
Università degli studi di Udine

PhD Course in Computer Science, Mathematics and Physics

A journey through computability,
topology and analysis

Cycle XXXIII

Candidate
Manlio Valenti

Supervisor
Alberto Marcone



Abstract

This thesis is devoted to the exploration of the complexity of some mathemati-
cal problems using the framework of computable analysis and descriptive set theory.
We will especially focus on Weihrauch reducibility as a means to compare the uni-
form computational strength of problems. After a short introduction of the relevant
background notions, we investigate the uniform computational content of the open
and clopen Ramsey theorems. In particular, since there is not a canonical way to
phrase these theorems as multi-valued functions, we identify 8 different multi-valued
functions (5 corresponding to the open Ramsey theorem and 3 corresponding to the
clopen Ramsey theorem) and study their degree from the point of view of Weihrauch,
strong Weihrauch and arithmetic Weihrauch reducibility. We then discuss some new
operators on multi-valued functions and study their algebraic properties and the re-
lations with other previously studied operators on problems. These notions turn out
to be extremely relevant when exploring the Weihrauch degree of the problem DS of
computing descending sequences in ill-founded linear orders. They allow us to show
that DS, and the Weihrauch equivalent problem BS of finding bad sequences through
non-well quasi-orders, while being very “hard” to solve, are rather weak in terms of
uniform computational strength. We then generalize DS and BS by considering Γ-
presented orders, where Γ is a Borel pointclass or ∆1

1, Σ1
1, Π1

1. We study the obtained
DS-hierarchy and BS-hierarchy of problems in comparison with the (effective) Baire hi-
erarchy and show that they do not collapse at any finite level. Finally, we focus on the
characterization, from the point of view of descriptive set theory, of some conditions
involving the notions of Hausdorff/Fourier dimension and Salem sets. We first work in
the hyperspace K([0, 1]) of compact subsets of [0, 1] and show that the closed Salem
sets form a Π0

3-complete family. This is done by characterizing the complexity of the
family of sets having sufficiently large Hausdorff or Fourier dimension. We also show
that the complexity does not change if we increase the dimension of the ambient space
and work in K([0, 1]d). We also generalize the results by relaxing the compactness of
the ambient space and show that the closed Salem sets are still Π0

3-complete when
we endow F(Rd) with the Fell topology. A similar result holds also for the Vietoris
topology. We conclude by showing how these results can be used to characterize the
Weihrauch degree of the functions computing the Hausdorff and Fourier dimensions.



Preface

Three years have gone by since the beginning of my Ph.D. (well, three and a half, thanks to the
pandemic), and as I’m here, a couple of days before the submission deadline, fiddling around with
LATEX1 and fixing a few things here and there, I would like to take a few moments to thank all
the people that made this possible. But this raises a question: who made this possible? If there
is free will, this does not seem an easy problem2. We happily work in ZFC here, so it is natural to
assume that people have a choice3.

The first one that comes to mind is certainly my supervisor Alberto Marcone. Without his
close guidance, I would have most certainly got lost over some triviality. He never lost his patience,
no matter how blatantly wrong my claims were. The results in this thesis and their presentation
highly benefited from his careful and constant support. I would have never got to this point
without him.

But then, following backwards the cause-effect chain, I guess should thank Alonzo Church, and
Poisson, Lagrange, Laplace, Euler before him, and many others4. Going back in the list of my
mathematical ancestors does not sound like a feasible option. I will just try to think through the
path I followed, and thank the people that changed its course, without hoping to be exhaustive.

An important role in my journey was played by Steffen Lempp: thanks to his support, my
visit to Madison was flawless in every aspect, and I am very thankful for his warm hospitality
and great availability. I also thank Joe Miller, Mariya Soskova, and the whole logic group in UW-
Madison, for letting me feel part of the group. Many thanks in particular to Jun Le Goh: despite
he graduated not long before I visited Madison, he already had a deep understanding of many very
advanced topics. He welcomed me to Madison as a friend, and working with him was extremely
smooth and pleasant.

Special thanks to Arno Pauly, for the many enlightening conversations. He was always ready
to provide hints and pointers, when not fully detailed answers (24/7 support, literally), and his
suggestions really improved the quality of my work, even before being a coauthor.

Sincere thanks to all the people in the mathematical community for many inspiring conversa-
tions and their generous support. The list of the people that shared some thoughts with me is
definitely too long to be entirely written here, but I mention in particular Vasco Brattka, Riccardo
Camerlo, Raphaël Carroy, Damir Dzhafarov, Guido Gherardi, Kyle Hambrook, Jan Reimann,
Luca San Mauro, Matthias Schröder, Paul Shafer, Ted Slaman, Betsy Stovall, and Linda Brown
Westrick. Thanks to my office mates at UW-Madison, and especially to Geoffrey Bentsen and
Polly Yu, sharing the room with you has been super fun. Among the mathematicians in Udine,
special thanks go to Giovanna D’Agostino (sorry for all the shouting from the other side of the
wall), Vincenzo Dimonte, Roberta Musina, Giovanni Panti, and Fabio Zanolin.

My path from high school to the writing of this thesis was not linear, and not even affine! In
fact, I started off as an engineer. I remember, back in the days of my B.Sc., during a walk with
my friend Gabriele Pergola, I was arguing in favor of being a programmer, while he was doubtful
on that, stressing the importance of a theoretical understanding of the matter. At that time, I

1It is a huge lie that you don’t have to worry about layout when using LATEX.
2Without free will, I guess the only one to thank is the prime mover if there is one, or nobody otherwise.
3No constructivists were harmed during the writing of this thesis.
4https://www.mathgenealogy.org/.

ii

https://www.mathgenealogy.org/


would have never imagined finding myself talking about things that calling “non-computable” is
like saying that the ocean is “some water”. When it rains, it pours, I guess!

Two people that had a fundamental impact on my journey, and yet I believe they did not
receive enough credit for this, are my M.Sc. supervisors Claudio Agostinelli and Marcus Hutter.
The former put a lot of unexpected and undeserved trust in me, giving me the maximum freedom
on the topics I explored in my M.Sc. thesis. The latter promptly welcomed me in Canberra, was
extremely kind and available, and gave me a huge help in the development of the core part of
that work. It is not an overstatement to say that, without their support, I would not be studying
computability now.

I ended up in Udine after a long search (and I thank Andrea Sorbi for his help in this), and
over the years my path crossed the one of many other people. In particular, I thank Marta Fiori
Carones for welcoming me to Udine, Eleonora Pippia for all the times she merciless proved my
conjectures wrong, and the several discussions on the canons of beauty, Nicola Gigante Ph.D. for
trapping me in becoming a Ph.D. representative, for the many lunch and pre-coffee talks, and for
keeping my cat each time I was away for a conference. Special thanks to Dario “Johnny” Della
Monica, for the many breaks we spent together, formally defining everyday-life notions5. Many
thanks also to Giovanni Soldà for the several conferences we attended together and all the evenings
spent playing cards. We may be enrolled in different Universities, but in my mind, we are part
of the same research group. Best wishes to Davide Castelnovo, Vittorio Cipriani, and Martina
Iannella, who joined the Udine logic group after me. I hope the pandemic will not hinder (too
much) your Ph.D. experience.

A different and very special shout-out goes to all my friends, which are now spread all over
the world. I am lucky enough that I cannot name you all one by one, or I’ll miss the deadline.
Thanks in particular to some of the best cryptographers in Italy6, and to their weak link, for
always keeping the level of non-sense very high. Many thanks to Eugenia Franco, for all the hours
spent with me carefully checking cumbersome computations. Thanks also to Mike Pashos, one of
the best housemates one can possibly dream to find, for his patience with all the questions about
English.

Thanks to my family, and in particular to my aunt Aurelia, for taking care of me and setting
up her larder according to my tastes. Thanks to my sister Anna Chiara, who only has one brother
and there is not much she can do about it. Thanks to my girlfriend Paola who, against all odds7,
is still with me today. Thanks to my cat Nova, who was not asked who she wanted to live with,
and still never misses a high five.

Thanks to my parents, who are not here to see this through.

I deeply apologize to all the people that deserve an acknowledgment but were not mentioned.
I have a good memory, but it’s short.

5In joint work with Dario and Nicola, we defined the crazy cat lady coefficient of a person p as
∑

c∈C pc, where
C is the set of all the cats in the world and pc is the percentage of ownership of c by p. You are a crazy cat lady if
your coefficient is greater than 1. There is nothing wrong with being a crazy cat lady, but if you are you have to
accept it. Luckily, my coefficient is only 1.

6Among the best 15, to be precise.
7If you know how hard it is to stay with me for more than a few hours, think about doing it for several years

straight.

iii



Contents

Preface ii

Introduction 1

1 Background 4
1.1 Computable analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Computability in the Baire space . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Computability on problems and theory of represented spaces . . . . . . . . 7

1.2 Descriptive set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Effective descriptive set theory . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.2 Descriptive set theory and represented spaces . . . . . . . . . . . . . . . . . 21

1.3 Reverse mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Computable reducibilities 27
2.1 Weihrauch reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Operations on problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.2 An overview of the Weihrauch lattice . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Arithmetic Weihrauch reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 The open and clopen Ramsey theorems in the Weihrauch lattice 41
3.1 Ramsey theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Some useful tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Ramsey theorems in the Weihrauch lattice . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Problems reducible to UCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.3 Problems reducible to CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.4 Problems not reducible to CNN . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.5 A 0− 1 law for strong Weihrauch reducibility . . . . . . . . . . . . . . . . . 65

3.3 Arithmetic Weihrauch reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

iv



4 Operators on multi-valued functions 74
4.1 The union of problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.1 Choice on NN and union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.2 Open Ramsey theorem and union . . . . . . . . . . . . . . . . . . . . . . . . 82
4.1.3 Further comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 First-order part of a problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2.1 First-order part and parallelization . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.2 First-order part and other operations . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Deterministic part of a problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.1 Impact of the codomain space . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.2 The deterministic part and the first-order part . . . . . . . . . . . . . . . . 103
4.3.3 Interaction with other operations on Weihrauch degrees . . . . . . . . . . . 104
4.3.4 Previous appearances in the literature . . . . . . . . . . . . . . . . . . . . . 107

5 Finding descending sequences in ill-founded linear orders 108
5.1 Finding descending sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.1.1 The uniform strength of DS . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.1.2 Combinatorial principles on linear orders . . . . . . . . . . . . . . . . . . . 118
5.1.3 Relations with Ramsey theorems . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Presentation of orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.1 Γ0

k-DS and Γ0
k-BS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2.2 Γ1
1-DS and Γ1

1-BS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 On the descriptive complexity of Salem sets 140
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 The complexity of closed Salem subsets of [0, 1] . . . . . . . . . . . . . . . . . . . 145
6.3 The complexity of closed Salem subsets of [0, 1]d . . . . . . . . . . . . . . . . . . . 154
6.4 The complexity of closed Salem subsets of Rd . . . . . . . . . . . . . . . . . . . . . 158
6.5 Further results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7 Effective aspects of the Hausdorff and Fourier dimension 165
7.1 Basic tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.2 The represented (hyper)spaces of closed and compact sets . . . . . . . . . . . . . . 170
7.3 The effective complexity of closed Salem sets . . . . . . . . . . . . . . . . . . . . . 174
7.4 The Weihrauch degree of the Hausdorff and Fourier dimension . . . . . . . . . . . 184

Bibliography 186

v



This page intentionally left with 41 characters



Introduction

The main theme of this work is the study of the complexity of mathematical problems. This is,
of course, a very vague statement, and it has to be made precise. There is not a single universal
definition of complexity that captures all the different aspects of complexity we may be interested
in: for example, a problem can be “complicated” because it deals with “complicated” objects, or
because the process required to obtain a solution for a given input is “hard”.

On the one hand, we can explore the “absolute” complexity of problems, for example classifying
them according to the complexity of their definitions. This can be done with the tools provided
by (effective) descriptive set theory, which is a branch of mathematics that studies “definable sets”
in Polish spaces (i.e. separable and completely metrizable spaces). These sets are organized in
hierarchies, e.g. the Borel hierarchy, and its effective counterpart, the lightface hierarchy. The
structure of these hierarchies and of the sets that inhabit their various levels is the matter of
study of descriptive set theory. These notions turned out to be very fruitful, having applications
in analysis, algebra, and other areas of mathematics.

On the other hand, the study of the complexity of problems can be done with the tools of
computability theory: this is a subfield of mathematical logic that flourished starting with the
work of Turing and the formal definition of “algorithm”. Such a notion is extremely robust8 and
leads to a very rich theory, having applications in algebra, computer science, and combinatorics.
Intuitively, computability theory suggests a way to compare problems by means of their “relative”
computational strength: can we solve problem P , if we are able to solve problem Q? We expect
that a strategy to solve the “more difficult” problem Q yields a technique to solve the “easier”
problem P .

In other words, this corresponds to studying how the problems behave under a fixed notion
of reducibility. This includes a local analysis (e.g. characterize the degree of a specific, concrete
problem) as well as a global one (e.g. explore the algebraic properties of the degree structure
induced by the fixed notion of reducibility).

Computable analysis is a generalization of (classical) computability, where we take into account
the influence the representation of a mathematical object has on our capability to compute with
it. In particular, the idea that mathematical objects have to be symbolically represented before we
can do any computation is already present in classical computability theory, even if it rarely makes
any (significant) difference. In the context of computable analysis, representations (by infinite
sequences of natural numbers) are used to induce a notion of computability on represented spaces,
i.e. spaces whose elements can be represented via sequences of naturals, like e.g. R or the set of
continuous functions C(R,R).

Mathematical problems are formalized using multi-valued functions (which, roughly speaking,
are functions that can have multiple outputs, see Definition 1.3): indeed, they can be seen as sets
of instance-solution pairs, where a single instance can have multiple solutions (this is in line with
Kolmogorov’s idea of a “calculus of problems”). This underlines the inherently interdisciplinary
scope of computable analysis: any problem that can be phrased as a multi-valued function can be
studied in this framework.

This also draws a connection with reverse mathematics, which is a foundational research pro-
gram aimed at determining the set-existence axioms that are necessary to prove theorems from

8Many alternative approaches captured the same intuitive idea, see [85].

1



Introduction 2

“ordinary” mathematics (see Section 1.3 for a more detailed presentation). In fact, reverse mathe-
matics provides yet another criterion of complexity that can be used to compare problems, namely
their demonstrative strength (over a fixed weak set of axioms).

Notice that, since many theorems can be phrased in the form “for all X, if φ(X) then there
exists Y s.t. ψ(X,Y )”, they have a natural interpretation as problems: the instances are the objects
X that satisfy φ, and the solutions for X are the objects Y that satisfy ψ(X,Y ). We will say a bit
more on the connections between reverse mathematics and computable analysis in Section 2.1.2.

When comparing functions between represented spaces, a (uniform) counterpart of Turing
reducibility is provided by Weihrauch reducibility: intuitively, we say that f is Weihrauch-reducible
to g if we can uniformly translate f -instances into g-instances, and then g-solutions into f -solutions
(possibly accessing the original f -instance). This notion induces a degree structure on problems,
analogously to how Turing reducibility induces a quasi-order structure on the subsets of N.

The connection between reverse mathematics and Weihrauch reducibility has been first under-
lined in [41], and ever since researchers investigated the notion from both the reverse mathematics
and the computable analysis perspective. Moreover, there is a significant interplay between (effec-
tive) descriptive set theory and computable analysis and often results and techniques in one field
can shed light on problems in the other.

There are other related notions of reducibility (computable reducibility, generalized Weihrauch
reducibility, polynomial-time Weihrauch reducibility, and so on) with different constraints (e.g.
uniformity, resource-sensitiveness, etc). Together with Medvedev and Muchnik reducibilities, we
have a quite rich toolbox of reducibilities, underlining different computational aspects of the prob-
lems under investigation.

Structure of the thesis

This thesis presents a series of results in computable analysis, Weihrauch reducibility, and descrip-
tive set theory. While these topics are within the realm of mathematical logic, our results have
direct connections and applications to combinatorics, topology, and harmonic analysis.

Here we briefly describe the structure of the thesis and the content of each chapter. Chapters
1 and 2 are devoted to the presentation of the background notions and the main tools that will be
used in the following chapters, while Chapters from 3 to 6 contain the original contributions.

In Chapter 1, after fixing some general notation, we introduce Type-2 Theory of Effectivity (Sec-
tion 1.1), as a means to extend classical computability to the Baire space first (Section 1.1.1),
and then to arbitrary represented spaces (Section 1.1.2). In Section 1.2, we define the main tools
used in descriptive set theory, mentioning also their effective counterparts (Section 1.2.1), and
the connections with the theory of represented spaces (Section 1.2.2). In Section 1.3, we briefly
introduce the framework of reverse mathematics, which will provide a motivational background
for the topics presented in Chapters 3 and 5.

In Chapter 2, we formally introduce the notion of Weihrauch reducibility (Section 2.1), presenting
some common operations on multi-valued functions (Section 2.1.1), and some computational
problems that scaffold the Weihrauch lattice (Section 2.1.2). We also introduce the arithmetic
Weihrauch reducibility in Section 2.2.

In Chapter 3, we study the Weihrauch degree of some multi-valued functions arising from the
open and clopen Ramsey theorems. In particular, in Section 3.1 we recall the precise statement
for the open and clopen Ramsey theorems and prove some useful lemmas. In Section 3.2
we define the multi-valued functions corresponding to the open and clopen Ramsey theorems
(Section 3.2.1) and study their degrees. We divide the analysis into: functions that are reducible



Introduction 3

to UCNN (Section 3.2.2), functions that are reducible to CNN but not to UCNN (Section 3.2.3),
and functions that are not reducible to CNN (Section 3.2.4). In Section 3.2.5 we characterize the
strength of these functions from the point of view of strong Weihrauch reducibility. Finally, in
Section 3.3 we focus on the behavior of these functions under arithmetic Weihrauch reducibility,
and in Section 3.4 we draw some conclusions and list some open problems. The results of this
chapter appear in [78].

In Chapter 4, we introduce and discuss the algebraic properties of some new operators on multi-
valued functions. In particular, in Section 4.1 we study the union of two problems, showing
how it can be applied to the choice principles (Section 4.1.1) and the Ramsey principles (Sec-
tion 4.1.2). Some extra results are discussed in (Section 4.1.3). These results were obtained
while exploring the open and clopen Ramsey theorems (Chapter 3).
In Section 4.2 we introduce the first-order part of a problem, a notion recently defined by Dzha-
farov, Solomon, and Yokoyama [31]. In joint work with Giovanni Soldà, we characterized the
first-order part of a parallelized problem (Section 4.2.1) and explored the interaction between
the first-order part and other operations on problems (Section 4.2.2).
In Section 4.3, we define the deterministic part of a multi-valued function. We show how
this operation is influenced by the choice of the codomain space (Section 4.3.1), we explore
its interactions with the first-order part (Section 4.3.2) and with other operators on problems
(Section 4.3.3). We also mention how the deterministic part of a problem was (implicitly) used
in the literature (Section 4.3.4). The contents of Section 4.3 are, together with the results of
Chapter 5, joint work with Jun Le Goh and Arno Pauly, and are included in [46].

In Chapter 5, we study the uniform computational strength of the problem DS of finding an infinite
descending sequence through a given ill-founded linear order, which (a fortiori) is equivalent to
the problem BS of finding a bad sequence through a given non-well quasi-order. In particular,
after showing that the lower cone of DS misses many arithmetical problems (Section 5.1.1), we
compare its strength with other combinatorial principles on linear orders (Section 5.1.2) and
with the Ramsey principles (Section 5.1.3).
We then study how the presentation of a linear/quasi order can influence the uniform compu-
tational strength of the problems DS and BS (Section 5.2) and introduce the problems Γ-DS
and Γ-BS. We consider the cases where Γ is Σ0

n, Π0
n or ∆0

n (Section 5.2.1), and then turn our
attention to the cases where Γ is Σ1

1, Π1
1 or ∆1

1 (Section 5.2.2). We finally draw the conclusions
and highlight some open questions in Section 5.3.

In Chapter 6, we study the descriptive complexity of the family of closed Salem subsets of the
Euclidean space, and some related conditions on the Hausdorff and Fourier dimension. After a
brief introduction on the relevant background notions (Section 6.1), we explore the descriptive
complexity of the family of closed Salem subset of [0, 1] (Section 6.2), of [0, 1]d (Section 6.3),
and of Rd (Section 6.4). In particular, the results of Section 6.2 answer a question raised by Ted
Slaman during the IMS Summer School in Logic in Singapore (2018). Finally, in Section 6.5,
we present a few additional results on the topic. Most of the results of this chapter have been
collected in [77]. The results of Section 6.2 are joint work with Ted Slaman and Jan Reimann.

In Chapter 7, we study the effective counterparts of the results presented in Chapter 6. In par-
ticular, after presenting and proving some useful results (Section 7.1), we briefly discuss the
hyperspaces of closed and compact sets as represented spaces (Section 7.2), and, in Section 7.3,
we characterize the lightface complexity of the previously studied conditions. Finally, in Sec-
tion 7.4, we characterize the Weihrauch degrees of the maps computing the Hausdorff and
Fourier dimension (answering, in particular, a question by Fouché and Pauly).



1
Background

We now introduce the notation and the basic concepts we will use in the rest of the work. This
introduction is not meant to be self-contained, and I am assuming the reader is familiar with the
basic notions in (classical) computability theory, for which he/she is referred to [85, 107].

We write N := {0, 1, . . . } for the set of natural numbers, 0 included. We denote with Z, Q, R,
C the standard sets of the integer, rational, real, and complex numbers respectively. We also fix
an effective enumeration (qi)i∈N of Q. We use the symbol ℘(X) for the powerset of X.

Let 2N be the standard Cantor set, i.e. the set of (total) functions N → 2 (which can be
canonically identified with the set of subsets of N). We denote with 2n the set of functions n→ 2
(or, equivalently, the n-fold cartesian product of {0, 1} with itself), and we let 2<N :=

∪
n∈N 2n.

We will often think of the elements of 2<N as finite strings of 0, 1, while the elements of 2N are
infinite strings. We write iω for the constantly i sequence. We sometimes describe a string by a
list of its elements. E.g. we write

(n0, n1, . . . , nk),

for the string σ := i 7→ ni. Similarly, we can describe an infinite string by (n0, n1, . . .), when it is
clear from the context how to continue the sequence. We write () for the empty sequence.

We denote with NN the Baire space, i.e. the space of functions N → N, and with N<N the set of
finite strings of natural numbers. In Chapter 3, a central role is played by the Ramsey space [N]N

of total functions N → N that are strictly increasing (i.e. if n < m then f(n) < f(m)). We write
[N]<N for finite, strictly increasing strings.

For σ, τ ∈ N<N we write:

• ⊑ for the prefix relation;

• |σ| for the length of σ;

• σ⌢τ for the concatenation of σ and τ ;

• ≤lex for lexicographical order;

• ⊴ for the domination relation, i.e. σ ⊴ τ iff |σ| = |τ | and (∀i < |σ|)(σ(i) ≤ τ(i)).

The prefix relation can naturally be extended to the pairs (σ, f) ∈ N<N × NN. Similarly, we can
consider σ⌢f , for some finite string σ and some infinite string f . The lexicographical order and

4



1.1. Computable analysis 5

the domination relation also apply to infinite strings. Moreover, for every x ∈ N<N ∪ NN we write
x[m] for the prefix of x of length m.

If f, g ∈ NN we denote the composition f ◦ g by fg. Moreover, we write f ⪯ g if f is a
subsequence of g, i.e. if there exists h ∈ [N]N s.t. f = gh. In particular for every h ∈ [N]N we have
gh ⪯ g. Similarly, we write σ ⪯∗ f if σ is a finite subsequence of f .

We will use the symbol ⟨·⟩ to denote a fixed pairing function N<N → N (see e.g. [107, Notation
I.3.6]). In particular, ⟨·⟩ is a computable bijection with computable inverse. It is often convenient
to write ⟨n0, . . . , nk⟩ in place of ⟨(n0, . . . , nk)⟩. In the literature, the symbol ⟨·⟩ is often used to
denote also the join between two (of the same length, finite or infinite) strings. With a (relatively)
small abuse of notation, if x,y are two strings of the same length we will write1

⟨x, y⟩(i) := ⟨x(i), y(i)⟩ ;
⟨x0, x1, . . .⟩(⟨i, j⟩) := xi(j) .

A set T ⊂ N<N is called tree if it is closed under the prefix relation, i.e. σ ∈ T and τ ⊑ σ implies
τ ∈ T . The body of a tree T , denoted [T ], is the set {x ∈ NN : (∀i)(x[i] ∈ T )}. For ρ ∈ N<N and
T , S subtrees of N<N we define

• ρ⌢T := {ρ⌢σ : σ ∈ T};

• T × S := {⟨σ, τ⟩ : σ ∈ T and τ ∈ S and |σ| = |τ |}.

We will use the symbol idX to indicate the identity function on the space X. If X = NN we
omit the subscript and just write id.

1.1 Computable analysis

Classical computability theory introduces a notion of computability for functions f :⊆ N → N.
Intuitively speaking, we say that a Turing machine computes a function f :⊆ N → N if, whenever
executed with n represented on the input tape, it prints f(n) on the output tape. The exact
details of the definition of the Turing machine model are, often2, unimportant. However, this idea
contains the roots of the theory of represented spaces: formally, Turing machines transform finite
strings into finite strings, and the burden of translating numbers into strings (and vice versa) is on
the reader. In fact, the definition of computability for multivariate functions goes through some
effective coding N× N → N.

In classical computability theory, however, objects are represented via finite strings on a finite
or countable alphabet. However, this approach is not sufficient to deal with objects that require
an infinite string to be represented (e.g. the reals).

Type-2 Theory of Effectivity (TTE) extends classical computability theory, introducing a no-
tion of computability on the Baire space NN first, and then to more general represented spaces
(Section 1.1.2). We stress the fact that, in TTE, the underlying model of computation is still the

1The exact details of the definition of the join are often not relevant. E.g. a common way to define the join of
x, y ∈ NN is letting ⟨x, y⟩(2n) := x(n) and ⟨x, y⟩(2n+1) := y(n). However, this definition does not work well in the
context of Chapter 3.

2The details may specify the number of tapes, the number of heads, the allowed alphabets on each tape, etc.
Most of the time, the exact details yield the same computability notion, and therefore the authors are free to choose
the one that makes the presentation simpler. This also includes the choice of the way numbers are represented on
the input and output tapes, as well as the particular pairing function N× N → N. All of the “natural” choices are
equally valid, see [85].



1.1. Computable analysis 6

one of (classical) Turing machines. There are alternative approaches to hypercomputation (e.g. the
Blum-Shub-Smale model [8], the Infinite Time Turing Machine [49], or the Ordinal Time Machine
[68]), but the underlying model of computation is intrinsically stronger than the classical Turing
machine.

There is a slight shift in the perspective though: classically, objects are coded via a finite
string, and the computation should stop in finite time, producing therefore a finite string. In the
context of TTE, however, objects are coded with infinite strings, hence Turing machines that stop
after a finite amount of time are only able to produce a finite string, which would not be a valid
representation for the output. We instead let the Turing machine run forever and produce longer
and longer prefixes of a representation of the output. Therefore, a converging run is one that never
halts! This will be made precise in the following section. We notice that this is, intuitively, what
happens in the applications: we cannot store the exact value of π, but we can obtain arbitrarily
precise approximations in finite time.

1.1.1 Computability in the Baire space
As already mentioned, the effective pairing function ⟨·⟩ induces a notion of computability on
functions f :⊆ N<N → N<N. We use this notion to define a notion of computability on functions
F :⊆ NN → NN as follows:

Definition 1.1: A function F :⊆ NN → NN is computable if there is a computable function
f :⊆ N<N → N<N s.t.

1. f is monotone, i.e. σ ⊑ τ ⇒ f(σ) ⊑ f(τ);

2. f is an approximating function for F , i.e. F (x) = y iff

(∀n)(∃m ≥ n)(y[n] ⊑ f(x[m])).

A point p ∈ NN is computable if the constant map q 7→ p is computable.

Equivalently, the computable partial functions on the Baire space are exactly those that can
be computed by a Type-2 Turing machine, i.e. a Turing machine with a read-only input tape,
a write-only output tape, and finitely many work tapes. A Type-2 machine behaves just like a
standard Turing machine, except that it is allowed to run with an infinite string on the input tape.
We say that a Type-2 machine computes F if, whenever executed with p on the input tape, it runs
forever and, in the limit, writes F (p) on the output tape (without mind changes). The induced
notion of computability is equivalent to the one introduced in Definition 1.1 ([112, Lem. 2.1.11]).

Computable functions enjoy several closure properties: they are closed under composition ([112,
Thm. 2.1.12]), primitive recursion ([112, Thm. 2.1.14]) and map computable points to computable
points ([112, Thm. 2.1.13]).

An important property of computable functions is that they are continuous. Indeed, since the
Baire is canonically endowed with the product topology (i.e. the basic (cl)open sets are those of the
form σ⌢NN for σ ∈ N<N), a function NN → NN is continuous iff it admits a monotone approximating
function N<N → N<N. This idea can be used to prove an analog of the utm-theorem in the context
of functions NN → NN.



1.1. Computable analysis 7

Theorem 1.2 ([112, Thm. 2.3.13]):
There is a computable function U :⊆ NN → NN, called universal computable function, s.t. for
every continuous F :⊆ NN → NN there exists p ∈ NN s.t.

∀q ∈ dom(F ) U(⟨p, q⟩) = F (q) .

This can be proved using the fact that a function N<N → N<N is identified by its graph

Gf := {(σ, τ) ∈ N<N × N<N : f(σ) = τ},

which in turn can be coded as a single p ∈ NN by enumerating the strings (σn)n∈N in dom(f),
and letting p(n) := ⟨⟨σn⟩, f(σn)⟩. Notice that f :⊆ N<N → N<N is computable iff Gf is c.e.. In
particular, this implies that computable (partial) functions NN → NN are exactly those of the form
U(⟨p, ·⟩), for some computable p ∈ NN.

This result can be interpreted as saying that a function is continuous iff it is computable w.r.t.
some oracle p ∈ NN.

1.1.2 Computability on problems and theory of represented spaces
We would now like to extend the notion of computability to the context of multi-valued functions,
i.e., intuitively speaking, functions that can assign multiple values to the same input. Formally,
we can introduce3 them as follows:

Definition 1.3: A (partial) multi-valued function f :⊆ X ⇒ Y is a function f : X → ℘(Y ).
We define the domain of f as dom(f) := {x ∈ X : f(x) ̸= ∅} and the codomain or range of f
as Y .

Whenever f(x) = {y}, we just write f(x) = y. If, for every x ∈ X, f(x) is a singleton,
then we identify f with the (partial) function that maps each x ∈ dom(f) to the unique y s.t.
y ∈ f(x).

In other words we can think of a (partial) multi-valued function as a relation f ⊂ X × Y . The
difference between multi-valued functions and relations rests on the way the composition between
multi-valued functions is defined (see e.g. [19]):

Definition 1.4: Let f :⊆ X ⇒ Y and g :⊆ Y ⇒ Z be multi-valued functions. We define the
composition g ◦ f between f and g as

g ◦ f :⊆ X ⇒ Z := x 7→ {z ∈ Z : (∃y ∈ Y )(y ∈ f(x) and z ∈ g(y))},

with dom(g ◦ f) := {x ∈ dom(f) : f(x) ⊂ dom(g)}.

Notice that we do not have this restriction on the domain of the composition of two relations,
i.e. if R and S are relations, (x, y) ∈ R and (y, z) ∈ S then (x, z) ∈ S ◦R.

3The exact formal definition of a multi-valued function is not relevant. It can be defined simply as a relation, or
in more elaborated ways (e.g. [112, Sec. 1.4, p. 11]).



1.1. Computable analysis 8

This restriction is motivated by the association of multi-valued functions with computational
problems: we think of an input for f as an instance of a problem, and of f(a) as the set of possible
solutions. The definition of composition between multi-valued functions ensures that we can apply
g to any solution of f(x). In particular, it implies that g ◦ f is still a multi-valued function. In the
following, we will often use the term “problem” as a synonym of partial multi-valued function.

The connection between computational problems and multi-valued functions can be made pre-
cise using the notion of representation: intuitively, we use elements of the Baire space to “name”
elements of an arbitrary set X. Then, we use the notion of computability define on NN to define
a notion of computability between arbitrary represented spaces.

Definition 1.5 ([112, Def. 2.3.1]): A represented space is a pair (X, δX) where X is a set
and δX :⊆ NN → X is a surjective partial function called representation map. If p ∈ NN and
δX(p) = x we say that p is a name or a code for x.

Whenever there is no ambiguity, we will not write explicitly the representation map and just say
that X is a represented space. Notice that the representation map is not required to be injective (a
single element of the space can have multiple names) nor to be total (not every string is necessarily
a name for some element of the space).

Using the Baire space as a “name space”, we can transform the problem of computing a f -
solution y for a f -instance x into the problem of computing a name of a solution from a name of
the instance.

Definition 1.6: Let X, Y be represented spaces and let f :⊆ X ⇒ Y be a (partial) multi-
valued function. A partial function F :⊆ NN → NN is called a realizer of f (we write F ⊢ f)
iff

∀p ∈ dom(f ◦ δX) δY (F (p)) ∈ f(δX(p)) .

This is often visualized by saying that the diagram

NN

δX

��

F // NN

δY

��
X //

f // Y

commutes for all p ∈ dom(f ◦ δX). The notion of realizer was already present in [112], even if the
term is not explicitly used.

Notice that a realizer F for f is a choice function for the family

{δ−1
Y fδX(p) : p ∈ dom(f ◦ δX)}.

Indeed, the fact that every (partial multi-valued) function admits a realizer is equivalent to the
following choice principle:

(∀F ⊂ ℘(NN) \ {∅})((|F| = |NN|) → (∃ ch: F → ∪F)(∀F ∈ F)(ch(F ) ∈ F )).

In the following, we will not deal with the difficulties of developing the theory with restricted choice
principles, and we will freely use the axiom of choice whenever needed.

Using the notion of realizer, we can induce a notion of computability on multi-valued functions
between represented spaces as follows:



1.1. Computable analysis 9

Definition 1.7 ([112, Def. 3.1.3]): Let (X, δX) and (Y, δY ) be represented spaces. A point
x ∈ X is called δX-computable if it has a δX -computable name. A partial multi-valued func-
tion f :⊆ X ⇒ Y is called (δX , δY )-realizer-continuous (resp. (δX , δY )-computable) if it has a
continuous (resp. computable) realizer.

We will omit the explicit dependency from the representation maps whenever they are clear
from the context. In particular, we will say that a point is computable if it has a computable
name, and that a function is realizer-continuous (resp. computable) if it has a continuous (resp.
computable) realizer.

If X and Y are represented spaces there is a canonical way to induce a representation on the
spaces X × Y , X ⊔ Y , X∗ :=

∪
n∈N({n} ×Xn), and XN. In particular, we define

δX×Y :⊆ NN → X × Y := ⟨p, q⟩ 7→ (δX(p), δY (q));

δX⊔Y :⊆ NN → X ⊔ Y , δX⊔Y ((0)
⌢p) := δX(p) and δX⊔Y ((1)

⌢p) := δY (p);

δX∗ :⊆ NN → X∗ := (n)⌢⟨p1, . . . , pn⟩ 7→ (n, δX(p1), . . . , δX(pn));

δXN :⊆ NN → XN := ⟨p1, p2, . . .⟩ 7→ (δX(p1), δX(p2), . . .).

By the universal function theorem for NN (Theorem 1.2), we can exploit a universal computable
function U :⊆ NN → NN to induce a representation on the space of realizer-continuous partial
functions X → Y . Indeed we can define

δ(p) := f :⇐⇒ U(⟨p, ·⟩) ⊢ f ;

see also [112, Sec. 2.3]. Moreover, if A ⊂ X then the representation on X induces a representation
on A defined as

δA :⊆ NN → A := δX |A .

We also introduce the following notion:

Definition 1.8: We define the jump of the represented space (X, δX) as the represented space
X ′ = (X, δX′), where a δX′-name for x is a string ⟨p0, p1, . . .⟩ s.t. (pn)n∈N is a convergent
sequence in NN and

δX

(
lim
n→∞

pn

)
= x.

Such a notion was introduced in [115, Def. 2.1] (albeit Ziegler only focused on representation
maps 2N → 2N), and it is the main ingredient to define the jump of a multi-valued function
(Definition 2.9).

Trivial examples of represented spaces are (NN, id), (2N, id|2N) and (N, p 7→ p(0)). A more
interesting example is the set of real numbers. The most common representation of a real number
is the Cauchy representation: every x ∈ R can be represented via a rapidly converging sequence of
rationals, i.e. a sequence (qn)n∈N s.t.

∀n |qn − x| ≤ 2−n.

The idea of representing the elements of a space via rapidly converging Cauchy sequences does
not apply only to the real numbers.



1.1. Computable analysis 10

Definition 1.9 ([112, Def. 8.1.2]): Let X = (X, d, α) be a separable metric space, where
d : X ×X → R is the distance function and α : N → X is an enumeration of a dense subset of
X. We define the Cauchy representation on X as the map δX :⊆ NN → X defined as

δX(p) = x :⇐⇒ lim
n→∞

α(p(n)) = x,

where dom(δX) := {p ∈ NN : (∀n)(∀m > n)(|α(p(n))− α(p(m))| ≤ 2−n)}.
We say that X is a computable metric space if the set

{(i, j, n,m) ∈ N4 : qi < d(α(n), α(m)) < qj}

is computably enumerable.

We can always assume that α is an injective map (i.e. every element of the dense subset of
X has a unique index). In other words, for every computable metric space (X, d, α) there is an
injective subsequence β of α s.t. the spaces (X, d, α) and (X, d, β) are computably homeomorphic
(i.e. there is a computable bijection with computable inverse) [47, Thm. 2.9].

Notice that, since N is a represented space, the notion of computability defined via Definition 1.7
coincides with the classical notion of computability.

Similarly, the notion of computability for real numbers induced by the Cauchy representation
on R coincides with the “classical” notion of computability for a real number (see e.g. [93, Ch.
1, Def. 3]). Moreover, it is easy to see that the definition of computable metric space could be
equivalently given by asking that the restriction of the distance map d to ran(α)2 is computable.

Notice also that, for functions R → R, the notions of continuity and realizer-continuity agree.
It is important to stress that, in general, if X and Y are topological spaces then the two notions
need not agree.

To show that realizer-continuity does not imply continuity, we can consider the two topological
spaces X = Y := {0, 1} endowed respectively with the trivial and the discrete topology. We
represent both X and Y via the map p 7→ min{p(0), 1}. It is straightforward to see that the
identity id{0,1} is realizer-continuous but not continuous. On the other hand, a simple counter-
example for the other direction can be presented anticipating some notions that will be introduced
formally in Section 1.2. Let us consider the following two representation maps on X: we let δΠ
be s.t. δ−1

Π (1) is a Π1
1-complete subset of NN, and δ−1

Π (0) := NN \ δ−1
Π (1). We also define δΣ so

that δ−1
Σ (i) = δ−1

Π (1− i). The identity idX : (X, δΠ) → (X, δΣ) is trivially continuous, but cannot
be realizer-continuous (any continuous realizer would contradict the Π1

1-completeness of δ−1
Π (1)).

A more concrete counter-example is given by [112, Ex. 9.a]: if we endow R with the map δb,
representing a real number via its binary expansion, then the map h3 := x 7→ 3x is continuous
(trivially) but not computable (and, in particular, not realizer-continuous). See also [100, Ex. 2.9].

For a list of “common” represented spaces, we refer the reader to Section 2.1.2.

Admissible representations

Often, spaces are naturally endowed with some canonical topology, and it would be desirable that
the topological structure agrees with the computational one, i.e. that the notions of continuity
and realizer-continuity agree. We will consider (and mainly focus our attention on) the so-called
admissible representations, which intuitively are those that satisfy this requirement.



1.1. Computable analysis 11

Definition 1.10 ([112, Def. 2.3.2]): Let X, Y be represented spaces with X ⊂ Y . We say
that a function F :⊆ NN → NN translates δX to δY iff (∀p ∈ dom(δX))(δX(p) = δY F (p)). We
define the following relations:

δX ≤ δY :⇐⇒ there exists a computable translation from δX to δY ;
δX ≤t δY :⇐⇒ there exists a continuous translation from δX to δY .

In the first case we say that δX is reducible to δY , while in the second case we say that δX
is continuously or topologically reducible to δY . Two representation maps are called equivalent
(resp. continuously equivalent) iff δX ≤ δY and δY ≤ δX (resp. δX ≤t δY and δY ≤t δX).

A simple observation is that, for every two represented spaces X, Y with X ⊂ Y , and every
(partial) function f :⊆ X → Y we have

• f ◦ δX ≤ δY ⇐⇒ f is computable;

• f ◦ δX ≤t δY ⇐⇒ f is realizer-continuous.

In particular, letting ι : X ↪→ Y be the inclusion map, we have that δX ≤ δY (resp. δX ≤t δY ) iff ι
is computable (resp. realizer-continuous).

Definition 1.11 ([98, Def. 1]): Let (X, τX) be a topological space. A representation map
δX of X is called admissible w.r.t. τX if it is continuous and, for every other continuous
representation map4 δ on X, we have δ ≤t δX .

In other words, an admissible representation of X is ≤t-maximal among the continuous repre-
sentations of X. We will just say that a representation is admissible if there is no ambiguity on
the topology.

To make the connection between admissible representation and continuity explicit, we introduce
the following notion.

Definition 1.12 ([98, Sec. 3.1]): Let (X, τ) be a topological space. A family B ⊂ ℘(X)
is called pseudobase iff for every open set U ⊂ X, every x ∈ U and every sequence (yn)n∈N
converging to x,

(∃B ∈ B)(∃n0 ∈ N)({x} ∪ {yn : n ≥ n0} ⊂ B ⊂ U).

Theorem 1.13 ([98, Thm. 13, p. 530]):
A topological space (X, τX) admits an admissible representation δX iff it is T0 and admits a
countable pseudobase.

4To be precise, the definition used by Schröder requires that every continuous map ϕ :⊆ NN → X is continuously
reducible to δX , i.e. there is a continuous function G :⊆ NN → NN s.t. for every p ∈ dom(ϕ), ϕ(p) = δXG(p).
The two definitions are readily seen to be equivalent: indeed, a representation map is admissible (in the sense of
Definition 1.11) iff for every continuous function ϕ :⊆ NN → X, there is continuous G :⊆ NN → NN s.t. δX = ϕ ◦G
([9, Ex. 3.26]).



1.1. Computable analysis 12

We briefly outline the main steps needed to prove the previous theorem, as they highlight some
interesting facts.

The fact that the existence of an admissible representation implies that the space is T0 follows
by cardinality reasons.

If δX is admissible for X, then the family B := {δX(σ⌢NN) : σ ∈ N<N} is a countable
pseudobase for X ([98, Lemma 11]).

On the other hand, if (X, τX) is T0 and (βn)n∈N is an enumeration of a countable pseudobase
for X, then the map

δX(p) := x :⇐⇒ (∀n ∈ N)(p(n) > 0 → x ∈ βp(n)−1) and 
(∀U ∈ τX : x ∈ U)(∃n ∈ N)(p(n) > 0 and βp(n)−1 ⊂ U)

is an admissible representation for X ([98, Thm. 12]). The condition “p(n) > 0” in the above
definition is just a technical trick that allows the name of x to “give no information at step n”.

In particular, since every base is a pseudobase (trivial from the definition), for every T1 second-
countable space, a δX -name of x ∈ X is an enumeration of a family of open neighborhoods
(Un)n∈N of x s.t. {x} =

∩
n Un and (Un)n∈N is coinitial (w.r.t. set inclusion) for the family of all

open neighborhoods of x.
Besides, using the fact that if a pseudobase is only made of open sets then it is actually a base,

it is easy to prove that being a second-countable T0 space is equivalent to admitting an open and
admissible representation map ([9, Ex. 3.34]).

