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5 On fractional Laplacians – 3

Roberta Musina∗ and Alexander I. Nazarov†

Abstract

We investigate the role of the noncompact group of dilations in Rn on the difference of the

quadratic forms associated to the fractional Dirichlet and Navier Laplacians. Then we apply

our results to study the Brezis–Nirenberg effect in two families of noncompact boundary

value problems involving the Navier-Laplacian .

Keywords: Fractional Laplace operators, Navier and Dirichlet boundary conditions, Sobolev in-

equality, critical dimensions.
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1 Introduction

The Sobolev space Hm(Rn) = Wm
2 (Rn), m ∈ R, is the space of distributions u ∈ S ′(Rn) with

finite norm

‖u‖2m =

∫

Rn

(
1 + |ξ|2

)m
|Fu(ξ)|2 dξ,

see for instance Section 2.3.3 of the monograph [19]. Here F denotes the Fourier transform

Fu(ξ) =
1

(2π)n/2

∫

Rn

e−iξ·xu(x) dx.
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For arbitrary m ∈ R we define fractional Laplacian on R
n by the quadratic form

Qm[u] = ((−∆)mu, u) :=

∫

Rn

|ξ|2m|Fu(ξ)|2dξ,

with domain

Dom(Qm) = {u ∈ S ′(Rn) : Qm[u] < ∞}.

Let Ω be a bounded and smooth domain in R
n. We introduce the “Dirichlet” fractional

Laplacian in Ω (denoted by (−∆Ω)
m
D) as the restriction of (−∆)m. The domain of its quadratic

form is

Dom(QD
m,Ω) = {u ∈ Dom(Qm) : suppu ⊂ Ω}.

Also we define the “Navier” fractional Laplacian as the m-th power of the conventional Dirichlet

Laplacian in the sense of spectral theory. Its quadratic form reads

QN
m,Ω[u] = ((−∆Ω)

m
Nu, u) :=

∑
j
λm
j · |(u, ϕj)|

2.

Here, λj and ϕj are eigenvalues and eigenfunctions of the Dirichlet Laplacian in Ω, respectively,

and Dom(QN
m,Ω) consists of distributions in Ω such that QN

m,Ω[u] < ∞.

For m = 1 these operators evidently coincide: (−∆Ω)N = (−∆Ω)D. We emphasize that, in

contrast to (−∆Ω)
m
N , the operator (−∆Ω)

m
D is not the m-th power of the Dirichlet Laplacian for

m 6= 1.

It is well known that for m > 0 quadratic forms QD
m,Ω and QN

m,Ω generate Hilbert structures

on their domains, and

Dom(QD
m,Ω) = H̃m(Ω) ⊆ Dom(QN

m,Ω),

where

H̃m(Ω) = {u ∈ Hm(Rn) : suppu ⊂ Ω} .

It is also easy to see that for m ∈ N, u ∈ H̃m(Ω)

QD
m,Ω[u] = QN

m,Ω[u].

In [12] and [14] we compared the operators (−∆Ω)
m
D and (−∆Ω)

m
N for non-integer m. It

turned out that the difference between their quadratic forms is positive or negative depending

on the fact whether ⌊m⌋ is odd or even. However, roughly speaking, this difference disappears

as Ω → R
n.
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Namely, denote by F (Ω) the class of smooth and bounded domains containing Ω. For any

u ∈ Dom(QD
m,Ω) the form QD

m,Ω′ [u] does not depend on Ω′ ∈ F (Ω) while the form QN
m,Ω′ [u] does

depend on Ω′ ⊃ Ω, and the following relations hold.

Proposition 1 ([14, Theorem 2]). Let m > −1, m /∈ N0. If u ∈ Dom(QD
m,Ω), then

QD
m,Ω[u] = inf

Ω′∈F (Ω)
QN

m,Ω′ [u], if 2k < m < 2k + 1, k ∈ N0; (1.1)

QD
m,Ω[u] = sup

Ω′∈F (Ω)
QN

m,Ω′ [u], if 2k − 1 < m < 2k, k ∈ N0. (1.2)

The main result of our paper is a quantitative version of Proposition 1.

