has a nontrivial solution in $\operatorname{Dom}\left(Q_{m, \Omega}^{N}\right)$.
ii) For any $0<\lambda<\widetilde{\Lambda}_{1}(m, s)$ the infimum $\widetilde{\mathcal{S}}_{\lambda}^{\Omega}(m, s)$ is achieved and (1.6) has a nontrivial solution in $\operatorname{Dom}\left(Q_{m, \Omega}^{N}\right)$.

Proof. We prove i), the proof of the second statement is similar. Using the relation (3.4) and arguing for instance as in [13] one has that if $0<\mathcal{S}_{\lambda}^{\Omega}(m, s)<\mathcal{S}_{m}$, then $\mathcal{S}_{\lambda}^{\Omega}(m, s)$ is achieved.

Since $0<\lambda<\Lambda_{1}(m, s)$, then $\mathcal{S}_{\lambda}^{\Omega}(m, s)>0$ by (3.6).
To obtain the strict inequality $\mathcal{S}_{\lambda}^{\Omega}(m, s)<\mathcal{S}_{m}$ we follow [2], and we take advantage of the computations in [13].

Let ϕ be the extremal of the Sobolev inequality (3.1) given by (3.3). In particular,

$$
\begin{equation*}
M:=Q_{m}[\phi]=\mathcal{S}_{m}\left(\int_{\mathbb{R}^{n}}|\phi|^{2_{m}^{*}} d x\right)^{2 / 2_{m}^{*}} . \tag{3.9}
\end{equation*}
$$

Fix a cutoff function $\varphi \in \mathcal{C}_{0}^{\infty}(\Omega)$, such that $\varphi \equiv 1$ on the ball $\{|x|<\delta\}$ and $\varphi \equiv 0$ outside the ball $\{|x|<2 \delta\}$.

If $\varepsilon>0$ is small enough, the function

$$
u_{\varepsilon}(x):=\varepsilon^{2 m-n} \varphi(x) \phi\left(\frac{x}{\varepsilon}\right)=\varphi(x)\left(\varepsilon^{2}+|x|^{2}\right)^{\frac{2 m-n}{2}}
$$

has compact support in Ω.

From [13, Lemma 3.1] we conclude

$$
\begin{array}{ll}
\mathfrak{A}_{m}^{\varepsilon}:=Q_{m, \Omega}^{D}\left[u_{\varepsilon}\right] & \leq \varepsilon^{2 m-n}\left(M+C(\delta) \varepsilon^{n-2 m}\right) \\
\mathcal{A}_{s}^{\varepsilon}:=\int_{\Omega}|x|^{-2 s}\left|u_{\varepsilon}\right|^{2} d x & \geq \begin{cases}C(\delta) \varepsilon^{4 m-n-2 s} & \text { if } s>2 m-\frac{n}{2} \\
C(\delta)|\log \varepsilon| \quad \text { if } & s=2 m-\frac{n}{2}\end{cases} \\
\widetilde{\mathfrak{A}}_{s}^{\varepsilon}:=Q_{s, \Omega}^{N}\left[u_{\varepsilon}\right] \quad & \geq \mathcal{H}_{s} \mathcal{A}_{s}^{\varepsilon} \quad[\text { see (3.5)] }
\end{array}
$$

If m is an integer or if $\lfloor m\rfloor \dot{\%}$, then by (1.2)

$$
\widetilde{\mathfrak{A}}_{m}^{\varepsilon}:=Q_{m, \Omega}^{N}\left[u_{\varepsilon}\right] \leq \mathfrak{A}_{m}^{\varepsilon},
$$

and we obtain

$$
\begin{align*}
& \mathcal{R}_{\lambda, m, s}^{\Omega}\left[u_{\varepsilon}\right] \leq \mathcal{S}_{m} \frac{1+C(\delta) \varepsilon^{n-2 m}-\lambda C(\delta) \varepsilon^{2 m-2 s}}{1-C(\delta) \varepsilon^{n}}, \quad \text { if } \quad s>2 m-\frac{n}{2} \tag{3.10}\\
& \mathcal{R}_{\lambda, m, s}^{\Omega}\left[u_{\varepsilon}\right] \leq \mathcal{S}_{m} \frac{1+C(\delta) \varepsilon^{n-2 m}-\lambda C(\delta) \varepsilon^{n-2 m}|\log \varepsilon|}{1-C(\delta) \varepsilon^{n}}, \quad \text { if } \quad s=2 m-\frac{n}{2} . \tag{3.11}
\end{align*}
$$

Thus, for any sufficiently small $\varepsilon>0$ we have that $\mathcal{R}_{\lambda, m, s}^{\Omega}\left[u_{\varepsilon}\right]<\mathcal{S}_{m}$, and the statement follows.
It remains to consider the case $\lfloor m\rfloor \vdots 2$. Since $\left\|u_{\varepsilon}\right\|_{L_{1}(\Omega)} \leq C(\delta)$, the estimate (1.3) implies

$$
\widetilde{\mathfrak{A}}_{m}^{\varepsilon} \leq \mathfrak{A}_{m}^{\varepsilon}+C(\delta)=\varepsilon^{2 m-n}\left(M+C(\delta) \varepsilon^{n-2 m}\right),
$$

and we again arrive at (3.10), (3.11).
For the case $s<2 m-\frac{n}{2}$ we limit ourselves to point out the next simple existence result, as in (13).