Notice that the definition of admissibility we are using does not agree (in general) with the
definition given in [112, Def. 3.2.8]. Indeed, the notion introduced in [112] requires the space to be
T0 and second-countable. However, there are T0 spaces with a countable pseudobase that are not
second-countable (see [98, Ex. 3]). The two notions agree for second-countable T0 spaces.

The importance of admissible representation lies in the following result:

Theorem 1.14 ([98, Thm. 4, pp. 524-525]):
Let (X, δX , τX), (Y, δY , τY ) be represented topological spaces with continuous representation
maps. For every f :⊆ X → Y , we have

1. f sequentially-continuous ∧ δY admissible ⇒ f realizer-continuous

2. f realizer-continuous ∧ δX admissible ⇒ f sequentially-continuous

Notice that, for admissibly represented spaces, the notions of first and second countability are
equivalent: indeed, if X is first-countable then the family {Int(δX(σ⌢NN)) : σ ∈ N<N}, where
Int(·) denotes the interior part, is a countable base for τX ([9, Ex. 3.29]).

In particular, since every first-countable space is sequential, we obtain the following corollary:

Corollary 1.15 ([112, Thm. 3.2.11]):
Let (X, δX , τX), (Y, δY , τY ) be admissibly represented second-countable T0 spaces. For every
f :⊆ X → Y ,

f is continuous ⇐⇒ f is realizer-continuous.



1.1. Computable analysis 13

The family of admissibly represented spaces enjoys many natural closure properties. In partic-
ular, if X is an admissibly represented space then so is every A ⊂ X with the relative topology. If
{Xi}i∈N is a family of admissibly represented spaces then the cartesian product

∏
i∈NXi, endowed

with the product topology, is admissible. For every set Y , let {fi}i∈N is a family of functions with
fi :⊆ Y → Xi. If the weak topology on Y induced by {fi}i∈N is T0 then it is admissible. If X and
Y are admissibly represented spaces and X is sequential then the space of continuous functions
C(X,Y ) is admissibly represented when endowed with the topology induced by the prebase

{{f : f({x} ∪ {yn}n∈N) ⊂ U} : (yn)n∈N converges to x and U ∈ τX}.

For details the reader is referred to [98, Sec. 4].
It is important to underline that admissible representations are only topologically equivalent,

but not necessarily computably so. In particular, different admissible representations may induce
different notions of computability on a represented space. For example, for a T0 space (X, τX)
with a countable pseudobase (βn)n∈N, Theorem 1.13 provides the admissible representation δX .
An alternative (topologically equivalent) representation is the map δ that names a point x by a
list of all the n s.t. x ∈ βn. The reduction δX ≤t δ is p-computable, where p ∈ NN is a list of all the
pairs (n,m) s.t. βn ⊂ βm. An explicit example of two admissible but not equivalent representations
is given in Section 1.2.2.

Final topology on represented spaces

We notice that every represented space can be naturally endowed with a topology induced by the
representation map, namely the final topology.

Definition 1.16: Let (X, δX) be a represented space. The final topology on X, denoted with
O(X), is the finest topology that makes the representation map δX continuous. It can be defined
as

O(X) := {U ⊂ X : (∃V ⊂ NN)(V is open and δ−1
X (U) = V ∩ dom(δX))}.

Clearly, the representation map is a quotient map dom(δX) → X. In other words, the space
(X,O(X)) is homeomorphic to the quotient space obtained identifying the elements of dom(δX)
that have the same image via δX . In particular, this implies that it is sequential (as quotient space
of a metric space).

The importance of the final topology lies in the fact that there is a very close connection
between an admissible representation on X and the final topology on X.

To make this connection precise, let us denote with seq(τ) the smallest sequential topology that
contains τ (equivalently, the intersection of all sequential topologies that contain τ). The topology
seq(τ) is called sequentialization or sequential coreflection of τ .

Theorem 1.17 ([100, Prop. 3.9]):
Let X = (X, τ) be a topological space. If δX is an admissible representation for X then:

1. δX lifts to convergent sequences, i.e. for every sequence (xn)n∈N in X that converges to
x, there is a sequence (pn)n∈N in NN that converges to p s.t. δX(p) = x and, for every
n, δX(pn) = xn;

2. δX is a quotient map for τ iff τ is sequential;



1.2. Descriptive set theory 14

3. δX is admissible for seq(τ);

4. seq(τ) is the final topology w.r.t. δX .

In particular, δX is admissible w.r.t. τ iff it is admissible w.r.t. seq(τ). Moreover, if δX is
admissible then O(X) = seq(τ), see also [98, Thm. 7].

1.2 Descriptive set theory

Descriptive set theory is a branch of mathematical logic that studies the “definable sets” in
topological spaces, with a special focus on Polish spaces (i.e. separable and completely metrizable
spaces). It explores the relation between the structural properties of sets and the complexity of their
definitions, underlining how “pathological” examples can be avoided by restricting our attention
to sets that have a “simple” definition. The ideas and techniques introduced with descriptive set
theory are, however, very powerful, and have been used to prove results in analysis for which there
was no known solution before.

It is not realistic to give an exhaustive presentation of the results in descriptive set theory in
an introductory chapter of a thesis. We will just recall the main notions and the definitions that
we will use in the rest of the work.

Although, originally, most of the focus was on the structural properties of (the subsets of) R,
it turned out that many results could be extended to Polish spaces. In particular, a central role is
played by the Cantor space 2N and the Baire space NN. This is motivated by the following facts:

• For every non-empty perfect Polish space X there is an embedding of 2N into X [62, Thm.
6.2].

• The Baire space NN is homeomorphic to a Gδ subspace of 2N (see below for the definition of
Gδ).

• For every Polish space Y there is a closed set F ⊂ NN and a continuous bijection f : F → Y .
If Y non-empty then f extends to a continuous surjection NN → Y [62, Thm. 7.9].

We say that a topological spaceX is zero-dimensional if it is Hausdorff and has a basis consisting
of clopen sets ([62, Sec. 7.A]). The 2N and the NN space are especially pivotal among the zero-
dimensional spaces:

• The Cantor space 2N is the unique, up to homeomorphism, perfect, non-empty, compact,
metrizable, zero-dimensional space [62, Thm. 7.4].

• The Baire space NN is the unique, up to homeomorphism, non-empty, Polish, zero-dimensional
space, for which all compact sets have empty interior [62, Thm. 7.7].

• Every zero-dimensional separable metrizable space can be embedded into NN and 2N. More-
over, every zero-dimensional Polish space is homeomorphic to a closed subset of NN (and
hence to a Gδ subset of 2N) [62, Thm. 7.8].



1.2. Descriptive set theory 15

There is an extremely useful connection between the spaces of (infinite) sequences on a discrete
space A (e.g. 2N and NN) and the trees of finite strings on A. This fact will be used extensively in
the following sections.

Theorem 1.18 ([62, Prop. 2.4]):
A set F ⊂ AN is closed iff there is a tree T ⊂ A<N s.t. F = [T ]. The map T 7→ [T ] is a
bijection between pruned trees and closed subsets of AN.

The Borel hierarchy

For every topological space (X, τ), the family B(X) of Borel subsets of X is the smallest σ-algebra
containing the open sets. This is a fundamental notion in topology and analysis. The family of
Borel subsets of X can be stratified in a hierarchy, called the Borel hierarchy.

Let ω1 be the first uncountable ordinal. The levels of the Borel hierarchy are defined by
transfinite recursion on 1 ≤ ξ < ω1. The classical definition (e.g. [62, Sec. 11.B]) is usually given in
the context of Polish (or, more generally, Hausdorff) spaces. However, there is a small modification
that allows us to give the definition for a generic topological space, while being equivalent to the
classical one whenever for every Hausdorff space5. We therefore give the definition in the more
general setting (see e.g. [23, Sec. 2.1.1]): we start from the families Σ0

1(X) and Π0
1(X) of the open

and the closed subsets of X respectively. Then, for every ξ > 1 we define:
Σ0
ξ(X) :=

{∪
nAn \Bn : An, Bn ∈ Σ0

ξn(X), ξn < ξ, n ∈ N
}

,

Π0
ξ(X) := {X \A : A ∈ Σ0

ξ(X)}.

Moreover, for every ξ, we define ∆0
ξ(X) := Σ0

ξ(X) ∩Π0
ξ(X). In particular ∆0

1(X) is the family of
clopen subsets of X. If X is a metric space, we can always assume An = X in the definition of
Σ0
ξ(X), i.e. Σ0

ξ(X) sets can be written as
∪
nBn sets, for Bn ∈ Π0

ξn(X) with ξn < ξ.
The families Σ0

2(X) and Π0
2(X) are often written resp. F σ(X) and Gδ(X). It is known that

B(X) =
∪
ξ<ω1

Σ0
ξ(X) =

∪
ξ<ω1

Π0
ξ(X) =

∪
ξ<ω1

∆0
ξ(X) ,

i.e. every Borel set is obtained in less than ω1 steps from the open sets, iterating the operations
of complement, countable union and countable intersection. Whenever there is no ambiguity we
will drop the dependency from the space X, and simply write Σ0

ξ , Π0
ξ and ∆0

ξ . If X is Polish and
uncountable, then the hierarchy does not collapse at any level ξ < ω1 [62, Thm. 22.4].

Proposition 1.19 ([62, Prop. 22.1]):
For each ξ ≥ 1, the classes Σ0

ξ, Π0
ξ and ∆0

ξ are closed under finite intersections, finite unions
and continuous preimages. Moreover,
Σ0
ξ is closed under countable unions;

Π0
ξ is closed under countable intersections;

∆0
ξ is closed under complements.

5For non-Hausdorff spaces, a open set may not be the union of closed sets.



1.2. Descriptive set theory 16

For every level ξ of the Borel hierarchy, the pointclass ∆0
ξ+1 can be further stratified in the

so-called difference hierarchy. This is again defined by transfinite induction as follows:

D1(Σ
0
ξ(X)) := Σ0

ξ(X);

A ∈ Dα+1(Σ
0
ξ(X)) :⇐⇒ A = U \B for some U ∈ Σ0

ξ(X) and B ∈ Dα(Σ
0
ξ(X));

if λ is a limit ordinal, then A ∈ Dλ(Σ
0
ξ(X)) :⇐⇒ A =

∪
α<λ,α even Bα+1 \ Bα for some

growing sequence (Bα)α<λ of sets in Σ0
ξ(X),

where even ordinals are those in the form λ + n, where λ is a limit ordinal (or 0) and n < ω is
even.

In Polish spaces, the Hausdorff-Kuratowski theorem states that the difference hierarchy ex-
hausts the ∆0

ξ+1 sets [62, Thm. 22.27]. In second-countable spaces, the Hausdorff-Kuratowski
theorem holds iff there is no ∆0

2-complete set ([23, Cor. 3.9], the definition of Γ-complete set is
given in Definition 1.23 below). Notice that, using the difference hierarchy, we can rewrite the
pointclass Σ0

ξ as the family of countable unions of sets in D2(Σ
0
ξn) with ξn < ξ.

The projective hierarchy

While the Borel classes Σ0
ξ , Π0

ξ and ∆0
ξ are closed under continuous preimages, they are not (in

general) closed under continuous images6.

Definition 1.20 ([62, Def. 14.1 and Sec. 32.A]): Let X be a Polish space. A set A ⊂ X is
called analytic if there is a Polish space Y and a continuous function f : Y → X s.t. ran(f) = A.
Analytic sets are denoted by Σ1

1(X).
The complement of an analytic set is called co-analytic, and the family of co-analytic sets

is denoted by Π1
1(X).

Analytic sets can be equivalently defined as projections of Borel sets. Formally:

Proposition 1.21 ([62, Ex. 14.3]):
Let X be Polish and let A ⊂ X. The following are equivalent:

1. A is analytic;

2. there is a Polish space Y and B ∈ B(X × Y ) s.t. A = projX(B);

3. there is a closed F ⊂ X × NN s.t. A = projX(F );

4. there is a Gδ set G ⊂ X × 2N s.t. A = projX(G).

This, in turn, induces a characterization of the co-analytic sets (as co-projections of Borel sets).
The analytic and co-analytic sets, as the symbols suggest, are the first levels of a higher-order

hierarchy, called projective hierarchy. In particular, for every Polish space X and every n ∈ N we
define

6In particular, an old mistake by Lebesgue was thinking that Borel sets are closed under projection.



1.2. Descriptive set theory 17

Σ1
n+1(X) :=

{
projX(A) : A ∈ Π1

n(X × NN)
}

;

Π1
n+1(X) := {X \A : A ∈ Σ1

n+1(X)};

∆1
n+1(X) := Σ1

n+1(X) ∩Π1
n+1(X).

By Souslin theorem ([62, Thm. 14.11 and cor. 26.2]), for every uncountable Polish space X we
have

B(X) = ∆1
1(X) ⊊ Σ1

1(X).

This is not necessarily true for arbitrary separable metric spaces (see the remarks in [62, p. 282]).

Proposition 1.22 ([62, Prop. 37.1]):
For every n ≥ 1, the classes Σ1

n, Π1
n and ∆1

n are closed under countable intersections, countable
unions and continuous preimages. Moreover,

Σ1
n is closed under continuous images (in particular, projections);

Π1
n is closed under co-projections (universal quantification over Polish spaces);

∆1
n is closed under complements.

In the following we will mostly focus on the classes Σ1
1, Π1

1 and ∆1
1.

Wadge reducibility

The Borel classes and the projective classes are often called pointclasses, while, for every pointclass
Γ, a set A ∈ Γ is called pointset7.

The fact that the classes Σ1
1, Π1

1 and ∆1
1, and all the Borel classes, are closed under continuous

preimages, suggests the following definition:

Definition 1.23 ([62, Def. 21.13 and Def. 22.9]): Let X and Y be topological spaces and
A ⊂ X, B ⊂ Y . We say that A is Wadge reducible to B, and write A ≤W B, if there is a
continuous function f : X → Y s.t.

x ∈ A ⇐⇒ f(x) ∈ B .

Let Γ be a Borel or projective class. Assume that X and Y are Polish and X is zero-
dimensional. We say that B ⊂ Y is Γ-hard if A ≤W B for every A ∈ Γ(X). If B is Γ-hard and
B ∈ Γ(Y ) then we say that B is Γ-complete.

The notion of Wadge-reducibility induces a quasi-order on the subsets of topological spaces,
and the equivalence classes are called Wadge degrees.

Notice that, while the definition of Wadge reducibility makes sense for every topological space
X and Y , in the definition of Γ-hardness and Γ-completeness we restrict our attention to Polish
spaces and, in particular, we require that the domain of the map witnessing the reduction is
zero-dimensional.

7The terms pointset and pointclass can be used in a more general context, and need not be one of the Borel or
projective ones, see [82, Sec. 1.B].



1.2. Descriptive set theory 18

A common technique to show that a set B ⊂ X is Γ-hard is to show that there is a Wadge
reduction A ≤W B, for some A which is already known to be Γ-complete. Standard examples of
Γ-complete sets are the following (see [62, Sec. 23.A, sec. 27.A and Ex. 33.1]):

Q2 := {x ∈ 2N : (∀∞m)(x(m) = 0)} Σ0
2-complete,

N2 := {x ∈ 2N : (∃∞m)(x(m) = 0)} Π0
2-complete,

S3 := {x ∈ 2N×N : (∃k)(∃∞m)(x(k,m) = 0)} Σ0
3-complete,

P3 := {x ∈ 2N×N : (∀k)(∀∞m)(x(k,m) = 0)} Π0
3-complete,

IF := {T ⊂ N<N : T is a tree and [T ] ̸= ∅} Σ1
1-complete,

UB := {T ⊂ N<N : T is a tree and |[T ]| = 1} Π1
1-complete,

where (∃∞m) and (∀∞m) mean respectively (∀n ∈ N)(∃m ≥ n) and (∃n ∈ N)(∀m ≥ n).

Proposition 1.24 ([62, Ex. 22.11 and ex. 24.20]):
Let X be a Polish space. For every ξ ≥ 1 and every A ⊂ X,

A ∈ Σ0
ξ \Π

0
ξ ⇐⇒ A is Σ0

ξ-complete.

The statement is true also interchanging Σ0
ξ and Π0

ξ.

The above theorem cannot be extended to Σ1
1 or Π1

1. Indeed, the statement
A ∈ Σ1

1 \Π
1
1 ⇐⇒ A is Σ1

1-complete,
is equivalent, over ZFC, to Σ1

1-determinacy, which is the principle asserting that every infinite
game on N with payoff W ⊂ Σ1

1(NN), is determined (see [62, Sec. 26.B and thm. 26.4]).

1.2.1 Effective descriptive set theory
We now consider the effective counterpart of the notions introduced in the previous section. In
other words, we introduce a hierarchy of subsets of a topological space X where sets are classified
according to their computability properties.

Classically, the focus is mainly on separable metric spaces (as in [82]). However, the theory can
be developed in a more general context. An effective second-countable space8 is a pair (X, (Bn)n∈N),
where X is a second-countable space and (Bn)n∈N is an enumeration of a basis for the topology of
X s.t. there is a computable function ψ : N3 → N s.t., for all n,m

Bn ∩Bm =
∪
k∈N

Bψ(n,m,k) .

Equivalently, the above condition can be stated for finite intersections, requiring that there is a
computable function φ : N<N × N → N s.t.∩

i<|σ|

BXσ(i) =
∪
k∈N

BXφ(σ,k) .

8Effective second-countable spaces are often called countably based spaces in the literature (see e.g. [23, Sec. 2]).
They are called basic spaces in [71, Sec. 2.3.1]. This conflicts with the notation used in [82], as the author calls
“basic” every perfect Polish space (or N) that is deemed relevant, and then develops the theory abstracting from
the particular choices.



1.2. Descriptive set theory 19

If (Bn)n∈N satisfies the above condition we say that it is an effective basis. If (X, (BXn )n∈N) is
an effective second-countable space and Y ⊂ X comes with the induced topology then Y can
be canonically endowed with an effective basis defining BYn := BXn ∩ Y ([71, Sec. 2.3.2]). If
(Xi, (B

i
n)n∈N), with i < k, are effective second-countable spaces then their product

∏
i<kXi can

be canonically endowed with an effective basis defining BXσ :=
∏
i<k B

i
σ(i) for every σ ∈ Nk.

Similarly, this can be done for countable products of effective second-countable spaces (see e.g. [71,
Sec. 2.3.3]).

Notice that, in a computable metric space (X, d, α), there is a canonical choice for an effective
basis, namely B⟨n,m⟩ := B (α(i), qj). As an historical remark, the effective descriptive set theory is
often developed in the context of recursively presented metric spaces: let (X, d, α) be a separable
metric space, where d is a distance function and α : N → X is a dense sequence in X. We say that
α is a recursive presentation of X if the conditions

P d,X(i, j, k) :⇐⇒ d(α(i), α(j)) ≤ qk,

Qd,X(i, j, k) :⇐⇒ d(α(i), α(j)) < qk

are computable [82, Sec. 3B]. We underline that, in general, being a recursively presented metric
space is strictly stronger than being a computable metric space ([47, Obs. 2.4 and Ex. 2.5]).
However, for every computable metric space X = (X, d, α) there is a computable real β ≤ 1 s.t.
the computable metric space X ′ = (X,βd, α) is a recursively presented metric space and there is
a computable bijection X → X ′ with computable inverse ([47, Thm. 2.10]).

For every effective second-countable space (X, (Bn)n∈N), we say that A ⊂ X is effectively open
if A =

∪
n∈NBφ(n) for some computable function φ : N → N. The set of effectively open subsets

of X, denoted by Σ0
1(X) is called effective topology9. In other words, an effective open set is a

computable union of basic open sets. The complement of an effectively open set is called effectively
closed and the family of all effectively closed subsets of X is denoted by Π0

1(X).
Notice that Σ0

1(X) sets can be indexed using the code for a computable function defining them.
In other words, there is a canonical indexing (Ai)i∈N of the Σ0

1(X) sets. This allows us to define

Σ0
2(X) := {A ⊂ X : A =

∪
n∈NAφ(2n+1) \Aφ(2n), for some computable φ};

Π0
2(X) := {X \A : A ∈ Σ0

2(X)}.

We can inductively define the (Kleene’s) arithmetical hierarchy, also called lightface hierarchy, by
letting (Ani )i∈N be an effective indexing of the Σ0

n(X) sets and defining

Σ0
n+1(X) := {A ⊂ X : A =

∪
i∈NA

n
φ(2n+1) \A

n
φ(2n), for some computable φ};

Π0
n+1(X) := {X \A : A ∈ Σ0

n+1(X)}.

Alternatively, the same classes can be defined by letting Σ0
n+1 be the set of effective unions of

Boolean combinations of Σ0
n sets ([102, Sec. 3]).

We can define the effective difference hierarchy (Dξ(Σ
0
n(X)))ξ<ωCK

1
where ωCK

1 is the first non-
recursive ordinal (see [96, Sec. I.2.3]) by replacing Σ0

n with Σ0
n in the definition of Dξ(Σ

0
n(X)) and

letting Dλ(Σ
0
n(X)), for λ < ωCK

1 limit ordinal, be the family of computable unions of difference
of sets in Σ0

n(X) (see also [102, Sec. 3]). With this definition, the Σ0
n+1(X) sets are obtained as

computable unions of D2(Σ
0
n(X)) sets.

If X is a computable metric space, the Σ0
n+1(X) classes can be equivalently defined by letting

Σ0
n+1(X) := {A ⊂ X : (∃B ∈ Π0

n(X × N))(A = projX B)},
9The terminology may be misleading, as (in general) Σ0

1(X) is not a topology on X.



1.2. Descriptive set theory 20

as in e.g. [82, Sec. 3E]. As in the boldface case, the difference in the definition is due to the fact
that, in non-Hausdorff spaces, an effectively open set may not be the effective union of Π0

1 sets (as,
e.g., for the Sierpiński space, see the following Section 1.2.2).

The arithmetical hierarchy can be extended, by means of Borel codes, to every ξ < ωCK
1 . The

resulting hierarchy is called hyperarithmetical hierarchy (see10 [82, Sec. 7B]).
For a computable metric space, the effective counterpart of the projective hierarchy, called

(Kleene’s) analytical hierarchy11, is defined iteratively as follows:

Σ1
1(X) :=

{
A ⊂ X : (∃C ∈ Π0

1(NN ×X))(A = projX C)
}

,

Π1
1(X) := {X \A : A ∈ Σ1

1(X)},

Σ1
n+1(X) :=

{
A ⊂ X : (∃C ∈ Π1

n(NN ×X))(A = projX C)
}

,

Π1
n+1(X) := {X \A : A ∈ Σ1

n+1(X)}.

Moreover, for every n, we define ∆1
n(X) := Σ1

n(X) ∩ Π1
n(X). The ∆1

1(N) pointclass coincides
with the hyperarithmetic sets (see [96, Ch. II]). In general, the pointclass ∆1

1(X) is the set of Borel
subsets of X with recursive Borel code [82, Ex. 7B.6].

The lightface hierarchy can be relativized in a straightforward manner, by defining

Σ0,z
1 (X) :=

{
A ⊂ X : A =

∪
n∈N

Bf(n) for some z-computable function f

}
,

and then, define the classes Πi,zn , Σi,zn+1, ∆i,z
n , for i < 2, accordingly. It is important to mention

that the lightface classes are universal for their corresponding boldface ones. Formally, if Γ is a
lightface class among Σ0

n,Π
0
n or Σ1

n,Π
1
n and Γ is the corresponding boldface pointclass, then

P ∈ Γ(X) ⇐⇒ (∃z ∈ NN)(P ∈ Γz(X)),

see e.g. [82, Thm. 3E.4].

Theorem 1.25:
All the arithmetical and analytical classes are closed under finite union and intersection.
Moreover,

Σ0
ξ is closed under computable union;

Π0
ξ is closed under computable intersection;

Σ1
n is closed under projection over NN;

Π1
n is closed under co-projection over NN;

∆0
ξ and ∆1

n are closed under complements;

see e.g. [82, Cor. 3E.2].
All the above classes are closed under computable preimages [82, Thm. 3G.2]. The analytical

classes are closed under ∆1
1-preimages [82, Thm. 3E.5].

10While Moschovakis develops the theory only for separable metric spaces, the same ideas can be applied to a
generic effective second-countable space.

11Notice the different suffix between analytic, i.e. Σ1
1 and analytical, i.e. belonging to

∪
n Σ1

n. Maybe not the most
unambiguous choice of words, but it is widespread.



1.2. Descriptive set theory 21

The lightface hierarchy can be used to induce a notion of computability on any effective
second-countable space. We say that a partial function f :⊆ X → Y between two effective
second-countable spaces (X, (BXn )n∈N) and (Y, (BYn )n∈N) is Γ-recursive on its domain iff there is
P ∈ Γ(X × N) s.t., for all x ∈ X,

x ∈ dom(f) ⇒ ((x, n) ∈ P ⇐⇒ f(x) ∈ BYn ) .

A (partial) function is called recursive on its domain if it is Σ0
1-recursive on it (see [82, Sec. 3G]).

If f is total, being Γ-recursive corresponds to

Gf := {(x, n) : f(x) ∈ BYn } ∈ Γ(X × N) .

We say that A ⊂ X is effectively Wadge reducible to B ⊂ Y , and write A ≤m B, if there is a
recursive functional f : X → Y s.t. x ∈ A iff f(x) ∈ B.

Fix a lightface pointclass Γ as above. Assume Y is an effective Polish space and B ⊂ Y . We
say that B is Γ-hard if A ≤m B for every A ∈ Γ(2N). If B is Γ-hard and B ∈ Γ(Y ) then we say
that B is Γ-complete.

1.2.2 Descriptive set theory and represented spaces
There is a close connection between descriptive set theory and the theory of represented spaces.
As already mentioned, every separable metric space (X, d, α) can be endowed with the Cauchy
representation. Moreover, for every k ≥ 1, we can define the represented spaces (Σ0

k(X), δΣ0
k(X)),

(Π0
k(X), δΠ0

k(X)), (∆0
k(X), δ∆0

k(X)) inductively by:

• δΣ0
1(X)(p) :=

∪
⟨i,j⟩∈ran(p)B (α(i), qj);

• δΠ0
k(X)(p) := X \ δΣ0

k(X)(p);

• δΣ0
k+1(X)(⟨p0, p1, . . .⟩) :=

∪
i∈N δΠ0

k(X)(pi);

• δ∆0
k(X)(⟨p, q⟩) := δΣ0

k(X)(p), iff p, q ∈ dom(δΣ0
k(X)) and δΣ0

k(X)(p) = X \ δΣ0
k(X)(q),

where B (x, r) denotes the ball with center x and radius r.
The set Σ1

1(X) of analytic subsets of X can be seen as a represented space defining a name for
S to be a name for a closed set A ⊂ X × NN s.t. S = projX(A). Moreover, we can define a name
for a coanalytic set R ∈ Π1

1(X) to be a name for its complement.
Analogously, if (Y, (BYn )n∈N) is an effective second-countable space, we can define a name for

a Σ0
1(Y ) set U to be any p ∈ NN s.t. U =

∪
i∈NB

Y
p(i). A name p for a Σ0

2(Y ) set A is (the join
of) a sequence (pn)n∈N of names of Σ0

1(Y ) sets (An)n∈N s.t. A =
∪
n∈NAp2n+1 \ Ap2n . We can

then define a representation map for every Borel and analytic pointclass accordingly. With this in
mind, we can prove the following:

Proposition 1.26:
Let (Y, (BYn )n∈N) be an effective second-countable space. For every A ⊂ Y ,

A ∈ Σ0
k(Y ) ⇐⇒ A ∈ Σ0

k(Y ) and A has a computable δΣ0
k(Y )-name.



1.2. Descriptive set theory 22

Proof: By induction on k, see also [10, Sec. 3].

Notice that a name for a closed subset of X is, in fact, a name for its complement. In other
words, a closed set F is represented via a list of open balls whose union is the complement of F . This
is the so-called negative information representation for the closed sets. The space (Π0

1(X), δΠ0
1(X))

is often denoted (A(X), ψ−) in the literature. On the other hand, we may consider the so-called
positive information representation ψ+ for the closed sets: a name for F consists in an enumeration
of all the basic open sets that intersect F . The space of the closed sets, represented via the positive
information representation is often denoted (V(X), ψ+), and its elements are called closed overt
sets (see [27]). We can also consider the full information representation ψ, where a name for a
closed set F is a string ⟨p, q⟩ s.t. F = ψ−(p) = ψ+(q). The complexity of various topological
operations, according to the different representations, has been explored in [12].

A natural question is how the notion of recursiveness compares with the notion of computability
defined in the context of TTE by means of representation maps. Here is a small proposition to fill
the gap. To avoid ambiguity, we use the word “computable” in the sense of TTE, while “recursive”
is used in the sense of effective descriptive set theory.

Proposition 1.27:
Let (X, δX , (B

X
n )n∈N), (Y, δY , (B

Y
n )n∈N) be two represented effective second-countable spaces,

where the representation δX (resp. δY ) is the admissible representation that names a point
x ∈ X (resp. y ∈ Y ) by a list of all the n s.t. x ∈ BXn (resp. y ∈ BYn ). A (partial) function
f :⊆ X → Y is computable iff it is recursive on its domain.

Proof: Assume f is computable and let F be a computable realizer for f . Since X is an effective
space, there is a computable function φX s.t. for every σ ∈ N<N∩

i<|σ|

BXσ(i) =
∪
k∈N

BXφX(σ,k) .

With a small abuse of notation12, we define the following Σ0
1 sets

G := {(φX(σ, k), τ(j)) : F (σ) = τ and j < |τ |};

P :=
∪

(i,j)∈G

BXi × {j} .

Notice that, if F (σ) = τ then

f

dom(f) ∩
∩
i<|σ|

BXσ(i)

 ⊂
∩
j<|τ |

BYτ(j) .

In other words, if F (σ) = τ then every x ∈ dom(f) that has a name that begins with σ must be
mapped, via f , to some y ∈

∩
j<|τ |B

Y
τ(j). This shows that, if x ∈ dom(f) and (x, n) ∈ P then

f(x) ∈ BYn . On the other hand, recall that the functional F maps a name p for some x ∈ dom(f)



1.2. Descriptive set theory 23

to a name q of f(x), i.e. to a list of all the indexes n s.t. f(x) ∈ BYn . If f(x) ∈ BYn then, for
every name p of x, there is a prefix σ of p s.t. F (σ)(j) = n, for some j. In particular, since
x ∈

∩
i<|σ|B

X
σ(i), there is k s.t. x ∈ BXφX(σ,k), and therefore (x, n) ∈ BXφX(σ,k) × BYn . This shows

that (x, n) ∈ P .
Let us now assume that f is recursive on its domain with witness P . Let also φP : N → N2 be

a computable function s.t. P =
∪
n∈NB

X
φP (n)0

× {φP (n)1}. It is straightforward to show that f
has a computable realizer: indeed, given a name p for x ∈ dom(f), we can computably produce
a name for f(x) by enumerating all the n s.t. (p(i), n) ∈ ran(φP ) for some i ∈ N.

Notice that the choice of the representation maps for X and Y played a crucial role in the
previous proposition: if the representations were not admissible, we may not be able to use the
realizer to retrieve the list of all the indexes of basic open sets containing f(x). As a simple
example, recall that multiplication by 3 is not a computable operation R → R, if we represent the
real numbers by their binary expansion (which is not an admissible representation).

Notice also that the fact that being an effective (second-countable) space is a property of
the pair (X, (Bn)n∈N) and not just of the space X. In general, the lightface structure is not a
topological property (as it is not invariant under homeomorphisms), but it depends on the choice
of the basis and of its enumeration. In fact, every second-countable space has an effective basis
(just expand a fixed basis with all the finite intersections, see below for an explicit example).

As already mentioned, two admissible representations on the same space may induce different
notions of computability. Consider the following example: let R be represented with the Cauchy
representation, and let (Bn)n∈N be the effective basis for the Euclidean topology on R where
B⟨i,j⟩ is the open ball with center qi and radius qj . It is straightforward to see that the Cauchy
representation for R is equivalent to the representation that names a point with a list of all the
Bn that contain it. We can now define a new effective basis (Cn)n∈N as follows: fix a non-c.e. set
S ⊂ N and define

• C2n := Bn;

• C1 :=
∪
n∈S

(
n− 1

4 , n+ 1
4

)
;

• for every non-empty σ ∈ N<N, C2⟨σ⟩+1 := C1 ∩
∩
i<|σ|Bσ(i).

Clearly (Cn)n∈N is a basis for the Euclidean topology on R. It is actually an effective basis:
given two indexes i and j, Ci ∩ Cj belongs to the basis and its index is computable from i and
j. Indeed, if i and j are even then it is trivial. Moreover, C1 ∩ C2n = C2⟨(n)⟩+1; if σ ̸= (),
C2⟨σ⟩+1 ∩ C2n = C2⟨σ⌢(n)⟩+1, and finally, for every τ ∈ N<N, C2⟨σ⟩+1 ∩ C2⟨τ⟩+1 = C2⟨σ⌢τ⟩+1.

The two effective bases, however, do not induce the same notion of computability on R. In
other words, the two corresponding admissible representation maps are not equivalent (they are
only topologically equivalent). To see this it is enough to consider the inclusion map N ↪→ R: such
a map is (Bn)n∈N-recursive, but not (Cn)n∈N-recursive: if it were (Cn)n∈N-recursive then there
would be a c.e. way to tell whether n ∈ C1, i.e. whether n ∈ S, contradicting the fact that S is
not c.e..

While, most often, there is a natural choice for an effective basis, when working with represented
spaces we can exploit the representation map to induce a lightface structure in a canonical way.

12We are using the fact that a computable functional NN → NN is identified by a computable function N<N → N<N

(see Definition 1.1).



1.2. Descriptive set theory 24

Let us introduce the Sierpiński space S := {0, 1} (sometimes its elements are denoted ⊥ and ⊤).
The space S is endowed with the topology {∅, {1},S}. Notice that such a topology is not metrizable,
and in fact not T1 (as 1 belongs to every non-empty open set). This space is represented as follows:
the name for 0 is 0ω, while every string that is not constantly 0 is a name for 1.

We can notice that, if (X, δX) is a represented space and O(X) is the final topology on X
induced by δX , then the open sets U ∈ O(X) are exactly the subsets of X s.t. the characteristic
function χU : X → S is realizer-continuous13. In particular, this means that we can represent
an open set U ∈ O(X) using a name for χU (recall that realizer-continuous partial functions
are canonically endowed with a representation map, see Section 1.1.2). This, in turn, allows us
to extend the negative information representation to arbitrary represented spaces, representing a
closed set (in the final topology on X) via a name for its complement. These ideas are essentially
those leading to the formalization of synthetic topology ([34, Sec. 3.2]). Using the jumps of the
Sierpiński space, we can obtain an analogous characterization for the pointclasses Σ0

ξ(X) ([91, Sec.
III and prop. 30], see also [26]).

In other words, using the Sierpiński space, we can define a representation map for the sets
Σ0
k(X), Π0

k(X), ∆0
k(X), Σ1

1(X), Π1
1(X), ∆1

1(X), for any represented space (X, δX). For separable
metric spaces, the two representations are equivalent (see [89, 10]).

The same ideas allow us to induce a lightface structure on any represented space. Indeed, for
a represented space (X, δX), we can define the effectively open sets as follows:

A ∈ Σ0
1(X) :⇐⇒ the characteristic function χA : X → S of A is computable.

Such a choice is motivated by the following result:

Proposition 1.28 ([17, Prop. 2.9]):
Let X be a computable metric space and let A ⊂ X. The following are equivalent:

1. A ∈ Π0
1(X);

2. χX\A : X → S is computable.

In other words, the Sierpiński space is useful to obtain a notion of semi-decidability in repre-
sented spaces. As in the boldface case, we can define the higher levels of the lightface hierarchy
by means of the jumps of the Sierpiński space, namely define A ∈ Σ0

n(X) iff the characteristic
function χA : X → S(n) of A is computable, where S(n) is the n-th jump of S. There are several
reasons why the approach via representation maps looks preferable. For a more detailed discussion
the reader is referred to [23, 91, 88].

There is a close connection between the descriptive complexity of a set A and the descriptive
complexity of the set of names of points in A.

Theorem 1.29 ([25, Thm. 68]):
Let (X, δX) be an admissibly represented second-countable T0 space. For any countable ordinals
α, ξ > 0 and A ⊂ X

A ∈ Dα(Σ
0
ξ(X)) ⇐⇒ δ−1

X (A) ∈ Dα(Σ
0
ξ(dom(δX)))

13This is a simple exercise. See also [89, Sec. 4].



1.3. Reverse mathematics 25

The effective counterpart of the previous theorem can be stated as follows:

Theorem 1.30 ([23, Thm. 4.1]):
Let (X, δX) be an effective second-countable T0 space. For any n,m ∈ N, the map
Dm(Σ0

n(dom(δX))) → Dm(Σ0
n(X)) mapping P to δX(P ) is computable. In particular, for

every A ⊂ X
A ∈ Dm(Σ0

n(X)) ⇐⇒ δ−1
X (A) ∈ Dm(Σ0

n(dom(δX)))

In particular, this shows that, to study the (effective) descriptive complexity of a subset A of
a represented space X, it is enough to study the (effective) descriptive complexity of the set of
names of points in A.

1.3 Reverse mathematics

Reverse mathematics is a subfield of mathematical logic whose goal is to characterize the
demonstrative strength of mathematical statements. It started with the work of Friedman [37],
where he asks “What are the proper axioms to use in carrying out proofs of particular theorems,
or bodies of theorems, in mathematics? What are those formal systems which isolate the essential
principles needed to prove them?”. In other words, the goal of reverse mathematics is to establish
the set-existence axioms needed to prove theorems from “ordinary” mathematics (e.g. real and
complex analysis, number theory, topology of complete separable metric spaces).

The typical reverse mathematical questions are of the form: working in a relatively weak system
of axioms B, what are the weakest axioms R we need to add to our system to prove a given theorem
T? Does B +R prove T and B + T prove every axiom in R?

The reverse mathematics investigations are usually carried out in the context of second-order
arithmetic: the formal language L2 used is a two-sorted extension of the language of Peano arith-
metic, augmented with a relation symbol ∈. The second sort variables are thought as set variables,
and ∈ is intended as the membership relation. A L2-structure M is a tuple

(|M |,SM ,+M , ·M , 0M , 1M , <M ),

where SM is a set of subsets of |M |, +M and ·M are binary operations on |M |, <M is a binary
relation on |M | and 0M , 1M , are elements of |M |. We work with the Henkin semantics, and
therefore SM is not necessarily ℘(M). An ω-model is a L2-structure where |M | = ω is the set of
natural numbers and the interpretation of the operations, the constants and the <M relation are
the usual ones. A β-model M is an ω-model s.t., for every Σ1

1 formula φ (possibly with parameters
in M), M |= φ iff φ is true in the standard model. The difference between ω-models and β-models
will play an important role in Chapter 5.

The early studies in the field revealed that a large number of theorems are equivalent to one of
five subsystems of second-order arithmetic: the so-called Big Five systems can be briefly introduced
as follows:

RCA0 (Recursive Comprehension Axiom) : this is usually assumed to be the base theory. It
consists of the basic axioms of Peano arithmetic (asserting that the model is a commutative
linearly-ordered semiring), plus



1.3. Reverse mathematics 26

the set induction scheme:

(∀X)(((0 ∈ X ∧ (∀n)(n ∈ X → n+ 1 ∈ X)) → (∀n)(n ∈ X));

the Σ0
1-induction scheme: for every Σ0

1 formula φ, possibly with parameters in the model,(
φ(0) ∧ (∀n)(φ(n) → φ(n+ 1))

)
→ (∀n)(φ(n));

the ∆0
1-comprehension scheme: for every Σ0

1 formulas φ and ψ, possibly with parameters in
the model,

(∀n)(φ(n) ↔ ψ(n)) → (∃X)(∀n)(n ∈ X ↔ φ(n)).

WKL0 (Weak König’s Lemma) : RCA0 plus the statement “every infinite binary tree has a path”;

ACA0 (Arithmetic Comprehension Axiom) : WKL0 plus the arithmetic comprehension scheme;

ATR0 (Arithmetic Transfinite Recursion) : ACA0 plus every arithmetic formula can be iterated
along a well-order;

Π1
1−CA0 (Π1

1 Comprehension Axiom) : ATR0 plus the Π1
1 comprehension scheme.

A thorough presentation of each of the big five, as well as a comprehensive list of the theorems
that are equivalent to each of them, is out of the scope of this thesis, and the reader is referred to
[106]. We briefly mention that, despite the big five still occupy a central position in the picture,
the perspective of reverse mathematics has shifted after the proof that Ramsey’s theorem for pairs
is not equivalent to any of the big five: it is, in fact, provable from ACA0 but does not prove, nor
it is provable by WKL0. Ever since, a wide variety of “natural” problems that do not fit the “big
five” picture has been discovered, yielding the so-called “reverse mathematics zoo” [52].

We notice that many theorems from “ordinary mathematics” are of the form

(∀X)(φ(X) → (∃Y )(ψ(X,Y ))),

and therefore have a natural interpretation as problems: the instances are the objects X that
satisfy φ, and the solutions for X are the objects Y that satisfy ψ(X,Y ). In other words, there
is a close connection between reverse mathematics and computable analysis, as theorems can be
formalized as multi-valued functions on represented spaces. This connection was made explicit in
[41], and ever since techniques and results on one field have been used to shed light on the other.



2
Computable reducibilities

Now that we have a notion of computability for functions NN → NN, and, more in general, for multi-
valued functions between represented spaces, the natural step is to compare their computational
strength. In other words, the idea is to generalize the notion of Turing reducibility to higher-order
objects.

Before formally introducing the Weihrauch reducibility (and its variants), we briefly mention
the notions of Medvedev and Muchnik reducibilities (see [109, 94]).

Definition 2.1: Let A,B ⊂ NN. We say that A is Medvedev reducible to B, and we write
A ≤M B, if

(∃e ∈ N)(∀y ∈ B)(Φe(y) ∈ A),

where Φe is the e-th Turing functional. The non-uniform version of Medvedev reducibility is
called Muchnik reducibility: formally, we say that A is Muchnik-reducible to B, and we write
A ≤w B (where w stands for “weak”), if

(∀y ∈ B)(∃e ∈ N)(Φe(y) ∈ A).

The idea behind Medvedev/Muchnik reducibility is that a set A ⊂ NN (sometimes called mass
problem) corresponds to the set of “solutions” to a particular problem. For example, the problem
of enumerating a set E ⊂ N corresponds to {f ∈ NN : ran(f) = E}. In this context, the reduction
A ≤M B can be interpreted as “given a solution for B we can uniformly compute a solution for A”.

It is easy to see that the Medvedev (resp. Muchnik) reducibility is a reflexive and transitive
relation, and therefore it induces a degree structure on the subsets of NN, called Medvedev (resp.
Muchnik) degrees. The two degree structures have been extensively explored in the literature (see
e.g. [105]).

2.1 Weihrauch reducibility

While the Medvedev/Muchnik reducibilities deal with higher-order objects than Turing re-
ducibility, they have the “downside” of considering each single instance of a problem as a separate

27



2.1. Weihrauch reducibility 28

mass problem. As an example, we can consider the problem of finding a path through an ill-founded
tree T ⊂ N<N with a unique path. The corresponding mass problem is the singleton [T ] = {x}.
In particular, different trees (may) correspond to different mass problems. A Medvedev reduction
[T ] ≤M [S] does not give any information on the difficulty of obtaining the tree S from the tree T .

As an additional example, given a computable tree T s.t. [T ] = {x} for some non-arithmetic
x (the existence of such a tree follows e.g. by [96, Thm. II.4.2]), we can consider a convergent
sequence p := (pn)n∈N in NN s.t. limn pn = x. It is obvious that [T ] ≡M limp, where limp is
the mass problem that corresponds to finding the limit of the sequence p. However, there is no
computable way to obtain p from T .

Compare this example with a Turing reduction with a single oracle call: if D ≤T E, with
D,E ⊂ N, to answer the question n ∈ D we computably map n to some m. We then query the
oracle E on m, and computably obtain an answer for “n ∈ D?” from an answer to “m ∈ E?”.