Theorem 1 Assume that m > 0, m /∈ N. Let u ∈ H̃m(Ω), and let supp(u) ⊂ Br ⊂ BR ⊂ Ω.

Then

QN
m,Ω[u] ≤ QD

m,Ω[u] +
C(n,m)Rn

(R− r)2n+2m
· ‖u‖2L1(Ω), if ⌊m⌋

... 2; (1.3)

QD
m,Ω[u] ≤ QN

m,Ω[u] +
C(n,m)Rn

(R− r)2n+2m
· ‖u‖2L1(Ω), if ⌊m⌋6

... 2. (1.4)

The proof of Theorem 1 is given in Section 2. In Section 3 we apply this result for studying

the equations1

(−∆Ω)
m
Nu = λ(−∆Ω)

s
Nu+ |u|2

∗
m−2u in Ω, (1.5)

(−∆Ω)
m
Nu = λ|x|−2su+ |u|2

∗
m−2u in Ω, (1.6)

where 0 ≤ s < m < n
2 and 2∗m = 2n

n−2m . By solution of (1.5) or (1.6) we mean a weak solution

from Dom(QN
m,Ω).

In the basic paper [2] by Brezis and Nirenberg a remarkable phenomenon was discovered for

the problem

−∆u = λu+ |u|
4

n−2u in Ω, u = 0 on ∂Ω, (1.7)

which coincides with (1.5) and (1.6) with n > 2, m = 1, s = 0. Namely, the existence of a

nontrivial solution for any small λ > 0 holds if n ≥ 4; in contrast, for n = 3 non-existence

phenomena for any sufficiently small λ > 0 can be observed. For this reason, the dimension

n = 3 has been named critical for problem (1.7) (compare with [16], [8]).

1we assume that 0 ∈ Ω.
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As was pointed out in [13], the Brezis–Nirenberg effect is a nonlinear analog of the so-called

zero-energy resonance for the Schrödinger operators (see, e.g., [21] and [22, pp.287–288]).

After [2], a large number of papers have been focussed on studying the effect of lower order

linear perturbations in noncompact variational problems, see for instance the list of references

included in [8, Chapter 7] about the case m ∈ N, s = 0, and the recent paper [13], where a

survey of earlier results for the Dirichlet case was given. For the Navier case with non-integer

m, the only papers we know consider m ∈ (0, 1) and s = 0, see [18] and [1]. See also the recent

paper [5] and references therein for nonlinear lower-order perturbations.

We consider the general case and prove the following result (see Section 3 for a more precise

statement), that corresponds to [13, Theorem 4.2] .

Theorem 2 Let 0 ≤ s < m < n
2 . If s ≥ 2m− n

2 then n is not a critical dimension for the (1.5)

and (1.6). This means that both these equations have ground state solutions for all sufficiently

small λ > 0.

Let us recall some notation. BR is the ball with radius R centered at the origin, SR is its

boundary. We denote by c with indices all explicit constants while C without indices stand for

all inessential positive constants. To indicate that C depends on some parameter a, we write

C(a).

2 Proof of Theorem 1

Notice that we can assume u ∈ C∞
0 (Ω), the general case is covered by approximation.

Proof of (1.3). Let m = 2k + σ, k ∈ N0, σ ∈ (0, 1). Denote by wD(x, y), x ∈ R
n, y > 0,

the Caffarelli–Silvestre extension of (−∆)ku (see [4]), that is the solution of the boundary value

problem

−div(y1−2σ∇w) = 0 in R
n × R+; w

∣∣
y=0

= (−∆)ku,

given by the generalized Poisson formula

wD(x, y) = c1(n, σ)

∫

Rn

y2σ (−∆)ku(ξ)

(|x− ξ|2 + y2)
n+2σ

2

dξ. (2.1)