Theorem 4 Assume $s<2 m-\frac{n}{2}$.
i) There exists $\lambda^{*} \in\left[0, \Lambda_{1}(m, s)\right)$ such that for any $\lambda \in\left(\lambda^{*}, \Lambda_{1}(m, s)\right)$ the infimum $\mathcal{S}_{\lambda}^{\Omega}(m, s)$ is attained, and hence (1.5) has a nontrivial solution.
ii) There exists $\widetilde{\lambda}^{*} \in\left[0, \widetilde{\Lambda}_{1}(m, s)\right)$ such that for any $\lambda \in\left(\widetilde{\lambda}^{*}, \widetilde{\Lambda}_{1}(m, s)\right)$ the infimum $\widetilde{\mathcal{S}}_{\lambda}^{\Omega}(m, s)$ is attained, and hence (1.6) has a nontrivial solution.

References

[1] B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), no. 11, 6133-6162.
[2] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437-477.
[3] X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré, Anal. Non Linéaire 31 (2014), no. 1, 23-53.
[4] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Part. Diff. Eqs 32 (2007), no. 7-9, 1245-1260.
[5] E. Colorado, A. de Pablo and U. Sánchez, Perturbations of a critical fractional equation, Pacific J. Math. 271 (2014), no. 1, 65-84.
[6] A. Cotsiolis and N. K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 (2004), no. 1, 225-236.
[7] F. Gazzola, H.-C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc. 356 (2004), no. 6, 2149-2168.
[8] F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic boundary value problems, Lecture Notes in Mathematics, 1991, Springer, Berlin, 2010.
[9] Y. Ge, Sharp Sobolev inequalities in critical dimensions, Michigan Math. J. 51 (2003), no. 1, 27-45.
[10] I. W. Herbst, Spectral theory of the operator $\left(p^{2}+m^{2}\right)^{1 / 2}-Z e^{2} / r$, Comm. Math. Phys. 53 (1977), no. 3, 285-294.
[11] E. Mitidieri, A simple approach to Hardy inequalities, Mat. Zametki 67 (2000), no. 4, 563-572 (in Russian); English transl.: Math. Notes 67 (2000), no. 3-4, 479-486.
[12] R. Musina and A. I. Nazarov, On fractional Laplacians, Comm. Partial Differential Equations 39 (2014), no. 9, 1780-1790.
[13] R. Musina and A. I. Nazarov, Non-critical dimensions for critical problems involving fractional Laplacians, Rev. Mat. Iberoamericana, to appear.
[14] R. Musina and A. I. Nazarov, On fractional Laplacians - 2, preprint (2014).
[15] R. Musina and A. I. Nazarov, On the Sobolev and Hardy constants for the fractional Navier Laplacian, Nonlinear Analysis, online first (2014).
[16] P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl. (9) 69 (1990), no. 1, 55-83.
[17] P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations 35 (2010), no. 11, 2092-2122.
[18] J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations 42 (2011), no. 1-2, 21-41.
[19] H. Triebel, Interpolation theory, function spaces, differential operators, Deutscher Verlag Wissensch., Berlin, 1978.
[20] R. C. A. M. Van der Vorst, Best constant for the embedding of the space $H^{2} \cap H_{0}^{1}(\Omega)$ into $L^{2 N /(N-4)}(\Omega)$, Differential Integral Equations 6 (1993), no. 2, 259-276.
[21] D. R. Yafaev, On the theory of the discrete spectrum of the three-particle Schrödinger operator, Mat. Sbornik, 94(136) (1974), no. 4(8), 567-593 (Russian); English transl.: Mathem. of the USSR-Sbornik 23 (1974), no. 4, 535-559.
[22] D. R. Yafaev, Mathematical Scattering Theory: Analytic Theory, Mathematical Surveys and Monographs, 158, AMS, 2010.

[^0]: *Dipartimento di Matematica ed Informatica, Università di Udine, via delle Scienze, 206 - 33100 Udine, Italy. Email: roberta.musina@uniud.it. Partially supported by Miur-PRIN 2009WRJ3W7-001 "Fenomeni di concentrazione e problemi di analisi geometrica".
 ${ }^{\dagger}$ St.Petersburg Department of Steklov Institute, Fontanka 27, St.Petersburg, 191023, Russia, and St.Petersburg State University, Universitetskii pr. 28, St.Petersburg, 198504, Russia. E-mail: al.il.nazarov@gmail.com. Supported by RFBR grant 14-01-00534 and by St.Petersburg University grant 6.38.670.2013.

[^1]: ${ }^{1}$ we assume that $0 \in \Omega$.