In general, a Medvedev/Muchnik reduction does not give any information on the complexity
of the “pre-processing phase”. This leads us to the notion of Weihrauch reducibility. We give
the definition in its full generality, as a notion of reducibility of partial multi-valued functions on
represented spaces.

Definition 2.2: Let X, Y , Z, W be represented spaces and f :⊆ X ⇒ Y , g :⊆ Z ⇒ W be
partial multi-valued functions. We say that f is Weihrauch reducible to g, and write1 f ≤W g,
if

(∃ computable Φ,Ψ :⊆ NN → NN)(∀G ⊢ g)(Ψ⟨id, GΦ⟩ ⊢ f),

where Ψ⟨id, GΦ⟩ := ⟨p, q⟩ 7→ Ψ(⟨p,GΦ(q)⟩).
We say that f is strongly Weihrauch reducible to g, and write f ≤sW g, if

(∃ computable Φ,Ψ :⊆ NN → NN)(∀G ⊢ g)(ΨGΦ ⊢ f).

The notion of Weihrauch reducibility was originally introduced in [111, p. 5]. For a historical
digression see [17, Sec. 3]. It yields a quasi-order on problems, and, in turn, a degree structure
called Weihrauch degrees.

Intuitively, the maps Φ and Ψ play the roles of “pre-processing” and “post-processing” phases
of the computation, while g plays the role of the oracle. Since we are dealing with computability
on represented spaces, the oracle call to g is actually an oracle to an arbitrary realizer G of g. In
other words, f ≤W g if there are two computable maps Φ and Ψ s.t.

• for every name px for some x ∈ dom(f), Φ(px) is a name for z ∈ dom(g);

• for every name pw for some w ∈ g(z), Ψ(⟨px, pw⟩) is a name for y ∈ f(x).

Such a computation can be represented via a block diagram as in Figure 2.1. With a small abuse
of notation, we may consider Ψ :⊆ NN × NN → NN, and therefore write Ψ(px, pw) instead of
Ψ(⟨px, pw⟩). The difference between Weihrauch and strong Weihrauch reduction is that, in the
latter, the map Ψ is not allowed to have access to the original input px. In particular, it follows
that f ≤sW g implies f ≤W g.

1There is a potential source of ambiguity: the symbol for the Weihrauch reducibility (≤W) is essentially the same
as the symbol for the Wadge reducibility (≤W ). While the reader may pay attention to the different font styles of
the letter “W”, we hope that the context can solve any ambiguity.



2.1. Weihrauch reducibility 29

px Φ ΨG Ψ(⟨px, pw⟩)

Figure 2.1: Block representation of the Weihrauch reduction

Alternatively, we can graphically represent the reduction f ≤W g as follows:

px

��

f

��

Φ(·) // pz

��

g

��
py pw

Ψ(px,·)
oo

This diagram motivates the following terminology: we say that the map Φ is the forward functional
of the reduction, while Ψ is the backward functional. Unless otherwise mentioned, we will implicitly
assume that Φ is the forward functional and Ψ is the backward one.

The non-uniform version of (strong) Weihrauch reducibility is called (strong) computable re-
ducibility (see [52, Sec. 2.2]): the difference with (strong) Weihrauch reducibility is that the forward
functional can depend on the particular instance of the problem, and the backward functional can
depend on the particular solution. In other words, f ≤c g if every x ∈ dom(f) computes a
z ∈ dom(g) and every solution w ∈ g(z) is s.t. the join of x and w computes a solution y ∈ f(x)
(for the strong computable reduction, the solution y is w-computable).

Notice that, if Φ, Ψ witness the Weihrauch reduction f ≤W g, then, for every name px for some
x ∈ dom(f), the map Ψ witnesses the Medvedev reduction

{δ−1
Y (y) : y ∈ f(x)} ≤M {G(Φ(px)) : G ⊢ g}.

If we assume that f, g :⊆ NN ⇒ NN then we can restate the previous reduction in a clearer form:

f(x) ≤M g(Φ(x)).

This highlights how Medvedev reduction is dealing with “only half” of the reduction of a problem
f to a problem g.

As mentioned, many theorems can be written in a ∀∃-form, and therefore have a natural
interpretation as computational problems. In particular, we can use the framework of Weihrauch
reducibility to study the (uniform) computational content of ∀∃-statements. In contrast, Medvedev
reducibility appears to be suited only for theorems in the ∃ form (i.e. finding a solution to a
particular problem).

Intuitively, we can think of a Weihrauch reduction f ≤W g as a computation of f where g is
used as an oracle, and is called exactly once2. The reason behind such a strong constraint on the
number of oracle calls is that it allows a very fine-grained analysis of the computational strength

2Assuming that every problem has a realizer. Any problem g with no realizer is a top element w.r.t. Weihrauch
reducibility. However, a reduction f ≤W g does not provide a way to solve f using g.



2.1. Weihrauch reducibility 30

of problems. It is interesting to see that, in some cases, more than one oracle call is needed, and
one does not suffice. In the next section, we introduce the operation and the formalism to allow
for more than one, or even arbitrarily many, oracle calls.

We stress that the number of calls is exactly one, and cannot be zero. While this appears as
a technicality, it is a small price to pay in order to develop a theory of computability on arbitrary
represented spaces.

Definition 2.3: A problem f :⊆ X ⇒ Y is called pointed if dom(f) has a computable point.

Almost every interesting problem is pointed, but non-pointed functions can be used to build
particular counterexamples. In particular, no pointed function can be reduced to a non-pointed
one. The same argument shows that

id ≡W f ⇐⇒ f is pointed and computable. (⋆)

Indeed, if f is computable then f ≤W id (e.g. you can use either the forward functional to compute
f), while if f is pointed then id ≤W f (since Ψ has access to the original input, you only need to
produce a computable input for f and then ignore the output). The same argument fails if f is
not pointed (see also [13, Lem. 2.8]). This also shows that there is a (trivial) bottom Weihrauch
degree: no problem can be Weihrauch reduced to a function with empty domain. On the other
hand, no natural top degree is available (see [19])3.

Observe that (⋆) does not hold for the strong Weihrauch reducibility (id is not strong Weihrauch
reducible to any constant function). Albeit this is a simple example, it shows that the Weihrauch
and the strong Weihrauch reducibility are two very different notions (in some cases the two notions
may agree, see Definition 2.5).

2.1.1 Operations on problems
There many natural operations that can be defined on problems, and that capture several intuitive
ways of combining them (obtaining other problems). While they are actually operations on multi-
valued functions (and so they could have been introduced in Section 1.1.2), we present them here
are as they lift to Weihrauch degrees.

Definition 2.4: Let f :⊆ X ⇒ Y and g :⊆ Z ⇒ W be multi-valued functions. We define the
following operations:

parallel product: f × g :⊆ X × Z ⇒ Y ×W is defined as (f × g)(x, z) := f(x) × g(z) with
dom(f × g) := dom(f)× dom(g);

coproduct: f ⊔ g :⊆ X ⊔ Z ⇒ Y ⊔ W with dom(f ⊔ g) := dom(f) ⊔ dom(g), defined as
(f ⊔ g)(0, x) := {0} × f(x) and (f ⊔ g)(1, z) := {1} × g(z);

countable coproduct: the coproduct can be naturally extended to the countable case: if
{fi}i∈N is a family of multi-valued functions with fi :⊆ Xi ⇒ Yi then we define⊔
i∈N fi :⊆

∪
i∈N{i} ×Xi ⇒

∪
i∈N{i} × Yi as(⊔
i∈N

fi

)
(i, x) := {i} × fi(x),

with dom(
⊔
i∈N fi) :=

∪
i∈N{i} × dom(fi);

3Recall that we are happily working in ZFC, hence, in particular, every problem has a realizer.



2.1. Weihrauch reducibility 31

meet: f ⊓ g :⊆ X × Z ⇒ Y ⊔ W is defined as (f ⊓ g)(x, z) := f(x) ⊔ g(z) with domain
dom(f ⊓ g) := dom(f)× dom(g);

finite parallelization: f∗ :⊆ X∗ ⇒ Y ∗ is defined as

f(x1, . . . , xn) :=

n∏
i=0

f(xi),

with domain dom(f∗) := dom(f)∗ =
∪
n∈N dom(f)n;

(infinite) parallelization: f̂ :⊆ XN ⇒ Y N is defined as f((xn)n∈N) :=
∏
i∈N f(xi) with domain

dom(f̂) := dom(f)N.

All these operations are motivated by some intuition:

the product f × g corresponds to the problem of solving f and g in parallel. A solution of f × g
is a solution for both f and g;

the coproduct f ⊔g corresponds to the problem of solving either f or g, but not both at the same
time. Analogously for its countable analog (it is important to keep in mind that the countable
coproduct is not degree theoretic);

the problem f ⊓ g is similar to the problem f ⊔ g, in the sense that in both cases we obtain either
a solution of f or g, but not both at the same time. The difference is that we are not able to
specify whether we want to solve f or g but we only learn a posteriori whether the solution
solves f or g;

the finite parallelization f∗ correspond to solving finitely many instances of f (notice that the
number of instances is part of the input). Similarly, its infinite analog f̂ corresponds to solving
countably many instances of f in parallel.

Using the parallel product, we can introduce the following notion:

Definition 2.5 ([13, Def. 3.4]): A multi-valued function f :⊆ X ⇒ Y is called a cylinder if
id×f ≤sW f .

Notice that the equivalence f ≡W id×f holds for every f (straightforward from the defini-
tion of Weihrauch reducibility), but in general we only have f ≤sW id×f . A counterexample for
the reverse reduction is e.g. a constant (total) function N → N. Moreover, since id is a cylinder
(straightforward from the fact that the pairing function ⟨·⟩ is computable with computable in-
verse), we have that for every f , id×f is a cylinder, and therefore every Weihrauch degree has a
representative which is a cylinder.

Intuitively, we can think of a cylinder as a problem that “is able to use the output to (uniformly)
reconstruct the (name for the) input”, i.e. we can compute x from f(x), for every x ∈ dom(f). The
notion of cylinder is very useful as it draws a simple connection between Weihrauch and strong
Weihrauch reducibility.



2.1. Weihrauch reducibility 32

Proposition 2.6 ([13, Cor. 3.6]):
A problem f is a cylinder iff for every problem g

g ≤W f ⇐⇒ g ≤sW f.

This is especially useful to prove non-reductions, as if f is a cylinder then, to prove that g ̸≤W f ,
it suffices to show that g ̸≤sW f .

It is also possible to consider the composition between problems, as defined in Definition 1.4.
Unfortunately, f ◦ g does not match very well the intuition of “applying g, and then applying f”.
The reason for this is that, for f ◦g to be well-defined, we need that the codomain of g is contained
in the domain of f . In many practical situations, however, we do not have this perfect match, but
we are only able to use the output of g to compute a valid input for f . To capture this idea we
introduce the following operation:

Definition 2.7 ([16, Def. 4.1]): For every multi-valued functions f and g, we define the com-
positional product f ∗ g as

f ∗ g := max
≤W

{f0 ◦ g0 : f0 ≤W f and g0 ≤W g}.

We also write f [n] to denote the n-fold compositional product of f with itself, where f [0] := id
and f [1] := f .

The fact that this operation is well-defined was proved in [19, Cor. 3.7]. Notice that the
compositional product f ∗ g does not identify a single multi-valued function, but rather ∗ is an
operator that maps two multi-valued functions to a Weihrauch degree. However, with a small abuse
of notation, we will often write h ≤W f ∗ g with the obvious meaning “h is Weihrauch-reducible
to any problem in f ∗ g”.

Notice that if Φ is computable then f ≡W f ◦ Φ and g ≡W Φ ◦ g (whenever the compositions
are well-defined), therefore f ∗ g matches the idea of being able to “do some computable operation
to map the output of g to an input of f”, and analogously for f ∗ g ≤W h.

Usually it is easier to prove that h ≤W f ∗ g (it suffices to present a computable function Φ s.t.
h ≤W f ◦Φ ◦ g), rather than the opposite reduction f ∗ g ≤W h. A result that is extremely useful
in practice is the so-called cylindrical decomposition:

Proposition 2.8 ([19, Lem. 3.10]):
For all f, g and all cylinders F , G with F ≡W f and G ≡W g there exists a computable K
such that f ∗ g ≡W F ◦K ◦G.

In particular, knowing that for every function f we have that f ≡W id×f and that the latter
is a cylinder, we can always take a representative of f ∗ g of the form (id×f) ◦ Φe ◦ (id×g) for
some computable function Φe. In particular, we can always assume that f ∗ g is a cylinder.



2.1. Weihrauch reducibility 33

Definition 2.9 ([16, Def. 5.1]): Recall that the jump of the represented space (X, δX) is
the represented space X ′ = (X, δX′), where a δX′ := δX ◦ lim (Definition 1.8). The jump of
f :⊆ X ⇒ Y is defined as f ′ :⊆ X ′ ⇒ Y := x 7→ f(x), where dom(f ′) := dom(f)′. We write
f (n) to denote the result of applying the jump operation n times.

In other words, the difference between f and f ′ only rests on the representation of the input.
Notice that, if ⟨p0, p1, . . .⟩ is a name for an input of f ′, we do not require that pi ∈ dom(δX).

It turns out that the name “jump” is an unfortunate one, as the jump does not behave on the
Weihrauch degrees as the Turing jump behaves on Turing degrees. In fact, even if it is monotone
(and hence degree-theoretic) w.r.t. the strong Weihrauch reducibility (f ≤sW g implies f ′ ≤sW g′)
and, for every f , f ≤sW f ′, trivial examples show that f ≡sW f ′ is possible (e.g. let f be any
constant map). Moreover, it does not lift to Weihrauch degrees, and it is possible that f ≤W g
while g′ <sW f ′ (take e.g. f = id and g = id2).

Let us introduce the problem lim :⊆ NN → NN defined4 as

lim(⟨p0, p1, . . .⟩) := lim
n→∞

pn,

where dom(lim) consists of all converging sequences. Since an input for f ′ is a sequence converging
to a name for an input x ∈ dom(f), it is clear that f and f ′ are connected via an application of
lim.

Proposition 2.10 ([16, Cor. 5.16]):
For every problem f , f ′ ≤W f ∗ lim. Moreover, if f is a cylinder then f ′ ≡W f ∗ lim.

We conclude this section introducing the totalization of a function. This operation was in-
troduced formally in [15], but it was already used in the literature (e.g. [84, Prop. 24], [64, Def.
8.1]).

Definition 2.11: For every f :⊆ X ⇒ Y , we define the total continuation or totalization of f ,
written Tf , as the total multi-valued function Tf(x) : X ⇒ Y defined as

Tf(x) :=

{
f(x) if x ∈ dom(f)

Y otherwise.

Clearly Tf = f iff f is total. Notice that the definition of Tf is sensitive to the particular
definition of f as a multi-valued function between represented spaces. In particular, since dom(f) is
a represented space (with the representation induced by δX), the restriction f |dom(f) : dom(f) ⇒ Y

is total, and trivially f ≡sW f |dom(f). Since there are examples of functions s.t. f <W Tf (in
particular this is the case for lim [15, Cor. 8.5]), this shows that T(·) is not a degree-theoretic
operation.

We omit a detailed presentation of how the above operations interact with each other. For a
detailed compendium of such algebraic properties, the reader is referred to [19].

4We use a different font style to indicate the limit as a problem between represented spaces (lim), to distinguish
it from lim, which denotes the classical topological limit.



2.1. Weihrauch reducibility 34

2.1.2 An overview of the Weihrauch lattice
We now introduce a list of known represented spaces, and multi-valued functions on them, as
they will be useful in the development of the work. We mention that every multi-valued function
f :⊆ X ⇒ Y has a strong Weihrauch equivalent version fr :⊆ NN ⇒ NN, sometimes called realizer
version (see e.g. [17, Lem. 3.8]). This shows that, from the point of view of Weihrauch/strong
Weihrauch degrees, it is enough to consider problems NN ⇒ NN. However, the algebraic proper-
ties of non-degree-theoretic operators may depend critically on the domain and codomain of the
problem.

We already mentioned a few natural represented spaces, as well as a few canonical ways to
induce a representation on products of represented spaces (see Section 1.1.2). In particular, N, S,
2N, NN, and R are represented spaces. Moreover, in Section 1.2.2 we defined the represented spaces
(Σ0

k(X), δΣ0
k(X)), (Π0

k(X), δΠ0
k(X)), (∆0

k(X), δ∆0
k(X)) for every represented space X and k ≥ 1.

In Chapter 3, a central role is played by the Ramsey space [N]N of strictly increasing functions
N → N. This space is canonically endowed with the induced topology from the Baire space NN,
which makes it is computably isometric to NN. There is actually a canonical choice for a computable
bijection NN → [N]N. Since [N]N ⊂ NN, a natural representation for [N]N is id|[N]N .

We denote with Tr the space of trees on N represented via their characteristic function. Simi-
larly, we denote with Ti the space of trees with strictly increasing strings, represented analogously.
The function [·] : Tr → Π0

1(NN) that maps a tree to the set of its paths is computable with multi-
valued computable inverse (this is a simple exercise). This implies that a closed set A of NN or
[N]N can be equivalently represented via the characteristic function of a tree T s.t. [T ] = A.

Similarly, an open set P of NN can be equivalently represented via an enumeration p of a prefix-
free subset of N<N s.t. P = {f ∈ NN : (∃i)(p(i) ⊏ f)}. With a small abuse of notation we may
write τ ∈ p in place of τ ∈ ran(p). The same considerations can be made for the space [N]N.

We denote by LO = (LO, δLO) the represented space of linear orders on N, where an order L
is represented by the characteristic function of the set {⟨a, b⟩ ∈ N : a ≤L b}. Similarly, we denote
by WO = (WO, δWO) and QO = (QO, δQO) respectively the represented spaces of well-orders and
of countable quasi-orders on N, both represented via the characteristic function of the relation.
These represented spaces will be central in Chapter 5.

For every tree T ⊂ N<N we denote by KB(T ) the Kleene-Brouwer order on T , defined as
σ ≤KB(T ) τ iff σ, τ ∈ T and τ ⊑ σ or σ ≤lex τ . The map T 7→ KB(T ) from Tr to LO is
computable. It is known that KB(T ) is a well-order iff [T ] = ∅ (see e.g. [106, Lem. V.1.3]).

Problems in the Weihrauch lattice

We now formally introduce a few problems that will be useful in the following sections to calibrate
the computational strength of problems from the point of view of Weihrauch reducibility.

We have already introduced the problem lim of finding the limit of a convergent sequence in
the Baire space. In general, we denote with limX the problem of finding the limit of a convergent
sequence in a topological space X. The problem lim is closely related (in fact, strongly Weihrauch
equivalent) to the problem J : NN → NN consisting in computing the Turing jump of p ∈ NN.
Formally:

J(p)(e) :=

{
1 if {e}p(e) ↓
0 otherwise.

We mention that lim is a cylinder, and that for each n,

lim(n) <W lim(n+1) ≡W lim(n) ∗ lim.



2.1. Weihrauch reducibility 35

The problem LPO : NN → {0, 1} (which stands for Limited Principle of Omniscience) is defined
as LPO(p) := 1 iff (∃n)(p(n) > 0). It is often convenient to think of LPO as the problem of finding
a yes/no answer to a Σ0,p

1 or Π0,p
1 question. In particular, since asking whether J(p)(e) = 1 is a Σ0,p

1

question, it follows that J ≤W L̂PO. The reduction L̂PO ≤W J follows from the Σ0
1-completeness of

the halting problem. The jump LPO′ of LPO (and its iterated jumps LPO(k)) will play an important
technical role. We notice that lim(n) ≡W L̂PO(n) (see e.g. [17, Thm. 6.7 and Prop. 6.10]).

An important family of problems is given by Ramsey’s theorem for n-tuples and k colors: for
every A ⊂ N, let [A]n := {B ⊂ A : |B| = n} be the set of subsets of A with cardinality n. A map
c : [N]n → k is called a k-coloring of [N]n, where k ≥ 2. An infinite set H s.t. c([H]n) = {i} for
some i < k is called a homogeneous solution for c, or simply homogeneous.

The classical Ramsey theorem can be stated as follows:

Theorem 2.12 (Ramsey’s theorem):
For every n, k ≥ 1 and every coloring c : [N]n → k there is an infinite subset H ⊂ N that is
homogeneous for c.

The set Cn,k of k-colorings of [N]n can be seen as a represented space, where a name for a
coloring c is the string p ∈ NN s.t. for each (i0, . . . , in−1) ∈ [N]n, p(⟨i0, . . . , in−1⟩) = c(i0, . . . , in−1).

We define RTnk : Cn,k ⇒ 2N as the total multivalued function that maps a coloring c to the set of
all homogeneous sets for c. Similarly we define RTnN :

∪
k≥1 Cn,k ⇒ 2N as RTnN(c) := RTnk (c), where

k− 1 is the maximum of the range of c. Note that the input for RTnN does not include information
on which colors appear in the range of the coloring.

We also define cRTnk : Cn,k ⇒ k as the multivalued function that produces only the color of a
homogeneous solution. We define cRTnN analogously.

The problem NON : NN ⇒ NN maps a string p to the set {q ∈ NN : q is not computable in p}.
Similarly, NHA : NN ⇒ NN is defined as

NHA(p) := {q : q is not hyperarithmetic in p}.

When working with the represented space (Γ(X), δΓ(X)), it is often awkward to construct
δΓ(X)-names explicitly. If we want to construct a δΓ(X)-name for a set A ⊆ X, we typically only
check that there is a Γ-formula which defines A. By invoking computable closure properties, one
can construct a computable map which takes a Γ-formula ϕ and its parameter p to a δΓ(X)-name
for the set defined by ϕ. Conversely, one can construct a computable map which takes a δΓ-name
p for a set A to a Γ-formula ϕ with parameter p which defines A.

We define the (single-valued) functions Γ-CA :⊆ Γ(N) → 2N corresponding to comprehension
principles: given a δΓ(N)-name p for a subset A of N, produce its characteristic function. Notice
that, for each k and each A ∈ Σ0

k+1(N), we can use LPO(k) to check whether n ∈ A (intuitively,
for every p we can use LPO(k) to answer a Σ0,p

k+1 question). This shows that, for each k,

lim(k) ≡W L̂PO(k) ≡W Σ0
k+1-CA,

as it is somewhat implicitly written in [10].
The problem χΠ1

1
: NN → {0, 1} is the characteristic function of the set of names for well-

founded trees (which is a Π1
1-complete set). The problem Π1

1-CA is Weihrauch equivalent to the
parallelization of χΠ1

1
.



2.1. Weihrauch reducibility 36

A central role is played by the choice problems: given a represented space X we define
Γ-CX :⊆ Γ(X) ⇒ X as the multi-valued function that chooses an element from a non-empty
set A ∈ Γ(X). If Γ = Π0

1 we simply write CX . We also write Γ-UCX if the choice is restricted to
singletons. Different spaces X can lead to different Weihrauch degrees. In particular, letting Ck
be the choice problem on {0, . . . , k − 1}, we have

CN

Ck CR UCNN CNN

C2N

where the arrows represent strict Weihrauch reduction in the direction of the arrow. Several
variants of the choice problems have been explored in the literature: for example, we can consider
the restriction of CX to convex sets (XCX), to sets with positive measure (PCX), to cofinite sets
(Ccof
X ) and so on (see [17]). In particular, the choice on cofinite sets will play an important role in

Chapter 5.
For each Γ we introduce the problem Γ−Bound :⊆ Γ(N) ⇒ N, defined as the problem that

takes as input a finite Γ subset of the natural numbers and returns a bound for it. Formally

dom(Γ−Bound) := {A ∈ Γ(N) : (∀∞n)(A(n) = 0)},
Γ−Bound(A) := {n ∈ N : (∀m ≥ n)(A(m) = 0)}.

We will be especially interested in the principle Π1
1−Bound. A simple observation is that

Π1
1−Bound ≡sW Σ1

1-Ccof
N . Indeed, the reduction Σ1

1-Ccof
N ≤sW Π1

1−Bound is trivial. On the other
hand, given a finite Π1

1 subset X of N we can consider the set

Y := {n ∈ N : (∃m ≥ n)(m ∈ X)}.

Clearly Y is a Π1
1 initial segment of N, and therefore N \ Y is a valid input for Σ1

1-Ccof
N . Moreover

a name for Y can be uniformly computed from a name of X and Σ1
1-Ccof

N (N\Y ) = Π1
1−Bound(X).

This shows that Π1
1−Bound ≤sW Σ1

1-Ccof
N and hence the two problems are (strongly) Weihrauch

equivalent. Moreover, this argument allows us to assume that an input for Π1
1−Bound is a sequence

(Tm)m∈N of trees s.t. there exists k s.t. [Ti] = ∅ iff i < k.
The problem Σ̂1

1-Ccof
N has been studied in [2] under the name Σ1

1-ACcof
NN . Moreover, [64] (implic-

itly) uses Σ̂1
1-Ccof

N in the proof of Lemma 4.7 to separate Σ1
1-WKL from Σ̂1

1-CN. It is known that
Σ̂1

1-Ccof
N <W CNN [2, Thm. 3.34]. We will show in Proposition 5.52 that UCNN <W

̂Π1
1−Bound.

As mentioned, the fact that Π1
2 theorems can be phrased as multi-valued functions allows us to

draw a parallel between reverse mathematics and Weihrauch reducibility, so that we can informally
talk of “analogs” of the big five in the Weihrauch lattice:

RCA0 roughly corresponds to constructive mathematics, and its analog is the identity id;

WKL0 can be directly identified with the problem WKL that takes in input an ill-founded subtree
of 2<N and produces a path through it. As mentioned, a closed set A ⊂ 2N is closed iff there is
a tree T ⊂ 2<N s.t. A = [T ]. This is essentially the proof of WKL ≡sW C2N ;



2.1. Weihrauch reducibility 37

ACA0 is equivalent to the existence of the Turing jump of any set (in the model), hence it corre-
sponds to lim and its iterations; “full” König’s lemma KL (given an infinite finitely-branching
subtree of N<N, produces a path) corresponds to WKL′ and we have lim <W KL <W lim′ (see
[21, Fact 2.3]). We informally refer to the family of problems that are dominated by lim(n) for
some n as the “arithmetic part” of the Weihrauch lattice (see also Section 2.2);

ATR0 corresponds approximately to UCNN , CNN and TCNN (see below);

Π1
1−CA0 corresponds to Π1

1-CA, i.e. given a Π1
1 code for a set, produce its characteristic function.

The “higher levels” of the Weihrauch lattice have not been thoroughly explored so far. Recently,
Marcone [18] raised the question “What do the Weihrauch hierarchies look like once we go to very
high levels of reverse mathematics strength?”. While Π1

1-CA appears to be a natural choice for an
analogue5 of Π1

1−CA0, finding an analog for ATR0 seems a harder task, and various alternatives
have been explored in [64].

The system ATR0 proves the existence of jump-hierarchies on any well-order (or, equivalently,
hierarchies obtained by iterating an arithmetic formula over a well-order). This may suggest that
the analogue of ATR0 should be the function ATR : WO × 2N × N → 2N mapping a countable
well-order L, a set A ⊂ N and an arithmetic formula θ to the unique set Y ⊂ N obtained iterating
θ along the well-order X with parameter A. The problem ATR is strong Weihrauch equivalent to
UCNN ([64, Thm. 3.13]), and, in turn, to the problem lim†, which corresponds to the iteration of
lim over a countable ordinal ([90]).

Overall, UCNN appears as a perfect analog of ATR0 in the Weihrauch lattice. However, there is
an interesting phenomenon that makes the comparison between ATR0 and ATR a bit harder: the
existence of pseudo-well-orders. When working with different ω-models of second order arithmetic,
the notion of well-order depends on the model. Pseudo-well-orders are ill-founded linear orders s.t.
no descending sequence exists within the model itself (hence they are well-order “from the point
of view of the model”). While the exploitation of pseudo-well-orders is a powerful tool from the
point of view of reverse mathematics (see [106, Sec. V.4]), in the context of computable analysis
we are guaranteed that the linear order in input to ATR is a well-order, and hence the hierarchy
we build on it is a “true hierarchy”.

This led Jun Le Goh to introduce the problem

ATR2 : LO× 2N × N ⇒ {0, 1} × NN

as the two sided version of ATR ([43, Def. 3.2 and prop. 3.11]). Formally it is defined as the
following multi-valued function:

• inputs are triples (L,A, θ) s.t. L is a linear order on N, A is the characteristic function of a
subset of N and θ is an arithmetic formula whose only free variables are n, Y , and A;

• the output is a pair (i, Y ) s.t. either i = 0 and Y is a <L-infinite descending chain or i = 1
and Y is a (pseudo)hierarchy ⟨Ya⟩a∈L s.t. for all b ∈ L, Yb = {n : θ(n,

⊕
a<Lb

Ya, A)}.

It is known that UCNN <W ATR2 <W CNN ([43, Cor. 3.5 and 3.7], see also [44]).
In general, the fact that many theorems do not have a unique phrasing in terms of multi-valued

functions leads to several examples where the “one-sided” version of a theorem exhibit different
5Together with Vittorio Cipriani and Alberto Marcone we started the analysis, from the point of view of

Weihrauch reducibility, of the Cantor-Bendixon theorem and the perfect kernel theorem, both known to be equiv-
alent to Π1

1−CA0, see [106, Sec. VI.6].



2.1. Weihrauch reducibility 38

uniform computational strength than its “two-sided” counterpart (see [64] and the following chap-
ter 3). In particular, it turns out that the problems CNN and TCNN are very relevant to calibrate
the strength of multi-valued functions that corresponds to theorems around ATR0.

There have been several works exploring the Weihrauch lattice around UCNN , CNN and TCNN :
Kihara, Marcone, and Pauly [64] have studied several principles, like the (strong) comparability of
well-orders, the perfect tree theorem, and the open determinacy theorem; Goh [44, 43, 45] analyzed
the weak comparability of well-orders and the König duality theorem; Anglès D’Auriac and Kihara
[2] dealt with the Σ1

1 choice on N and variants thereof.
It is known that lim(n) <W UCNN for every n (see [11, Sec. 6], [17, Prop. 7.50]). Moreover

UCNN and CNN are closed under compositional product ([11, Thm. 7.3]). In [64] it is proved that
Σ1

1-UCNN ≡W UCNN and Σ1
1-CNN ≡W CNN . The fact that UCNN <W CNN follows from the fact that

the element of a Σ1
1 singleton is hyperarithmetic, but the hyperarithmetic functions are not a basis

for the Π0
1 predicates (see [96, Thm. I.1.6 and thm. III.1.1]). In particular we have

Theorem 2.13 ([64, Cor. 3.4]):
Let f :⊆ NN ⇒ X be a (partial) multi-valued function, for some represented space X. If
f ≤W UCNN then, for every x ∈ dom(f), f(x) contains some y hyperarithmetic relative to x.

The Weihrauch degree of TCNN has been explored in [64, Sec. 8]. It is known that CNN <W TCNN

([64, Prop. 8.2(1)]) and TC∗
NN is one of the strongest problem studied so far that is still considered

among the “ATR0 analogs”.
We mention a simple proposition that will be very useful to prove many non-reducibilities.

Proposition 2.14:
Let f :⊆ X ⇒ Y and g :⊆ Z ⇒ W be multi-valued functions between represented spaces and
let A ⊂ dom(g) be s.t.

{z ∈ dom(g) : (∀w ∈ g(z))(w is not hyperarithmetic in z)} ⊂ A.

If f × NHA ≤W g then f ≤W g|A.

Proof: Assume f ×NHA ≤W g and let the reduction be witnessed by the computable functions
Φ,Ψ. For every px which is the name of some x ∈ dom(f), the pair (px, px) is mapped via Φ to
a name pz for some element z ∈ dom(g).

It suffices to show that z ∈ A. If this were not the case then, for some x ∈ dom(f), pz is
the name of some z /∈ A. By hypothesis, there is a w ∈ g(z) s.t. w has a name pw which is
hyperarithmetic in pz. Let G be a realizer of g s.t. pw = G(pz). Since pw is hyperarithmetic in
pz, and hence in px, we have reached a contradiction with the fact that Ψ(pw, px, px) computes
a solution for NHA(px).

This result will often be used in combination with Theorem 2.13. In fact if there is a computable
x ∈ dom(f) s.t. f(x) does not contain any hyperarithmetic element, then f ̸≤W UCNN .



2.2. Arithmetic Weihrauch reducibility 39

2.2 Arithmetic Weihrauch reducibility

When dealing with multivalued functions that are very high in the Weihrauch lattice it is
often convenient to use a coarser notion of reducibility than Weihrauch reducibility. The notion of
arithmetic Weihrauch reducibility was introduced in [43, Def. 1.4] (see also [45, Def. 2.2] and [2, Sec.
2.4]), and is obtained by relaxing the computability requirements on the forward and backward
functionals.

Definition 2.15: Let f :⊆ X ⇒ Y , g :⊆ Z ⇒ W be partial multivalued functions between
represented spaces. We say that f is arithmetically Weihrauch reducible to g, and we write
f ≤aW g, if

(∃ arithmetic Φ,Ψ :⊆ NN → NN)(∀G ⊢ g) Ψ⟨id, GΦ⟩ ⊢ f

where a function F :⊆ NN → NN is called arithmetic if there is n ∈ N s.t. F ≤W lim(n).

It is straightforward to see that f ≤W g ⇒ f ≤aW g. Notice moreover that f ≤aW g iff there
exists n s.t. f ≤W lim(n) ∗ g ∗ lim(n) (this follows directly from the definition of the compositional
product).

Proposition 2.16:
For every multivalued function f

(∃n)(f ≤W lim(n)) ⇐⇒ f ≤aW id .

Proof: The right-to-left implication follows from the definition. Assume there is a strong re-
duction f ≤sW lim(n) witnessed by the computable maps Φf ,Ψf . It is easy to see that the maps
Φ := Ψf ◦ lim(n) ◦ Φf and Ψ := id witness the reduction f ≤aW id.

Corollary 2.17:
id ≡aW C2N ≡aW LPO ≡aW lim(n).

Proof: Straightforward from Proposition 2.16 and the fact that id is Weihrauch reducible to
C2N , LPO and lim(n).

Proposition 2.18:
For every (partial) multivalued functions f, g, if f ≤aW id then f ∗ g ≡aW g ∗ f ≡aW g.



2.2. Arithmetic Weihrauch reducibility 40

Proof: Let us first prove f ∗g ≡aW g, the other equivalence is analogous. We only need to prove
that f ∗g ≤aW g as the converse reduction is trivial. We can assume w.l.o.g. that f, g are (partial)
multivalued functions :⊆ NN ⇒ NN (see e.g. [17, Lem. 3.8]). By the cylindrical decomposition,
we can write

f ∗ g ≡W (id×f) ◦ Φe ◦ (id×g)

for some computable Φe. In particular

(id×f) ◦ Φe ◦ (id×g)(⟨p1, p2⟩) = ⟨Φ1(p1, g(p2)), f ◦ Φ2(p1, g(p2))⟩

where Φ1,Φ2 are the computable functions s.t. Φe(p) = ⟨Φ1(p),Φ2(p)⟩.
Let Φf ,Ψf be two arithmetic maps witnessing the reduction f ≤aW id. It is straightforward

to see that the maps
Φ := ⟨p1, p2⟩ 7→ p2,

Ψ := (⟨p1, p2⟩, q) 7→ ⟨Φ1(p1, q),Ψf (Φ2(p1, q),ΦfΦ2(p1, q))⟩

witness the reduction (id×f) ◦ Φe ◦ (id×g) ≤aW g.

We mention that an analog of Proposition 2.14 holds for arithmetic reducibility. We make it
explicit, as it will be useful in the rest of the thesis.

Proposition 2.19:
Let f :⊆ X ⇒ Y and g :⊆ Z ⇒ W be multi-valued functions between represented spaces and
let A ⊂ dom(g) be s.t.

{z ∈ dom(g) : (∀w ∈ g(z))(w is not hyperarithmetic in z)} ⊂ A.

If f × NHA ≤aW g then f ≤aW g|A.

Proof: It is enough to follow the proof of Proposition 2.14, replacing “computable” with “arith-
metic” and ≤W with ≤aW.



3
The open and clopen Ramsey theorems in the

Weihrauch lattice

In this chapter, we explore the uniform computational strength of some infinite-dimensional gen-
eralizations of Ramsey’s theorem. The results obtained in this work are joint work with Alberto
Marcone, and have been collected in [78].

We already mentioned the classical (finite-dimensional) Ramsey theorem in Section 2.1.2. Our
focus will be on the infinite generalization of the above result. In particular, we will focus on
Nash-Williams’ theorem, also called the open Ramsey theorem:

Theorem 3.1 (Nash-Williams [83]):
The open subsets of [N]N admit infinite homogeneous sets.

We will also consider the restriction of Nash-Williams’ theorem to clopen subsets of [N]N.
With this work, we join the quest for an ATR0 analog in the Weihrauch lattice (as discussed in
Section 2.1.2), as both the open and the clopen Ramsey theorems are known to be equivalent to
ATR0 over RCA0 (see [106, Sec. V.9]).

Notice that, as already occurred to other principles equivalent to ATR0 ([64, 43]), there is not a
single multi-valued function corresponding to the open Ramsey theorem. Actually, in our case, the
situation is even more complex than for the open determinacy or the perfect tree theorem, as the
two alternatives (homogeneous solution on the open side or homogeneous solution on the closed
side) given by the open Ramsey theorem are not mutually exclusive. Therefore given an open set
we can ask for a homogeneous solution on the open side, a homogeneous solution on the closed
side, or a homogeneous solution on either side. Altogether we will define five different multi-valued
functions corresponding to the open Ramsey theorem and three different functions corresponding
to the clopen Ramsey theorem.

In Figure 3.1 we summarize the results we obtain both with respect to Weihrauch reducibility
and arithmetic Weihrauch reducibility. Notice that the multi-valued function FindHSΣ0

1
is stronger

than any multi-valued function related to ATR0 considered so far. In fact all these functions
are strictly Weihrauch reducible to TC∗

NN , which, by Corollary 3.42, is strictly below FindHSΣ0
1
.

41



3. The open and clopen Ramsey theorems in the Weihrauch lattice 42

UCNN ≡W wFindHSΣ0
1
≡W wFindHS∆0

1
≡W ∆0

1−RT

wFindHSΠ0
1

CNN ≡W FindHS∆0
1
≡W FindHSΠ0

1

TCNN

sTCNN

Σ0
1−RT

C2N ∗Σ0
1−RT

sTC2N ∗Σ0
1−RT

FindHSΣ0
1

3.23

3.24

3.31
3.29

3.2.4

3.33

3.43

Figure 3.1: Multi-valued functions related to the open and clopen Ramsey theorems in the
Weihrauch lattice. Dashed arrows represent Weihrauch reducibility in the direction of the ar-
row, solid arrows represent strict Weihrauch reducibility. The large rectangles indicate arithmetic
Weihrauch equivalence classes. In particular, every function strictly arithmetically reduces to all
the functions in rectangles above its own.

Notice also that, since FindHSΣ0
1

is closed under parallel product (Proposition 3.39), it computes
sTC∗

NN ≡W TC∗
NN × χ∗

Π1
1
, which was suggested as an ATR0 analogue in [64, Sec. 9].

In Section 3.1 we will recall the precise statement for the open and clopen Ramsey theorems
and prove some lemmas that will be useful in proving the results on the Weihrauch degrees. The
reader may skip these lemmas on the first read, and return to it as needed. In Section 3.2 we define
the multi-valued functions corresponding to the open and clopen Ramsey theorems and study their
degrees. In particular we divide the analysis into: functions that are reducible to UCNN (Section
3.2.2), functions that are reducible to CNN (but not to UCNN , Section 3.2.3) and functions that are
not reducible to CNN (Section 3.2.4). Moreover, in Section 3.2.5 we characterize the strength of
these functions from the point of view of strong Weihrauch reducibility. Finally, in Section 3.3 we
focus on the behavior of these functions under arithmetic Weihrauch reducibility, and in Section
3.4 we draw some conclusions and list some open problems.



3.1. Ramsey theorems 43

3.1 Ramsey theorems

Recall that the space [N]N, endowed with the induced topology from the Baire space NN,
is computably isometric to NN. Moreover, there is a natural choice for a computable bijection
NN → [N]N.

Let P ⊂ [N]N. We say that f ∈ [N]N is a homogeneous solution for P iff

(∀g ∈ [N]N)(fg ∈ P ) ∨ (∀g ∈ [N]N)(fg /∈ P ).

If f is homogeneous for P we say that f lands in P if the first disjunct of the above condition holds,
i.e. if (∀g ∈ [N]N)(fg ∈ P ). Vice versa, if (∀g ∈ [N]N)(fg /∈ P ) then we say that f avoids P . A set
P ⊂ [N]N is called Ramsey (or we say that it has the Ramsey property) iff it has a homogeneous
solution. We will denote the set of homogeneous solutions for P (which may either land in it or
avoid it) with HS(P ). Notice that, in general, a set can have both solutions that land in the set
and solutions that avoid the set.

In the literature, the symbol [N]N is sometimes used to denote the family of all infinite subsets
of N. Also, if X is an infinite subset of N, [X]N denotes the family of all infinite subsets of X. It
is easy to identify the Ramsey space [N]N with the space of infinite subsets of N (by identifying a
function f with its range). With this in mind, we may write [f ]N := [ran(f)]N to denote the set of
all infinite subsequences of f . The definition of homogeneous solution can now be written as

[f ]N ⊂ P ∨ [f ]N ∩ P = ∅.

It is natural to ask which classes of subsets of [N]N have the Ramsey property. The problem
is well studied and has an extensive literature. The Galvin-Prikry theorem ([39]) states that all
Borel subsets of [N]N have the Ramsey property. This result can actually be extended to analytic
sets ([103]). To go beyond the analytic sets we need axioms above ZFC (see e.g. [106, Rem. VI.7.6,
p. 240], [60, pp. 1036–1037]). We will focus on Nash-Williams’ theorem ([83]), which states that
open sets have the Ramsey property. This is also known as the open Ramsey theorem. It, in turn,
implies the clopen Ramsey theorem (which is the restriction of Nash-Williams’ theorem to clopen
sets). As already mentioned, the open and clopen Ramsey theorems are known to be equivalent
to ATR0 over RCA0 (see [106, Thm. V.9.7]).

3.1.1 Some useful tools
Before formalizing the open and clopen Ramsey theorems in the context of Weihrauch reducibility
as multi-valued functions, let us explicitly state some properties of the set of homogeneous solutions
that will turn out to be useful in the rest of the paper. As a notational convenience we will use
the letters P,Q, . . . to denote open sets and D,E, . . . to denote clopen sets.

We start by mentioning these simple properties of the representation maps:

Lemma 3.2:
The following maps are computable:

1. ∆0
1([N]

N
) ↪→ Σ0

1([N]
N
) := D 7→ D;

2. ∆0
1([N]

N
) → ∆0

1([N]
N
) := D 7→ [N]N \D;

3. ∪ : Σ0
1([N]

N
)×Σ0

1([N]
N
) → Σ0

1([N]
N
) := (P,Q) 7→ P ∪Q.



3.1. Ramsey theorems 44

Proof:

1, 2 follow from the fact that a name for a clopen set is the join ⟨p, q⟩ of two names for open
sets (one for the set and one for its complement);

3 see [10, Prop. 3.2(5)].

We notice that the open and clopen Ramsey theorems (and, in fact, the Galvin-Prikry theorem)
can be applied to subspaces of [N]N as follows:

Proposition 3.3:
Let Γ be a definable (boldface) pointclass that is downward closed with respect to Wadge
reducibility (i.e. it is a downward closed family of Wadge degrees), such as the families of open
and of clopen sets. Assume that every P ∈ Γ([N]N) is Ramsey and that for every f ∈ [N]N,

Γ([f ]N) = {P ∩ [f ]N : P ∈ Γ([N]N)}.