In [4] it is also proved that

QD
m,Ω[u] = QD

σ,Ω[(−∆)ku] = c2(n, σ)

∞∫

0

∫

Rn

y1−2σ|∇wD|2 dxdy. (2.2)

4



Integrating by parts (2.1), we arrive at following estimates for |x| > r:

|wD(x, y)| ≤
C(n,m) y2σ ‖u‖L1(Ω)

((|x| − r)2 + y2)
n+m+σ

2

; |∇wD(x, y)| ≤
C(n,m) y2σ−1 ‖u‖L1(Ω)

((|x| − r)2 + y2)
n+m+σ

2

. (2.3)

Following [12, Theorem 3], we define, for x ∈ BR and y ≥ 0, the function

w̃(x, y) = wD(x, y)− φ̃(x, y),

where φ̃(·, y) is the harmonic extension of wD(·, y) on BR, that is,

−∆xφ̃(·, y) = 0 in BR; φ̃(·, y) = wD(·, y) on SR.

Clearly, w̃
∣∣
y=0

= (−∆)ku and w̃
∣∣
x∈SR

= 0. Further, we have

∞∫

0

∫

BR

y1−2σ|∇w̃|2 dxdy =

∞∫

0

∫

BR

y1−2σ(|∇wD|2 − 2∇wD · ∇φ̃+ |∇φ̃|2) dxdy

=

∞∫

0

∫

BR

y1−2σ|∇wD|2 dxdy − 2

∞∫

0

∫

SR

y1−2σ(∇wD · n) φ̃ dSR(x)dy

+

∞∫

0

∫

BR

y1−2σ|∇φ̃(x, y)|2 dxdy. (2.4)

Since φ̃(·, y) = wD(·, y) on SR, we can use (2.3) to get

∣∣∣
∞∫

0

∫

SR

y1−2σ(∇wD · n) φ̃ dSR(x)dy
∣∣∣ ≤ C(n,m)Rn−1

(R− r)2n+2m−1
· ‖u‖2L1(Ω).

Now we estimate the last integral in (2.4). It is easy to see that |∇φ̃(·, y)|2 is subharmonic in

BR and thus the function

ρ 7→
1

ρn−1

∫

Sρ

|∇φ̃(x, y)|2 dSρ(x)

is nondecreasing for ρ ∈ (0, R). This implies

∫

BR

|∇φ̃(x, y)|2 dx =

R∫

0

∫

Sρ

|∇φ̃(x, y)|2 dSρ(x)dρ

≤
R

n

∫

SR

(|∇xφ̃(x, y)|
2 + |∂yφ̃(x, y)|

2) dSR(x).
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Using the fact that ∂yφ̃(x, y) = ∂yw
D(x, y) for x ∈ SR and the well known estimate

∫

SR

|∇xφ̃(x, y)|
2 dSR(x) ≤ C(n)

∫

SR

|∇xw
D(x, y)|2 dSR(x),

we can apply (2.3) and arrive at

∞∫

0

∫

BR

y1−2σ|∇φ̃(x, y)|2 dxdy ≤
C(n,m)Rn

(R− r)2n+2m
· ‖u‖2L1(Ω).

In conclusion, from (2.4) we infer

∞∫

0

∫

BR

y1−2σ|∇w̃|2 dxdy ≤

∞∫

0

∫

BR

y1−2σ|∇wD|2 dxdy +
C(n,m)Rn

(R− r)2n+2m
· ‖u‖2L1(Ω). (2.5)

Now we use the Stinga–Torrea characterization of QN
σ,Ω. Namely, a quite general result of

[17] implies that

QN
m,Ω[u] = QN

σ,Ω[(−∆)ku] = c2(n, σ) inf
w|x∈∂Ω=0

w|y=0=(−∆)ku

∞∫

0

∫

Ω

y1−2σ|∇w|2 dxdy. (2.6)

Relations (2.6), (2.5) and (2.2) give us

QN
m,Ω[u] ≤ QN

m,BR
[u] ≤ c2(n, σ)

∞∫

0

∫

BR

y1−2σ|∇w̃|2 dxdy

≤ c2(n, σ)

∞∫

0

∫

BR

y1−2σ |∇wD|2 dxdy +
C(n,m)Rn

(R − r)2n+2m
· ‖u‖2L1(Ω)

≤ QD
m,Ω[u] +

C(n,m)Rn

(R − r)2n+2m
· ‖u‖2L1(Ω),

and (1.3) follows.

Proof of (1.4). Let m = 2k − σ, k ∈ N, σ ∈ (0, 1). Denote by w−D(x, y), x ∈ Rn, y > 0,

the “dual” Caffarelli–Silvestre extension of (−∆)ku (see [3] and [14]), that is the solution of the

boundary value problem

−div(y1−2σ∇w) = 0 in R
n × R+; y1−2σ∂yw

∣∣
y=0

= −(−∆)ku,
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given by the formula

w−D(x, y) = c3(n, σ)

∫

Rn

(−∆)ku(ξ)

(|x− ξ|2 + y2)
n−2σ

2

dξ. (2.7)

Note that the representation (2.7) is true also for n = 1 < 2σ while for n = 1, σ = 1/2 it should

be rewritten as follows:

w−D(x, y) = c3(1, 1/2)

∫

Rn

(−∆)ku(ξ) ln(|x− ξ|2 + y2) dξ.

It is also shown in [14] that

QD
m,Ω[u] = QD

−σ,Ω[(−∆)ku] (2.8)

=
1

c2(n, σ)

(
2

∫

Rn

(−∆)ku(x)w−D(x, 0) dx −

∞∫

0

∫

Rn

y1−2σ|∇w−D|2 dxdy

)
.

Integrating by parts (2.7), we arrive at following estimates for |x| > r:

|w−D(x, y)| ≤
C(n,m) ‖u‖L1(Ω)

((|x| − r)2 + y2)
n+m−σ

2

; |∇w−D(x, y)| ≤
C(n,m) ‖u‖L1(Ω)

((|x| − r)2 + y2)
n+m+1−σ

2

. (2.9)

Now we define, as in [14, Theorem 2],

ŵ(x, y) = w−D(x, y)− φ̂(x, y), x ∈ BR, y ≥ 0,

where

−∆xφ̂(·, y) = 0 in BR; φ̂(·, y) = w−D(·, y) on SR.

Clearly, ŵ
∣∣
x∈SR

= 0. Arguing as for (1.3) and using (2.9) instead of (2.3), we obtain

∞∫

0

∫

BR

y1−2σ|∇ŵ|2 dxdy ≤

∞∫

0

∫

BR

y1−2σ|∇w−D|2 dxdy +
C(n,m)Rn

(R − r)2n+2m
· ‖u‖2L1(Ω). (2.10)

We can use the “dual” Stinga–Torrea characterization of QN
−σ,Ω. It was proved in [14] that

QN
m,Ω[u] = QN

−σ,Ω[(−∆)ku] (2.11)

=
1

c2(n, σ)
sup

w|x∈∂Ω=0

( ∫

Ω

(−∆)ku(x)w(x, 0) dx −

∞∫

0

∫

Ω

y1−2σ|∇w|2 dxdy

)
.
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Relations (2.11), (2.10), (2.8) and the evident equality

∫

BR

(−∆)ku(x)φ̂(x, 0) dx = 0 ,

give us

QN
m,Ω[u] ≥ QN

m,BR
[u] ≥

1

c2(n, σ)

(
2

∫

BR

(−∆)ku(x)ŵ(x, 0) dx −

∞∫

0

∫

BR

y1−2σ|∇ŵ|2 dxdy

)

≥
1

c2(n, σ)

(
2

∫

BR

(−∆)ku(x)w−D(x, 0) dx −

∞∫

0

∫

BR

y1−2σ|∇w−D|2 dxdy

)