Then for every f ∈ [N]N, every Q ∈ Γ([f ]N) is Ramsey. Moreover if P ∈ Γ([N]N) and f ∈ [N]N

there exists h ∈ HS(P ) s.t. h ⪯ f .

Proof: It is easy to see that every f ∈ [N]N induces a f -computable homeomorphism
φf : [N]N → [f ]N defined as

φf (p) := n 7→ f(p(n)).

Notice also that
φf (h)g = fhg = φf (hg). (⋆)

In particular this homeomorphism preserves subsequences, i.e. for every q ⪯ p we have
φf (q) ⪯ φf (p). Fix f ∈ [N]N and let Q ∈ Γ([f ]N). Since Γ is closed under Wadge reducibility we
have that

P := φ−1
f (Q) ∈ Γ([N]N).

Moreover, since every pointset in Γ([N]N) has the Ramsey property, there is h ∈ HS(P ). Using
(⋆), it is straightforward to conclude that φf (h) ∈ HS(Q).

For the second part it suffices to apply the first part to Q := [f ]N ∩ P , which is in Γ([f ]N).

The following proposition says that, under relatively mild conditions, the set of homogeneous
solutions that land in P ∪Q splits nicely in the set of homogeneous solutions for P that land in P
and the set of homogeneous solutions for Q that land in Q.

Proposition 3.4:
Let A,B ⊂ N be disjoint. Let P,Q ∈ Σ0

1([N]
N
) be s.t.

1. (∀f ∈ P )(f(0) ∈ A and f(1) ∈ A);



3.1. Ramsey theorems 45

2. (∀g ∈ Q)(g(0) ∈ B and g(1) ∈ B).

If R := P ∪Q then
HS(R) ∩R = (HS(P ) ∩ P ) ∪ (HS(Q) ∩Q).

Proof: The inclusion (HS(P ) ∩ P ) ∪ (HS(Q) ∩Q) ⊂ HS(R) ∩ R is trivial and always holds, so
we only need to prove the converse direction. Let h ∈ HS(R) ∩ R and assume that h ∈ P . By
induction we can easily show that ran(h) ⊂ A. Indeed, by point 1, h(0) ∈ A and h(1) ∈ A.
Moreover, if h(i) ∈ A then h(i + 1) ∈ A because h lands in R: indeed if not then the substring
(h(i), h(i+ 1), . . .) of h can neither be in P nor in Q (by the disjointness of A and B), hence
it cannot be in R, contradicting the fact that h lands in R. This shows that h ∈ P implies
h ∈ HS(P )∩P . Notice also that, by the disjointness ofA andB, ran(h) ⊂ A implies ran(h)∩B = ∅
and therefore no subsequence of h is in Q. Similarly we can show that h ∈ HS(R) ∩ Q implies
h ∈ (HS(Q) ∩Q) \ (HS(P ) ∩ P ) and therefore the claim follows.

The following construction was used by Avigad [4] in his proof of the open Ramsey theorem in
ATR0.

Definition 3.5: Let P ∈ Σ0
1([N]

N
) and let ⟨P ⟩ be a name for P . We can define the tree

T⟨P ⟩ := {σ ∈ [N]<N
: (∀τ ⪯∗ σ)(τ ̸∈ ⟨P ⟩)}.

Lemma 3.6:
Let P ∈ Σ0

1([N]
N
). For every name ⟨P ⟩ of P and every f ∈ [N]N we have

f ∈ HS(P ) \ P ⇐⇒ f ∈ [T⟨P ⟩].

Proof: If f /∈ [T⟨P ⟩] then (∃n)(f [n] /∈ T⟨P ⟩), i.e. (∃n)(∃τ ⪯∗ f [n])(τ ∈ ⟨P ⟩). This implies that
there exists a g ⪯ f s.t. τ ⊏ g. This shows that g ∈ P and hence f /∈ HS(P ) \ P .

Let f ∈ [T⟨P ⟩] and let g ⪯ f . If g ∈ P then (∃n)(g[n] ∈ ⟨P ⟩), contradicting the fact that
f ∈ [T⟨P ⟩] (by definition of T⟨P ⟩). Therefore we have that f ∈ HS(P ) \ P .

Notice that the above lemma shows that HS(P )\P is closed whenever P is open. In particular,
if D is clopen then HS(D) is closed: indeed, letting E := [N]N \D, we have HS(D) = HS(E) and

HS(D) = (HS(D) ∩D) ∪ (HS(D) \D) = (HS(E) \ E) ∪ (HS(D) \D)

is the union of two closed sets.



3.1. Ramsey theorems 46

On the other hand, the set of solutions for an open set P that lands in P can be Π1
1-complete:

let (qi)i∈N be an enumeration of the rationals. We can define

T := {σ ∈ [N]<N
: (∀i < |σ| − 1)(qσ(i+1) <Q qσ(i))}.

A path through T is an infinite descending sequence in Q. If we define P := [N]N \ [T ] we have that
HS(P ) ∩ P is the set of well-suborders of Q (every suborder of Q that is not a well-order contains
an infinite descending sequence with increasing indexes, and therefore, a subsequence that lands
in [T ]) and hence is Π1

1-complete.
This underlines a critical difference between the problem of finding a homogeneous solution

that lands in P and finding one that avoids P .
The following construction will be used in the following to move open sets around while “pre-

serving” homogeneous solutions.

Definition 3.7: For every n > 1 let pown := i 7→ ni+1. We can define the map
ηn : ([N]<N ∪ [N]N) → ([N]<N ∪ [N]N) as

ηn(f) := pown ◦f = i 7→ nf(i)+1.

It is clear that ηn is a computable injection with computable inverse.
Let P ∈ Σ0

1([N]
N
) and let ⟨P ⟩ be a name for P . We can define (with a small abuse of

notation)
ηn(⟨P ⟩) :=

∪
σ∈⟨P ⟩

{f ∈ [N]N : ηn(σ) ⊏ f}.

We can naturally extend the definition to a multi-valued map Σ0
1([N]

N
) ⇒ Σ0

1([N]
N
) defining

ηn(P ) := {ηn(⟨P ⟩) : ⟨P ⟩ is a name of P} .

Lemma 3.8:
Let P ∈ Σ0

1([N]
N
). Fix n > 1 and let Q := ηn(⟨P ⟩) for some name ⟨P ⟩ of P . Then

f ∈ HS(P ) ∩ P ⇔ ηn(f) ∈ HS(Q) ∩Q.

Proof: It is straightforward to see that, for every f ∈ [N]N, f ∈ P iff ηn(f) ∈ Q. Moreover, if
g ∈ [N]N, then

ηn(f)g = i 7→ nfg(i)+1 = ηn(fg).

If f is a homogeneous solution that lands in P then ηn(f)g ∈ Q for every g ∈ [N]N, i.e.
ηn(f) ∈ HS(Q) ∩ Q. Vice versa, if ηn(f) ∈ HS(Q) ∩ Q then for every g ∈ [N]N we have
ηn(f)g = ηn(fg) ∈ Q, which implies fg ∈ P .



3.1. Ramsey theorems 47

Definition 3.9: Let σ, τ ∈ [N]<N. We define σ ⊠ τ to be the set of all strings of the form
(⟨ρ(i), θ(i)⟩ : i < N) where ρ, θ ∈ [N]<N and s.t.

σ ⊑ ρ ∧ τ ⊑ θ ∧N = max{|σ|, |τ |}.

Clearly the map ⊠ can be extended to infinite strings by defining

f ⊠ g := (⟨f(0), g(0)⟩, ⟨f(1), g(1)⟩, . . .).

For the sake of readability, it is convenient to introduce the following notation: for i = 1, 2,
we define

πi : (N× N)<N ∪ (N× N)N → N<N ∪ NN

as the map that, given in input a finite (resp. infinite) string of pairs, returns the finite (resp.
infinite) string of the i-th elements of the pairs.

Let ⟨P ⟩, ⟨Q⟩ be two names for two open subsets of [N]N. We can define

⟨P ⟩⊠ ⟨Q⟩ :=
∪

σ∈⟨P ⟩

∪
τ∈⟨Q⟩

σ ⊠ τ,

which is a name for a new open set.
This leads to a map Σ0

1([N]
N
)×Σ0

1([N]
N
) ⇒ Σ0

1([N]
N
) defined by

P ⊠Q := {R ∈ Σ0
1([N]

N
) : ⟨P ⟩⊠ ⟨Q⟩ is a name for R}.

Notice that, in general, it is not true that if f lies in the open set with name ⟨P ⟩ ⊠ ⟨Q⟩ then
πif ∈ [N]N.

Lemma 3.10:
Let P1, P2 ∈ Σ0

1([N]
N
) and let ⟨P1⟩, ⟨P2⟩ be names for P1, P2 respectively s.t. every string in

⟨P1⟩ has length at least 2. Let P ∈ Σ0
1([N]

N
) be the open set with name ⟨P1⟩⊠ ⟨P2⟩. Then

HS(P ) ∩ P = {f ⊠ g : f ∈ HS(P1) ∩ P1 and g ∈ HS(P2) ∩ P2}.

Proof: Notice first of all that f ∈ HS(P ) ∩ P implies that, for i = 1, 2,

πif ∈ [N]N.

Indeed, fix n ∈ N and consider the substring g := (f(n), f(n+ 1), . . .) of f . Since f is homoge-
neous we have g ∈ P . In particular, there is τ = (⟨τ1(i), τ2(i)⟩ : i < N) ∈ ⟨P1⟩⊠ ⟨P2⟩ s.t. τ ⊏ g.
Fix σ1 ∈ ⟨P1⟩ and σ2 ∈ ⟨P2⟩ s.t. τ ∈ σ1 ⊠ σ2. Since |σ1| ≥ 2 we have |τ | ≥ 2. Moreover

(πif)(n) = τi(0) < τi(1) = (πif)(n+ 1).

Let now f ∈ HS(P ) ∩ P . For every g ⪯ f we have that g ∈ HS(P ) ∩ P and π1g ∈ P1, π2g ∈ P2

(indeed if π1g /∈ P1 or π2g /∈ P2 then g /∈ P ). Hence πif ∈ HS(Pi) ∩ Pi for i = 1, 2. The reverse
inclusion is straightforward as if fi ∈ HS(Pi) ∩ Pi then f := f1 ⊠ f2 is a homogeneous solution
for P .



3.1. Ramsey theorems 48

The following generalizes the tree used by Solovay [108].

Definition 3.11: Let ϕ : N → N be injective. For every tree T ∈ Ti we define the Solovay open
set Wϕ(T ) as

Wϕ(T ) := {f ∈ [N]N : (∃k)(∀τ ⊴ f [k])(τ /∈ T ) and
(∃n,m ∈ N)(f(0) = ϕ(n) and f(1) = ϕ(m))}.

If ϕ is the identity function we drop the subscript.

It is easy to see that Wϕ(T ) is an open set.

Lemma 3.12:
Let T ∈ Ti and let W :=Wϕ(T ). Then

1. If [T ] = ∅ then HS(W )∩W ̸= ∅. Moreover, if ϕ is surjective then W = [N]N and therefore
HS(W ) = HS(W ) ∩W = [N]N.

2. If [T ] ̸= ∅ then HS(W ) = HS(W ) \W . Moreover every f ∈ HS(W ) dominates a path
through T .

Proof: For each f ∈ [N]N define the tree

Tf := {σ ∈ T : (∀i < |σ|)(σ(i) ≤ f(i))}.

1 Notice that, for every f ∈ [N]N, the set Tf is a finitely-branching well-founded subtree of T .
By König’s lemma, Tf must be finite and therefore there is a k s.t. every string in Tf has
length < k. This implies that every τ ⊴ f [k] is not in T . If ran(f) ⊂ ran(ϕ) (as is always the
case if ϕ is surjective) then f ∈ HS(W ) ∩W .

2 Notice that HS(W ) ∩W = ∅ because for every path x ∈ [T ] and every f ∈ [N]N, there exists
g ∈ [N]N that grows sufficiently quickly s.t. x ⊴ fg (as proved in [108, p. 108]).
Moreover, if f ∈ HS(W ) \W then (∀k)(∃τ ⊴ f [k])(τ ∈ T ). This implies that Tf is infinite
and therefore, by König’s lemma, [Tf ] ̸= ∅. This concludes the proof as [Tf ] ⊂ [T ].

Definition 3.13: Let ϕ : N → N. For every tree T ∈ Ti we define the clopen set Dϕ(T ) as

Dϕ(T ) := {f ∈ [N]N : (∃σ0, σ1 ∈ T )( f(0) = ϕ(⟨σ0⟩) and
f(1) = ϕ(⟨σ1⟩) and σ0 ⊏ σ1)}.

If ϕ is the identity function we just drop the subscript.



3.1. Ramsey theorems 49

Lemma 3.14:
Let T ∈ Ti and let D := Dϕ(T ) for some computable strictly increasing function ϕ : N → N. If
[T ] ̸= ∅ then HS(D) ∩D ̸= ∅ and there is a uniform computable surjection HS(D) ∩D → [T ].
On the other hand, if [T ] = ∅ then HS(D) ∩D = ∅.

Proof: Let y ∈ [T ] and define h ∈ D s.t. h(i) = ϕ(⟨y[i]⟩). It is easy to see that h is an
homogeneous solution for D landing in D, therefore HS(D)∩D ̸= ∅. Moreover, given any f that
lands in D we can compute a path x through T as

x :=
∪
k∈N

ϕ−1f(k).

Indeed, since f lands in D we have that ϕ−1f(k) ∈ T for every k ∈ N. Moreover, for every k,
(f(k), f(k + 1), . . .) ∈ D so that ϕ−1f(k + 1) is a finite string that properly extends ϕ−1f(k).
Therefore x is a well-defined function N → N. Finally it is easy to see that x ∈ [T ]: for every
i, let j > i s.t. there is a k s.t. x[j] = ϕ−1f(k). By definition of D we have that ϕ−1f(k) ∈ T .
Since T is a tree, we can conclude that x[i] ∈ T . Notice that ϕ−1 is computable, therefore x
is computable from f . Notice also that, if y and h are as in the beginning of this proof, then
y =

∪
k∈N ϕ

−1h(k), which proves that the mapping is a surjection.
On the other hand, if [T ] = ∅ then, for every f ∈ D, there is an i s.t. ϕ−1(f(i)) /∈ T or

ϕ−1(f(i)) ̸⊏ ϕ−1(f(i+ 1)), otherwise we could compute a path through T . In any case if f ∈ D
then it is not a homogeneous solution for D.

Lemma 3.15:
The following maps are computable:

1. Σ0
1([N]

N
) → Π0

1([N]
N
) := P 7→ HS(P ) \ P ;

2. ηn : Σ0
1([N]

N
) ⇒ Σ0

1([N]
N
) := P 7→ ηn(P ), for every n ∈ N;

3. ⊠ : Σ0
1([N]

N
)×Σ0

1([N]
N
) ⇒ Σ0

1([N]
N
) := (P,Q) 7→ P ⊠Q;

4. Wϕ : Ti → Σ0
1([N]

N
) := T 7→Wϕ(T ), for every injective map ϕ : N → N with computable

range;

5. Dϕ : Ti → ∆0
1([N]

N
) := T 7→ Dϕ(T ), for every invertible map ϕ : N → N with computable

inverse.

Proof:

1 Let P ⊂ [N]N be open and let ⟨P ⟩ be a name for P . The definition of T⟨P ⟩ is computable in
⟨P ⟩. Moreover, x ∈ [T⟨P ⟩] iff x ∈ HS(P )\P (see Lemma 3.6). Since a name for A ∈ Π0

1([N]
N
)

can be a tree T s.t. A = [T ], the claim follows.



3.2. Ramsey theorems in the Weihrauch lattice 50

2, 3 Straightforward from the definition.

4 Let T ∈ Ti be represented by its characteristic function χT . We can define

⟨Wϕ(T )⟩ := {σ ∈ [N]<N
: (∀τ ⊴ σ)(τ /∈ T ) and
(∃n,m ∈ N)(σ(0) = ϕ(n) and σ(1) = ϕ(m))}.

Notice that the universal quantifier is bounded, while the formula in the scope of the existen-
tial quantifier is equivalent to requiring that σ(0) and σ(1) are in ran(ϕ), which is computable
by hypothesis. Therefore ⟨Wϕ(T )⟩ is computable in T .

5 Let T ∈ Ti. By definition of Dϕ(T ), the basic clopen cone {f ∈ [N]N : τ ⊏ f} is a subset of
Dϕ(T ) iff

ϕ−1τ(0) ∈ T and ϕ−1τ(1) ∈ T and ϕ−1τ(0) ⊏ ϕ−1τ(1).

In particular, this shows that we can T -computably obtain open names for Dϕ(T ) and its
complement.

3.2 Ramsey theorems in the Weihrauch lattice

3.2.1 Definitions
There are several ways to formalize the open Ramsey theorem as a multi-valued function.

Definition 3.16 (Open Ramsey Theorem): We define the full version of the open Ramsey
theorem as the (total) multi-valued function

Σ0
1−RT : Σ0

1([N]
N
) ⇒ [N]N := P 7→ HS(P ).

We may modify the full version by adding the requirement on “which side” we want the solution
to be in. In this case, however, we need to restrict the domain to the family of open sets that
admit a solution. We can define the strong versions of the open Ramsey theorem as the multi-
valued functions FindHSΣ0

1
,FindHSΠ0

1
:⊆ Σ0

1([N]
N
) ⇒ [N]N with domain respectively

dom(FindHSΣ0
1
) := {P ∈ Σ0

1([N]
N
) : HS(P ) ∩ P ̸= ∅},

dom(FindHSΠ0
1
) := {P ∈ Σ0

1([N]
N
) : HS(P ) \ P ̸= ∅}

and defined as FindHSΣ0
1
(P ) := HS(P )∩P and FindHSΠ0

1
(P ) := HS(P )\P . We may strengthen

further the requirements, defining the weak versions of the open Ramsey theorem: namely we
define wFindHSΣ0

1
as the restriction of FindHSΣ0

1
to

dom(wFindHSΣ0
1
) := {P ∈ Σ0

1([N]
N
) : HS(P ) ⊂ P}.

Similarly we can define the weak version of FindHSΠ0
1

as the multi-valued function wFindHSΠ0
1

obtained by restricting FindHSΠ0
1

to

dom(wFindHSΠ0
1
) := {P ∈ Σ0

1([N]
N
) : HS(P ) ∩ P = ∅}.



3.2. Ramsey theorems in the Weihrauch lattice 51

Recall that, in general, an open set can have both solutions that land in the set and solutions
that avoid the set. The domain of wFindHSΣ0

1
(resp. wFindHSΠ0

1
) is therefore strictly smaller than

the domain of FindHSΣ0
1

(resp. FindHSΠ0
1
). As we will see the two versions exhibit very different

behaviors. Notice also that the weak versions are restrictions of Σ0
1−RT, while the strong versions

are not (the set of solutions can be strictly smaller).
As in the case of the open Ramsey theorem, we can consider different multi-valued functions

corresponding to the clopen Ramsey theorem.

Definition 3.17 (Clopen Ramsey Theorem): We define the full version of the clopen Ram-
sey theorem as the multi-valued function ∆0

1−RT : ∆0
1([N]

N
) ⇒ [N]N := D 7→ HS(D).

The strong version of the clopen Ramsey theorem is the multi-valued function

FindHS∆0
1
:⊆ ∆0

1([N]
N
) ⇒ [N]N := D 7→ HS(D) ∩D

with domain
dom(FindHS∆0

1
) := {D ∈ ∆0

1([N]
N
) : HS(D) ∩D ̸= ∅}.

The weak version of the clopen Ramsey theorem is the problem wFindHS∆0
1
:⊆ ∆0

1([N]
N
) ⇒ [N]N

defined as the restriction of FindHS∆0
1

to

dom(wFindHS∆0
1
) := {D ∈ ∆0

1([N]
N
) : HS(D) ⊂ D}.

Notice that we defined only one strong and one weak version of the clopen Ramsey theorem.
This is because, using Lemma 3.2.2, it is straightforward to see that the other two are (strongly)
Weihrauch equivalent to the ones we defined.

3.2.2 Problems reducible to UCNN

We show that wFindHSΣ0
1
, wFindHS∆0

1
and ∆0

1−RT are all Weihrauch equivalent to UCNN . None
of these principles are strongly Weihrauch equivalent to UCNN , as we will show in Proposition 3.44.

Lemma 3.18:
wFindHSΣ0

1
≤W UCNN .

Proof: Since ATR ≡W UCNN [64, Thm. 3.13], it suffices to prove that wFindHSΣ0
1
≤W ATR. The

proof is the direct translation in the context of Weihrauch reducibility of the proof presented in
[106, Lem. V.9.4]. More details on the construction can be found in the paper where the proof
was first presented, i.e. [4, Sec. 3]. Let P ∈ dom(wFindHSΣ0

1
). The proof consists of four steps:

1. build the tree T := T⟨P ⟩ of homogeneous solutions that avoid P ;

2. build KB(T );

3. via arithmetic transfinite recursion along KB(T ), obtain a sequence of infinite sets (Uσ)σ∈T
and classify each σ ∈ [N]<N as “good” or “bad”;



3.2. Ramsey theorems in the Weihrauch lattice 52

4. use this classification to build a solution f .

Notice that steps 1 and 2 are computable (using Lemma 3.15.1). For σ /∈ T , we classify σ as
good if the shortest prefix of σ which is not in T belongs to ⟨P ⟩, and bad otherwise. For σ ∈ T ,
to define Uσ and classify σ as good or bad, we first define a set Vσ as follows:

• if σ is the minimum of KB(T ) then Vσ := N;

• if σ is the successor of τ in KB(T ) then Vσ := Uτ ;

• if σ is a limit in KB(T ) then we define Vσ by diagonal intersection: we computably and
uniformly find a sequence τj cofinal in σ. Define

u0 := minUτ0 ;

ui+1 := min

∩
j≤i

Uτj \ {uj}

 ;

Vσ := {ui : i ∈ N}.

It is easy to verify that Vσ is defined by an arithmetic formula. Let

V 1
σ := {m ∈ Vσ : σ⌢m is good},

and similarly V 0
σ := {m ∈ Vσ : σ⌢m is bad} = Vσ \ V 1

σ . Set

n ∈ Uσ :⇔ (|V 1
σ | = ∞ and n ∈ V 1

σ ) or (|V 1
σ | <∞ and n ∈ V 0

σ ).

We now classify σ as good if V 1
σ is infinite, and bad otherwise.

We can obtain the information about (Uσ)σ∈T and the goodness (or badness) for each σ ∈ T
as a name for Y ∈ ATR(KB(T ), P, θ), for an appropriate arithmetic formula θ.

As in [106, 4], one can show that () is good and compute a solution f ∈ wFindHSΣ0
1
(P ) from

Y .

Lemma 3.19:
UCNN ≤W wFindHS∆0

1
.

Proof: We follow the proof of the fact that the clopen Ramsey theorem implies ATR0 over
RCA0 presented in [106, Lem. V.9.6]. We actually prove the reduction Σ1

1−Sep ≤W wFindHS∆0
1
,

as the equivalence Σ1
1−Sep ≡W UCNN has been proved in [64, Thm. 3.11].

Let ((T 0
k , T

1
k ))k∈N be a sequence of pairs of trees s.t. for all k at most one of T 0

k and T 1
k has

a path (i.e. the sequence is a valid input for Σ1
1−Sep). Our goal is to find a set Z s.t. if T 0

k has
a path then k ∈ Z and if T 1

k has a path then k /∈ Z.
Following [106], we use the sequence ((T 0

k , T
1
k ))k∈N to uniformly compute a name for a clopen

D ∈ dom(wFindHS∆0
1
) s.t. for every f ∈ wFindHS∆0

1
(D), f and ((T 0

k , T
1
k ))k∈N uniformly compute

some Z ∈ Σ1
1−Sep(((T 0

k , T
1
k ))k∈N).



3.2. Ramsey theorems in the Weihrauch lattice 53

Theorem 3.20:
UCNN ≡W wFindHSΣ0

1
≡W wFindHS∆0

1
.

Proof: This follows from Lemma 3.18, Lemma 3.19 and the fact that wFindHS∆0
1

is the restric-
tion of wFindHSΣ0

1
to clopen sets.

Theorem 3.21:
UCNN ≡W ∆0

1−RT.

Proof: By Theorem 3.20 it suffices to prove that wFindHS∆0
1
≡W ∆0

1−RT. The reduction
wFindHS∆0

1
≤W ∆0

1−RT is trivial (the former is a restriction of the latter).
Let us prove the reverse reduction. By Proposition 3.3, for every open P ⊂ [N]N, if f /∈ HS(P )

then there is a g ⪯ f s.t. g ∈ HS(P ). This implies that the set [N]N \HS(P ) has no homogeneous
solution that lies in itself.

Let D ∈ ∆0
1([N]

N
) and fix a name ⟨p, q⟩ for D. Consider the set

E := {f ∈ [N]N : (∃σ, τ ∈ p)(σ⌢τ ⊏ f) ∨ (∃σ, τ ∈ q)(σ⌢τ ⊏ f)}.

It is clear that E is a clopen set and a name for E is computable from ⟨p, q⟩.
Notice also that HS(D) ⊂ E. Indeed, let f be a homogeneous solution for D and assume

first that f ∈ D. Since D is open there must be a σ ∈ p s.t. σ ⊏ f . Moreover, since f is a
homogeneous solution, g := (f(|σ|), f(|σ|+ 1), . . .) must again be in D, hence there must be a
τ ∈ p s.t. τ ⊏ g. This implies that σ⌢τ ⊏ f , i.e. f ∈ E. The case f ∈ [N]N \D is analogous by
replacing D with [N]N \D.

Moreover we can notice that there are no homogeneous solutions that land in [N]N \ E,
i.e. E ∈ dom(wFindHS∆0

1
). Indeed assume that f avoids E and let σ, τ ∈ [N]<N be s.t.

σ⌢τ ⊏ f and σ ∈ p and τ ∈ q (the case in which τ ∈ p and σ ∈ q is analogous). Let also
g := (f(|σ|), f(|σ|+ 1), . . .). Since g ⪯ f and f is homogeneous there must be ρ ∈ p s.t. τ⌢ρ ⊏ g.
We can now notice that the subsequence h of f defined as

h := (f(0), . . . , f(|σ| − 1), f(|σ|+ |τ |), f(|σ|+ |τ |+ 1), . . .)

is s.t. σ⌢ρ ⊏ h, and therefore h ∈ E, contradicting the fact that f avoids E.
We now claim that HS(D) = HS(E). Once the claim is proved, we can finish the reduction

using wFindHS∆0
1
(E) = ∆0

1−RT(D).
It is straightforward to notice that HS(D) ⊂ E implies HS(D) ⊂ HS(E), hence we only need

to prove the inclusion HS(E) ⊂ HS(D). Let f ∈ HS(E). Since E ∈ dom(wFindHS∆0
1
) we must

have f ∈ E. Assume w.l.o.g. that f ∈ D and let σ ⊏ f be s.t. σ ∈ p. Fix g ⪯ f and let ρ ⊏ g
be s.t. ρ ∈ p ∪ q. Let k ∈ N be s.t. max ρ < f(k) and maxσ < f(k), and consider τ ∈ p ∪ q
be s.t. τ ⊏ (f(k), f(k + 1), . . .). By the homogeneity of f we have that τ ∈ p (otherwise every



3.2. Ramsey theorems in the Weihrauch lattice 54

substring of f that begins with σ⌢τ would not be in E). Let h ⪯ f be s.t. ρ⌢τ ⊏ h. Again,
by the homogeneity of f we have that ρ ∈ p, hence g ∈ D. Since g was arbitrary, we have that
f ∈ HS(D).

3.2.3 Problems reducible to CNN

Here we consider wFindHSΠ0
1
, FindHSΠ0

1
and FindHS∆0

1
.

Theorem 3.22:
CNN ≡sW FindHS∆0

1
≡sW FindHSΠ0

1
.

Proof: We first show that FindHSΠ0
1

≤sW CNN . Given a name ⟨P ⟩ for some open set
P ∈ dom(FindHSΠ0

1
), by Lemma 3.15.1 we can compute a name for the closed set HS(P ) \ P ,

which by hypothesis is nonempty. Therefore we can use CNN to pick a solution.
Since FindHS∆0

1
≤sW FindHSΠ0

1
is trivial, it remains to show that CNN ≤sW FindHS∆0

1
. Let

T ⊂ [N]<N be s.t. [T ] ̸= ∅ and let D := D(T ), i.e.

D = {f ∈ [N<N]N : f(0) ∈ T and f(1) ∈ T and f(0) ⊑ f(1)}.

Recall that D is computable from T (see Lemma 3.15.5). Moreover, by Lemma 3.14, we have
that D ∈ dom(FindHS∆0

1
) and that every f ∈ FindHS∆0

1
(D) uniformly computes a path through

T .

Proposition 3.23:
UCNN <W wFindHSΠ0

1
.

Proof: The reduction is straightforward knowing that UCNN ≡W wFindHS∆0
1

(Theorem 3.20).
The fact that the reduction is strict follows from [108, Sec. 3]. In particular, Solovay showed that
there is an open set W with computable code s.t. every homogeneous solution avoids W (hence W
is a valid input for wFindHSΠ0

1
) and is neither Σ1

1 nor Π1
1 (in particular it is not hyperarithmetic),

while every computable instance of UCNN has an hyperarithmetic solution (Theorem 2.13).

Proposition 3.24:
wFindHSΠ0

1
≤W CNN ≡W C2N ∗ wFindHSΠ0

1
.



3.2. Ramsey theorems in the Weihrauch lattice 55

Proof: The first reduction follows from Theorem 3.22 as wFindHSΠ0
1

is the restriction of
FindHSΠ0

1
to a smaller domain. The reduction C2N ∗ wFindHSΠ0

1
≤W CNN is straightforward

from C2N ≤W CNN , wFindHSΠ0
1
≤W CNN and CNN is closed under compositional product.

Finally the reduction CNN ≤W C2N ∗ wFindHSΠ0
1

is suggested by the proof of the corollary in
[108, Sec. 3]. In particular, given an ill-founded tree T ⊂ [N]N we can computably define the open
set W := W(T ) (Definition 3.11). By Lemma 3.12, W ∈ dom(wFindHSΠ0

1
) and every solution

f ∈ wFindHSΠ0
1
(W ) dominates a path through T . Let X be the subtree of N<N of the strings

that are dominated by f and let Tf := T ∩ X. Since ∅ ̸= [Tf ] ⊂ [T ], we can use C[X]([Tf ]) to
compute a path through T . To conclude the proof it is enough to notice that C2N ≡W C[X] ([17,
Thm. 7.23]).

Notice that, by the choice-elimination principle ([17, Thm. 7.25]), if Y is a computable metric
space, f :⊆ X → Y is a single-valued function and f ≤W CNN then f ≤W wFindHSΠ0

1
.

Since we are not able to show the equivalence of wFindHSΠ0
1

with any known principle, it is
worth studying its properties.

Proposition 3.25:
wFindHSΠ0

1
≡sW wFindHSΠ0

1
× wFindHSΠ0

1
.

Proof: Notice that if P,Q ∈ dom(wFindHSΠ0
1
) then P ∪ Q ∈ dom(wFindHSΠ0

1
). Indeed, for

every f ∈ [N]N, by the open Ramsey theorem applied to [f ]N ∩P (see Proposition 3.3), there is a
g ⪯ f s.t. [g]N ⊂ [f ]N∩P or [g]N∩ [f ]N∩P = ∅. In the first case we would have a contradiction as
[g]N ⊂ [f ]N ∩ P implies [g]N ⊂ P , i.e. HS(P ) ∩ P ̸= ∅, against P ∈ dom(wFindHSΠ0

1
). Therefore

we have [g]N ∩ [f ]N ∩P = [g]N ∩P = ∅, i.e. g ∈ HS(P ) \P . With a similar argument, we can now
apply the open Ramsey theorem to [g]N∩Q and conclude that there is a h ⪯ g s.t. h ∈ HS(Q)\Q.
In particular h /∈ Q and h /∈ P (as h ⪯ g and g avoids P ). Therefore h is a subsequence of f
that is not in P ∪ Q. Since f was arbitrary, we have that HS(P ∪ Q) ∩ (P ∪ Q) = ∅. This
shows that every homogeneous solution f ∈ HS(P ∪Q) avoids P ∪Q, and, in particular, avoids
both P and Q. Since the union is computable (see Lemma 3.2.3) we can compute a solution for
(wFindHSΠ0

1
×wFindHSΠ0

1
)(P,Q) by computing f ∈ wFindHSΠ0

1
(P ∪Q) and returning two copies

of f .

Recall that, in Section 2.1.2, we introduced the problem Π1
1−Bound, whose input can be as-

sumed being a sequence (Tm)m∈N of trees s.t. there exists k s.t. [Ti] = ∅ iff i < k. We will show in
Proposition 5.52 that UCNN <W

̂Π1
1−Bound. We notice the following:

Theorem 3.26:
̂Π1

1−Bound ≤sW wFindHSΠ0
1

.



3.2. Ramsey theorems in the Weihrauch lattice 56

Proof: We will use strings σ which are prefixes of an infinite string f obtained by joining
countably many strings gi; we write σ = dvt(τ0, . . . , τn) if τi is the prefix of gi contained in σ.
Formally σ = dvt(τ0, . . . , τn) iff

• n = max{i : ⟨i, 0⟩ < |σ|},

• for each i, |τi| = max{j : ⟨i, j⟩ < |σ|}+ 1,

• for each ⟨i, j⟩ < |σ|, τi(j) = σ(⟨i, j⟩).

Let (Tn,m)n,m∈N be a double sequence of trees s.t. for every n there is kn s.t. [Tn,m] = ∅ iff
m < kn. For every n we can define

Tn := () ∪
∪
m∈N

(m)⌢Tn,m.

Notice that, by hypothesis, for every n we have [Tn] ̸= ∅. Moreover, if f ∈ [Tn] then
f(0) ∈ Π1

1−Bound((Tn,m)m∈N). Define also

T := {σ ∈ N<N : σ = dvt(τ0, . . . , τk) ∧ (∀i ≤ k)(τi ∈ Ti)}.

Notice that if fn ∈ [Tn] then ⟨f0, f1, . . .⟩ ∈ [T ], hence [T ] ̸= ∅. Moreover, if f ∈ [T ] and i ≤ j
then, letting f [i] = dvt(τ0, . . . , τk) and f [j] = dvt(ρ0, . . . , ρh), for every n ≤ k we have τn ⊑ ρn.
Therefore

f ∈ [T ] ⇐⇒ f = ⟨f0, f1, . . .⟩ and (∀n ∈ N)(fn ∈ [Tn]).

Let W := W(T ) be the Solovay open set for T . By Lemma 3.12, W ∈ dom(wFindHSΠ0
1
) and

every h ∈ wFindHSΠ0
1
(W ) dominates a path through T .

To conclude the proof we notice that, if f = ⟨f0, f1, . . .⟩ ∈ [T ] and h dominates f then, for
every n,

h(⟨n, 0⟩) ≥ fn(0) ∈ Π1
1−Bound((Tn,m)m∈N).

In particular h(⟨n, 0⟩) ∈ Π1
1−Bound((Tn,m)m∈N).

In particular, this implies that ̂Π1
1−Bound is not a cylinder, as id2 ̸≤sW wFindHSΠ0

1
(see the

following Proposition 3.44).
Recall that ATR2 : LO×2N×N ⇒ {0, 1}×NN is the two sided version of ATR (see Section 2.1.2).

Jun Le Goh (personal communication) observed the following corollary:

Corollary 3.27:
wFindHSΠ0

1
̸≤W ATR2.

Proof: The claim follows from the fact that CNN ≤W C2N ∗wFindHSΠ0
1

(Proposition 3.24) while
CNN ̸≤W C2N ∗ ATR2 ([44, Cor. 8.5]).

Let us denote with TwFindHSΣ0
1

the total continuation of wFindHSΣ0
1
, i.e. the (total) multi-



3.2. Ramsey theorems in the Weihrauch lattice 57

valued function with domain Σ0
1([N]

N
) defined as

TwFindHSΣ0
1
(P ) :=

{
HS(P ) if P ∈ dom(wFindHSΣ0

1
);

[N]N otherwise.

The following proposition underlines the gap between wFindHSΣ0
1

and wFindHSΠ0
1

(recall that
wFindHSΣ0

1
<W wFindHSΠ0

1
by Lemma 3.18 and Proposition 3.23).

Proposition 3.28:
TwFindHSΣ0

1
≤W ATR2, and hence wFindHSΠ0

1
̸≤W TwFindHSΣ0

1
.

Proof: Let P ∈ Σ0
1([N]

N
) be an input for TwFindHSΣ0

1
and consider the tree T⟨P ⟩. We can

computably build the linear order KB(T⟨P ⟩). Notice that it is not necessarily a well-order, as we
are not assuming P ∈ dom(wFindHSΣ0

1
) (i.e. there may be solutions that avoid P ). Let θ be the

arithmetic formula defined in the proof of Lemma 3.18 and let (i, Y ) ∈ ATR2(KB(T⟨P ⟩), P, θ). If
i = 0 then Y is a <KB(T⟨P⟩)-infinite descending sequence and P /∈ dom(wFindHSΣ0

1
); therefore

any f ∈ [N]N is a valid output for TwFindHSΣ0
1
(P ). Suppose now that i = 1, so that Y is a

(pseudo)hierarchy. By construction, Y yields a labeling of each σ ∈ [N]<N as “good” or “bad”
(see the proof of [106, Lem. V.9.4]). The classical proof shows that if P ∈ dom(wFindHSΣ0

1
) then

() is good. In particular if () is bad then we can immediately conclude that P /∈ dom(wFindHSΣ0
1
)

(and, again, any f ∈ [N]N is a valid solution for the original problem). On the other hand, if
() is good then we can follow the construction described in the classical proof and compute
f ∈ [N]N. This follows from the definition of the sets Uσ, which have to be infinite for every σ.
Notice that if P ∈ dom(wFindHSΣ0

1
) then f ∈ HS(P ) = TwFindHSΣ0

1
(P ). On the other hand, if

P /∈ dom(wFindHSΣ0
1
) then f ∈ TwFindHSΣ0

1
(P ) (trivially).

The second part follows from Corollary 3.27.

3.2.4 Problems not reducible to CNN

Let us turn our attention to the last two remaining problems, namely Σ0
1−RT and FindHSΣ0

1
.

Proposition 3.29:
TCNN ≤W C2N ∗Σ0

1−RT and χΠ1
1
<W LPO ∗Σ0

1−RT.

Proof: We first show TCNN ≤W C2N ∗ Σ0
1−RT. Let T ⊂ [N]N be a tree and let W := W(T )

be the Solovay open set of T . Let also f ∈ Σ0
1−RT(W ). By Lemma 3.12, if [T ] ̸= ∅ then

HS(W )∩W = ∅ and f is a bound for some x ∈ [T ]. On the other hand, if [T ] = ∅ then W = [N]N

and f is just an arbitrary infinite string.
Let X be the subtree of N<N of the strings that are dominated by f . Notice that

TC[X] ≡W C[X]. Indeed, to show that TC[X] ≤W C[X] we can notice that, given a tree S ⊂ X, we



3.2. Ramsey theorems in the Weihrauch lattice 58

can computably define an ill-founded tree R as follows: for each level n we check whether S has no
nodes at level n. If this happens for some n, we can (computably) extend S to an ill-founded tree
R. If this never happens then R = S. It is straightforward to see that C[X]([R]) ⊂ TC[X]([S]).

Let Tf := T ∩X. By [17, Thm. 7.23], C2N ≡W C[X] ≡W TC[X], therefore we can use C2N to
compute a solution h ∈ TC[X]([Tf ]). Notice that h ∈ TCNN([T ]). Indeed, if [T ] ̸= ∅ then [Tf ] ̸= ∅
and h is a path through T .

A simple modification of the above argument shows that χΠ1
1
≤W LPO ∗Σ0

1−RT. In fact, we
can see the tree T as an input for χΠ1

1
. If f ∈ Σ0

1−RT(W(T )) then Tf is a finitely branching tree.
Thus whether Tf is finite is a Σ0

1 question in Tf . We can therefore use LPO to check if Tf is infinite
and hence establish whether it is well-founded or not (by König’s lemma, a finitely-branching
tree is infinite iff it has a path).

The reduction is trivially strict as χΠ1
1

always has a computable output.

It follows from Theorem 3.35 that the reduction TCNN ≤W C2N ∗Σ0
1−RT is actually strict.

Corollary 3.30:
Σ0

1−RT ̸≤W CNN .

Proof: If Σ0
1−RT ≤W CNN then

χΠ1
1
≤W LPO ∗Σ0

1−RT ≤W CNN ∗ CNN ≡W CNN ,

contradicting the fact that χΠ1
1
̸≤W CNN (see [64, Sec. 7]).

Corollary 3.31:
wFindHSΠ0

1
<W Σ0

1−RT.

Proof: The fact that wFindHSΠ0
1
≤W Σ0

1−RT is trivial since wFindHSΠ0
1

is a restriction of
Σ0

1−RT to a smaller domain. The reduction is strict because Σ0
1−RT ̸≤W CNN (Corollary 3.30)

but wFindHSΠ0
1
≤W CNN (Proposition 3.24).

Definition 3.32: For every represented space X, we define the strong total continuation of CX
to be the multi-valued function sTCX : Π0

1(X) ⇒ 2×X defined as

sTCX(A) := {(b, x) ∈ 2×X : (b = 0 → A = ∅) ∧ (b = 1 → x ∈ A)}.

In particular, for X = NN (and analogously for X = 2N) we can think of sTCNN as the total
multi-valued function that, given in input a tree, returns a string (b)⌢x s.t. b codes whether
the tree is well-founded or not and, if it is ill-founded, then x is a path through T .



3.2. Ramsey theorems in the Weihrauch lattice 59

It is clear that TCNN <W sTCNN (the fact that the reduction is strict follows from χΠ1
1
̸≤W TCNN

[64, Cor. 8.6], while obviously χΠ1
1
≤W sTCNN). We can also notice the following:

Corollary 3.33:
sTCNN ≤W sTC2N ∗Σ0

1−RT.

Proof: It suffices to repeat the proof of the first statement of Proposition 3.29, using sTC2N in
place of C2N .

We will prove in Corollary 3.53 that the above reduction is actually strict.

Proposition 3.34:
T̂CNN |W sTCNN .

Proof: The fact that sTCNN ̸≤W T̂CNN follows from the obvious observation that χΠ1
1
≤W sTCNN ,

while χΠ1
1
̸≤W T̂CNN (see [64, Cor. 8.6]).

On the other hand, if T̂CNN ≤W sTCNN then, in particular, TCNN × CNN ≤W sTCNN . Since
NHA ≤W CNN (see e.g. [64, Cor. 3.6]), by Proposition 2.14, this implies that TCNN ≤W sTCNN |A,
where A is the set of non-empty closed sets of NN with no hyperarithmetic member (notice that
sTCNN(∅) has computable solutions). In particular, this implies that TCNN ≤W CNN , contradicting
[64, Prop. 8.2.1].

We will now show that Σ0
1−RT ̸≤W TCNN . We actually prove a stronger result that will be

useful in Section 3.3.

Theorem 3.35:
For every n ∈ N, Σ0

1−RT ̸≤W sTCNN × lim(n).

Proof: Let (X, δX) be the represented space of computably open subsets of [N]N with no arith-
metic homogeneous solution, where δX is the restriction of δΣ0

1([N]
N) to computable names. Let

us define Σ0
1−RTX : X ⇒ [N]N as Σ0

1−RTX(P ) := HS(P ).
The reduction Σ0

1−RTX ≤W Σ0
1−RT holds trivially, hence it is enough to prove that

Σ0
1−RTX ̸≤W sTCNN × lim(n).