−
C(n,m)Rn

(R − r)2n+2m
· ‖u‖2L1(Ω) ≤ QD

m,Ω[u]−
C(n,m)Rn

(R − r)2n+2m
· ‖u‖2L1(Ω),

and (1.4) follows. The proof is complete. �

3 The Brezis–Nirenberg effect for Navier fractional Laplacians

We recall the Sobolev and Hardy inequalities

Qm[u] ≥ Sm

( ∫

Rn

|u|2
∗
m dx

)2/2∗m

(3.1)

Qm[u] ≥ Hm

∫

Rn

|x|−2m|u|2 dx , (3.2)

that hold for any u ∈ C∞
0 (Rn) and 0 < m < n

2 . The best Sobolev constant Sm and the best Hardy

constant Hm were explicitly computed in [6] and in [10], respectively.

It is well known that Hm is not attained, that is, there are no functions with finite left- and

right-hand sides of (3.2) providing equality in (3.2). In contrast, it has been proved in [6] that

Sm is attained by a unique family of functions, all of them being obtained from

φ(x) = (1 + |x|2)
2m−n

2 (3.3)

by translations, dilations in R
n and multiplication by constants.
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A standard dilation argument implies that

inf
u∈Dom(QD

m,Ω)

u 6=0

QD
m,Ω[u]( ∫

Ω

|u|2∗m dx
)2/2∗m

= Sm.

The key fact used in further considerations is the equality

inf
u∈Dom(QN

m,Ω)

u 6=0

QN
m,Ω[u]( ∫

Ω

|u|2
∗
m dx

)2/2∗m
= Sm , (3.4)

that has been established in [15] (see also earlier results [9, 20] for m = 2, [8] for m ∈ N and [12]

for 0 < m < 1). Clearly, the Sobolev constant Sm is never achieved on Dom(QN
m,Ω).

The corresponding equality for the Hardy constant, that is,

inf
u∈Dom(QN

m,Ω)

u 6=0

QN
m,Ω[u]

∫
Ω

|x|−2m|u|2 dx
= Hm , (3.5)

was proved in [15] as well (see also [11] and [7] for m ∈ N).

We point out that the infima

Λ1(m, s) := inf
u∈Dom(QN

m,Ω)

u 6=0

QN
m,Ω[u]

QN
s,Ω[u]

, Λ̃1(m, s) := inf
u∈Dom(QN

m,Ω[u])

u 6=0

QN
m,Ω[u]

∫
Ω

|x|−2s|u|2 dx
(3.6)

are positive and achieved. Since Dom(QN
m,Ω) is compactly embedded into Dom(QN

s,Ω), this fact

is well known for Λ1(m, s) and follows from (3.5) for Λ̃1(m, s).

Weak solutions to (1.5), (1.6) can be obtained as suitably normalized critical points of the

functionals

RΩ
λ,m,s[u] =

QN
m,Ω[u]− λQN

s,Ω[u]( ∫
Ω

|u|2∗m dx
)2/2∗m

, (3.7)

R̃Ω
λ,m,s[u] =

QN
m,Ω[u]− λ

∫
Ω

|x|−2s|u|2 dx

( ∫
Ω

|u|2∗m dx
)2/2∗m

, (3.8)
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respectively. It is easy to see that both functionals are well defined on Dom(QN
m,Ω) \ {0}.

In fact, we prove the existence of ground states for functionals (3.7) and (3.8). We introduce

the quantities

SΩ
λ (m, s) = inf

u∈Dom(QN
m,Ω)

u 6=0

RΩ
λ,m,s[u]; S̃Ω

λ (m, s) = inf
u∈Dom(QN

m,Ω)

u 6=0

R̃Ω
λ,m,s[u] .

By standard arguments we have SΩ
λ (m, s) ≤ Sm. In addition, if λ ≤ 0 then SΩ

λ (m, s) = Sm and

it is not achieved. Similar statements hold for S̃Ω
λ (m, s).

We are in position to prove our existence result that includes Theorem 2 in the introduction.

Theorem 3 Assume s ≥ 2m− n
2 .

i) For any 0 < λ < Λ1(m, s) the infimum SΩ
λ (m, s) is achieved and (1.5) has a nontrivial

solution in Dom(QN
m,Ω).

ii) For any 0 < λ < Λ̃1(m, s) the infimum S̃Ω
λ (m, s) is achieved and (1.6) has a nontrivial

solution in Dom(QN
m,Ω).

Proof. We prove i), the proof of the second statement is similar. Using the relation (3.4) and

arguing for instance as in [13] one has that if 0 < SΩ
λ (m, s) < Sm, then SΩ

λ (m, s) is achieved.

Since 0 < λ < Λ1(m, s), then SΩ
λ (m, s) > 0 by (3.6).

To obtain the strict inequality SΩ
λ (m, s) < Sm we follow [2], and we take advantage of the

computations in [13].

Let φ be the extremal of the Sobolev inequality (3.1) given by (3.3). In particular,

M := Qm[φ] = Sm

( ∫

Rn

|φ|2
∗
m dx

)2/2∗m

. (3.9)

Fix a cutoff function ϕ ∈ C∞
0 (Ω), such that ϕ ≡ 1 on the ball {|x| < δ} and ϕ ≡ 0 outside the

ball {|x| < 2δ}.

If ε > 0 is small enough, the function

uε(x) := ε2m−nϕ(x)φ
(x
ε

)
= ϕ(x)

(
ε2 + |x|2

) 2m−n
2

has compact support in Ω.
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From [13, Lemma 3.1] we conclude

A
ε
m := QD

m,Ω[uε] ≤ ε2m−n
(
M + C(δ) εn−2m

)

Aε
s :=

∫

Ω

|x|−2s|uε|
2 dx ≥





C(δ) ε4m−n−2s if s > 2m− n
2

C(δ) | log ε| if s = 2m− n
2

Ã
ε
s := QN

s,Ω[uε] ≥ HsA
ε
s [ see (3.5) ]

Bε :=

∫

Ω

|uε|
2∗m dx ≥ ε−n

(
(MS−1

m )2
∗
m/2 − C(δ) εn

)
.

If m is an integer or if ⌊m⌋6
... 2, then by (1.2)

Ã
ε
m := QN

m,Ω[uε] ≤ A
ε
m,

and we obtain

RΩ
λ,m,s[uε] ≤ Sm

1 + C(δ) εn−2m − λC(δ) ε2m−2s

1− C(δ) εn
, if s > 2m−

n

2
(3.10)

RΩ
λ,m,s[uε] ≤ Sm

1 + C(δ) εn−2m − λC(δ) εn−2m| log ε|

1− C(δ) εn
, if s = 2m−

n

2
. (3.11)

Thus, for any sufficiently small ε > 0 we have that RΩ
λ,m,s[uε] < Sm, and the statement follows.

It remains to consider the case ⌊m⌋
... 2. Since ‖uε‖L1(Ω) ≤ C(δ), the estimate (1.3) implies

Ã
ε
m ≤ A

ε
m + C(δ) = ε2m−n

(
M + C(δ) εn−2m

)
,

and we again arrive at (3.10), (3.11). �

For the case s < 2m− n
2 we limit ourselves to point out the next simple existence result, as

in [13].

Theorem 4 Assume s < 2m− n
2 .

11



i) There exists λ∗ ∈ [0,Λ1(m, s)) such that for any λ ∈ (λ∗,Λ1(m, s)) the infimum SΩ
λ (m, s)

is attained, and hence (1.5) has a nontrivial solution.

ii) There exists λ̃∗ ∈ [0, Λ̃1(m, s)) such that for any λ ∈ (λ̃∗, Λ̃1(m, s)) the infimum S̃Ω
λ (m, s)

is attained, and hence (1.6) has a nontrivial solution.
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