Assume by contradiction that there is a reduction. Since lim(n) is a cylinder, we can assume
that the reduction is a strong Weihrauch reduction. Let Φ1,Φ2,Ψ be the maps witnessing the



3.2. Ramsey theorems in the Weihrauch lattice 60

strong reduction, with Φ1 producing an input for sTCNN and Φ2 producing an input for lim(n).
Assume that there is an P ∈ X s.t. Φ1(⟨P ⟩) is a name for the empty set, for some name ⟨P ⟩ of
P . By definition, 0ω is a valid output of sTCNN(∅). Let q := lim(n)(Φ2(⟨P ⟩)). Notice that q is
arithmetic, as ⟨P ⟩ is computable by definition of X. We have now reached a contradiction as
Ψ(0ω, q) is arithmetic, against the fact that P has no arithmetic solution.

This implies that, for every P ∈ X and every name ⟨P ⟩ of P , Φ1(⟨P ⟩) is a name for a
non-empty closed set, hence we have a reduction Σ0

1−RTX ≤W CNN × lim(n) ≡W CNN .
We now claim that Σ0

1−RTX ̸≤W CNN , concluding the proof. We will in fact show that
cχΠ1

1
≤W LPO ∗Σ0

1−RTX , where cχΠ1
1

is the restriction of χΠ1
1

to computable trees. The claim
then follows from the fact that cχΠ1

1
̸≤W CNN (as cχΠ1

1
is not effectively Borel measurable, see

[11, Thm. 7.7]) and the fact that CNN is closed under compositional product.
Let ΦD be the forward functional witnessing Σ1

1-UCNN ≤W wFindHS∆0
1

(recall that
Σ1

1-UCNN ≡W UCNN [64, Thm. 3.11], while UCNN ≤W wFindHS∆0
1

has been proved in Lemma 3.19).
Let also TNAR be a computable input for Σ1

1-UCNN with a single non-arithmetic solution (recall
that, by [96, Thm. II.4.2] every H-set is a Π0

2 singleton).
Let T be an input for cχΠ1

1
. We can assume w.l.o.g. that T has no hyperarithmetic path:

indeed if S is a computable ill-founded tree with no hyperarithmetic path then

T × S = {(⟨σ(0), τ(0)⟩, . . . , ⟨σ(n− 1), τ(n− 1)⟩) : σ ∈ T and τ ∈ S}

is ill-founded iff T is, and T × S has no hyperarithmetic path.
Let W := W(T ) be the Solovay open set for T and let Q be the clopen set with name

ΦD(TNAR). Notice that, since Q ∈ dom(wFindHS∆0
1
), for every f we can computably find a

subsequence g ⪯ f s.t. g ∈ Q.
We can computably define P :=W ∩Q (see [10, Prop. 3.2.4]). Since W and Q are computable

then so is P . Let us show that P does not have any arithmetic solution, which implies P ∈ X.
We distinguish two cases:

1. [T ] = ∅: by Lemma 3.12 we have that W = [N]N, hence P = Q and HS(P ) = HS(Q).
Since every solution for Q computes the non-arithmetic solution for TNAR, P does not
have arithmetic solutions.

2. [T ] ̸= ∅: notice first of all that P ∈ dom(wFindHSΠ0
1
) as P ⊂W and W ∈ dom(wFindHSΠ0

1
)

(see Lemma 3.12).
Given f ∈ HS(P ) then, by the above observation, we can computably find a subsolution
g ∈ HS(P ) s.t. g ∈ Q, thus g /∈ W . By König’s lemma such a g is a bound for a path
through T (see the proof of Lemma 3.12). This also implies that every f ∈ HS(P ) is not
(hyper)arithmetic (as, by hypothesis, T does not have hyperarithmetic paths).

Given f ∈ Σ0
1−RTX(P ) we can computably find g ⪯ f s.t. g ∈ Q. Let Tg be the subtree of

T bounded by g. Notice that g is a bound for a path through T iff Tg is ill-founded iff T is
ill-founded (as shown in case 2 above). Since Tg is a finitely-branching tree, by König’s lemma
Tg is ill-founded iff it is infinite. Moreover, the problem of checking whether Tg is finite is a Σ0,g

1

question, hence we can use LPO to solve the problem (as in the proof of Proposition 3.29).



3.2. Ramsey theorems in the Weihrauch lattice 61

Proposition 3.36:
For every (partial) multi-valued function f , if f × NHA ≤W Σ0

1−RT then f ≤W CNN .

Proof: Assume that f × NHA ≤W Σ0
1−RT and let B := dom(wFindHSΣ0

1
). By definition

Σ0
1−RT|B = wFindHSΣ0

1
, hence, since wFindHSΣ0

1
≡W UCNN (Theorem 3.20), the restriction of

Σ0
1−RT to B always has a solution that is hyperarithmetic relative to the input (Theorem 2.13).

Since f × NHA ≤W Σ0
1−RT, by Proposition 2.14, we have that f is reducible to the restriction

of Σ0
1−RT to

A := Σ0
1([N]

N
) \B = dom(FindHSΠ0

1
).

This implies that f ≤W FindHSΠ0
1
, as for each P ∈ A we have FindHSΠ0

1
(P ) ⊂ Σ0

1−RT(P ) (and
therefore every realizer for FindHSΠ0

1
is also a realizer for Σ0

1−RT|A). The claim follows from the
fact that FindHSΠ0

1
≡W CNN (Theorem 3.22).

Corollary 3.37:
Σ0

1−RT <W NHA×Σ0
1−RT ≤W CNN ×Σ0

1−RT.

Proof: The first reduction is straightforward and the second one follows from the fact that
NHA ≤W CNN (see [64, Cor. 3.6]). The fact that the first reduction is strict follows from Propo-
sition 3.36 and the fact that Σ0

1−RT ̸≤W CNN (Corollary 3.30).

To have a better understanding of the uniform strength of Σ0
1−RT, we now show that, even

with parallel access to some hyperarithmetic computational power, Σ0
1−RT does not reach the level

of TCNN × CNN . Thus Σ0
1−RT is not at the level of TC∗

NN , which is one of the strongest principles
considered in [64] to be still at the level of ATR0.

Proposition 3.38:
If f :⊆ X ⇒ Y always has an hyperarithmetic solution relative to the input and f ≤W CNN

then TCNN × CNN ̸≤W f ×Σ0
1−RT.

Proof: Notice that, if we define B := dom(wFindHSΣ0
1
), then

(f ×Σ0
1−RT)|X×B = f × wFindHSΣ0

1
.

Since wFindHSΣ0
1
≡W UCNN (Theorem 3.20) we have that (f×Σ0

1−RT)|X×B always has a solution
that is hyperarithmetic relative to the input (Theorem 2.13). Assume by contradiction that the



3.2. Ramsey theorems in the Weihrauch lattice 62

reduction TCNN ×CNN ≤W f×Σ0
1−RT holds. By Proposition 2.14 we have that TCNN is reducible

to the restriction of f ×Σ0
1−RT to

A := X × (Σ0
1([N]

N
) \B) = X × dom(FindHSΠ0

1
).

In particular, this implies that TCNN ≤W f × FindHSΠ0
1

(see also the proof of Proposition 3.36).
We have therefore reached a contradiction as we would have

TCNN ≤W f × FindHSΠ0
1
≤W CNN × CNN ≡W CNN .

In particular, Proposition 3.38 implies TCNN × CNN ̸≤W UCNN ×Σ0
1−RT.

Let us now turn our attention to FindHSΣ0
1
. We first notice the following useful property:

Proposition 3.39:
FindHSΣ0

1
× FindHSΣ0

1
≤sW FindHSΣ0

1
.

Proof: Let ⟨P1⟩, ⟨P2⟩ be names for two open sets P1, P2 ∈ dom(FindHSΣ0
1
). Assume w.l.o.g.

that every string σ ∈ ⟨P1⟩ has length at least 2 (there is no loss of generality as we can computably
modify the code of P1 by replacing a string with length 1 with all its extensions of length 2).

Let P be the open set with name ⟨P1⟩⊠ ⟨P2⟩. Recall that P is computable from P1 and P2

(see Lemma 3.15). Moreover, by Lemma 3.10

HS(P ) ∩ P = {f ⊠ g : f ∈ HS(P1) ∩ P1 and g ∈ HS(P2) ∩ P2}.

Since the projections πi are computable, it is clear that, from every solution of FindHSΣ0
1
(P ), we

obtain two homogeneous solutions that land in P1 and P2 respectively.

Corollary 3.40:
FindHSΣ0

1
is a cylinder.

Proof: This follows from Proposition 3.39 and the fact that idNN ≤sW FindHSΣ0
1
, as it then

follows that
idNN ×FindHSΣ0

1
≤sW FindHSΣ0

1
× FindHSΣ0

1
≡sW FindHSΣ0

1
.

To prove that idNN ≤sW FindHSΣ0
1

we proceed as follows: let p ∈ NN and assume w.l.o.g. that
p ∈ [N]N. Consider the tree T := {p[k] : k ∈ N} of prefixes of p and let D := D(T ). By
Lemma 3.14 we have that D ∈ dom(FindHSΣ0

1
) and that every f ∈ HS(D) ∩ D uniformly

computes p.



3.2. Ramsey theorems in the Weihrauch lattice 63

The problem FindHSΣ0
1

is much stronger than all of the other Ramsey-related problems we
introduced. We will in fact show that Σ0

1−RT <W FindHSΣ0
1

(and this holds even if we consider
arithmetic reductions, see Theorem 3.54).

Although we will prove much stronger results, it is worth it to sketch a short proof for the
reduction Σ0

1−RT ≤W FindHSΣ0
1
. Given a name ⟨P ⟩ for an open set P build the open set

Q := η2(⟨P ⟩) ∪Dψ3
(T⟨P ⟩),

where ψ3 := σ 7→ 3⟨σ⟩+1 and ⟨σ⟩ is the code of σ. Using Lemma 3.8 and Lemma 3.14 one can
prove that Q ∈ dom(FindHSΣ0

1
) and that every f ∈ HS(Q) ∩Q computes a solution for P .

Proposition 3.41:
sTCNN ≤W FindHSΣ0

1
and hence χΠ1

1
<W FindHSΣ0

1
.

Proof: Let ψn : N<N → N := σ 7→ n⟨σ⟩+1, where ⟨σ⟩ is the code of σ.
Let T ⊂ [N]<N be a tree. We can define the open set P ⊂ [N]N as P := P1 ∪ P2, where

P1 := Dψ2
(T ) and P2 :=Wψ3

(T ). Notice that, by Lemma 3.14 and Lemma 3.12 we have

[T ] = ∅ ⇐⇒ HS(P1) ∩ P1 = ∅ ⇐⇒ HS(P2) ∩ P2 ̸= ∅.

Moreover, by Proposition 3.4,

HS(P ) ∩ P = (HS(P1) ∩ P1) ∪ (HS(P2) ∩ P2).

This implies that

[T ] ̸= ∅ ⇒ HS(P ) ∩ P = HS(P1) ∩ P1,

[T ] = ∅ ⇒ HS(P ) ∩ P = HS(P2) ∩ P2.

In particular, given a f ∈ HS(P )∩ P we can know whether f ∈ HS(P1)∩ P1 or f ∈ HS(P2)∩ P2

just by checking f(0). If f(0) is a power of 2 then [T ] ̸= ∅ and we can compute a path through
T by considering the string x ∈ [N]N s.t.

x =
∪
i∈N

ψ−1
2 (f(i)).

In the other case [T ] = ∅ hence we can just return (0)⌢f .
The result about χΠ1

1
follows from χΠ1

1
≤W sTCNN and sTCNN ̸≤W χΠ1

1
as χΠ1

1
always has

computable output.

Corollary 3.42:
TC∗

NN <W FindHSΣ0
1
.



3.2. Ramsey theorems in the Weihrauch lattice 64

Proof: The reduction follows from TCNN ≤W FindHSΣ0
1

(Proposition 3.41) and the fact that
FindHSΣ0

1
is closed under product (Proposition 3.39). The fact the reduction is strict follows

from the fact that FindHSΣ0
1

computes χΠ1
1

(Proposition 3.41), while TC∗
NN does not ([64, Cor.

8.6]).

This shows that FindHSΣ0
1

is properly stronger than any multi-valued function arising from
statements related to ATR0 studied so far.

Theorem 3.43:
CNN ∗Σ0

1−RT ≤W FindHSΣ0
1
.

Proof: By the cylindrical decomposition we can write

CNN ∗Σ0
1−RT ≡W CNN ◦ Φe ◦ (id×Σ0

1−RT)

for some computable function Φe. It is enough to show that

CNN ◦ Φe ◦ (id×Σ0
1−RT) ≤W FindHSΣ0

1
× FindHSΣ0

1
× χΠ1

1

and the claim will follow from χΠ1
1
≤W FindHSΣ0

1
(Proposition 3.41) and the fact that FindHSΣ0

1

is closed under product (Proposition 3.39).
Let ⟨p1, p2⟩ be an input for CNN ◦Φe ◦ (id×Σ0

1−RT) and let P be the open set with name p2.
We can consider the tree Tp2 of homogeneous solutions for P that avoid P . We can now compute
a tree R s.t. for every x, y ∈ NN,

x ∈ [Tp2 ] and y ∈ [Φe(p1, x)] ⇐⇒ ⟨x, y⟩ ∈ [R].

Using the canonical computable bijection between NN and [N]N it is easy to transform R into a
tree S ∈ Ti so that from any path through S we can compute a path through R.

Recall that TwFindHSΣ0
1
≤W CNN (see Proposition 3.28). Since CNN is closed under com-

positional product we have that CNN ◦ Φe ◦ (id×TwFindHSΣ0
1
) ≤W CNN . Let ΦA,ΨA be two

computable maps witnessing the reduction. In particular, ΦA(⟨p1, p2⟩) is an ill-founded subtree
of N<N and every path through ΦA(⟨p1, p2⟩) computes a solution for CNN ◦Φe◦(id×TwFindHSΣ0

1
)

via ΨA. Let also ψn be the function that maps σ to n⟨σ⟩+1, where ⟨σ⟩ is the code of σ.
Let D := Dψ2

(S) and define

U := D ∪Dψ3
(ΦA(⟨p1, p2⟩));

V := D ∪Wψ3
(S).

Let us first show that U, V ∈ dom(FindHSΣ0
1
). Notice that if P ∈ dom(FindHSΠ0

1
) then

[Tp2 ] ̸= ∅ and [S] ̸= ∅. By Lemma 3.14 we have that HS(D) ∩ D ̸= ∅ and therefore
U, V ∈ dom(FindHSΣ0

1
). On the other hand, assume P /∈ dom(FindHSΠ0

1
). Since TwFindHSΣ0

1
is

total we have that ΦA(⟨p1, p2⟩) is ill-founded. This implies that Dψ3(ΦA(⟨p1, p2⟩)) has solutions
that land in itself (again by Lemma 3.14), and hence U ∈ dom(FindHSΣ0

1
). Moreover, since

P /∈ dom(FindHSΠ0
1
) we have that [S] = ∅ and therefore HS(Wψ3

(S))∩Wψ3
(S) ̸= ∅, which shows

that V ∈ dom(FindHSΣ0
1
).

Let (f, g, b) ∈ (FindHSΣ0
1
× FindHSΣ0

1
× χΠ1

1
)(U, V, S). We distinguish 2 cases:



3.2. Ramsey theorems in the Weihrauch lattice 65

• if b = 1 then [S] = ∅, and hence P ∈ dom(wFindHSΣ0
1
). By Proposition 3.4 f lands in

Dψ3(ΦA(⟨p1, p2⟩)). In particular, f computes a path through ΦA(⟨p1, p2⟩) (Lemma 3.14).
Moreover TwFindHSΣ0

1
(P ) = HS(P ) = Σ0

1−RT(P ), so that f computes also a solution for
the compositional product (by applying ΨA to the path).

• if b = 0 then [S] ̸= ∅ and hence P ∈ dom(FindHSΠ0
1
). Moreover HS(V ) ∩ V = HS(D) ∩D.

Indeed, by Proposition 3.4,

HS(V ) ∩ V = (HS(D) ∩D) ∪ (HS(Wψ3
(S)) ∩Wψ3

(S))

and HS(Wψ3
(S)) ∩Wψ3

(S) = ∅ by Lemma 3.12. In this case, g computes a path through
S, hence a path through R, and eventually a solution for the compositional product (by
projecting the path through R).

The previous two points describe a way to compute a solution for the compositional product
given a solution to FindHSΣ0

1
× FindHSΣ0

1
× χΠ1

1
, and therefore conclude the proof.

Notice that if P /∈ dom(wFindHSΣ0
1
) then we cannot (in general) use U to compute a solution

for the compositional product. Indeed, it may be that HS(P ) ∩ P ̸= ∅ and the solution obtained
from FindHSΣ0

1
(U) lands in Dψ3

(ΦA(⟨p1, p2⟩)). However, since every string is a valid solution for
TwFindHSΣ0

1
(P ), the solution we obtain is not guaranteed to have any connection with the original

problem.
Notice moreover that Σ0

1−RT <W FindHSΣ0
1

as the former is not closed under product with
CNN (Corollary 3.37) while the latter is closed under product (Proposition 3.39) and computes CNN

(see Proposition 3.41). We will prove a stronger result in Theorem 3.54.

3.2.5 A 0− 1 law for strong Weihrauch reducibility
We now characterize the strength of the Ramsey-related multi-valued functions from the point of
view of strong Weihrauch reducibility.

Proposition 3.44:
Let Γ be a definable (boldface) pointclass that is downward closed with respect to Wadge
reducibility. Assume also that every P ∈ Γ([N]N) is Ramsey and that, for every h ∈ [N]N,

Γ([h]N) = {P ∩ [h]N : P ∈ Γ([N]N)}.

If R :⊆ Γ([N]N) ⇒ [N]N is a multi-valued function, s.t. for every x ∈ dom(R), R(x) = HS(x),
then

id2 ̸≤sW R.

In particular id2 (and, a fortiori, UCNN) is not strongly Weihrauch reducible to wFindHSΣ0
1
,

wFindHSΠ0
1
, wFindHS∆0

1
, Σ0

1−RT, ∆0
1−RT.

Proof: Assume there is a strong Weihrauch reduction witnessed by the computable maps Φ,Ψ.
Let pi := Φ(i) (with a small abuse of notation we are identifying i with its name) and let



3.3. Arithmetic Weihrauch reducibility 66

Pi := δΓ([N]N)(pi). By definition of strong Weihrauch reducibility, for every f ∈ HS(Pi) we have
Ψ(f) = i. Fix f ∈ HS(P0) and consider the set [f ]N ∩ P1 ∈ Γ([f ]N). By Proposition 3.3 we
have that every pointset in Γ([f ]N) has the Ramsey property, therefore there is a g ⪯ f s.t.
[g]N ⊂ P1 ∩ [f ]N or [g]N ⊂ [f ]N \ P1. In both cases g ∈ HS(P1) and therefore Ψ(g) = 1. However
g ⪯ f , hence g ∈ HS(P0) and so Ψ(g) = 0, which is a contradiction.

On the other hand, Theorem 3.22 shows that CNN ≡sW FindHSΠ0
1
≡sW FindHS∆0

1
, which implies

that FindHSΠ0
1

and FindHS∆0
1

are cylinders. Since FindHSΣ0
1

is also a cylinder (Corollary 3.40) we
have that, for every g and every f ∈ {FindHSΣ0

1
,FindHSΠ0

1
,FindHS∆0

1
}

g ≤W f ⇐⇒ g ≤sW f.

This shows that, from the point of view of strong Weihrauch reducibility, the principles related
to the open and clopen Ramsey theorems are either very weak (they do not strongly uniformly
compute the identity on the 2-element space) or they are as strong as possible (the notions of
Weihrauch reducibility and strong Weihrauch reducibility coincide).

3.3 Arithmetic Weihrauch reducibility

Let us explore the strength of the multi-valued functions related to the open and clopen Ramsey
theorems from the point of view of arithmetic Weihrauch reducibility (introduced in Section 2.2).

A first straightforward result is the following:

Corollary 3.45:
wFindHSΠ0

1
≡aW CNN .

Proof: This follows from CNN ≡W C2N ∗ wFindHSΠ0
1

(Proposition 3.24), using Corollary 2.17
and Proposition 2.18.

Lemma 3.46:
Let g be a (partial multi-valued) function that computes every arithmetic function and is closed
under compositional product. For every (partial) multi-valued function f

f ≤aW g ⇒ f ≤W g.

Proof: It is enough to notice that f ≤aW g implies that there exists n s.t.

f ≤W lim(n) ∗ g ∗ lim(n).

The hypotheses on g immediately yield the claim.



3.3. Arithmetic Weihrauch reducibility 67

Corollary 3.47:
CNN <aW TCNN .

Proof: The fact that CNN ≤aW TCNN is trivial as CNN ≤W TCNN . The separation follows from
Lemma 3.46 (recall that, for every n, lim(n) ≤W UCNN) and the fact that TCNN ̸≤W CNN .

Theorem 3.48:
TCNN ≡aW sTCNN .

Proof: This follows from Proposition 2.16, Proposition 2.18 and the fact that

TCNN ≤W sTCNN ≤W LPO ∗ TCNN .

We will now prove the fact that TCNN <aW Σ0
1−RT. To do so we will first need some additional

results about compositional products of iterations of lim and TCNN .

Lemma 3.49:
Let D(X,Y, Z) be an arithmetic predicate with free variables among X,Y, Z and let
Φ: NN × NN → Tr be computable. Define the Π1

1 predicate P (X,Y, Z) as

D(X,Y, Z) ∧ ([Φ(X,Y )] ̸= ∅ → Z ∈ [Φ(X,Y )]).

There exists a Π0
1 predicate S(X,Y, Z,W ) s.t. an index for S is computable from indices for

D and Φ s.t.

(∃W )(S(X,Y, Z,W )) ⇒ D(X,Y, Z),

[Φ(X,Y )] ̸= ∅ ⇒ ( P (X,Y, Z) ⇐⇒ (∃W )(S(X,Y, Z,W )) ).

Proof: By Kleene’s normal form theorem (see e.g. [94, Thm. 16.IV]), there is a Π0
1 predicate T

s.t.
D(X,Y, Z) ⇐⇒ (∃W )(T (X,Y, Z,W )).

Define the Π0
1 predicate S(X,Y, Z,W ) := T (X,Y, Z,W )∧Z ∈ [Φ(X,Y )]. It follows from Kleene’s

normal form theorem that an index for S is computable from indices for D and Φ. The first



3.3. Arithmetic Weihrauch reducibility 68

property of S is immediate. For the second notice that, if [Φ(X,Y )] ̸= ∅ then

P (X,Y, Z) ⇐⇒ D(X,Y, Z) ∧ Z ∈ [Φ(X,Y )]

⇐⇒ (∃W )(T (X,Y, Z,W ) ∧ Z ∈ [Φ(X,Y )])

⇐⇒ (∃W )(S(X,Y, Z,W )).

The previous lemma can be interpreted as follows: the predicate P describes the compositional
product (on both sides) of TCNN with an arithmetic problem f , while D says that Y is a solution
for f(X,Z). Notice that, if we are considering the composition TCNN ∗ f then f (and therefore D)
will not depend on the output Z of TCNN . On the other hand, if we consider f ∗TCNN then we need
to keep track of Z. The lemma proves that there is a uniform way to build a tree (whose body is
the set of solutions to S) s.t., by projecting its paths, we can obtain the solutions to the original
problem P . Notice however that the lemma does not guarantee such a tree to be ill-founded. In
other words, we can recover (some) solutions to the original problem only if the tree is ill-founded.

Obviously, ifD depends only onX,Y and not on Z, then a solution forD can be (arithmetically)
computed without first finding a path through the tree Φ(X,Y ).

Lemma 3.50:
For every n ∈ N, TCNN ∗ lim(n) ≡W TCNN × lim(n).

Proof: Fix n ∈ N. The reduction TCNN × lim(n) ≤W TCNN ∗ lim(n) trivially follows from the
algebraic rules of the operations (see [19, Prop. 4.4]).

To prove the converse reduction, by the cylindrical decomposition we can write

TCNN ∗ lim(n) ≡W (id×TCNN) ◦ Φe ◦ lim(n),

for some computable function Φe. In particular

(id×TCNN) ◦ Φe ◦ lim(n)(p) = ⟨Φ1(lim
(n)(p)),TCNNΦ2(lim

(n)(p))⟩

where Φ1,Φ2 are the computable functions s.t. Φe(p) = ⟨Φ1(p),Φ2(p)⟩.
Let D(X,Y ) be the predicate that says

Y = ⟨Φ1(lim
(n)(X)),Φ2(lim

(n)(X))⟩.

Notice that an index for D can be (uniformly) computed from an index of Φe. Define also the
predicate P (X,Y, Z) as

D(X,Y ) ∧ ([π2(Y )] ̸= ∅ → Z ∈ [π2(Y )]),

where π2 := ⟨Y1, Y2⟩ 7→ Y2. Since D(X,Y ) is arithmetic, we can use Lemma 3.49 to define a
computable tree S s.t.

(∃W )((X,Y, Z,W ) ∈ [S]) ⇒ D(X,Y ),

[π2(Y )] ̸= ∅ ⇒ ( P (X,Y, Z) ⇐⇒ (∃W )((X,Y, Z,W ) ∈ [S]) ).



3.3. Arithmetic Weihrauch reducibility 69

For every fixed p ∈ dom((id×TCNN) ◦ Φe ◦ lim(n)) we define Sp := {σ : ⟨p[|σ|], σ⟩ ∈ S}.
We now claim that, from an answer to (TCNN × lim(n))([Sp], p) we can compute a solution to
(id×TCNN) ◦ Φe ◦ lim(n)(p).

Indeed Φ1 ◦ lim(n)(p) is trivially uniformly computed from lim(n)(p). On the other hand, there
is a unique q s.t. D(p, q). Assume [π2(q)] ̸= ∅ and let z0 ∈ [π2(q)]. Since P (p, q, z0) holds, we
have that (∃w)(⟨q, z0, w⟩ ∈ [Sp]), in particular [Sp] ̸= ∅. Let ⟨y, z, w⟩ ∈ TCNN([Sp]). Notice that,
since lim(n) is single-valued, we have y = q. Hence we can conclude that P (p, q, z) holds, and
therefore, by projecting ⟨y, z, w⟩ on the second component we obtain a path through [π2(q)]. If,
on the other hand, [π2(q)] = ∅, then any z belongs to TCNN([π2(q)]). In both cases, by projecting
the output of TCNN([Sp]) we can compute a solution to (TCNN ◦Φ2 ◦ lim(n))(p) and this concludes
the proof.

Lemma 3.51:
For every n ∈ N, lim(n) ∗ TCNN ≤W sTCNN × lim(3n+5).

Proof: Fix n ∈ N. By the cylindrical decomposition we can write

lim(n) ∗ TCNN ≡W lim(n) ◦ Φe ◦ (id×TCNN)

for some computable function Φe.
Let us define F : NN ×NN ⇒ NN as F := T(lim(n) ◦Φe). Recalling that lim(n) = lim[n+1], it is

immediate that being in the domain of lim(n) is a Π0
2n+3 property. On the other hand, whether

Φe(p, q) is defined is a Π0
2 property. This implies that F ≤W lim[2n+5+n+1] = lim(3n+5) and hence

to prove the lemma it suffices to show that lim(n) ◦ Φe ◦ (id×TCNN) ≤W sTCNN × F .
Let D(X,Y, Z) be the arithmetic predicate

Y = lim(n) ◦ Φe(π1(X), Z).

Clearly an index for D is computable from an index of Φe. Let also P (X,Y, Z) be the predicate

D(X,Y, Z) ∧ ([π2(X)] ̸= ∅ → Z ∈ [π2(X)]).

Since D(X,Y, Z) is arithmetic, we can use Lemma 3.49 to define a computable tree S s.t.

(∃W )((X,Y, Z,W ) ∈ [S]) ⇒ D(X,Y, Z),

[π2(X)] ̸= ∅ ⇒ ( P (X,Y, Z) ⇐⇒ (∃W )((X,Y, Z,W ) ∈ [S]) ).

For every fixed p = ⟨p1, p2⟩ ∈ dom(lim(n) ◦ Φe ◦ (id×TCNN)) let Sp := {σ : ⟨p[|σ|], σ⟩ ∈ S}.
We define the forward Weihrauch functional as the map Φ := ⟨p1, p2⟩ 7→ ([Sp], (p1, 0

ω)). Notice
that, since F is total, Φ(⟨p1, p2⟩) is a correct input for sTCNN × F .

Let ((b)⌢⟨y, z, w⟩, r) ∈ (sTCNN × F )([Sp], (p1, 0
ω)). We claim that a valid solution for

lim(n) Φe(p1,TCNN(p2)) is y if b = 1 or is r if b = 0.
Assume that b = 1, i.e. that ⟨y, z, w⟩ ∈ [Sp]. In particular D(⟨p1, p2⟩, y, z) holds, i.e.

y = lim(n)(Φe(p1, z)). Therefore it is enough to show that z ∈ TCNN([p2]). Assume that [p2] ̸= ∅



3.3. Arithmetic Weihrauch reducibility 70

(the other case is trivial). Since ⟨y, z, w⟩ ∈ [Sp], we have that P (⟨p1, p2⟩, y, z) holds and therefore
z ∈ [p2].

Assume now that b = 0, i.e. for all y, z there is no w s.t. ⟨y, z, w⟩ ∈ [Sp]. If [p2] ̸= ∅
then choose z ∈ [p2] and let y = lim(n)Φe(p1, z). We then have that D(⟨p1, p2⟩, y, z) and
P (⟨p1, p2⟩, y, z) hold. Therefore there exists w s.t. ⟨y, z, w⟩ ∈ [Sp], which is a contradiction.
This implies that [p2] = ∅ and therefore 0ω ∈ TCNN([p2]) and (p1, 0

ω) ∈ dom(lim(n)Φe). There-
fore r = F (p1, 0

ω) ∈ lim(n)Φe(p1,TCNN([p2])) and this concludes the proof.

We are now ready to prove the following characterization of arithmetic reducibility to TCNN ,
conjectured by Arno Pauly during the BIRS-CMO 2019 workshop “Reverse Mathematics of Com-
binatorial Principles”.

Theorem 3.52:
For every multi-valued function f ,

f ≤aW TCNN ⇐⇒ (∃n)(f ≤W sTCNN × lim(n)).

Proof: The right-to-left implication follows from Corollary 2.17 and Proposition 2.18, as
sTCNN ≤W LPO ∗ TCNN . To prove the left-to-right implication, assume that there exists m
s.t. f ≤W lim(m) ∗ TCNN ∗ lim(m). Notice that for every single-valued k and every g, h we have

(g × h) ∗ k ≤W (g ∗ k)× (h ∗ k). (⋆)

This fails for multi-valued k, as shown in [19, Prop. 4.9(19)]. We can therefore write

lim(m) ∗ TCNN ∗ lim(m) ≤W (sTCNN × lim[3m+6]) ∗ lim[m+1] Lemma 3.51
≤W (sTCNN ∗ lim[m+1])× lim[4m+7] (⋆)

≤W (LPO ∗ TCNN ∗ lim[m+1])× lim[4m+7]

≡W (LPO ∗ (TCNN × lim[m+1]))× lim[4m+7] Lemma 3.50
≤W (LPO ∗ lim[m+1] ∗ TCNN)× lim[4m+7]

≤W (lim[m+2] ∗ TCNN)× lim[4m+7]

≤W sTCNN × lim[3m+9] × lim[4m+7] Lemma 3.51
≡W sTCNN × lim[n],

where n = max{3m+ 9, 4m+ 7}.

Corollary 3.53:
TCNN <aW Σ0

1−RT.



3.3. Arithmetic Weihrauch reducibility 71

Proof: The reduction follows from TCNN ≤W C2N ∗ Σ0
1−RT (Proposition 3.29) using Corol-

lary 2.17 and Proposition 2.18. The fact that the reduction is strict follows from Theorem 3.52
as Σ0

1−RT ̸≤W sTCNN × lim(k) for any k (Theorem 3.35).

Theorem 3.54:
Σ0

1−RT <aW FindHSΣ0
1
.

Proof: It suffices to show that Σ0
1−RT <aW CNN × Σ0

1−RT, as CNN × Σ0
1−RT ≤W FindHSΣ0

1

follows from Σ0
1−RT ≤W FindHSΣ0

1
(see Theorem 3.43), CNN ≤W FindHSΣ0

1
(see Proposition 3.41)

and the fact that FindHSΣ0
1

is closed under parallel product (Proposition 3.39).
The reduction is trivial, so we only need to prove the separation. Notice that Proposition 2.19

is the analogue of Proposition 2.14 for arithmetic Weihrauch reduction. This allows us to repeat
the proof of Proposition 3.36, obtaining that CNN×Σ0

1−RT ≤aW Σ0
1−RT implies Σ0

1−RT ≤aW CNN ,
which is a contradiction by Corollary 3.47 and Corollary 3.53.

Theorem 3.55:
Σ0

1−RT∗ ≡aW TC∗
NN .

Proof: The right-to-left reduction is a trivial consequence of TCNN <aW Σ0
1−RT (Corollary 3.53).

To prove the left-to-right reduction we first notice that

Σ0
1−RT ≤W sTCNN × TwFindHSΣ0

1
.

Indeed, given an open set P ∈ Σ0
1([N]

N
), we can uniformly compute the input ([T⟨P ⟩], P ) for

sTCNN × TwFindHSΣ0
1
. This is clearly a valid input as both the functions are total. Fix a pair

((b)⌢x, f) ∈ (sTCNN × TwFindHSΣ0
1
)([T⟨P ⟩], P ). If b = 1 then x ∈ HS(P ) \ P (Lemma 3.6), and

therefore x ∈ Σ0
1−RT(P ). If b = 0 then [T⟨P ⟩] = ∅, which implies that P ∈ dom(wFindHSΣ0

1
)

and hence f ∈ wFindHSΣ0
1
(P ).

We then have

Σ0
1−RT ≤W sTCNN × TwFindHSΣ0

1
≤W sTCNN × CNN ≤aW TCNN × TCNN ,

where TwFindHSΣ0
1
≤W CNN follows from TwFindHSΣ0

1
≤W ATR2 (Proposition 3.28). From this

Σ0
1−RT∗ ≤aW TC∗

NN follows immediately.



3.4. Conclusions 72

3.4 Conclusions

Some problems resisted full characterization. In particular two questions remain open:

Question 3.56: wFindHSΠ0
1
≡W CNN?

Question 3.57: CNN ≤W Σ0
1−RT?

Observe that a positive answer to the first question automatically yields a positive answer to
the second one by Corollary 3.31. We can expect that answering one of the two questions can shed
light on the other.

As already observed in [64], there is not a single “analog” of ATR0 in the context of Weihrauch
reducibility, and theorems that are equivalent from the reverse mathematics point of view can
exhibit very different behaviors when phrased as multi-valued functions.

Moreover, the classical proofs of the equivalences, over RCA0, of ATR0 and the open and clopen
Ramsey theorems are useful only to obtain the equivalences UCNN ≡W wFindHSΣ0

1
≡W wFindHS∆0

1
.

Finding a homogeneous solution that lands in an open set, when there are also solutions that
avoid it, is a much harder problem. In particular, notice that a natural candidate for Π1

1−CA0 in
the Weihrauch lattice is χ̂Π1

1
. The fact that FindHSΣ0

1
computes χΠ1

1
and is closed under parallel

product implies that χ∗
Π1

1
≤W FindHSΣ0

1
. This naturally leads to the following question:

Question 3.58: ̂FindHSΣ0
1
≤W FindHSΣ0

1
?

A positive answer to this question would locate FindHSΣ0
1

in the realm of Π1
1−CA0, in sharp

contrast with what happens in reverse mathematics.
Let us now derive a few computability-theoretic corollaries.

Corollary 3.59 (Solovay’s theorem [108, Thm. 1.8]):
If P ⊂ [N]N is open with computable code then either there is an hyperarithmetic homogeneous
solution landing in P or there is a homogeneous solution avoiding P .

Proof: This follows from Theorem 2.13 and wFindHSΣ0
1
≡W UCNN (Lemma 3.18).

The following result is attributed to Solovay [108] (see [74, Thm. 1] for an explicit proof).

Corollary 3.60:
The set of homogeneous solutions for a clopen set with computable code always contains a
hyperarithmetic element.



3.4. Conclusions 73

Proof: This follows from Theorem 2.13 and the equivalence ∆0
1−RT ≡W UCNN (Theo-

rem 3.21).

Corollary 3.61:
There is a clopen set D ⊂ [N]N with computable code s.t. every homogeneous solution that
lands in D is not hyperarithmetic.

Proof: This follows from the fact that FindHS∆0
1
≡W CNN (Theorem 3.22): if every computable

clopen set had an hyperarithmetic solution landing in itself then every computable instance of
CNN would have a hyperarithmetic solution, contradicting NHA ≤W CNN ([64, Cor. 3.6]).

Corollary 3.62:
Every open set P ⊂ [N]N with computable code has a homogeneous solution f that is strictly
Turing reducible to Kleene’s O.

Proof: It follows from the proof of Gandy basis theorem (see [96, Chap. III, Thm. 1.4]) that
{f : f <T O} is a basis for the Σ1

1 predicates. If P ∈ dom(wFindHSΣ0
1
) then, by Corollary 3.59, it

has an hyperarithmetic solution. Otherwise P ∈ dom(FindHSΠ0
1
) hence, by Lemma 3.6, a homo-

geneous solution for P can be computed from any element of [T⟨P ⟩] (the tree T⟨P ⟩ is computable
from ⟨P ⟩, see Lemma 3.15). By the Gandy basis theorem the claim follows.

In particular Corollary 3.62 shows that the difference, in the (arithmetic) Weihrauch lattice,
between Σ0

1−RT and CNN cannot be explained in terms of complexity of the solutions but rests
entirely on the lack of uniformity.



4
Operators on multi-valued functions

In this chapter, we introduce and study some operators on multi-valued functions. The first-
order part of a problem (Section 4.2) and the deterministic part of a problem (Section 4.3) have
been formally introduced only recently (resp. in [31] and [46]), but the underlying ideas have
been already exploited in the literature. The union operator (next section) reminds one of the
if-then-else operator introduced in [64] (see Definition 4.9 below), but its definition and algebraic
properties are very different.

4.1 The union of problems

We define a new operator on multi-valued functions, called union. The definition was motivated
by some considerations on the uniform strength of Σ0

1−RT and, more generally, on the strength of
problems whose behavior presents some form of non-computable disjunction between two different
cases.

The results presented here are not conclusive1, but can still reveal some interesting compu-
tational aspects of problems that lie at the level of CNN , like the perfect tree theorem and the
determinacy of open games (see [64]).

Definition 4.1: Let f :⊆ X ⇒ Y , g :⊆ Z ⇒W be two partial multi-valued functions between
represented spaces. We define the union of f and g as the problem

f ∪ g :⊆ X × Z ⇒ Y ∪W := (x, z) 7→ f(x) ∪ g(z)

It follows from the definition that

dom(f ∪ g) := {(x, z) : x ∈ dom(f) ∨ z ∈ dom(g)}

as x /∈ dom(f) means f(x) = ∅, hence if x /∈ dom(f) and z /∈ dom(g) then f(x) ∪ g(z) = ∅, and
therefore (x, z) /∈ dom(f ∪ g).

1The original hope was to apply these results to characterize the Weihrauch degree of Σ0
1−RT. Unfortunately,

that was not the case.

74



4.1. The union of problems 75

Intuitively f ∪ g is the problem that takes in input a pair of questions s.t. at least one of the
two is correct, and produces a correct solution to one of the correct inputs. Trivially, the operation
is symmetric. Notice that the solution does not come with an indication on “the side” it belongs
to, i.e. given a solution t ∈ (f ∪ g)(x, z), we may not be able to tell whether t ∈ f(x) or t ∈ g(z).

Definition 4.2: A partial (multi-valued) function g is called copointed if there is a computable
point z /∈ dom(g).

A first immediate proposition is the following:

Proposition 4.3:
If g is copointed then f ≤sW f ∪ g.

Proof: Just consider the map x 7→ (x, z) for some fixed computable z /∈ dom(g).

Albeit being not too strong, the hypothesis that g is copointed cannot be (easily) relaxed:

Proposition 4.4:
If f is total then f ∪ g ≤sW f . Moreover, if g is copointed then f ∪ g ≡sW f .

Proof: The reduction f ∪ g ≤sW f is a trivial consequence of the fact that f is total. If,
additionally, g is copointed, then the strong equivalence follows from Proposition 4.3.

This proposition can be used to show that ∪ does not lift to (strong) Weihrauch degrees.
Consider indeed CN and lim. Since CN is copointed we have that lim ≤sW CN ∪ lim. However, CN
is (strongly) equivalent to the problem h :⊆ Π0

1(N) \ {∅} ⇒ N defined as h(A) := CN(A). Since h
is total and lim is copointed, we have h ∪ lim ≤sW h ≡sW CN.

4.1.1 Choice on NN and union
Let us explore how the problems UCNN , CNN , and TCNN interact with the union operator.

Theorem 4.5:
CNN ≡W CNN ∪ CNN .

Proof: The left-to-right reduction is trivial. To prove the reduction CNN ∪ CNN ≤W CNN it is
enough to notice that, given a pair (A1, A2) ∈ dom(CNN ∪ CNN), we have

CNN(A1 ∪A2) = (CNN ∪ CNN)(A1, A2).



4.1. The union of problems 76

Theorem 4.6:
TCNN ≡W TCNN ∪ UCNN ≡W TCNN ∪ CNN ≡W TCNN ∪ TCNN .

Proof: The reduction TCNN ≤W TCNN ∪ UCNN follows from the fact that UCNN is copointed,
while the reduction TCNN ∪ UCNN ≤W TCNN follows from the fact that TCNN is total.

The equivalence TCNN ≡W TCNN ∪CNN can be proved analogously (changing UCNN with CNN).
Finally, the equivalence TCNN ≡W TCNN ∪ TCNN trivially follows from the fact that TCNN is

total.

Before proving the following Theorem 4.8, we introduce the following lemma:

Lemma 4.7:
Let f0, f1, g be multi-valued functions, and assume w.l.o.g. that dom(f0) and dom(f1) are sub-
sets of NN. Assume also that dom(f0) ∈ Γ(NN) and dom(f1) ∈ Γ′(NN), for some pointclasses
Γ and Γ′. If f0, f1 ≤W g then, for every pointclass Λ s.t. Γ ∪ Γ′ ⊂ Λ and the inclusion maps
Γ ↪→ Λ and Γ′ ↪→ Λ are computable, we have

f0 ∪ f1 ≤W g ∗Λ-C2

Proof: It is enough to notice that, given an input (x0, x1) for f0 ∪ f1, we can use Λ-C2 to
obtain an index i s.t. xi ∈ dom(fi). Since fi ≤W g, we can then use g to compute a solution
y ∈ fi(xi) ⊂ (f0 ∪ f1)(x0, x1).

Theorem 4.8:
UCNN ≡W UCNN ∪ UCNN .

Proof: It is enough to prove the right-to-left reduction. Since dom(UCNN) ∈ Π1
1(NN), by

Lemma 4.7 we have that UCNN ∪ UCNN ≤W UCNN ∗ Π1
1-C2. Notice that Π̂1

1-C2 ≡W Σ1
1−Sep

and Σ1
1−Sep ≡W UCNN [64, Thm. 3.11]. Since UCNN is closed under compositional product the

claim follows.

Before studying the degree of CNN ∪ UCNN , we define the if-then-else operator, first defined in
[64, Def. 7.6]:



4.1. The union of problems 77

Definition 4.9: A space of truth values is just a represented space with underlying set {⊥,⊤}.
For every space of truth values B and every multi-valued functions f :⊆ X ⇒ Y and
g :⊆ Z ⇒W , we define the operator [if B then f else g] :⊆ X × Z ⇒ Y ×W as

[if B then f else g](b, x, z) :=

{
f(x)×W if b = ⊤
Y × g(z) if b = ⊥

with domain {⊤} × dom(f)× Z ∪ {⊥} ×X × dom(g).

This operator has been used in [64] to study the uniform computational strength of “two-sided”
versions of problems arising from the perfect tree theorem and the open determinacy. In particular,
the authors considered the space of truth values SΣ1

1
, where δS

Σ1
1

is s.t. a name for ⊤ is a name
for an ill-founded tree (and ⊥ is named with codes of well-founded trees), and they used the if-
then-else operator in combination with CNN and UCNN , showing that ([64, Cor. 7.8 and prop. 8.2(5,
6)])

TCNN <W [if SΣ1
1
then CNN else UCNN ] <W TCNN × CNN .

Notice that, as the union operator, the if-then-else does not lift to Weihrauch degrees ([64, Footnote
7]).

Lemma 4.10:
χΠ1

1
≤W CNN ∪ UCNN .

Proof: Given T ⊂ N<N, consider the pair (2⌢T, 0ω ∪ 1⌢T ). Notice that

• If [T ] = ∅ then [2⌢T ] /∈ dom(CNN), while [0ω ∪ 1⌢T ] = {0ω} ∈ dom(UCNN).

• If [T ] ̸= ∅ then [2⌢T ] ∈ dom(CNN), while |[0ω ∪ 1⌢T ]| > 1. In particular, this implies that
[0ω ∪ 1⌢T ] /∈ dom(UCNN).

This shows that ([2⌢T ], [0ω∪1⌢T ]) ∈ dom(CNN ∪UCNN). Moreover, if [T ] = ∅ then every solution
begins with 0. Conversely, if [T ] ̸= ∅ then every solution begins with 2. In other words, given a
solution x ∈ (CNN ∪ UCNN)([2⌢T ], [0ω ∪ 1⌢T ]), we have [T ] = ∅ iff x(0) = 0.

Theorem 4.11:
TCNN <W [if SΣ1

1
then CNN else UCNN ] <W CNN ∪ UCNN .

Proof: The reduction TCNN <W [if SΣ1
1
then CNN else UCNN ] was proved in [64, Cor. 7.8 and

Prop. 8.2(5)]. To prove the reduction [if SΣ1
1
then CNN else UCNN ] ≤W CNN ∪UCNN , let (T, T1, T2)

be an input for [if SΣ1
1
then CNN else UCNN ]. Consider the pair (S1, S2) defined as S1 := T × T1

and S2 := 0⌢T ∪ 1⌢T ∪ 2⌢T2). Notice that



4.1. The union of problems 78

• If [T ] = ∅ then [S1] /∈ dom(CNN), while [S2] = [2⌢T2] ∈ dom(UCNN), as [T ] = ∅ implies that
|[T2]| = 1.

• If [T ] ̸= ∅ then [T1] ̸= ∅, and therefore [S1] ∈ dom(CNN). On the other hand, |[S2]| > 1 and
therefore [S2] /∈ dom(UCNN).

This shows that ([S1], [S2]) ∈ dom(CNN ∪ UCNN). It is easy to see that, for every x in
(CNN ∪ UCNN)([S1], [S2]), letting y := n 7→ x(n+ 1) we have

(y, y) ∈ [if SΣ1
1
then CNN else UCNN ](T, T1, T2).

To show that the reduction is strict it is enough to notice that χΠ1
1

≤W CNN ∪ UCNN

(Lemma 4.10), while χΠ1
1
̸≤W [if SΣ1

1
then CNN else UCNN ] ([64, Prop. 8.2(6) and Cor. 8.6]).

Notice therefore that, while CNN does not increase its computational power when combined
with itself, CNN ∪ UCNN is much stronger (this is another example of the non-monotonicity of the
union operator).

Notice also that dom(CNN) ∈ Σ1
1(NN), while dom(UCNN) ∈ Π1

1(NN). Applying Lemma 4.7 we
have

CNN ∪ UCNN ≤W CNN ∗D2-C2 ≤W CNN ∗∆1
2-C2,

where D2 = {A ∩ B : A ∈ Σ1
1 and B ∈ Π1

1}. In particular, as a corollary of Theorem 4.11, we
have D2-C2 ̸≤W CNN .

Remark 4.12: While it may seem that the union is stronger than the if-then-else operator,
this is actually not (always) the case. The use of the space of truth values B plays a crucial role:
indeed the union f ∪ g does not allow to control “which problem to solve” in case it receives in
input a pair (x, z) s.t. both x and z are in the domain of the respective function.

Indeed, the reduction

[if SΣ1
1
then CNN else UCNN ] ≤W [if SΣ1

1
then CNN else CNN ]

is straightforward from the definition. In particular, this implies that

[if SΣ1
1
then CNN else CNN ] ̸≤W CNN ∪ CNN ≡W CNN .

Theorem 4.13:
CNN ∪ UCNN is a cylinder.

Proof: It is enough to notice that, given a pair of trees (T1, T2) s.t. ([T1], [T2]) ∈ dom(CNN∪UCNN)
and a string p ∈ NN, we can uniformly compute the pair (p×T1, p×T2), where p×T is a shorthand
for {p[n] : n ∈ N} × T . It is straightforward to see that, for every tree T and every string p,
[p× T ] = ∅ iff [T ] = ∅, and that, from every path x ∈ [p× T ], we can (uniformly) compute p and
a path through [T ] by projection.



4.1. The union of problems 79

Theorem 4.14:
CNN ∪ UCNN |W TCNN × CNN <W (CNN ∪ UCNN)× CNN .

Proof: Let us first prove the incomparability. The fact that CNN ∪UCNN ̸≤W TCNN ×CNN follows
from the fact that χΠ1

1
≤W CNN ∪UCNN (Lemma 4.10) while χΠ1

1
̸≤W TCNN ×CNN ([64, Cor. 8.6]).

The fact that TCNN × CNN ̸≤W CNN ∪ UCNN follows by Proposition 2.14. Indeed, if there is a
reduction then TCNN ≤W (CNN ∪ UCNN)|A, where

A := dom(CNN)×Π0
1(NN) \ dom(UCNN).

In particular, since (CNN ∪ UCNN)|A ≡W CNN , this would contradict the fact that TCNN ̸≤W CNN

([64, Prop. 8.2(1)]).
The fact that TCNN ×CNN ≤W (CNN ∪UCNN)×CNN follows trivially from TCNN ≤W CNN ∪UCNN

(Theorem 4.11). The reduction is strict simply because TCNN × CNN |W CNN ∪ UCNN .

Theorem 4.15:
CNN ∪ UCNN <aW (CNN ∪ UCNN)× CNN .

Proof: The reduction is a trivial corollary of Theorem 4.14. We now prove that the reduction
is strict even if w.r.t. the arithmetic Weihrauch reducibility. This follows from Proposition 2.19
(see also the proof of Theorem 3.54). Indeed, if TCNN × CNN ≤aW CNN ∪ UCNN then TCNN is
arithmetically Weihrauch reducible to the restriction of CNN ∪ UCNN to the set

A := dom(CNN)×Π0
1(NN) \ dom(UCNN).

In particular, this implies that TCNN ≤aW CNN , against Corollary 3.47.

Theorem 4.16:
TCNN × CNN ≡aW (CNN ∪ UCNN)× CNN .

Proof: The left-to-right reduction follows trivially from TCNN × CNN ≤W (CNN ∪ UCNN) × CNN

(Theorem 4.14). To prove the right-to-left reduction, it is enough to show that

CNN ∪ UCNN ≤W sTCNN × CNN ≡aW TCNN × CNN ,

where the arithmetic equivalence follows from the fact that sTCNN ≡aW TCNN . Since
TUCNN ≤W CNN (see the proof of [64, Prop. 8.2(6)]), we map every input (T1, T2) for CNN ∪UCNN



4.1. The union of problems 80

to (T1, S), where S is the (ill-founded) tree obtained applying the forward Turing functional of
the reduction TUCNN ≤W CNN to T2.

Let ((b)⌢x, y) ∈ (sTCNN × CNN)([T1], [S]). If b = 1 then x ∈ [T1] ⊂ (CNN ∪ UCNN)([T1], [T2]).
Otherwise [T1] = ∅ and therefore y uniformly computes the unique path through T2.

Corollary 4.17:
(CNN ∪ UCNN)∗ ≡aW TC∗

NN .

Proof: It is enough to notice that TCNN ≤W CNN ∪UCNN (Theorem 4.11) and that in the proof
of Theorem 4.16 we showed that CNN ∪ UCNN ≤aW TCNN × CNN .

In the same spirit of Theorem 3.52, we now characterize the multi-valued functions that are
arithmetically Weihrauch reducible to TCNN × CNN . We first need the following lemma:

Lemma 4.18:
For every n, lim(n) ∗ (TCNN × CNN) ≡W sTCNN × CNN .

Proof: The right-to-left reduction is straightforward:

sTCNN × CNN ≤W (LPO ∗ TCNN)× CNN

≤W LPO ∗ (TCNN × CNN) ≤W lim(n) ∗ (TCNN × CNN).

Let us now prove the left-to-right reduction. Since CNN (and hence TCNN × CNN) is a cylinder,
using the cylindrical decomposition we can write

lim(n) ∗ (TCNN × CNN) ≡W lim(n) ◦ Φe ◦ (TCNN × CNN),

for some Turing functional Φe.
Consider the following predicate D1(X,Y1, Y2, Z):

Y1 ∈ [π1(X)] ∧ Y2 ∈ [π2(X)] ∧ Z = lim(n) ◦ Φe(Y1, Y2).

Intuitively, D1 describes the compositional product lim(n) ∗ (TCNN × CNN): the variable X plays
the role of the join of the inputs X1 and X2 resp. of TCNN and CNN , Y1 and Y2 are two solutions
respectively of TCNN(X1) and of CNN(X2), and Z is the output of the compositional product.
Notice that, if TCNN receives in input the empty set, then there is no choice of the input variables
that makes D1 true.

Consider also the predicate D2(X,Y2, Z) defined as

Y2 ∈ [π2(X)] ∧ Z = lim(n) ◦ Φe(0ω, Y2).



4.1. The union of problems 81

Notice that (0ω, Y2) ∈ dom(lim(n) ◦ Φe), as the pair (∅, {Y2}) is a valid input for TCNN × CNN .
However, if X1 ̸= ∅ then 0ω may not be a valid solution for TCNN(X1), and hence Z gives no
information on the solution.

Since both D1 and D2 are arithmetic (and hence Σ1
1), by the Kleene normal form theorem

there are two Π0
1 predicates S1(X,Y1, Y2, Z,W ), S2(X,Y2, Z,W ) s.t.

• (∃W )(S1(X,Y1, Y2, Z,W )) ⇐⇒ D1(X,Y1, Y2, Z);

• (∃W )(S2(X,Y2, Z,W )) ⇐⇒ D1(X,Y2, Z).

This shows that we can uniformly build two trees R1, R2 s.t. the solutions for Si can
be obtained by projecting the path(s) of Ri. We apply sTCNN × CNN to ([R1], [R2]). Let
((b)⌢x, y) ∈ (sTCNN × CNN)([R1], [R2]).

Notice that if b = 1 then R1 is ill-founded. In particular, this implies that a solution for
the original compositional product can be uniformly computed from x (by projection). On the
other hand, if b = 0 then [R1] = ∅. This implies that the input for TCNN is empty, and therefore
(0, y) ∈ dom(Φe). In this case, a solution for the compositional product can be obtained from y
(again by projection).

Theorem 4.19:
For every multi-valued function f ,

f ≤aW TCNN × CNN ⇐⇒ f ≤W sTCNN × CNN .

Proof: The right-to-left implication follows trivially from the fact that sTCNN ≡aW TCNN . To
prove the converse implication, assume there is n s.t. f ≤W lim(n) ∗ (TCNN ×CNN) ∗ lim(n). Recall
that, for every single-valued k and every g, h we have (g × h) ∗ k ≤W (g ∗ k)× (h ∗ k).

Using Lemma 3.50 and Lemma 4.18 we obtain:

lim(n) ∗ (TCNN × CNN) ∗ lim(n) ≤W lim(n) ∗ (TCNN ∗ lim(n) × CNN ∗ lim(n))

≡W lim(n) ∗ (TCNN ∗ lim(n) × CNN)

≡W lim(n) ∗ (TCNN × lim(n) × CNN)

≡W lim(n) ∗ (TCNN × CNN)

≡W sTCNN × CNN

which concludes the proof.

This raises the following question:

Question 4.20: TC∗
NN ≤W sTCNN × TCNN?



4.1. The union of problems 82

4.1.2 Open Ramsey theorem and union
We now explore how the union operator interacts with the multi-valued functions arising from
the open Ramsey theorem. A first immediate observation is that, whenever f is a problem whose
domain can be partitioned in two disjoint sets A0, A1, if there are two multi-valued functions g0, g1
s.t. dom(gi) = Ai and, for every xi ∈ Ai, gi(xi) ⊂ f(xi), then f ≤W g0 ∪ g1.

In particular, applying this reasoning to the open Ramsey theorem we obtain

Σ0
1−RT ≤W FindHSΠ0

1
∪ wFindHSΣ0

1
.

Clearly, we could also write Σ0
1−RT ≤W FindHSΣ0

1
∪ wFindHSΠ0

1
. In the following, however,

we will focus on FindHSΠ0
1
∪ wFindHSΣ0

1
. Indeed, since wFindHSΠ0

1
is copointed, we immedi-

ately have FindHSΣ0
1
≤W FindHSΣ0

1
∪ wFindHSΠ0

1
. The following result shows that the problem

FindHSΠ0
1
∪ wFindHSΣ0

1
is a tighter upper bound for Σ0

1−RT.

Proposition 4.21:
FindHSΠ0

1
∪ wFindHSΣ0

1
≤W FindHSΣ0

1

Proof: We show that

FindHSΠ0
1
∪ wFindHSΣ0

1
≤W FindHSΣ0

1
× FindHSΣ0

1
× χΠ1

1

and the reduction will follow from the fact that χΠ1
1
≤W FindHSΣ0

1
(Proposition 3.41) and that

FindHSΣ0
1

is closed under product (Proposition 3.39).
Let (P1, P2) be an input for FindHSΠ0

1
∪ wFindHSΣ0

1
and assume w.l.o.g. that every string

σ ∈ ⟨P2⟩ has length at least 2. The idea is to produce two different open sets (one for each
FindHSΣ0

1
in the product) and use χΠ1

1
to check whether P2 ∈ dom(wFindHSΣ0

1
). According to

the answer of χΠ1
1

the correct answer will be the one provided by the first or by the second
instance of FindHSΣ0

1
.

Let Ti := T⟨Pi⟩ be the tree of homogeneous solutions for Pi that avoid Pi (with i = 1, 2). Let
ψn be the function that maps σ to n⟨σ⟩+1, where ⟨σ⟩ is the code of σ.

Define the set Q := Q1 ∪Q2 as

Q1 := Dψ2
(T1);

Q2 := η3(⟨P2⟩),

where ηn was introduced in Definition 3.7. Define also the (open) set R := R1 ∪ R2, where
R1 := Q1 and R2 :=Wψ3

(T1).
Let us show that Q and R are in dom(FindHSΣ0

1
). If P1 ∈ dom(FindHSΠ0

1
) then so does

Q1 = R1 (Lemma 3.14). On the other hand, if P1 ∈ dom(wFindHSΣ0
1
) then so do P2. In particular

this implies that both Q2 and R2 are in dom(FindHSΣ0
1
) (the former because of Lemma 3.8 and

the latter because of Lemma 3.12.1). This shows that both Q and R have a subset which belongs
to dom(FindHSΣ0

1
), and hence they are in dom(FindHSΣ0

1
) as well.

Notice also that, by Proposition 3.4,

HS(Q) ∩Q = (HS(Q1) ∩Q1) ∪ (HS(Q2) ∩Q2),

HS(R) ∩R = (HS(R1) ∩R1) ∪ (HS(R2) ∩R2).

We consider the input (Q,R, T2) for FindHSΣ0
1
× FindHSΣ0

1
× χΠ1

1
. Notice that:



4.1. The union of problems 83

if P2 ∈ dom(wFindHSΣ0
1
) then every solution f ∈ HS(Q) ∩ Q computes a solution for

FindHSΠ0
1
∪ wFindHSΣ0

1
. Indeed, we can computably tell whether f ∈ HS(Q1) or

f ∈ HS(Q2) (just by checking the first symbol) and we can use f to compute a solution
for (FindHSΠ0

1
∪ wFindHSΣ0

1
)(P1, P2) accordingly.

if P2 /∈ dom(wFindHSΣ0
1
) then we cannot (in general) use Q to compute a solution for

FindHSΠ0
1
∪ wFindHSΣ0

1
. Indeed, it may be that HS(P2) ∩ P2 ̸= ∅ and the solution ob-

tained from FindHSΣ0
1
(Q) computes a solution for P2 (which would be incorrect). How-

ever, if P2 /∈ dom(wFindHSΣ0
1
) then P1 ∈ dom(FindHSΠ0

1
) and HS(R) ∩ R = HS(R1) ∩ R1

(Lemma 3.12.2). In this case every solution f for FindHSΣ0
1
(R) computes a solution

g ∈ HS(P1) \ P1, which is a valid output for (FindHSΠ0
1
∪ wFindHSΣ0

1
)(P1, P2).

Given a solution (f, g, b) ∈ (FindHSΣ0
1
× FindHSΣ0

1
× χΠ1

1
)(Q,R, T2), we use b to determine

whether P2 ∈ dom(wFindHSΣ0
1
), and then use f or g (accordingly) to compute a solution for

(FindHSΠ0
1
∪ wFindHSΣ0

1
)(P1, P2) (as described above).

We can easily prove that the reduction is strict. Indeed, it is straightforward to apply Propo-
sition 2.14 and obtain the following result:

Proposition 4.22:
FindHSΠ0

1
∪ wFindHSΣ0

1
<W (FindHSΠ0

1
∪ wFindHSΣ0

1
)× CNN

Proof: Recall that, since wFindHSΣ0
1
≡W UCNN (Lemma 3.18), by Theorem 2.13 every input

(P,Q) for FindHSΠ0
1
∪ wFindHSΣ0

1
s.t. Q ∈ dom(wFindHSΣ0

1
) has a hyperarithmetic solution

(relative to the input). Recall also that

Σ0
1([N]

N
) \ dom(wFindHSΣ0

1
) = dom(FindHSΠ0

1
)

and let A := dom(FindHSΠ0
1
)× dom(FindHSΠ0

1
).

If (FindHSΠ0
1
∪ wFindHSΣ0

1
)× CNN ≤W FindHSΠ0

1
∪ wFindHSΣ0

1
then, by Proposition 2.14,

FindHSΠ0
1
∪ wFindHSΣ0

1
≤W (FindHSΠ0

1
∪ wFindHSΣ0

1
)|A ≡W FindHSΠ0

1
≡W CNN ,

against the fact that Σ0
1−RT ̸≤W CNN (Corollary 3.30).

Corollary 4.23:
FindHSΠ0

1
∪ wFindHSΣ0

1
<W FindHSΣ0

1

Proof: The reduction was proved in Proposition 4.21. The separation follows from the fact
that FindHSΣ0

1
is closed under product (Proposition 3.39), while FindHSΠ0

1
∪ wFindHSΣ0

1
is not

(Proposition 4.22).



4.1. The union of problems 84

The problem FindHSΠ0
1
∪ wFindHSΣ0

1
belongs to a relatively poorly explored region of the

Weihrauch lattice, and it is hard to characterize exactly its degree.

Theorem 4.24:
TCNN <W FindHSΠ0

1
∪ wFindHSΣ0

1
.

Proof: Given a tree T ⊂ [N]<N, consider the two sets P1, P2 ⊂ [N]<N defined as P1 := D(T )
(Definition 3.13) and P2 :=W(T ) (Definition 3.11).

Notice that, by Lemma 3.14 and Lemma 3.12, at most one between P1 and P2 has a homo-
geneous solution that lies in itself. Indeed if [T ] = ∅ then HS(P1) ∩ P1 = ∅ and P2 = [N]N. On
the other hand, if [T ] ̸= ∅ then HS(P1) ∩ P1 ̸= ∅ and HS(P2) ∩ P2 = ∅.

This shows that the pair (P1, P2) is a valid input for FindHSΠ0
1
∪wFindHSΣ0

1
. Given a solution

f ∈ (FindHSΠ0
1
∪ wFindHSΣ0

1
)(P1, P2) we compute a solution for TCNN([T ]) as follows: let Ψ be

the Turing functional described in Lemma 3.14 witnessing the surjection HS(P1) ∩ P1 → [T ]

(when [T ] ̸= ∅). Notice that the condition f /∈ dom(Ψ) is a Σ0,f
1 problem: indeed it is equivalent

to
(∃i)(f(i) /∈ T or f(i) ̸⊏ f(i+ 1)).

We run Ψ with input f . If f ∈ dom(Ψ) then we return Ψ(f). Otherwise, there is a finite stage s
in which we will recognize that f /∈ dom(Ψ). In this case we just computably extend the (finite)
string σ (obtained by stage s) as σ⌢(σ(n) + 1, σ(n) + 2, . . .), where n := |σ| − 1.

Notice that the procedure described above always produces an element of [N]N. Moreover, if
[T ] ̸= ∅ then f describes a path through T and therefore Ψ(f) ∈ [T ].

The fact that the reduction is strict follows from Σ0
1−RT ≤W FindHSΠ0

1
∪ wFindHSΣ0

1
. In

fact, Corollary 3.53 implies that FindHSΠ0
1
∪ wFindHSΣ0

1
̸≤aW TCNN .

We now compare the uniform strength of FindHSΠ0
1
∪ wFindHSΣ0

1
with the one of CNN ∪ UCNN

and TC∗
NN .

Theorem 4.25:
FindHSΠ0

1
∪ wFindHSΣ0

1
≤W CNN ∪ UCNN .

Proof: Let (P,Q) ∈ dom(FindHSΠ0
1
∪ wFindHSΣ0

1
). Let T⟨Q⟩ be the tree of homogeneous solu-

tions that avoid Q. Let also θ be the arithmetic formula defined in Lemma 3.18.
Let Φ,Ψ be two Turing functionals witnessing the (strong) reduction ATR2 ≤sW CNN . We can

use the forward functional Φ with input (KB(T⟨Q⟩), Q, θ) to compute a (ill-founded) tree S ⊂ N<N

s.t. for every path x ∈ [S], Ψ(x) = (i, Y ), where if i = 0 then Y is an infinite descending sequence
through KB(T⟨Q⟩), while if i = 1 then Y is a (pseudo)-hierarchy obtained by iterating θ on
KB(T⟨Q⟩) with parameter Q. We can assume that, if T⟨Q⟩ is well-founded then |[S]| = 1. This
follows from the fact that, if T⟨Q⟩ is well-founded then there are no infinite descending sequences
through KB(T⟨Q⟩), hence there is a unique hierarchy obtained iterating θ on KB(T⟨Q⟩) with



4.1. The union of problems 85

parameter Q. By (carefully) applying the Kleene normal form theorem, we obtain a tree S as
required (see [106, Lem. V.5.4], [43, Lem. 1.18]).

We consider the input (0⌢T⟨P ⟩, 1
⌢T⟨Q⟩ ∪ 2⌢S) as input for CNN ∪ UCNN . Indeed:

• P ∈ dom(FindHSΠ0
1
) iff [0⌢T⟨P ⟩] ̸= ∅ (Lemma 3.6);

• Q ∈ dom(wFindHSΣ0
1
) iff |[1⌢T⟨Q⟩ ∪ 2⌢S]| = 1. Indeed, if Q ∈ dom(wFindHSΣ0

1
) then

[T⟨Q⟩] = ∅. Moreover KB(T⟨Q⟩) is a well-order, hence, in particular S has a unique path
which encodes the hierarchy. On the other hand, if Q /∈ dom(wFindHSΣ0

1
) then T⟨Q⟩ has

uncountably many paths, and therefore 1⌢T⟨Q⟩ ∪ 2⌢S /∈ dom(UCNN).

This shows that (0⌢T⟨P ⟩, 1
⌢T⟨Q⟩ ∪ 2⌢S) ∈ dom(CNN ∪ UCNN).

Moreover, for every x ∈ (CNN∪UCNN)(0⌢T⟨P ⟩, 1
⌢T⟨Q⟩∪2⌢S), we can computably tell whether

x ∈ CNN(0⌢T⟨P ⟩) or x ∈ UCNN(1⌢T⟨Q⟩ ∪ 2⌢S). If we define y := n 7→ x(n+ 1) then, in the first
case, we have y ∈ FindHSΠ0

1
(P ). In the second case, we reason as in Lemma 3.18 to obtain a

solution for wFindHSΣ0
1
(Q) from y.

Theorem 4.26:
(FindHSΠ0

1
∪ wFindHSΣ0

1
)× CNN ≡aW TCNN × CNN ̸≤aW FindHSΠ0

1
∪ wFindHSΣ0

1

Proof: Let us first prove the (arithmetic) equivalence. The right-to-left reduction fol-
lows trivially from TCNN ≤W FindHSΠ0

1
∪ wFindHSΣ0

1
(Theorem 4.24). The left-to-right one

follows from FindHSΠ0
1
∪ wFindHSΣ0

1
≤W CNN ∪ UCNN (Theorem 4.25) and the fact that

(CNN ∪ UCNN)× CNN ≡aW TCNN × CNN (Theorem 4.16).
To prove that TCNN×CNN ̸≤aW FindHSΠ0

1
∪wFindHSΣ0

1
we use the analogue of Proposition 2.14

for arithmetic Weihrauch reduction. In particular, if TCNN × CNN ≤aW FindHSΠ0
1
∪ wFindHSΣ0

1

then TCNN ≤aW FindHSΠ0
1
, against Corollary 3.47 (see also the proof of Theorem 4.15).

Theorem 4.27:
(FindHSΠ0

1
∪ wFindHSΣ0

1
)∗ ≡aW TC∗

NN .

Proof: This comes as a corollary of Theorem 4.26. Indeed the right-to-left reduction follows
from TCNN ≤W FindHSΠ0

1
∪ wFindHSΣ0

1
(Theorem 4.24), while the left-to-right one follows from

(FindHSΠ0
1
∪ wFindHSΣ0

1
)∗ ≤aW (TCNN × CNN)∗ ≡W TC∗

NN .

In particular, since Σ0
1−RT∗ ≡aW TC∗

NN (Theorem 3.55), we obtain also

(FindHSΠ0
1
∪ wFindHSΣ0

1
)∗ ≡aW Σ0

1−RT∗ .



4.1. The union of problems 86

We now show that FindHSΠ0
1
∪ wFindHSΣ0

1
is closed under parallel product with “hyperarith-

metic problems”.

Proposition 4.28:
UCNN × (FindHSΠ0

1
∪ wFindHSΣ0

1
) ≡W FindHSΠ0

1
∪ wFindHSΣ0

1

Proof: The right-to-left reduction is trivial, so we just need to prove the left-to-right one. Since
wFindHS∆0

1
≡W UCNN (Theorem 3.20), it is enough to prove that

wFindHS∆0
1
× (FindHSΠ0

1
∪ wFindHSΣ0

1
) ≤W FindHSΠ0

1
∪ wFindHSΣ0

1
.

Let D ∈ dom(wFindHS∆0
1
) and assume w.l.o.g. that every string in ⟨D⟩ has length at least 2.

Since D is clopen we can consider the tree T = T⟨[N]N\D⟩ of homogeneous solutions that land in
D.

Let (P1, P2) ∈ dom(FindHSΠ0
1
∪ wFindHSΣ0

1
). Define the tree S ⊂ [N]<N as S := T ∩ T⟨P1⟩,

where T⟨P1⟩ is the tree of homogeneous solutions for P1 that avoid P1. Let Q1 and Q2 the open
sets defined as Q1 := [N]N \ [S] and Q2 := D ∩ P2. We observe that:

P1 ∈ dom(FindHSΠ0
1
) iff Q1 ∈ dom(FindHSΠ0

1
). Indeed, if P1 ∈ dom(FindHSΠ0

1
) then, by

Proposition 3.3, for every f ∈ HS(P1) \ P1 there is g ⪯ f s.t. g ∈ HS(D) = HS(D) ∩D. In
particular, this shows that [S] ̸= ∅. Moreover, since [S] is closed under subsequences (i.e. if
f ∈ [S] then g ∈ [S] for every g ⪯ f), we have Q1 ∈ dom(FindHSΠ0

1
).

On the other hand, if P /∈ dom(FindHSΠ0
1
) then [S] ⊂ [T⟨P1⟩] = ∅ and hence Q1 = [N]N. In

particular, Q1 /∈ dom(FindHSΠ0
1
).

Notice that FindHSΠ0
1
(Q1) ⊂ wFindHS∆0

1
(D) ∩ FindHSΠ0

1
(P1).

P2 ∈ dom(wFindHSΣ0
1
) iff Q2 ∈ dom(wFindHSΣ0

1
). Indeed, assume that P2 ∈ dom(wFindHSΣ0

1
).

Applying Proposition 3.3 twice, we can conclude that for every f ∈ [N]N there are g, h ∈ [N]N

s.t. h ⪯ g ⪯ f , g ∈ HS(P2)∩P2 and h ∈ HS(Q2)∩Q2. In particular, Q2 ∈ dom(wFindHSΣ0
1
).

On the other hand, if P2 /∈ dom(wFindHSΣ0
1
) then, for every f ∈ HS(P2) \ P2 we have

f ∈ HS(Q2) \Q2 and therefore Q2 /∈ dom(wFindHSΣ0
1
).

Notice that wFindHSΣ0
1
(Q1) ⊂ wFindHS∆0

1
(D) ∩ wFindHSΣ0

1
(P2).

This shows that (Q1, Q2) is a valid input for FindHSΠ0
1
∪ wFindHSΣ0

1
and that, for every

f ∈ (FindHSΠ0
1
∪ wFindHSΣ0

1
)(Q1, Q2),

f ∈ wFindHS∆0
1
(D) ∩ (FindHSΠ0

1
∪ wFindHSΣ0

1
)(P1, P2),

which concludes the proof.

We conclude this section by noticing that FindHSΠ0
1
∪wFindHSΣ0

1
is not a cylinder. In particular,

this shows that there cannot be any strong reduction CNN ∪ UCNN ≤sW FindHSΠ0
1
∪ wFindHSΣ0

1
.



4.1. The union of problems 87

Proposition 4.29:
(FindHSΠ0

1
∪ wFindHSΣ0

1
)× id2 ̸≤sW FindHSΠ0

1
∪ wFindHSΣ0

1

Proof: Assume towards a contradiction that there is a reduction witnessed by the maps Φ,Ψ.
With a small abuse of notation, let us identify an open set with its name. For i < 2, fix some open
sets Pi, Qi, s.t. Φ(Pi, Qi, i) = (Ri, Si), where Ri and Si are open sets and Si ∈ dom(wFindHSΣ0

1
).

If there are no such sets then there is i < 2 s.t., for every P,Q, Φ(P,Q, i) = (R,S) and
S /∈ dom(wFindHSΣ0

1
). In particular, this implies that R ∈ dom(FindHSΠ0

1
), and therefore the

maps Φ,Ψ would yield a reduction (FindHSΠ0
1
∪wFindHSΣ0

1
)× id2 ≤W FindHSΠ0

1
≡W CNN , which

is a contradiction.
Fix a solution f0 ∈ wFindHSΣ0

1
(S0) ⊂ (FindHSΠ0

1
∪ wFindHSΣ0

1
)(R0, S0). In particular, for

every subsolution g ⪯ f , (π2Ψ(g)) = 0, where π2 denotes the projection on the second compo-
nent. However, by Proposition 3.3, there is a subsolution f1 ⪯ f0 s.t. f1 ∈ wFindHSΣ0

1
(S1). In

particular, (π2Ψ(f1))(0) = 1, reaching again a contradiction.

With a similar reasoning we can also prove the following:

Proposition 4.30:
χΠ1

1
̸≤sW FindHSΠ0

1
∪ wFindHSΣ0

1

Proof: Assume towards a contradiction that there are two Turing functional Φ,Ψ witnessing the
strong Weihrauch reduction. For the sake of readability define Vi := Ψ−1({p ∈ NN : p(0) = i})
for i < 2. Clearly both V0 and V1 are non-empty and disjoint.

Let T ⊂ NN be a tree and define b := χΠ1
1
(T ). Let also P1, P2 be the open sets given by

Φ(T ). If P2 ∈ dom(wFindHSΣ0
1
) then HS(P2) ⊂ Vb. By Proposition 3.3, for every f ∈ V1−b there

is g ⪯ f s.t. g ∈ HS(P2). In particular, g ∈ V0 ∩ V1, which is a contradiction.
This shows that P2 cannot be in dom(wFindHSΣ0

1
), and therefore Φ and Ψ witness a reduction

χΠ1
1
≤W FindHSΠ0

1
≡W CNN , against the fact that χΠ1

1
̸≤W CNN .

We summarize the results in Figure 4.1. In particular, we draw the attention to the following
question:

Question 4.31: χΠ1
1
≤W FindHSΠ0

1
∪ wFindHSΣ0

1
?

Answering this question (in either way) would automatically yield several separation results.
We can also summarize the results from the point of view of arithmetic Weihrauch reducibility

as follows:

• FindHSΠ0
1
∪ wFindHSΣ0

1
≤aW CNN ∪ UCNN ≤aW TCNN × CNN ;

• FindHSΠ0
1
∪ wFindHSΣ0

1
<aW TCNN × CNN ;



4.1. The union of problems 88

FindHSΠ0
1
∪ wFindHSΣ0

1

(FindHSΠ0
1
∪ wFindHSΣ0

1
)× CNN

TCNN × CNN

CNN ∪ UCNN

(CNN ∪ UCNN)× CNN

χΠ1
1

(CNN ∪ UCNN)∗

TC∗
NN

(FindHSΠ0
1
∪ wFindHSΣ0

1
)∗

Figure 4.1: Dashed arrows represent Weihrauch reducibility in the direction of the arrow, solid
arrows represent strict Weihrauch reducibility. Red arrows represent non-Weihrauch reduction in
the direction of the arrow. The existence of every reduction that is not in the transitive closure of
the diagram is open.

• TCNN × CNN ≡aW (CNN ∪ UCNN)× CNN ≡aW (FindHSΠ0
1
∪ wFindHSΣ0

1
)× CNN ;

• TCNN × CNN ≤aW TC∗
NN ≡aW (CNN ∪ UCNN)∗ ≡aW (FindHSΠ0

1
∪ wFindHSΣ0

1
)∗.

4.1.3 Further comments
While not being a degree-theoretic operator, the union of multi-valued functions can still provide
interesting insights into the uniform strength of problems.

As already noticed, the fact that dom(CNN) is Σ1
1-complete while dom(UCNN) is Π1

1-complete
is reflected by the fact that CNN ∪ CNN ≡W CNN , while CNN ∪ UCNN is much stronger.

It would be interesting to identify a (relatively mild) set of hypotheses under which the union
operator is monotone (and, hence, degree-theoretic). Notice, for example, that while the if-then-
else operator is not degree-theoretic, there is a simple condition that guarantees the monotonicity:



4.1. The union of problems 89

Proposition 4.32:
Let B be a space of truth values and let h be a multi-valued function. Let also f :⊆ X ⇒ Y ,
g :⊆ Z ⇒W for some represented spaces X,Y, Z,W . If there is a reduction f ≤W g witnessed
by two maps Φ, Ψ s.t.

• Φ|dom(δX) : dom(δX) → dom(δZ),

• Ψ|dom(δX)×dom(δW ) : dom(δX)× dom(δW ) → dom(δY ),

then
[if B then f else h] ≤W [if B then g else h].

Proof: The proof is straightforward from the definition. Indeed, given some input (b, x, a) for
[if B then f else h], if px is a name for x then pz := Φ(px) is a name for some element z ∈ Z.
Notice that if b = ⊤ then x ∈ dom(f) and therefore z ∈ dom(g) (as Φ is the forward functional
of a Weihrauch reduction). In particular, (b, z, a) is a valid input for [if B then g else h].

Let (w, b) be a solution for [if B then g else h](b, x, a), and let pw be a name for w. We can
compute the pair (y, b), where y := δY (Ψ(px, pw)). In particular, if b = ⊤ then w ∈ g(z), and
therefore the backward functional Ψ computes a valid solution for f(x).

If b = ⊥, then x, z, w, and y are not relevant for the reduction, and we only need to ensure
that they are elements of the respective represented spaces. This is guaranteed by the hypotheses
on Φ and Ψ.

Intuitively, the requirements on Φ and Ψ in the previous proposition are some kinds of “totality”
conditions. In particular, we ask that Φ can be run on any (name of an) element of X, and will
always produce some (name for an) element of Z (and similarly for Ψ). In other words, this
prevents the reduction [if B then f else h] ≤W [if B then g else h] to get stuck due to some input
that is, in fact, only garbage.

Notice that these conditions are naturally met in many cases: in particular this is trivially
the case for the reductions UCNN ≤W CNN ≤W TCNN . This is also the case for the reductions
CNN ≤W FindHSΠ0

1
and FindHSΠ0

1
≤W CNN . In particular we have

[if B then CNN else h] ≡W [if B then FindHSΠ0
1
else h].

It is not clear whether Proposition 4.32 can be applied in case of wFindHSΣ0
1

≤W UCNN or
UCNN ≤W wFindHSΣ0

1
. Indeed, the backward functional defined in the proof of Lemma 3.18 as a

witness of the reduction wFindHSΣ0
1
≤W UCNN , and the forward functional defined in the proof of

Lemma 3.19 as a witness of the reduction UCNN ≤W wFindHSΣ0
1

do not satisfy the requirements of
Proposition 4.32.

Let us now turn our attention to the union operator. We observe that, in this case, the
hypotheses of Proposition 4.32 are too weak, and some extra care is needed. In particular:

1. if f ≤W g then the “totality” of the reduction maps is not sufficient to conclude that
f ∪ h ≤W g ∪ h (take e.g. f = UCNN and g = h = CNN);

2. if the backward functionals of the reductions f0 ≤W g0 and f1 ≤W g1 are different, then (in
general), given a solution for g0 ∪ g1 we may not be able to produce a correct output for
f0 ∪ f1.



4.1. The union of problems 90

To address the first point we need to take care that “no correct input is produced from an
incorrect one”. This can be guaranteed by asking that the forward functional witnesses a many-
one (or effective Wadge) reduction between dom(f) and dom(g).

Notice that, while the backward functional will always receive in input a correct solution (and
therefore there is no need for a “totality” condition as in Proposition 4.32), we may not be able to
tell whether a solution for g ∪ h is, in fact, a solution for g or a solution for h, and this brings us
to the second point. This may not be a problem if the backward functional is the same in both
cases (e.g. that was the case in Theorem 4.13). In general, however, asking that there is a unique
functional playing the role of the backward functional of the reductions f ≤W g and h ≤W h (in
some cases it may be useful to not use the identity) is a too strong condition.

We can notice that many multi-valued functions have a “recognizability” property: we say that
f is recognizable if, for every n, k ∈ N, there is a restriction fn,k of f s.t. fn,k ≡W f and, for every
y ∈ dom(fn,k), every name p for a solution of fn,k(y) is s.t. p(n) = k. In other words, we can
uniformly modify every input x for f to an input y s.t. every name for a solution of f(y) belongs
to a fixed clopen set. This recognizability property can be useful when working with the union
operator as, if g and h are recognizable2, then we can uniformly tell whether a solution for g ∪ h
is, in fact, a solution for g or a solution for h. Simple examples of recognizable problems are UCNN

and CNN .
We can therefore state the following proposition:

Proposition 4.33:
For every multi-valued functions f, g, h, if

1. f ≤W g and the forward functional witnesses a many-one reduction dom(f) → dom(g),

2. g and h are recognizable and, for some n ∈ N and some k1 ̸= k2, the forward map
of the reductions g ≡W gn,k1 (resp. h ≡W hn,k2) witnesses a many-one reduction
dom(g) → dom(gn,k1) (resp. dom(h) → dom(hn,k2)),

then f ∪ h ≤W g ∪ h.

Proof (Sketch): The proof is straightforward: given an input (x, z) for f ∪ h, we can use the
reduction f ≤W g to obtain a pair (y, z) ∈ dom(g ∪ h). Since both g and h are recognizable, we
first obtain a pair (y′, z′) ∈ dom(gn,k1∪hn,k2). Then, from any solution w of (gn,k1∪hn,k2)(y′, z′),
if w ∈ gn,k1(y

′) then we uniformly compute a solution for g(y) and hence for f(x), otherwise we
just (uniformly) compute a solution for h(z).

The fact that, in the previous proof, all the forward functionals of the reductions witness a
many-one reduction guarantees that no correct input can be obtained from an invalid one.

We can notice that the previous proposition does not provide a set of necessary conditions
for the union to be monotone. In fact, we could not find any set of necessary conditions that is
(significantly) more informative than just the definition of Weihrauch reducibility. We therefore
conclude this section by restating the original question:

2Slightly less then recognizability suffices: indeed, it is enough that both g and h are recognizable for a fixed n,
i.e. that we can choose n and k1 ̸= k2 s.t. g ≡W gn,k1

and h ≡W hn,k2
.



4.2. First-order part of a problem 91

Question 4.34: Is there a (relatively mild) set of hypotheses under which the union operator
is monotone (and, hence, degree-theoretic)?

4.2 First-order part of a problem

Recently, Dzhafarov, Solomon, and Yokoyama [31], inspired by the first-order part of theories
in reverse mathematics, introduced the following notion:

Definition 4.35: We say that a computational problem f is first-order, and write f ∈ F , if the
codomain of f is N. For every problem f :⊆ Y ⇒ Z, the first-order part of f is the multi-valued
function 1f :⊆ NN × Y ⇒ N defined as follows:

• instances are pairs (w, y) s.t. y ∈ dom(f) and for every z ∈ f(y) and every name pz for z,
Uw(pz)(0) ↓, where U(·) is a fixed universal Turing functional;

• a solution for (w, y) is any n s.t. there is a name pz for a solution z ∈ f(y) s.t.
Uw(pz)(0) ↓= n.

Intuitively, we can think of U(·) as the universal Turing functional s.t., for every w = (e)⌢q and
every input x, Uw(x) simulates the e-th computable Turing functional with oracle q and input x.

While the definition may look hard to digest at first, most of the complications come from the
fact that we are considering a multi-valued function between arbitrary represented spaces.

Intuitively, the first-order part of f behaves “just like f , but stops at the first bit”. The
motivation for this notion comes from the following fact:

Proposition 4.36 ([31]):
For every problem f , 1f ≡W max≤W

{g ∈ F : g ≤W f}.

We briefly give the idea of the proof, as it can guide the intuition when working with the
first-order part of a problem (as well as with the deterministic part, which will be defined in the
following section). Let g be a first-order problem that reduces to f via the functionals Φ, Ψ.
Assume w.l.o.g. that g :⊆ NN ⇒ N and f :⊆ NN ⇒ NN (this makes the presentation easier, as we
do not have to keep track of the representation maps). By definition of Weihrauch reducibility, for
every input p ∈ dom(g), Φ(p) ∈ dom(f) and, for every solution q ∈ fΦ(p), Ψ(p, q)(0) ∈ g(p). We
can computably find a string r ∈ NN s.t. for every t ∈ NN,

Ur(t) = Ψ(p, t).

It is easy to check that (r,Φ(p)) is a valid input for 1f , and that 1f(r,Φ(p))(0) = Ψ(p, q)(0), for
some solution q ∈ fΦ(p), i.e. it uniformly computes g.

Equivalently3, we can define the first order part of f as the partial multi-valued function s.t.

• instances are triples (p, e, i) ∈ NN × N × N s.t. δY Φe(p) =: y ∈ dom(f) and for every
pz ∈ δ−1

Z (f(y)), Φi(p, pz) ↓;



4.2. First-order part of a problem 92

• a solution for (p, e, i) is any n s.t. Φi(p, pz)(0) ↓= n, for some name pz of a solution for
fδY Φe(p).

The difference in the two definitions lies in the fact that, in the first case, we need to consider an
input w ∈ NN that (intuitively) codes also the original input for the function we are reducing to f ,
while in the second case we need to specify two integer indexes, as the input will be automatically
accessible (as part of the definition of Weihrauch reducibility).

It is easy to see that the first-order part is a degree theoretic operator, hence a common strategy
to characterize the first-order part of a problem f is to show that a first-order function f0 reduces
to f and that, for every first-order g, if g ≤W f then g ≤W f0. A first example is the following:

Proposition 4.37:
1CNN ≡W Σ1

1-CN.

Proof: It is known that Σ1
1-CN <W Σ̂1

1-CN <W CNN ([2, Thm. 3.34]). On the other hand, if
f :⊆ X ⇒ N is s.t. f ≤W CNN via Φ,Ψ then, for every name p of some x ∈ dom(f), Φ(p) is the
name of an ill-founded tree Tp and, for every t ∈ [Tp] we have Ψ(t)(0) ∈ f(x). This means that
we can compute a solution choosing an element from

{n ∈ N : (∃t ∈ NN)(t ∈ [Tp] ∧Ψ(t)(0) = n)},

which is a Σ1,p
1 subset of N.

The notion of first-order part will be applied in Chapter 5 to obtain several separation results.
The following results on the first-order part are joint work with Giovanni Soldà.

4.2.1 First-order part and parallelization
We provide a characterization of the first-order part of a problem f , whenever f ≡W ĝ and g is a
first-order problem.

Let us introduce the following “unbounded-∗” operator. Intuitively it generalizes the finite
parallelization ∗, by relaxing the requirement that the number of instances of the problem is
specified a priori.

Definition 4.38: For every f :⊆ X ⇒ Y define fu∗ :⊆ NN ×XN ⇒ Y <N as follows:

• instances are pairs (w, (xn)n∈N) s.t. (xn)n∈N ∈ dom(f̂) and for every (yn)n∈N ∈ f̂((xn)n∈N)
there is k ∈ N s.t. for every t ∈ δ−1

Y <N((yn)n<k)

Uw(t)(0) ↓

where U(·) is a fixed universal Turing functional;

• a solution for (w, (xn)n∈N) is every finite sequence (yn)n<k s.t. yi ∈ f(xi) and, for every
t ∈ δ−1

Y <N((yn)n<k), Uw(t)(0) ↓.

3This is actually the original definition used by Dzhafarov, Solomon, and Yokoyama.



4.2. First-order part of a problem 93

Notice that if Y = N then we can equivalently think gu∗ as being a multi-valued function
NN ×XN ⇒ N. In other words, if g is first-order then so is gu∗.

Proposition 4.39:
gu∗ ≤W ĝ.

Proof: For every (w, (xn)n∈N) ∈ dom(gu∗), let (yn)n∈N ∈ ĝ((xn)n∈N). For every k, let tk be a
name for (yn)n<k. We dove-tail all the computations Uw(tk) for k ∈ N and return some (yn)n<k
s.t. Uw(tk)(0) ↓.

Theorem 4.40:
For every f and every g :⊆ Z ⇒ N,

f ≡W ĝ ⇒ 1f ≡W gu∗

Proof: The reduction gu∗ ≤W
1f is straightforward using gu∗ ≤W ĝ ≡W f and the fact that

gu∗ is first-order.
To prove the reduction 1f ≤W gu∗, fix f0 :⊆ NN ⇒ N and let Φ,Ψ be two maps witnessing

the reduction f0 ≤W ĝ. In particular, for every x ∈ dom(f0),

Ψ(x, ĝ(Φ(x)))(0) ∈ f0(x)

For every given x ∈ dom(f0), we can compute w s.t. for every t ∈ NN,

Uw(t) = Ψ(x, σ⌢0ω)

where σ = δN<N(t).
By the continuity of Ψ, for every y ∈ ĝ(Φ(x)) there is k s.t. Ψ(x, y[k]⌢0ω)(0) ↓. This implies

that (w,Φ(x)) ∈ dom(gu∗). Moreover, for every τ := (y(0), . . . , y(k − 1)) ∈ gu∗(w,Φ(x)) we have
Ψ(x, τ⌢0ω)(0) ∈ f0(x), which shows that f0 ≤W gu∗.

We now consider the relation between fu∗ and the diamond operator f⋄. The latter was
introduced in [84, Def. 9] using generalized register machines, and intuitively corresponds to the
possibility to call f as oracle an arbitrary but finite number of times during a computation. In
[113, Def. 4], the author gives an alternative definition by means of a “higher-order” model of
computation, and shows that the diamond operator corresponds to closure under compositional
product for pointed problems ([113, Thm. 1]).

In the following, we will mostly use the game-theoretic definition introduced by [53, Def. 4.1
and def. 4.3].



4.2. First-order part of a problem 94

Definition 4.41: Let f, g :⊆ NN ⇒ NN be two partial multi-valued functions. We define the
reduction game G(f → g) as the following two-player game: on the first move, Player 1 plays
x0 ∈ dom(g), and Player 2 either plays an x0-computable y0 ∈ g(x0) and declares victory, or
responds with an x0-computable instance z1 of f .

For n > 1, on the n-th move (if the game has not yet ended), Player 1 plays a solution xn−1

to the input zn−1 ∈ dom(f). Then Player 2 either plays a ⟨x0, . . . , xn−1⟩-computable solution
to x0 and declares victory, or plays a ⟨x0, . . . , xn−1⟩-computable instance zn of f .

If at any point one of the players does not have a legal move, then the game ends with a
victory for the other player. Player 2 wins if it ever declares victory (or if Player 1 has no legal
move at some point in the game). Otherwise, Player 1 wins.

We say that g is Weihrauch reducible to f in the generalized sense, and write g ≤gW f ,
if Player 2 has a computable winning strategy for the game G(f → g), i.e. there is a Turing
functional Φ s.t. Player 2 always plays Φ(⟨x0, . . . , xn−1⟩), and wins independently of the strategy
of Player 1.

We described the game assuming that f, g have domain and codomain NN. The definition
can be extended to arbitrary multi-valued functions, and the moves of the players are names
for the instances/solutions.

For every f :⊆ X ⇒ Y we define f⋄ :⊆ N× NN ⇒ Y <N as the following problem:

• dom(f⋄) is the set of pairs (e, p) s.t. Player 2 wins the game G(f → id) when Player 1
plays p as his first move, and Player 2 plays according to Φe;

• a solution is the list of moves of Player 1 for a run of the game (except for the first move).

Intuitively, in the reduction game G(f → g), Player 1 plays the role of the oracle f , while Player
2 plays the role of the algorithm trying to compute a solution for g, calling the oracle finitely many
times. It is easy to see that g ≤W f⋄ iff g ≤gW f .

As described in [113], it is useful to think of a run of the game G(f → id) as the computation
of a modified Type-2 Turing machine with a “Weihrauch problem plug-in”: fixed a computational
problem f , on top of the standard operations, this machine can query the oracle f on (the element
with name) Φ(t), where Φ is a computable functional (whose index can be obtained as part of
the computation) and t is the content of the tapes. This results in a creation of a new tape that
contains (a name for) an answer, or in an infinite loop if the operation was not allowed (i.e. if we
try to apply a functional to a string that is not in its domain, or if Φ(t) is not a name for any
element in dom(f)).

Notice that, if f is first-order, then we can assume that f⋄ is first-order as well (via the canonical
bijection N<N → N).

Proposition 4.42:
For every multi-valued function f :⊆ X ⇒ Y

fu∗ ≤sW f⋄.

If f : NN ⇒ N is s.t. {(x, n) : n ∈ f(x)} ∈ Π0
1 then fu∗ ≡sW f⋄.



4.2. First-order part of a problem 95

Proof: For the first claim, given (w, (xn)n∈N) ∈ dom(fu∗), consider the input (e, p) for f⋄, where
p = ⟨p0, p1, . . .⟩ is a name for (xn)n∈N (i.e. pi ∈ δ−1

X (xi)) and e is an index of the Turing functional
that works as follows: at stage s plays ps and dove-tails all the computations Uw(⟨t0, . . . , ts⟩)
for s steps, where ti ∈ δ−1

Y f(xi) is the i-th move played by Player 1 (i.e. it is a name for some
yi ∈ f(xi)). The definition of fu∗ guarantees us that there is k and a finite sequence (tn)n≤k s.t.
Uw(⟨t0, . . . , tk⟩)(0) ↓. In particular, this shows that we can use f⋄ to compute a solution (yn)n<k
for fu∗.

To prove the second part of the lemma, let f be a first-order problem that satisfies the
hypotheses. Recall that an input for f⋄ is a pair (e, p) where p ∈ NN and e is an index for the
computable strategy played by Player 2.

A solution for f⋄(e, p) is (essentially) a run of the reduction game G(f → id), when Player 2
plays according to Φe. Equivalently, we can think of a solution as a branch of the tree T ⊂ N<N

of possible answers obtained by Φe when calling the oracle f . In other words, σ ∈ T iff σ(i) is
the answer to the i-th call made by Φe to the oracle f when executed with input p and when
the answer to the j-th call, with j < i, is σ(j). By definition, Player 2 wins the game G(f → id)
when playing with Φe, or equivalently, T is well-founded.

We stress a subtle point that can easily be overlooked: the (i+1)-th oracle query depends on
the names of the solutions to the first i calls. Since every natural number has (infinitely) many
names, the (i+1)-th oracle query is not uniquely determined by σ[i+1]. In our context, we can
avoid this problem by assuming that the unique name for n ∈ N is (n)⌢0ω, so that the sequence
of the first answers uniquely determines the next oracle query.

Consider the tree S ⊂ N<N defined as follows: σ ∈ S iff

• for every s < |σ|, σ(s) = ⟨n, i1, . . . , in⟩, where n is the number of oracle calls made by Φe
in s steps when executed with input p and when the answer to the j-th oracle call is ij and

• Player 2 does not declare victory (i.e. the computation of Φe does not halt) in less than |σ|
steps and

• letting σ(|σ| − 1) = ⟨n, i1, . . . , in⟩, we did not find a witness of the fact that ij is not a
correct answer to the (j + 1)-th oracle call in less than |σ| steps.

Intuitively, we build S by “guessing” a possible answer to every oracle call, and we stop
extending σ if Player 2 declares victory or if we see that one of the oracle guesses was wrong.
Notice that S is uniformly computable from p, e. Notice also that S is well-founded: indeed, if all
the oracle guesses are correct then the claim follows from the fact that Φe is a winning strategy
for Player 2. On the other hand, the fact that {(x, n) : n ∈ f(x)} is Π0

1 guarantees that every
wrong guess is detected (and hence the branch is killed) in finite time.

The fact that S is computable does not immediately yield a computable enumeration of a
list of inputs for f . In fact, in case some wrong oracle answer is guessed, the functional Φe may
get stuck in an infinite loop while computing the next oracle query. This does not affect the
computation of the tree S, as in that case we do not need to compute the oracle questions (we
just detect the beginning of a question and then guess an answer).

To compute an input for fu∗ we define a sequence (qσ)σ∈N<N as follows: if σ /∈ S or if
σ(i) = ⟨0⟩ for every i < |σ| (i.e. if Φe did not commit to producing an oracle query by stage
|σ|) we simply define qσ := 0ω. Otherwise, let s < |σ| be largest s.t. σ(s) = ⟨n, i1, . . . , in⟩ and
σ(s+1) = ⟨n+1, i1, . . . , in+1⟩. At stage s, the functional Φe commits to producing the (n+1)-th
oracle query. However, if the sequence (i1, . . . , in) is not a valid sequence of oracle answers (i.e.
if some of the oracle guesses is wrong), then Φe is not guaranteed to produce a valid (n+ 1)-th



4.2. First-order part of a problem 96

query. By hypothesis, checking whether the solutions (i1, . . . , in) are correct is p-co-c.e.. We run
Φe until we see that (i1, . . . , in) is not correct. If this never happens then Φe produces a valid
input for f and we define qσ to be the output of Φe. Otherwise, Φe only produces a finite string
τ , and we define qσ := τ⌢0ω. Since f is total, the sequence (qσ)σ∈N<N is a valid input for f̂ .

A solution (yσ)σ∈N<N for f̂((qσ)σ∈N<N) contains enough information to compute a run of the
game G(f → id). In fact, given (e, p), we can compute an index w ∈ NN for the functional
that works as follows: it starts by simulating Φe on input p. We iteratively build a finite list
(σi)i of finite strings and show that the list (yσi

)i ∈ f⋄(e, p). Let σ0 be the longest string in
S s.t. for every s, σ0(s) = ⟨0⟩. For every i, at stage |σi| either Player 2 declares victory or it
commits to producing the (i+1)-th oracle request. In the first case we are done, as that implies
that Φe will never commit to another oracle call, and Φw returns a name for (yσ1

, . . . , yσi
) (if

i = 0 then the game ends in round 1 and Φw can return the empty string). In the second
case, let σi+1 be the longest string s.t. σi ⊑ σi+1 and s.t. for every j ∈ {|σi|, . . . , |σi+1| − 1},
σi+1(j) = ⟨i+ 1, yσ1

, . . . , yσi+1
⟩.

The fact that Player 2 wins the game G(f → id) when playing with Φe implies that the game
ends after finitely many rounds, i.e. that the sequence (yσi)i is printed after finite time, and this
concludes the proof.

To prove the second part of the claim, we could have proved that f⋄ ≤W f̂ and then f⋄ ≤W fu∗

would have followed by Theorem 4.40 as f⋄ is first-order. However, that would only yield a
Weihrauch reduction and not necessarily a strong Weihrauch reduction. Notice that, in general, if
f is not first-order then fu∗ ̸≡W f⋄. As a simple example, notice that lim ≡W limu∗ ≡W l̂im, while
lim⋄ is not an arithmetic problem.

Corollary 4.43:
For every f : NN ⇒ k s.t. {(x, n) : n ∈ f(x)} ∈ Π0

1 we have f∗ ≡sW f⋄.

Proof: Notice that if f has codomain k, then the tree S defined in the proof of Proposition 4.42
is finitely branching and, for every σ ∈ S, we can (p, e)-uniformly compute a bound for the
number i s.t. σ⌢(i) ∈ S from the input p. By König’s lemma, the tree is finite, hence we can
(p, e)-uniformly compute a level n s.t. no string of length n is in S. This gives an upper bound
on the number of oracle calls needed to solve f⋄. In other words, in order to compute a run of
the reduction game G(f → id) it suffices to apply f∗ to (qσ)⟨σ⟩<b for some sufficiently large b.

Notice that, in the proof of Proposition 4.42, when simulating all possible runs of the reduction
game, we “guess” a possible answer to the oracle calls. The answers to these calls will be used by
the backward functional to compute a run of G(f → id). However, since we have no control over
the behavior of the functional Φe when fed with incorrect answers, two problems may arise: either
Φe will not produce an infinite string, or the string it produces is not a valid input for f .

To address the first case we required that {(x, n) : n ∈ f(x)} ∈ Π0
1. In fact, if checking whether

n is a wrong answer to f(x) is x-c.e. then we can manually kill a branch whenever we see that
some of the previously used guesses are incorrect. To address the second case we required that f
is total with domain NN, so that every infinite string is a valid input for f .



4.2. First-order part of a problem 97

These hypotheses are sufficient but not necessary. Proposition 4.42 can be generalized using the
notion of completion, introduced in [14]. For p ∈ NN, we denote with p−1 the string q ∈ NN∪N<N

with domain |{i : p(i) ̸= 0}| that maps n to in − 1, where in is the n-th non-zero element of
p. Given a represented space (X, δX), we define its completion (X, δX) as X := X ∪ {⊥}, where
⊥ /∈ X, and

δX(p) :=

{
δX(p− 1) if p− 1 ∈ dom(δX)

⊥ otherwise.

Intuitively, δX -names are obtained modifying δX -names, adding a “don’t tell” symbol that post-
pones the information on the represented point. Every δX -name that is eventually 0 does not
contain enough information to represent a point, hence it is assigned to ⊥.

For every f :⊆ X ⇒ Y , we define its completion f : X ⇒ Y as

f(x) :=

{
f(x) if x ∈ dom(f)

Y otherwise.

For every computational problem f we have f ≤W f . If the converse reduction holds, i.e. f ≡W f ,
the problem is called complete.

Corollary 4.44:
For every complete problem f :⊆ X ⇒ N

fu∗ ≡sW f⋄.

Proof: The proof follows the same strategy used in the proof of Proposition 4.42. When
proving the reduction f⋄ ≤W fu∗, we modify the definition of the sequence (qσ)σ∈N<N as follows:
let Φ∗,Ψ∗ be a pair of functionals witnessing the reduction f ≤W f . Whenever Φe commits to
producing a new oracle query, instead of simulating Φe until we see that some of the previous
guesses were wrong, we alternate the simulation of Φe with the simulation of the Turing functional
that prints 0ω. Moreover, we increase by 1 every output produced by Φe. We define rσ as
the output of this procedure. Clearly this is a valid name for some x ∈ X. We then define
qσ := Φ∗(rσ). Notice that if no oracle answer was guessed incorrectly, then we are guaranteed
that Φe would produce a correct δX -name for an input for f . In this case, the procedure we
described produces a δX -name for the same input.

Finally, to compute a solution for f⋄ from a solution (yσ)σ∈N<N for f̂((qσ)σ∈N<N), we build a
finite list (σi)i of finite strings as in the proof of Proposition 4.42, with the only difference that
we use δNΨ∗(rσi

, yσi
) instead of yσi

as solution guess.

Notice that if we do not assume that {(x, n) : n ∈ f(x)} is Π0
1 then we do not have any

guarantee (in general) that the tree S of oracle guesses (defined in the proof of Proposition 4.42)
is well-founded.

The results we obtained can be used to characterize the first-order part of many common
problems. For example, knowing that lim ≡W L̂PO and that LPO is complete ([14, Prop. 5.8]) we
obtain

1lim ≡W LPOu∗ ≡W LPO⋄.



4.2. First-order part of a problem 98

Together with the fact that LPO⋄ ≡W CN ([84, Prop. 10]), we have
1lim ≡W CN ≡W Cu∗N ≡W C⋄

N.

In particular, in case of CN we also obtain that CN ≡W C∗
N ≡W Cu∗N . This is not the case for LPO:

indeed LPO <W LPO∗ <W LPOu∗. The fact that the reduction LPO∗ <W LPOu∗ is strict follows
from the fact that LPOu∗ can compute the problem “given A ∈ Σ0

1(N), say if A is empty and, if
not, produce its minimum”. The same problem cannot be solved by LPO∗.

We can use Theorem 4.40 also to characterize the first-order part of WKL(n). Indeed, using
[21, Fact 2.3 and cor. 4.18], we have

WKL(n) ≡W R̂Tnk ≡W Ĉ
(n)
2 ,

hence
1(WKL(n)) ≡W

1
(
R̂Tnk

)
≡W (C

(n)
2 )u∗ .

Moreover, C2 ≡sW TC2 (see e.g. [15, Prop. 6.3]) and TC2 can be thought as being total with
domain NN, we can apply Corollary 4.43 to C2 and conclude that

1WKL ≡W C∗
2 <W CN ≡W

1lim.

4.2.2 First-order part and other operations
We now state a few results linking the first-order part and the other operators introduced in
Section 2.1.1.

Proposition 4.45:
1. 1(f ⊔ g) ≡W

1f ⊔ 1g

2. 1(f ⊓ g) ≡W
1f ⊓ 1g

3. 1f × 1g ≤W
1(f × g), the converse can fail

4. 1f ∗ 1g ≤W
1(f ∗ g), the converse can fail

Proof:

1. This is straightforward from the definitions. Indeed an input for f ⊔ g is of the type (i, x)
where x ∈ dom(f) if i = 0 and x ∈ dom(g) if i = 1.
To prove the left-to-right reduction it suffices to map (w, (i, x)) to (i, (w, x)). To prove the
right-to-left reduction it suffices to consider the inverse map (i, (w, x)) 7→ (w, (i, x)).

2. To prove the left-to-right reduction notice that, by the monotonicity of 1(·), 1(f ⊓ g) ≤W
1f

and 1(f ⊓ g) ≤W
1g. Since ⊓ is the meet in the Weihrauch lattice we have 1(f ⊓ g) ≤W

1f⊓1g.
To prove the right-to-left reduction, recall that, by definition,

(1f ⊓ 1g)((w, x), (v, z)) = 1f(w, x) ⊔ 1g(v, z)

= {0} × Uw(f(x)) ∪ {1} × Uv(g(z))



4.2. First-order part of a problem 99

where, with a small abuse of notation, we are identifying f(x) and g(z) with their names. We
can uniformly compute r ∈ NN s.t.

Ur((i, t)) =

{
{0} × Uw(t) if i = 0

{1} × Uv(t) if i = 1

It follows that every solution for 1(f ⊓ g)(r, (x, z)) is a solution for (1f ⊓ 1g)((w, x), (v, z)).

3. To show that the reduction holds it suffices to consider the map ((w, x), (v, z)) 7→ (r, (x, z))
where Ur(⟨y, t⟩) = ⟨Uw(y),Uv(t)⟩.
A counterexample for the converse reduction can be given considering the problem DS,
which we will introduce and study in depth in Chapter 5. In particular, we will show that
1DS ≡W Π1

1−Bound (Theorem 5.9). It is easy to see that Π1
1−Bound is closed under product.

Moreover LPO′ ̸≤W DS (Corollary 5.16), while LPO′ ≤W DS × DS (Theorem 5.17). These
results show that

Π1
1−Bound ≡W

1DS× 1DS <W
1(DS× DS)

4. Notice first of all that, by the monotonicity of 1(·), 1f ∗ 1g ≤W f ∗ g. By the cylindrical
decomposition there is a computable functional Φe s.t.

1f ∗ 1g ≡W (id×1f) ◦ Φe ◦ (id×1g) .

In particular,

(id×1f) ◦ Φe ◦ (id×1g)(⟨t1, t2⟩) = ⟨Φ1(t1,
1g(t2)),

1f(Φ2(t1,
1g(t2)))⟩

where Φ1 and Φ2 are s.t. Φe(p) = ⟨Φ1(p),Φ2(p)⟩. This shows that it is enough to solve
1g(t2) and 1f(Φ2(t1,

1g(t2))). Since they are both first order problems we actually have
1f ∗ 1g ≤W

1(f ∗ g).
To prove that the converse reduction does not hold in general, consider f = g = lim. We
already showed that 1lim ≡W LPO⋄ ≡W CN ≡W

1f ∗ 1g, as LPO⋄ ∗ LPO⋄ ≡W LPO⋄. On the
other hand, using Theorem 4.40, 1(lim ∗ lim) ≡W (LPO′)u∗ ̸≤W CN.

To explore the connections between the first-order part and the jump in the Weihrauch lattice
we introduce the following notion:

Definition 4.46: We say that a first-order function f is a first-order cylinder if, for every
first-order g,

g ≤W f ⇒ g ≤sW f

Notice that no first-order function can be a (classical) cylinder, as every first-order function
only has computable outputs (hence, in particular, it cannot strongly compute id).

Proposition 4.47:
If f is a cylinder then 1f is a first-order cylinder.



4.2. First-order part of a problem 100

Proof: Assume g ≤W
1f via Φ,Ψ. For every name pt for an input t of g, let (w, x) be the input

for 1f named by Φ(pt). Intuitively, since f is a cylinder, we exploit the fact that f ≡sW f × id,
i.e. from Φ(pt) we can uniformly compute an input y for f s.t. every name pz for some z ∈ f(y)
uniformly computes ⟨w, r⟩ via Φe, where r is a name for a solution of f(x). Let q ∈ NN be s.t.

⟨σ, n⟩ ⊑ Uq(pz)

where Φe(pz) = ⟨w, r⟩, n := Uw(f(x))(0) and σ is a sufficiently long prefix of pt s.t.

Ψ(σ⌢0ω, (n)⌢0ω)(0) ∈ g(t).

Such a σ exists because g is first-order. In other words, given pt we uniformly compute an input
(q, y) for 1f s.t. Ψ(1f(q, y)) is a solution for g(t).

As a trivial consequence, if f is a cylinder, g is a first-order cylinder and g ≡W
1f , then

g ≡sW
1f and hence g′ ≡sW (1f)′ (as the jump lifts to the strong Weihrauch degrees).

Recall that, when working with the compositional product ∗, we identify f ∗ g with a represen-
tative of the degree that is also a cylinder. This allows us to consider f ∗ g when working with the
strong Weihrauch reducibility.

Proposition 4.48:
For every multi-valued function f , 1(f ′) ≤sW (1f)′. Moreover, if f is a cylinder then
1(f ′) ≡sW (1f)′.

Proof: The first statement is a trivial consequence of the definitions. Indeed, given an input
(w, (xn)n∈N) for 1(f ′), where (xn)n∈N converges to x ∈ dom(f), it is enough to consider the input
((wn)n∈N, (xn)n∈N) for (1f)′, where wn := w is a constant sequence. Clearly

(1f)′((wn)n∈N, (xn)n∈N) = Uw(f(x))(0) =
1(f ′)(w, (xn)n∈N)

where, with a small abuse of notation, we identified f(x) with its name.
Assume now that f is a cylinder. In particular we have that f ′ is a cylinder and f ∗lim ≡sW f ′.

This implies that
(1f)′ ≤sW

1f ∗ lim ≤sW f ∗ lim ≡sW f ′

Since (1f)′ is first-order, the maximality of the first-order part implies that (1f)′ ≤W
1(f ′). By

Proposition 4.47, 1(f ′) is a first-order cylinder, hence (1f)′ ≤sW
1(f ′).

The reduction (1f)′ ≤W
1(f ′) can fail if f is not a cylinder. To see this, fix a non-cylinder

f :⊆ NN ⇒ NN. By definition 1f takes in input a pair (w, x) and produces Uw(f(x))(0). We can
think of w as (e,X), where e is the index of a Turing machine and X is an oracle. By definition,
(1f)′ takes in input a sequence ((wn)n∈N, (xn)n∈N) that converges to (w, x) and produces 1f(w, x).
Similarly 1(f ′) takes in input (v, (zn)n∈N) and produces Uv(f(z)), where z = limn zn. If there is a
reduction (1f)′ ≤W

1(f ′) then the forward functional eventually has to commit to some v(0), i.e.
to some index for a Turing machine. You can fool the reduction by changing the sequence (wn)n∈N



4.3. Deterministic part of a problem 101

after that point so that the index of the Turing machine is different. You cannot do the same if f
is a cylinder, as in that case f ′ ≡W f ∗ lim, hence you can use lim to get the correct (w, x).

Lemma 4.49:
C∗
2 is a first-order cylinder.

Proof: Assume g ≤W C∗
2 via Φ,Ψ. For every name z of some input for g, we can uni-

formly compute a bound k for the length of a prefix of z s.t. for every name y of a solution
for C∗

2(δΠ0
1(N)<N(Φ(z))),

Ψ(z, y)(0) = Ψ(z[k], y)(0),

see also the proof of ??. Since idN<N ≤sW C∗
2 and C∗

2 × C∗
2 ≡sW C∗

2 the claim follows.

Corollary 4.50:
For every n ∈ N, 1(WKL(n)) ≡sW (C∗

2)
(n)

Proof: By induction on n ∈ N: for the base step we already know that 1WKL ≡W C∗
2. Since

both 1WKL and C∗
2 are first-order cylinder (the former because of Proposition 4.47, as WKL is a

cylinder, the latter because of Lemma 4.49) we have 1WKL ≡sW C∗
2.

Assume the claim holds up to n. Recall that, for every n, WKL(n+1) is a cylinder and
WKL(n+1) ≡sW WKL(n) ∗ lim. Proposition 4.48 implies that 1(WKL(n+1)) ≡sW (1(WKL(n)))′. By
the inductive step we have 1(WKL(n)) ≡sW (C∗

2)
(n), therefore

1(WKL(n+1)) ≡sW ((C∗
2)

(n))′ ≡sW (C∗
2)

(n+1).

In particular, in case of KL ≡sW WKL′ we obtain 1KL ≡sW (C∗
2)

′.

4.3 Deterministic part of a problem

The results of this section are joint work with Jun Le Goh and Arno Pauly. They have been
obtained while studying the topics of Chapter 5, and are part of [46].

Definition 4.51: Let X be a represented space and f :⊆ Y ⇒ Z be a multi-valued function.
We define DetX(f) :⊆ NN × Y → X by

DetX(f)(w, y) = x :⇐⇒ (∀z ∈ δ−1
Z (f(y)))(δX(Uw(z)) = x),

where U(·) is a universal Turing functional. The domain of DetX(f) is maximal for this to be
well-defined. We just write Det(f) for DetNN(f).



4.3. Deterministic part of a problem 102

Notice that Det(f) is always a cylinder. This is not true for all X (if X = N then DetX(f)
always has computable solutions, and therefore id ̸≤sW DetX(f)).

Our interest in the principle DetX(f) lies in the fact that it has the maximal Weihrauch degree
of all (single-valued!) functions with codomain X that are Weihrauch below f :

Theorem 4.52:
DetX(f) ≡W max≤W

{g :⊆W → X : g ≤W f}.

Proof: This argument is very similar to the one used to prove Proposition 4.36.
Clearly, DetX(f) is itself present in the set on the right hand side. Assume g :⊆ W → X

satisfies g ≤W f with reduction witnesses Φ and Ψ. Given a name q for an input to g, let
y = δY (Φ(q)) be the value f is called on, and let w be a name for the function Ψ(q, ·). Then
DetX(f)(w, y) = g(δW (q)).

As in the case of the first-order part, we could equivalently define the deterministic part by
requiring that the input specifies a pair of Turing functionals and a string in NN.

In the same spirit, we can identify several other operators ΛY of the type

ΛY(f) := max
≤W

{g ∈ Y : g ≤W f}.

In particular, the proof strategy used in Theorem 4.52 can be used to prove that ΛUN
and ΛVN

are
total, where UN is the set of first-order problems with codomain N , and VN is the set of problems
in UN which are also single-valued. This will come into play in Theorem 5.29 and in Theorem 5.31.

Corollary 4.53:
DetX(·) is an interior degree-theoretic operator on Weihrauch degrees, i.e.

DetX(DetX(f)) ≡W DetX(f) ≤W f ,

f ≤W g ⇒ DetX(f) ≤W DetX(g) .

4.3.1 Impact of the codomain space
We make some basic observations on how the space X impacts the degrees DetX(f) for arbitrary f .
Clearly, whenever Y computably embeds into X (i.e. there is a computable injection Y → X with
computable inverse), then DetY (f) ≤W DetX(f). In general, we obtain many different operations.
To see this, we consider the point degree spectrum of a represented space as introduced by Kihara
and Pauly [66]. The point degree spectrum of (X, δX) is the set of Medvedev degrees of the form
δ−1
X (x) for x ∈ X.

The spectrum of Y is included in that of X iff Y can be decomposed into countably many parts
each of which embeds into X ([66, Lem. 3.6]). If the spectrum of Y is not included in that of X,
we can consider a constant function y witnessing this. Then DetX(y) <W DetY (y) ≡W y. We
have thus seen that if DetX(f) ≡W DetY (f) for all f , then X and Y must have the same point



4.3. Deterministic part of a problem 103

degree spectrum. Miller [81] has shown that the spectrum of [0, 1]ω is not contained in the Turing
degrees (i.e. the spectrum of 2N), which was extended in [66] to the result that the spectrum of a
computable Polish space is contained in the Turing degrees relative to some oracle iff that space
is countably dimensional. The spectra of further spaces have been explored in [65].

We can extend the separation arguments based on the spectrum by considering sequences
rather than just constant functions4. Whenever we have a sequence f0 : N → X0 and a function
g0 :⊆ NN → X1 with f0 ≡W g0, then there is a sequence h : N → X1 with f0 ≡W h. A Weihrauch
reduction f ≤W g for f : N → X and g : N → Y gives rise to a computable partial function
F :⊆ Y N → XN with F (g) = f . It follows that it suffices to separate Y N and XN via their
spectrum to conclude that DetX(·) and DetY (·) are distinct operators. In particular, Miller’s
result implies that there is a function with codomain R that is not equivalent to any function with
codomain NN.

4.3.2 The deterministic part and the first-order part
Let us now explore the interplay between the deterministic part and the first-order part.

Proposition 4.54:
1Det(f) ≡W DetN(f) ≤W Det(1f).

Proof: By considering what the relevant maxima in the characterizations are taken about, it
is clear that DetN(f) ≤W

1Det(f) and DetN(f) ≤W Det(1f). To see that 1Det(f) ≤W DetN(f),
we consider a function f :⊆ NN → NN and a multivalued function g :⊆ NN ⇒ N with g ≤W f .
But this reduction actually yields some choice function of g, showing that g ≤W DetN(f).

Question 4.55: Is there some f with DetN(f) <W Det(1f)?

The question above asks whether whenever there is a countable cover making a partial function
on Baire space piecewise computable, there also is a partition of the same or lower complexity that
renders the function piecewise computable. The complexity here is not merely the complexity of
the individual pieces, but the Weihrauch degree of the map that assigns the piece to any Baire
space element.

Proposition 4.56:
Det(f) ≤W D̂etN(f).

Proof: A function f :⊆ NN → NN is reducible to the parallelization of its uncurried form
F :⊆ N× NN → N where F (n, p) = f(p)(n).

4The ideas in this paragraph were pointed out to us by Mathieu Hoyrup.



4.3. Deterministic part of a problem 104

Corollary 4.57:
Det(f) ≤W

1̂f .

4.3.3 Interaction with other operations on Weihrauch degrees
A first straightforward observation is that Det(f)□Det(g) ≤W Det(f □ g) whenever □ is a degree-
theoretic operator that preserves single-valuedness. We will look at the interaction with the usual
well-studied operations on Weihrauch degrees.

It is imminent from the definition that Det(f) ⊔Det(g) ≡W Det(f ⊔ g).
Moreover, the reductions Det(f ⊓ g) ≤W Det(f) and Det(f ⊓ g) ≤W Det(g) hold by mono-

tonicity, hence Det(f ⊓ g) ≤W Det(f) ⊓ Det(g), as ⊓ is the meet on Weihrauch degrees ([13,
Prop. 3.11]). To see that the inequality can be strict, let p, q ∈ 2N be a minimal pair of Turing
degrees (which we identify with the constant functions returning these values). It follows that
Det(p ⊓ q) ≡W id <W Det(p) ⊓Det(q) ≡W p ⊓ q.

Our principle DS (to be defined) already witnesses that the deterministic part does not dis-
tribute over × and ∗, and does not commute with ∗, ⋄ and ̂: we will prove that Det(DS) ≡W lim
(Theorem 5.15), while LPO′ ≤W DS×DS (Theorem 5.17). Here we also give another example with
a more computability-theoretic flavour:

Example 4.58: There is a Weihrauch degree f such that:

Det(f) ≡W id <W f <W f × f ≡W f⋄ ≡W f̂ ≡W Det(f × f).

Indeed, consider the degrees of points in the spaces R<, R> and R (see [66] for details). Let
x ∈ R be neither left-c.e. nor right-c.e.; i.e. it lacks computable names in both R< and R>. Then
x ∈ R< and x ∈ R> have quasi-minimal degrees, that is do not compute any non-computable
elements of Cantor space. We define f : 2 → R< + R> by f(0) := x ∈ R< and f(1) := x ∈ R>.
The quasi-minimality implies that Det(f) ≡W id. However, f × f is equivalent to the constant
function returning x ∈ R, which is also equivalent to the constant function returning the decimal
expansion of x. Thus, f × f ≡W Det(f × f). Any of f∗, f ∗ f , f⋄ and f̂ clearly share the same
degree.

Theorem 4.59:
For every represented space X and all problems f, g,

DetX(f ∗ g) ≤W DetX(f) ∗ g.

Proof: Fix a single-valued h with codomain X s.t. h ≤W f ∗ g and assume w.l.o.g. that
dom(h) ⊂ NN (if h is single-valued then the map p 7→ h ◦ δ(p) is single-valued as well, where δ
is the representation map for the domain of h). Assume also, for the sake of readability, that



4.3. Deterministic part of a problem 105

f and g are cylinders (if not we can just replace f with f × id, as DetX(·) is a degree-theoretic
operation).

By the cylindrical decomposition lemma, there is a computable function Φe s.t.

h ≤sW f ◦ Φe ◦ g.

Let Φ,Ψ be two maps witnessing this strong reduction. Define ϕ as the restriction of δX ◦Ψ◦f ◦Φe
to dom(g ◦Φ ◦h). The choice of the domain of ϕ guarantees that ϕ is single-valued: intuitively ϕ
witnesses the “second part” of the reduction h ≤sW f ◦Φe ◦g, and the fact that h is single-valued
implies that so is ϕ. In particular, ϕ ≤W DetX(f) (as ϕ ≤W f trivially). Since h ≤W ϕ ∗ g we
have that h ≤W DetX(f) ∗ g.

Notice that this implies the choice elimination theorem [17, Thm. 7.25], as Det(C2N) ≡W id
([13, Cor. 8.8]).

Corollary 4.60:
If g is single-valued with codomain NN then Det(f ∗ g) ≡W Det(f) ∗ g.

Proof: This follows from Theorem 4.59, as the reduction

Det(f) ∗Det(g) ≤W Det(f ∗ g)

always holds and Det(g) ≡W g as g is single-valued.

Notice however that it does not hold for every represented space, i.e. we cannot replace Det(·)
with DetX(·). A counterexample, suggested by Vasco Brattka, is obtained choosing X = 2 (with
the standard representation) and f = g = CN. Since Det2(CN) ≡W lim2 (as can be easily proved,
see e.g. [16, Prop. 13.10]), we would obtain

lim3 ≤W lim2 ∗ lim2 ≡W Det2(CN) ∗Det2(CN) ≤W Det2(CN ∗ CN) ≤W Det2(CN) ≡W lim2,

which contradicts [16, Thm. 13.5].
This counterexample is based on the fact that there is no (computable) pairing X ×X → X.

However, even the reduction DetX(f) ∗ DetX(g) ≤W DetX×X(f ∗ g) is not sound when generic
represented spaces are involved. In fact, we cannot assume that DetX(f)∗DetX(g) is single-valued,
as the computable functional connecting DetX(f) and DetX(g) may produce different instances for
DetX(f) depending on the name of the solution of DetX(g). An explicit counterexample showing
that it is possible to have DetX×X(f ∗ g) <W DetX(f) ∗ DetX(g) is the following (suggested
by Arno Pauly): let p1, . . . , p4 ∈ 2N be strongly Turing incomparable (i.e. for every i, pi is not
Turing reducible to

⊕
j ̸=i pj). Let X := NN ∪ {⊥} be represented as follows: for every p ∈ NN,

δ−1
X (p) := {p} and δ−1

X (⊥) := {p1, p2}. Let f : {p1, p2} → {p3, p4} be s.t. f(pi) := pi+2. Let also
g : NN → X be the constant map producing ⊥.

It is easy to see that DetX(f) ≡W f and DetX(g) ≡W g. In particular, DetX(f) ∗ DetX(g)
computes the constant multi-valued function returning either p3 or p4. On the other hand, if h is
a single-valued function with codomain X ×X that is reducible to f ∗ g then every solution of h



4.3. Deterministic part of a problem 106

must be computable from (p1 ∧ p2) ⊕ (p3 ∧ p4), where ∧ denotes the meet in the Turing degrees.
In particular, no h-solution can compute p3 nor p4.

Corollary 4.61:
For every cylinder f and every k ∈ N

Det(f)(k) ≡W Det(f (k))

Proof: The left-to-right reduction is straightforward as

Det(f)(k) ≤W Det(f) ∗ lim[k] ≤W f ∗ lim[k] ≡W f (k),

where the last equality follows from the fact that f is a cylinder. Since Det(f)(k) is single-valued,
this implies Det(f)(k) ≤W Det(f (k)).

The right-to-left reduction follows from Theorem 4.59 as

Det(f (k)) ≡W Det(f ∗ lim[k]) ≤W Det(f) ∗ lim[k] ≡W Det(f)(k),

where the last equality follows from the fact that Det(f) is a cylinder.

The previous corollary can be generalized in a straightforward way to any represented space X
s.t. DetX(f) is a cylinder. Notice that it is false (in general) if f is not a cylinder: take f = C2 and
k = 1. Since C′

2 ≡W RT1
2 (see e.g. [21, Fact 2.3 and Prop. 3.4]) we have Det(C′

2) ≤W RT1
2, hence

in particular lim ̸≤W Det(C′
2). On the other hand lim ≤W Det(C2)

′ (as Det(C2) is a cylinder).

Definition 4.62: Given some f :⊆ NN ⇒ NN let ?f :⊆ NN ⇒ NN be defined by 0ω ∈?f(0ω)
and 0n1p ∈?f(0n1q) iff p ∈ f(q).

It is easy to see that ? defines an operation on Weihrauch degrees, and represents the idea of
being able to maybe ask a question to f – but never having to decide to forgo this (which would
be the case for 1 ⊔ f). Many well-studied principles are equivalent to their maybe-variants, this
in particular holds for all pointed fractals. We introduce the operation here to be able to express
how the deterministic part interacts with the notion of completion (·) introduced by Brattka and
Gherardi [14, 15].

Proposition 4.63:
Det(f) ≡W Det(?f) ≡W?Det(f).

Proof: To show that Det(f) ≤W Det(?f), w.l.o.g. assume that f :⊆ NN ⇒ NN and consider
a function g :⊆ NN → NN with g ≤W f witnessed by Φ,Ψ. Now if for some prefix w the
computation of Ψ(w, ·) outputs two different things depending on the second part of the input,



4.3. Deterministic part of a problem 107

then in order for g to be a function, we have the guarantee that all extensions of w in the domain
of g will be mapped to inputs in the domain of f , i.e. we are actually calling f rather than making
use of f . On the other hand, if Ψ(w, ·) would output the same thing regardless of the second
argument, we can postpone actually calling f (which ?f lets us do) and go with that output for
the time being. This reasoning establishes that g ≤W?f .

To see that Det(?f) ≤W?Det(f), we just inspect the technical definition of Det(·).
Finally, for ?Det(f) ≤W Det(f) we observe that ?Det(f) is single-valued with codomain NN,

thus it suffices to show ?Det(f) ≤W f . But already ?f ≤W f holds: f accepts an input that is
completely void of information. We provide this as long as our ?f instance does not want to use
f ; if it ever does, we have the relevant f -instance which we can then feed into f . Note that we
do not get a strong reduction here, in general.

4.3.4 Previous appearances in the literature
While the deterministic part as such has not been introduced before, and in particular the obser-
vation that it is always well-defined is new, there are several results in the literature on Weihrauch
degrees that implicitly use it. Already in the first paper introducing the modern definition of
Weihrauch reducibility [41], it was shown that Det(C2N) ≡W id. It was observed in [70] that the
argument actually even establishes that DetX(C2N) ≡W id for any computably admissible space
X.

In [64, Sec. 6], the authors introduce the principle wList2N,≤ω which produces an enumeration
of the elements of a countable closed subset of Cantor space, and [64, Prop. 6.14] states that
Det(wList2N,≤ω) ≡W lim. The authors also proved the following result, which will be useful in
Proposition 5.49:

Theorem 4.64 ([64, Thm. 8.5]):
UCNN ≡W Det(CNN) ≡W Det(T̂CNN).

This, in particular, shows that Det(·) is not useful to separate principles that are between UCNN

and CNN .



5
Finding descending sequences in ill-founded linear

orders

The results of this chapter are joint work with Jun Le Goh and Arno Pauly, and have been collected
in [46].

We study the difficulty of the following two (Weihrauch equivalent) computational problems:

• Given an ill-founded countable linear order, find an infinite decreasing sequence in it (DS)

• Given a countable quasi-order which is not well, find a bad sequence in it (BS).

Motivation for the first stems from the treatment of ordinals in reverse mathematics. We
already mentioned the natural arising of pseudo-well-orders, when working within submodels of
second order arithmetic. As a classic example of a pseudo-well-order, consider Kleene’s computable
linear order with no hyperarithmetic descending sequence ([96, Lem. III.2.1]). Such a linear order
is a well-order when seen within the ω-model HYP consisting exactly of the hyperarithmetic
sets. Pseudo-well-orders were first studied in [51] and proved to be a powerful tool in reverse
mathematics, especially when working at the level of ATR0 (see [106, Sec. V.4]). Our first task
can essentially be rephrased as being concerned with the difficulty of revealing a pseudo-ordinal as
not actually being an ordinal.

Our second task can be seen as an abstraction of the computational content of theorems in
well-quasi-order (wqo) theory. There are many famous theorems asserting that wqo’s are closed
under certain operations. Examples such as Kruskal’s tree theorem, as well as Extended Kruskal’s
theorem and Higman’s theorem, have been well-studied in proof theory via their proof-theoretic
ordinals (see [104]). However, in their usual form, these results lack computational content. Indeed,
these theorems state that a certain quasi-order (Q,⪯Q) is a wqo. Phrasing a result of this kind
in the classical Π1

2-form would yield a statement of the type “given an infinite sequence (qn)n∈N
in Q, find a pair of indexes i < j s.t. qi ⪯Q qj”. Such a pair (i, j) would be a witness of the
fact that the sequence (qn)n∈N is not bad. However, while proving that (Q,⪯Q) is a wqo can be
“hard” (in particular Extended Kruskal’s theorem is not provable in Π1

1−CA0 [104]), producing a
pair of witnesses for each infinite sequence is a ⪯Q-computable problem (as it can be solved by an
extensive search)!

These theorems are very extreme examples of a well-known difference between reverse mathe-
matics and computable analysis: quoting [41],

108



5.1. Finding descending sequences 109

the computable analyst is allowed to conduct an unbounded search for an object that is
guaranteed to exist by (nonconstructive) mathematical knowledge, whereas the reverse
mathematician has the burden of an existence proof with limited means.

On the other hand, considering the contrapositives of the above theorems can reveal some
(otherwise hidden) computational content. For example, to show that a given quasi-order is not a
wqo it suffices to produce a bad sequence in it. Extended Kruskal’s theorem or Higman’s theorem
can be stated in the form “given a bad sequence for the derived quasi-order, find a bad sequence for
the original quasi-order”. Our second problem trivially is an upper bound for all these statements,
as we disregard any particular reason for why the given quasi-order is not a wqo, and just start
with the promise that it is not. Our results thus lay the groundwork for future exploration of the
computational content of individual theorems from wqo theory.

Summary of our results

The parallel between reverse mathematics and Weihrauch reducibility identifies a “region” of the
Weihrauch lattice that has been widely explored in the literature. This consists of the “arithmetic
problems” (i.e. those that are reducible to some jump of lim), and the problems UCNN , CNN and
TCNN , which are scaffolding the “ATR0 analogs”.

We show that DS does not belong to this “explored” part of the lattice. To put it in a nutshell,
our results show that it is difficult to solve DS, but that DS is rather weak in solving other
problems. For example, DS has computable inputs without any hyperarithmetic solutions, yet DS
cannot guarantee to compute any specific real not Turing reducible to the Halting problem. We
provide a few characterizations that tell us what the greatest Weihrauch degree with representatives
of particular types below DS is, and include some general observations on this approach. The
diagram in Figure 5.1 shows the relations between DS and several other Weihrauch degrees. Dashed
arrows represent Weihrauch reducibility in the direction of the arrow, solid arrows represent strict
Weihrauch reducibility. Next, we generalize our results by exploring how different presentations of
the same order can affect the uniform strength of the same computational task (finding descending
sequences in it). We study the problems Γ-DS and Γ-BS, where the name of the input order carries
“less accessible information” on the order itself (namely a ≤L b is assumed to be a Γ-condition
relative to the name of the order). We summarize the results in Figure 5.2.

5.1 Finding descending sequences

Let us formally define the problem of finding descending sequences in an ill-founded linear order
as a multivalued function.

Definition 5.1: Let DS :⊆ LO ⇒ NN be the multivalued function defined as

DS(L) := {x ∈ NN : (∀i)(x(i+ 1) <L x(i))},

with dom(DS) := LO \WO.

5.1.1 The uniform strength of DS

We can immediately notice the following:



5.1. Finding descending sequences 110

UCNN

CNN ≡W lim ∗ DS

lim

LPO′

RT1
N

KL

General-SADS
lim′

lim′′

RT1
2

LPO

CN

C2N

ADS
RT2

2

Figure 5.1: An overview of some parts of the Weihrauch lattice. The solid frame collects the
degrees belonging to the lower cone of DS, while the dashed frame collects principles that are not
Weihrauch reducible to DS. The only principle shown which is above DS is CNN . We do not know
whether KL is reducible to DS.

Proposition 5.2:
DS ≤W CNN but DS ̸≤W UCNN .

Proof: To show that DS ≤W CNN it is enough to notice that being a descending sequence in a
linear order L is a Π0,L

1 property. In other words, we can obtain a descending sequence through
L by choosing a path through the tree

{σ ∈ N<N : (∀i < |σ| − 1)(σ(i+ 1) <L σ(i))}.

To show that DS ̸≤W UCNN , recall that there is a computable linear order with no hyper-
arithmetic descending sequence (see e.g. [96, Lem. III.2.1]). A reduction DS ≤W UCNN would
therefore contradict Theorem 2.13.



5.1. Finding descending sequences 111

UCNN

CNN

DS ≡W BS ≡W Σ0
1-DS

Σ0
2-DS ≡W ∆0

2-DS ≡W ∆0
2-BS

Π0
1-DS ≡W Π0

1-BS

Σ0
2-BS

∆1
1-DS

Σ1
1-DS

Π1
1-DSΣ1

1-BS

Π1
1-CA

Σ0
1-BS

Figure 5.2: Diagram presenting the relations between the various generalizations of DS.

In particular, this shows that DS is not an arithmetic problem (i.e. DS ̸≤W lim(n), for any n).

Proposition 5.3:
CNN ≡W lim ∗ DS.

Proof: The reduction lim∗DS ≤W CNN follows from the fact that both lim and DS are reducible
to CNN and that CNN is closed under compositional product.

To prove the left-to-right reduction notice that, given a tree T , we can computably build the
linear order KB(T ). It is known that [T ] ̸= ∅ iff KB(T ) is ill-founded (see e.g. [106, Lem. V.1.3]).
Moreover, given a infinite descending sequence (σn)n∈N in KB(T ), the sequence (σn

⌢0ω)n∈N
converges to some x ∈ [T ], and therefore the claim follows.

We can generalize the problem DS to the context of quasi-orders. It is easy to see that the
problem of finding descending sequences in a quasi-order is Weihrauch equivalent to CNN . Indeed,



5.1. Finding descending sequences 112

on the one hand, being a descending sequence in a quasi-order P is a Π0,P
1 property. On the other

hand, every tree, ordered by the prefix relation, is a partial order where the descending sequences
provide arbitrarily long prefixes of a path.

When working with non-well quasi-orders, it is more natural to ask for bad sequences instead.

Definition 5.4: We define the multivalued function BS :⊆ QO ⇒ NN as

BS(P ) := {x ∈ NN : (∀i)(∀j > i)(x(i) ̸⪯P x(j))},

where dom(BS) is the set of quasi-orders that are not well-quasi-orders.

It follows from the definition that every ill-founded linear order is a non-well quasi-order and
that every bad sequence through an ill-founded linear order is indeed a descending sequence.

By expanding a bit on a classical argument we can prove that the two problems are uniformly
equivalent.

Proposition 5.5:
DS ≡W BS.

Proof: The left-to-right reduction is trivial, so we only need to show that BS ≤W DS. Let P
be a non-well quasi-order. We will first compute an extension R of P s.t. every two elements of
P are R-comparable, then we will computably pick an element from each R-equivalence class, so
as to obtain a linear order.

We define R iteratively as follows: at every stage s s.t. s ∈ P , we define the R-relation
between s and t, for every t ∈ P s.t. t < s. If t |P s then we define s ≺R t. Otherwise we define
the R-relation between s and t so as to extend P .

It is easy to see that if (pi)i∈N is an ≺R-descending sequence then it is a P -bad sequence.
Indeed, for every i, j s.t. i < j, if pi ⪯P pj then pi ⪯R pj (as R extends P ), contradicting the
fact that (pi)i∈N is an ≺R-descending sequence. Moreover R is ill-founded: indeed every ≺P -
descending sequence is also an ≺R-descending sequence. On the other hand, every P -antichain
(qi)i∈N has a subsequence (qik)k∈N that is an ≺R-descending sequence (define qik inductively by
letting ik be the smallest integer s.t. qik > qj , for every j < k).

To conclude the proof it is enough to show that we can uniformly compute a linear order L
by choosing an element from each R-equivalence class. We define L as the restriction of R to the
set

{p ∈ R : (∀q < p)(p ̸≡R q)}.

Clearly L is isomorphic to the quotient order induced by R on the set of R-equivalence classes,
hence it is ill-founded. Moreover, every <L-descending sequence is an ≺R-descending sequence,
and therefore DS(L) ⊂ BS(P ).

We will show that DS (and hence BS) is quite weak in terms of uniform computational strength
(a fortiori CNN ̸≤W DS). Let us first underline the following useful proposition.



5.1. Finding descending sequences 113

Proposition 5.6:
DS is a cylinder.

Proof: Let p ∈ NN and L be an ill-founded linear order. Define

M := {(p[n], n) : n ∈ L},
(p[n], n) ≤M (p[m],m) :⇐⇒ n ≤L m.

It is easy to see that M is computably isomorphic to L, and hence it is a valid input for DS. In
particular, letting ((p[ni], ni))i∈N ∈ DS(M), we have that (ni)i∈N is a descending sequence in L
and p =

∪
i∈N p[ni].

In Section 2.1.2 we introduced the bounding problems Γ−Bound, and in particular, Π1
1−Bound.

Recall that we can assume that every instance of Π1
1−Bound is an initial segment of N.

Proposition 5.7:
Π1

1−Bound <W DS.

Proof: Let X be a Π1
1 initial segment of N. By considering the Kleene-Brouwer ordering, we

can think of a name for X as a sequence (Ln)n∈N of linear orders s.t. n ∈ X iff Ln is well-founded.
Define the linear order L :=

∪
n{n} × Ln, ordered lexicographically. Notice that L is ill-

founded as X is not all of N. Moreover, for every <L-descending sequence ((ni, ai))i∈N, we have
that n0 ∈ Π1

1−Bound(X). Indeed, for every n ∈ X and every a ∈ Ln, the pair (n, a) lies in the
well-founded part of L.

The fact that the reduction is strict follows from the fact that every solution to Π1
1−Bound

is computable, whereas there is a computable input for DS with no hyperarithmetic solution.

We now show that 1DS ≡W Π1
1−Bound. Let us first prove the following lemma, which will also

be useful to prove Theorem 5.15.

Lemma 5.8:
Suppose that f is a problem which is Weihrauch reducible to DS via the computable maps Φ,Ψ.
For every f -instance X, let ≤X be the linear order defined by ΦX . We can uniformly compute
a sequence (Fs)s∈N of finite <X-descending sequences s.t. (1) for every s, ΨX⊕Fs outputs some
j ∈ N; (2) for cofinitely many s, Fs extends to an infinite <X-descending sequence.



5.1. Finding descending sequences 114

Proof: Fix an f -instance X and run ΦX for s steps. This produces a finite linear order ≤Xs .
Define

Ds := {F ⊆≤Xs : F is a <Xs -descending sequence and |F | ≥ 1 and
ΨX⊕F outputs some j ∈ N in s steps}.

Note that Ds is finite and t < s implies Dt ⊂ Ds. If Ds ̸= ∅ we define Fs to be the <N-least
element of Ds such that

(∀F ∈ Ds)

(
min
<X

(F ) ≤Xs min
<X

(Fs)

)
.

This ensures that if any F ∈ Ds extends to an infinite <X -descending sequence, then so does
Fs. Observe that (Fs)s is uniformly computable from X. If Ds = ∅ we define Fs := Ft where t
is the first index greater than s s.t. Dt ̸= ∅. (We will show below that such t exists, so we can
computably search for it.)

Notice that for cofinitely many s, Ds ̸= ∅. Indeed, let S be an infinite <X -descending sequence
(there must exist one because <X is a DS-instance). Since ΨX⊕S outputs some f -solution j of
X, there is some finite nonempty initial segment F of S and some t ∈ N such that ΨX⊕F outputs
j in t steps. Hence for all sufficiently large s, we have that F ∈ Ds. This shows that the sequence
(Fs)s∈N is well-defined. Moreover, as already observed, for every t ≥ s, Ft extends to an infinite
<X -descending sequence.

The fact that, for every s, ΨX⊕Fs outputs some j ∈ N follows from the definition of Ds.

In particular, if f has codomain N the above lemma implies that, for cofinitely many s, ΨX⊕Fs

outputs some f -solution for X.

Theorem 5.9:
1DS ≡W Π1

1−Bound.

Proof: If f ≤W Π1
1−Bound, then f ≤W DS by Proposition 5.7. Since Π1

1−Bound is first order,
f ≤W

1DS.
To prove the converse reduction, suppose that f ≤W DS as witnessed by the maps Φ and

Ψ. Given an f -instance X, let (Fs)s∈N be as in Lemma 5.8. Let ≤X denote the linear order
represented by ΦX . Define the following Π1,X

1 set:

A := {s ∈ N : Fs /∈ Ext},

where Ext denotes the set of finite sequences that extend to an infinite <X -descending sequence.
Notice that A is finite as, for cofinitely many s, Fs is extendible. In particular A is a valid

instance of Π1
1−Bound and, for every b ∈ Π1

1−Bound(A), Fb is extendible to an infinite <X -
descending sequence. By construction, ΨX⊕Fb commits to some j ∈ N. The fact that Fb is
extendible guarantees that j is a valid f -solution of X.



5.1. Finding descending sequences 115

Corollary 5.10:
DS <W CNN .

Proof: If CNN ≤W DS then, by Proposition 4.37, Σ1
1-CN ≤W Π1

1−Bound. However, this would
imply that Σ̂1

1-CN ≤W
̂Π1

1−Bound, contradicting [2, Cor. 3.23].

Definition 5.11: Let f :⊆ X ⇒ N be a multi-valued function. We say that f is upwards-closed
if whenever n ∈ f(x), then m ∈ f(x) for all m > n.

It is straightforward from the definition that Π1
1−Bound is upwards-closed.

Lemma 5.12:
If f is upwards-closed then DetN(f) ≤W CN.

Proof: Let g be a single-valued function with codomain N and suppose that g ≤W f as witnessed
by Φ,Ψ. Given a name p for a g-instance x, we use CN to guess some n, t such that Ψ(p, n)
converges to some k in at most t steps, and such that for no m > n it ever happens that Ψ(p,m)
converges to anything but k. Since f is upwards-closed and g is single-valued, such n, t must
exist. Moreover, the associated k is equal to g(x).

Proposition 5.13:
DetN(Π

1
1−Bound) ≡W DetN(CN) ≡W CN, and therefore DetN(DS) ≡W CN.

Proof: Let us first notice that CN ≡W UCN ([11, Prop. 6.2]) and therefore DetN(CN) ≡W CN.
The fact that DetN(Π

1
1−Bound) ≤W CN follows from Lemma 5.12. To prove the converse reduc-

tion it is enough to show that UCN ≤W Π1
1−Bound.

Let (ni)i∈N be an enumeration of the complement of {x} ⊂ N. Define

m(s) := min{j ∈ N : (∀i < s)(ni ̸= j)},
A := {s ∈ N : (∃t > s)(m(t) ̸= m(s))}.

Clearly lims→∞m(s) = x, which implies that A is finite. Since m is computable (relative to
(ni)i∈N), A is a valid input for Π1

1−Bound. Moreover, for every b ∈ Π1
1−Bound(A) we have

m(b) = x.



5.1. Finding descending sequences 116

This implies that CN ≤W DetN(DS). To conclude the proof we notice that, for every single-
valued g with codomain N we have

g ≤W DS ⇒ g ≤W Π1
1−Bound ⇒ g ≤W DetN(Π

1
1−Bound) ≡W CN.

Notice that Π1
1−Bound ̸≤W CN: indeed ĈN ≡W lim, while UCNN <W

̂Π1
1−Bound (see Propo-

sition 5.52). This implies that DetN(Π
1
1−Bound) <W Π1

1−Bound. In this regard, we observe the
following:

Proposition 5.14:
The Weihrauch degree of CN is the highest Weihrauch degree containing both of the following:

1. a representative which is single-valued and has codomain N;

2. a representative which is upwards-closed.

Proof: To prove that CN satisfies point 1, consider UCN, which is Weihrauch equivalent to
CN ([11, Prop. 6.2]). To prove that CN satisfies point 2, consider the problem Σ0

1−Bound that
produces a bound for a finite Σ0

1 subset of N. Clearly Σ0
1−Bound is upwards closed. The reduction

Σ0
1−Bound ≤W CN follows from the fact that, for every A ∈ dom(Σ0

1−Bound), the set

{n ∈ N : (∀m ≥ n)(m /∈ A)}

is a Π0,A
1 subset of Σ0

1−Bound(A). To prove the converse reduction, let p be a name for some
B ∈ dom(CN). Define m(s) to be the least number not enumerated in p by stage s. Clearly
lims→∞m(s) = minB. In particular this implies that there are only finitely many stages s s.t.
m(s) ̸= minB. Using Σ0

1−Bound we can obtain a stage b s.t. m(b) = minB, hence solving CN.
Finally the maximality of CN follows from Lemma 5.12: indeed suppose f : X → N

is Weihrauch equivalent to some g which is upwards-closed. By Lemma 5.12, we have
DetN(g) ≤W CN. By definition of Det(·), we have f ≤W DetN(g), hence f ≤W CN.

Let us now characterize the deterministic part of DS.

Theorem 5.15:
Det(DS) ≡W lim.

Proof: Let us first prove that lim ≤W DS. Let J be the Turing jump operator, i.e. J(p)(e) = 1
iff φpe(e) halts, and recall that J ≡sW lim. By relativizing the construction in [76, Lem. 4.2] we
have that, for every p, we can p-computably build a linear order L of type ω + ω∗ s.t. every
descending sequence through L computes J(p). This shows that lim ≡W J ≤W DS.



5.1. Finding descending sequences 117

To prove that Det(DS) ≤W lim, suppose that f :⊆ X → NN is single-valued and f ≤W DS as
witnessed by the maps Φ, Ψ. For every n, define fn by fn(x) := f(x)(n). The maps Φ and Ψ
witness that fn ≤W DS as well (modulo a trivial coding). Given an f -instance x, consider the
sequences (Fs,n)s∈N obtained by applying Lemma 5.8 to each fn. Define the sequence (ps)s∈N
in NN as ps(n) := Ψx⊕Fs,n(0). Notice that, by Lemma 5.8, for every n, Ψx⊕Fs,n outputs some
number, therefore ps(n) is well-defined and is uniformly computable from x. Moreover, since fn
is single-valued and, for cofinitely many s, Fs,n is extendible, the sequence (Ψx⊕Fs,n(0))s∈N is
eventually constant and equal to fn(x). In particular this shows that, letting p := lims→∞ ps,
for each n we have p(n) = fn(x), i.e. p = f(x).

This result shows that, despite the fact that DS can have very complicated solutions, it is rather
weak from the uniform point of view. In fact, its lower Weihrauch cone misses many arithmetic
problems. In particular we have:

Corollary 5.16:
DS |W LPO′.

Proof: Since LPO is single-valued, so is LPO′. Since LPO′ ̸≤W lim (see [16, Cor. 12.3 and Thm.
12.7]), it follows from Theorem 5.15 that LPO′ ̸≤W DS. On the other hand, DS ̸≤W LPO′, as
LPO′ always has computable solutions.

Notice that Theorem 5.15 implies also that CNN ̸≤W C2N ∗ DS. Indeed, on the one hand,
by Theorem 4.64 we have Det(CNN) ≡W UCNN , while, on the other hand, by Theorem 4.59
if f is single-valued and f ≤W C2N ∗ DS then f ≤W DS (as Det(C2N) ≡W id) and hence
Det(C2N ∗ DS) ≡W Det(DS) ≡W lim.

Using Corollary 5.16 we can prove that DS is not closed under (parallel) product:

Theorem 5.17:
LPO′ ≤W DS× lim and therefore DS is not closed under product.

Proof: Let (pn)n∈N be a sequence in NN converging to an instance p of LPO. For each s define

g(s) =

{
i+ 1 if i ≤ s ∧ ps(i) ̸= 0 ∧ (∀j < i)(ps(j) = 0),

0 otherwise.

Let us define a linear order L inductively: at stage s = 0 we put 0 into L. At stage s+ 1 we do
the following:

1. if g(s) = g(s+ 1) we put 2(s+ 1) immediately below 2s;

2. if g(s) ̸= g(s+ 1) and g(s+ 1) = 0 we put 2(s+ 1) at the bottom;



5.1. Finding descending sequences 118

3. if g(s) ̸= g(s+1) and g(s+1) > 0 we put 2(s+1) at the top and we put 2s+1 immediately
above 0.

This construction produces a linear order on a computable subset of N. It is clear that g and
L are uniformly computable in (pn)n∈N. Notice that if LPO(p) = 1 then there is an s s.t. for
every t ≥ s, g(t) = g(s) (this follows by definition of limit in the Baire space). In particular, L
has order type n + ω∗. On the other hand, if LPO(p) = 0 we distinguish three cases: if g(s) is
eventually constantly 0 then L has order type ω∗. If there are infinitely many s s.t. g(s) > 0
then g is unbounded (because for each i, lims ps(i) = p(i) = 0 so g eventually stays above i). In
particular, if there are infinitely many s and infinitely many t s.t. g(s) = 0 and g(t) > 0 then L
has order type ω∗ + ζ, where ζ := ω∗ + ω is the order type of the integers. If instead g(s) > 0
for all sufficiently large s, then L has order type n+ ζ. In all cases, L is ill-founded.

We consider the input (L, (pn)n∈N) for DS× lim. Given an <L-descending sequence (qn)n∈N,
we compute a solution for LPO′((pn)n∈N) = LPO(p) as follows: if q0 is odd or g(q0/2) = 0 then
we return 0, otherwise we return p(i) where i is s.t. g(q0/2) = i+ 1.

Notice that if LPO(p) = 1 then the ω∗ part of ≤L is the final segment of the even numbers
that starts with the first index 2s s.t. for every t ≥ s, g(t) = i + 1 and p(i) = 1. In particular
every <L-descending sequence starts with some even q0 s.t. g(q0/2) > 0. On the other hand, if
LPO(p) = 0 then, by definition of LPO, we have that p = 0N. In this case, the above procedure
must return 0 so it produces the correct solution. This proves that LPO′ ≤W DS× lim.

The fact that DS is not closed under product follows from the fact that lim ≤W DS (Theo-
rem 5.15) and Corollary 5.16.

5.1.2 Combinatorial principles on linear orders
We introduce the following notation to phrase many combinatorial principles from reverse mathe-
matics as multi-valued functions.

Definition 5.18: Let FindCXY :⊆ LO ⇒ LO be the partial multi-valued function defined as

FindCXY (L) := {M ∈ LO : M ⊂ L and ordtype(M) ∈ Y },

with domain being the set of L ∈ LO s.t. ordtype(L) ∈ X and there is some M ⊂ L s.t.
ordtype(M) ∈ Y .

Similarly we define FindSX :⊆ LO ⇒ NN to be the partial multi-valued function that takes
as input a countable linear order L s.t. ordtype(L) ∈ X and produces a string (b, x0, x1, . . .) s.t.
b ∈ {0, 1} and, for all i, if b = 0 then xi <L xi+1 while if b = 1 then xi+1 <L xi.

If X or Y is not specified, we assume that it contains every countable order type.

There is an extensive literature that studies the “ascending/descending sequence principle”
(ADS) and the “chain/antichain principle” (CAC) (see e.g. [54, 57]). These principles and, several
of their variations, have been studied from the point of view of Weihrauch reducibility in [3].

Notice that, in particular, the problem ADS (given a linear order, produce an infinite as-
cending sequence or infinite descending sequence) corresponds to FindS. Similarly the problem
General-SADS (given a stable — i.e. of order type ω+n, n+ω∗ or ω+ω∗ — linear order, produce
an infinite ascending sequence or an infinite descending sequence), corresponds to FindSX , where
X = {ω + n, n+ ω∗, ω + ω∗}.



5.1. Finding descending sequences 119

Proposition 5.19:
LPO′ ≤W FindS{ω,n+ω

∗}.

Proof: Let (pi)i∈N be a sequence in NN converging to an instance p of LPO. For every s ∈ N
we define (as we did in the proof of Theorem 5.17)

g(s) =

{
i+ 1 if i ≤ s ∧ ps(i) ̸= 0 ∧ (∀j < i)(ps(j) = 0),

0 otherwise.

Let us define a linear order ≤L on N inductively: for each stage s we define a linear order on
{0, . . . , s}. At stage s = 0 there are no decisions to make. At stage s+ 1 we do the following:

1. if 0 = g(s) = g(s+ 1) we put s+ 1 immediately above s;

2. if 0 < g(s) = g(s+ 1) we put s+ 1 immediately below s;

3. if g(s) ̸= g(s+ 1) we put s+ 1 at the top.

It is clear that g and ≤L are uniformly computable in (pn)n∈N. Notice that if LPO(p) = 1 then
there is an s s.t. for every t ≥ s, g(t) = i + 1, where i is the smallest integer s.t. p(i) = 1 (this
follows by definition of limit in the Baire space). In particular, ≤L has order type n + ω∗. On
the other hand, if LPO(p) = 0 then g is either eventually constantly 0 or unbounded. In both
cases the linear order ≤L has order type ω.

In other words (N,≤L) has order type ω iff LPO′((pi)i∈N) = 0. Since the output of
FindS{ω,n+ω

∗}((N,≤L)) comes with an indication of the order type of the solution, this defines a
reduction from LPO′ to FindS{ω,n+ω

∗}.

Corollary 5.20:
FindS{ω,n+ω

∗} |W DS, and hence General-SADS |W DS.

Proof: The fact that FindS{ω,n+ω
∗} ̸≤W DS follows from Proposition 5.19 and the fact that

LPO′ ̸≤W DS (Corollary 5.16). Moreover, since FindS{ω,n+ω
∗} is a restriction of General-SADS,

we have General-SADS ̸≤W DS.
To show that the converse reduction cannot hold it is enough to notice that General-SADS is

an arithmetic problem, while DS ̸≤W UCNN (Proposition 5.2).

In particular, this implies that ADS, as well as the stable chain/antichain principle SCAC, and
the weakly stable chain/antichain principle WSCAC, are Weihrauch incomparable with DS (as they
are all arithmetic problems, and General-SADS is reducible to all of them, see [3]).



5.1. Finding descending sequences 120

Proposition 5.21:
FindC{ω,n+ω∗} ≤W DS.

Proof: Given a linear order (L,≤L) we can computably build the linear order Q := L + L∗.
Formally we define (Q,≤Q) as Q := {0} × L ∪ {1} × L and

(a, p) ≤Q (b, q) :⇐⇒ a < b ∨ (a = b = 0 ∧ p ≤L q) ∨ (a = b = 1 ∧ q ≤L p).

Notice that Q is always ill-founded, hence it is a valid input for DS. Given (qi)i∈N ∈ DS(Q), we
computably build the sequence (xi)i∈N defined by xi := π1qi where πi := (a0, a1) 7→ ai.

We distinguish 3 cases:

1. if π0qi = 0 for every i then (xi)i∈N is an ω∗-sequence in L;

2. if π0qi = 1 for every i then (xi)i∈N is an ω-sequence in L;

3. if there is a k s.t. for all i < k we have π0qi = 1 and for all j ≥ k we have π0qj = 0 then,
by point 1, (xj)j≥k is an ω∗-sequence in L, hence (xi)i∈N is of type n+ ω∗, with n ≤ k.

In any case the sequence (xi)i∈N is a valid solution for FindC{ω,n+ω∗}.

5.1.3 Relations with Ramsey theorems
We now explore the relations between DS and Ramsey’s theorem for n-tuples and k colors. The
basic definitions and notations have been introduced in Section 2.1.2.

Notice that cRTnk ≡W RTnk iff n = 1. Indeed the output of cRTnk is always computable, while
for n > 1 there are computable k-colorings with no computable homogeneous solutions. Similarly
cRTnN ≡W RTnN iff n = 1. Moreover the equivalence cannot be lifted to a strong Weihrauch
equivalence. Indeed RT1

k and cRT1
k are incomparable from the point of view of strong Weihrauch

reducibility. The uniform computational content of Ramsey’s theorems is well-studied (see e.g. [21,
28, 30, 87]).

In comparing RTnk with DS, we immediately notice that RT2
2 ̸≤W DS. This follows from the

fact that ADS ≤W RT2
2 (see e.g. [54]), while ADS ̸≤W DS (see the remarks after Corollary 5.20).

Hence RTnk ̸≤W DS for all n, k ≥ 2.

Proposition 5.22:
RT1

N <W Π1
1−Bound, and hence RT1

N <W DS.

Proof: Given a coloring c : N → k, consider the Σ0,c
2 set

X := {n ∈ N : (∀∞j)(c(n) ̸= c(j))}.



5.1. Finding descending sequences 121

It is easy to see that X is finite, as ran(c) ⊂ k and if there is no c-homogeneous set with color i
then there are finitely many j ∈ N s.t. c(j) = i. In particular, given a bound b for X there is a
homogeneous solution with color c(b).

The separation follows from the fact that Π1
1−Bound ̸≤W UCNN (as ̂Π1

1−Bound ̸≤W UCNN ,
see [2, Fact 3.25]), while RT1

N <W UCNN (in particular RT1
N <W C′

N, see [21, Prop. 7.2 and Cor.
7.6]). The fact that RT1

N <W DS follows from Π1
1−Bound <W DS (Proposition 5.7).

We now show that RT1
N is the strongest problem among those that are reducible to DS and

whose instances always have finitely many solutions.

Definition 5.23: Let f :⊆ X ⇒ N. We say that f is pointwise finite if, for each x ∈ dom(f),
|f(x)| is finite.

It is easy to see that cRT1
k and cRT1

N are pointwise finite, as for each k-coloring c we have
|cRT1

k(c)| = |cRT1
N(c)| ≤ k.

Lemma 5.24:
Let g be upwards-closed and let f be pointwise finite. If f ≤W g then f ≤W RT1

N.

Proof: Suppose that f ≤W g as witnessed by Φ,Ψ. Let p be the name for the f -instance x we
are given.

We define a coloring c as follows: we dove-tail all computations Ψ(p, n) for n ∈ N. Whenever
some computation converges to some j ∈ N, we define c(i) := j where i is the first element on
which c is not defined yet. Since g is upwards-closed, we know that for all but finitely many n,
Ψ(p, n) has to converge to some jn ∈ f(x). This implies that ran(c) contains only finitely many
distinct elements. Moreover, any element repeating infinitely often is a correct solution to f(x),
therefore we can find a y ∈ f(x) by applying RT1

N to c and returning the color of the solution.

Theorem 5.25:
If f is pointwise finite then f ≤W DS iff f ≤W RT1

N.

Proof: The right-to-left implication always holds as RT1
N <W DS (Proposition 5.22). On the

other hand, if f is pointwise finite and f ≤W DS then, by Theorem 5.9 we have f ≤W Π1
1−Bound.

Since Π1
1−Bound is upwards-closed, by Lemma 5.24 we have f ≤W RT1

N.

By Lemma 5.24 we also have the following:



5.1. Finding descending sequences 122

Proposition 5.26:
The Weihrauch degree of RT1

N is the highest Weihrauch degree such that:

1. it contains a representative which is pointwise finite;

2. it is Weihrauch reducible to some problem which is upwards-closed.

Proof: Point 1 holds because cRT1
N is pointwise finite and cRT1

N ≡W RT1
N. Point 2 holds

because RT1
N <W Π1

1−Bound (Proposition 5.22) and Π1
1−Bound is upwards-closed. Finally, the

maximality follows from Lemma 5.24.

Lemma 5.27:
If f is upwards-closed and f ≤W RT1

N then f ≤W CN.

Proof: Recall that RT1
N ≡W cRT1

N and let Φ,Ψ be two computable maps witnessing f ≤W cRT1
N.

Let p be a name for some x ∈ dom(f) and let c be the coloring represented by Φ(p). We define
the following Π0,p

1 set

A := {⟨n, c0, . . . , ck, s⟩ : (∀i)(∃j ≤ k)(c(i) = cj) and
(∀j ≤ k)(∃i < s)(c(i) = cj) and
(∀j ≤ k)(Ψ(p, cj) ↓→ Ψ(p, cj) ≤ n)}.

Notice that, if ⟨n, c0, . . . , ck, s⟩ ∈ A then, by the first two conditions, there is a j ≤ k s.t. cj is
a valid solution for cRT1

N(c). In particular Ψ(p, cj) ↓ and is a correct solution for f(x) (as Φ
and Ψ witness that f ≤W cRT1

N). Since f is upwards-closed, every number greater than Ψ(p, cj)
is a valid solution. In particular, the third condition implies that n ≥ Ψ(p, cj) and therefore
n ∈ f(x).

Notice that the previous lemma provides an alternative proof for Π1
1−Bound ̸≤W RT1

N, as
Π1

1−Bound ̸≤W CN.
If we consider only bounded pointwise finite functions, we can improve Theorem 5.25 by re-

placing RT1
N with RT1

k.

Lemma 5.28:
If f has codomain k, then f ≤W RT1

N iff f ≤W RT1
k.



5.1. Finding descending sequences 123

Proof: The right-to-left implication is trivial, so let us prove the left-to-right one. Since
RT1

N ≤W Π1
1−Bound and Π1

1−Bound is upwards-closed, it suffices to show that if g is upwards-
closed and f ≤W g, then f ≤W RT1

k. The proof closely follows the one of Lemma 5.24. Suppose
that f ≤W g as witnessed by Φ,Ψ. Let p be the name for the f -instance x we are given. We
define a k-coloring c as follows: we dove-tail all computations Ψ(p, n) for n ∈ N. Whenever some
computation converges to some j < k, we define c(i) := j where i is the first element on which c
is not defined yet. Since g is upwards-closed, we know that for all but finitely many n, Ψ(p, n)
has to converge to some jn < k which lies in f(x). Moreover, any element repeating infinitely
often is a correct solution to f(x), therefore we can find a y ∈ f(x) by applying RT1

k to c and
returning the color of the solution.

Theorem 5.29:
If f has codomain k, then f ≤W DS iff f ≤W RT1

k.

Proof: The right-to-left implication always holds as RT1
k ≤W RT1

N trivially and RT1
N <W DS

(Proposition 5.22). The left-to-right implication follows from Theorem 5.25 and Lemma 5.28.

To conclude the section we notice how we can improve the results if we restrict our attention
to single-valued functions. Recall that limk :⊆ kN → k is the problem of computing the limit in
the k-element space.

Lemma 5.30:
If f has codomain k and is single-valued, then f ≤W limk iff f ≤W RT1

k.

Proof: The left-to-right implication is trivial as limk ≤W RT1
k. To prove the converse direction

recall that RT1
k ≡W cRT1

k and let the reduction f ≤W cRT1
k be witnessed by the maps Φ,Ψ. Let

p be a name for some x ∈ dom(f) and let c be the coloring represented by Φ(p). Notice that,
since f is single-valued, for every solution j ∈ cRT1

k(c) we have Ψ(p, j) = f(x). Furthermore,
since the range of c is finite, there are only finitely many i such that c(i) is not a solution. If we
then define

ni :=

{
Ψ(p, c(i)) if Ψ(p, c(i)) converges in i steps and Ψ(p, c(i)) < k,

0 otherwise,

we have that the sequence (ni)i∈N ∈ kN converges to f(x). Therefore we can use limk to obtain
f(x).



5.2. Presentation of orders 124

Theorem 5.31:
If f has codomain k and is single-valued, then f ≤W limk iff f ≤W DS.

Proof: The left-to-right implication follows from the fact that lim <W DS (Theorem 5.15),
while the other direction follows from Theorem 5.29 and Lemma 5.30.

5.2 Presentation of orders

In this section, we study how the presentation of a linear/quasi order can influence the uniform
computational strength of the problems DS and BS.

Definition 5.32: For every Γ ∈ {Σ0
k,Π

0
k,∆

0
k,Σ

1
1,Π

1
1,∆

1
1}, the represented spaces Γ(LO) and

Γ(QO) are obtained by restricting the codomain of δΓ(N) to the set of subsets of N which are
characteristic functions of linear orders and quasi-orders respectively.

We define the problem Γ-DS :⊆ Γ(LO) ⇒ NN as Γ-DS(L) := DS(L). Similarly we define
Γ-BS :⊆ Γ(QO) ⇒ NN as Γ-BS(P ) := BS(P ).

Despite the fact that DS ≡W BS (Proposition 5.5), it is not the case that Γ-DS ≡W Γ-BS in
general. In particular, we will show that Σ0

k-BS ̸≤W Σ0
k-DS (Theorem 5.45) and Σ1

1-BS ̸≤W Σ1
1-DS

(Corollary 5.55).
Furthermore, we strengthen Corollary 5.10 by showing that Σ1

1-DS <W CNN (Theorem 5.53).
In other words, even if we are allowed to feed DS a code for a Σ1

1 linear ordering, we still cannot
compute CNN . On the other hand, we already showed that if we are allowed to perform a relatively
small amount of post-processing (namely lim) on the output of DS, then we can compute CNN

(Proposition 5.3). In particular, the use of lim absorbs any difference in uniform strength between
DS and Σ1

1-DS and collapses the whole hierarchy (up to Σ1
1-DS) to CNN .

Many of our separations are derived by analyzing the first-order part of the problems in ques-
tion, or more generally by characterizing the problems satisfying certain properties (such as single-
valuedness or having restricted codomain) which lie below the problems in question. On the con-
trary, we prove Theorem 5.53 using very different techniques due to Anglès d’Auriac and Kihara
[2].

Before beginning our analysis, we record some preliminary observations. Note that DS = ∆0
1-DS

and BS = ∆0
1-BS. It is straightforward to see that, for every Γ, Γ-DS ≤W Γ-BS. Moreover, for

every Γ,Γ′ s.t. Γ(X) ⊂ Γ′(X) we have Γ-DS ≤W Γ′-DS and Γ-BS ≤W Γ′-BS.
Notice also that the set of bad sequences through a ∆1

1-quasi-order is ∆1
1, hence it is straight-

forward to see that ∆1
1-BS ≤W Σ1

1-CNN ≡W CNN . This shows also that Γ-BS ≤W CNN for every
arithmetic Γ.

Proposition 5.33:
For every Γ ∈ {Σ0

k,Π
0
k,∆

0
k,Σ

1
1,Π

1
1,∆

1
1} the problems Γ-DS and Γ-BS are cylinders.



5.2. Presentation of orders 125

Proof: The proof is a straightforward generalization of the proof of Proposition 5.6.

Theorem 5.34:
For every k ∈ N and every Γ ∈ {Σ,Π,∆}

Γ0
k+1-DS ≡W Γ0

1-DS ∗ lim[k] ≡W Γ0
1-DS(k),

Γ0
k+1-BS ≡W Γ0

1-BS ∗ lim[k] ≡W Γ0
1-BS(k).

Proof: Fix k and Γ as above. The reduction Γ0
k+1-DS ≤W Γ0

1-DS ∗ lim[k] follows from the fact
that

lim[k] ≡W Σ0
k-CA ≡W Π0

k-CA ≡W ∆0
k+1-CA,

hence we can use lim[k] to compute a Γ0
1-name for the input linear order, and then apply Γ0

1-DS
to get a descending sequence.

Let us now prove the converse reduction. Since both lim[k] and Γ0
1-DS are cylinders, by the

cylindrical decomposition there is an e s.t.

Γ0
1-DS ∗ lim[k] ≡W Γ0

1-DS ◦ Φe ◦ lim[k].

Given any p ∈ dom(Γ0
1-DS ◦ Φe ◦ lim[k]), the string q := Φe(lim

[k](p)) is a Γ0
1-name for a linear

order Lp. Since q is ∆0,p
k+1, the condition a ≤Lp

b is Γ0,p
k+1 for every a, b. This shows that, given an

input p we can uniformly compute a Γ0
k+1-name for the linear order Lp, and hence use Γ0

k+1-DS
to compute an <Lp

-descending sequence.
The equivalence Γ0

1-DS ∗ lim[k] ≡W Γ0
1-DS(k) follows from the fact that Γ0

1-DS is a cylinder.
The same reasoning works, mutatis mutandis, to show that

Γ0
k+1-BS ≡W Γ0

1-BS ∗ lim[k] ≡W Γ0
1-BS(k).

Using this theorem, the relativized version of Proposition 5.5 can be proved explicitly as follows:

Corollary 5.35:
For every k ≥ 1, ∆0

k-DS ≡W ∆0
k-BS.

Proof: Using Proposition 5.5 and Theorem 5.34 we immediately have

∆0
k+1-BS ≡W BS ∗ lim[k] ≡W DS ∗ lim[k] ≡W ∆0

k+1-DS,

as DS = ∆0
1-DS and BS = ∆0

1-BS.



5.2. Presentation of orders 126

This implies also that, for every k, Σ0
k-BS ≤W ∆0

k+1-DS and Π0
k-BS ≤W ∆0

k+1-DS.

5.2.1 Γ0
k-DS and Γ0

k-BS
We will now show that the hierarchy of Γ-DS problems does not collapse at any finite level. First
we study the hierarchy of ∆0

k-DS problems by characterizing their first-order parts (Theorem 5.36).
Then we prove the analogues of Theorem 5.29 and Theorem 5.31 for ∆0

k-DS (Proposition 5.39).
In the following, we will use the countable coproduct of multi-valued functions, defined in

Section 2.1.1.

Theorem 5.36:
For every k ≥ 1,

1∆0
k-DS ≡W

(⊔
s∈N

∆0
k-Cs

)
∗Π1

1−Bound.

We split the proof into two lemmas.

Lemma 5.37:
For every k ≥ 1, if f :⊆ X ⇒ N and f ≤W ∆0

k-DS then

f ≤W

(⊔
s∈N

∆0
k-Cs

)
∗Π1

1−Bound.

Proof: Fix Turing functionals Φ and Ψ which witness that f ≤W ∆0
k-DS. Given an f -instance

with name x, Φx is a ∆0,x
k -code for the linear order ≤x. Consider the Σ0,x

k set

D := {F ∈ N : F codes a non-empty finite <x -descending sequence and
Ψx⊕F outputs some j ∈ N}.

We can uniformly express D as the increasing union over s ∈ N of finite sets Ds ⊆ {0, . . . , s},
which are uniformly Π0,x

k−1.
We now define the set

A := {s ∈ N : (∀F ∈ Ds)(F /∈ Extx)},

where Extx is the set of finite sequences that extend to an infinite <x-descending sequence. It is
easy to see that A is Π1,x

1 , as being extendible in a ∆0
k-linear order is a Σ1

1 property.
We show that A is finite. Since ≤x is a ∆0

k-DS-instance, we can fix an infinite <x-descending
sequence S. By definition of Weihrauch reducibility, Ψx⊕S outputs some f -solution j ∈ N. By
the continuity of Ψ, there is some finite non-empty initial segment F of S such that Ψx⊕F outputs
j. Hence for all sufficiently large s, we have F ∈ Ds.



5.2. Presentation of orders 127

This shows that we can apply Π1
1−Bound to A to obtain some b ∈ N which bounds A. Note

that Db must be nonempty. We now define the following non-empty subset of Db:

B :=

{
F ∈ Db : (∀G ∈ Db)

(
min
<x

(G) ≤x min
<x

(F )

)}
.

Notice that all the quantifications are bounded. In particular, B is a (non-empty) ∆0,x
k subset

of Db because Db is Π0,x
k−1 and ≤x is ∆0,x

k . Notice also that the definition of B ensures that
each of its elements is extendible (as we know that there is some extendible element in Db). In
particular, this shows that, for every F ∈ B, it is enough to run Ψx⊕F to compute an f -solution
for the original instance. We can find such F ∈ B by applying

(⊔
s∆

0
k-Cs

)
(b,B).

Notice that (
⊔
s∆

0
1-Cs) is computable, hence in case k = 1 we obtain Proposition 5.5.

Lemma 5.38:
For every k ≥ 1, (⊔

s∈N

∆0
k-Cs

)
∗Π1

1−Bound ≤W ∆0
k-DS.

Proof: Using the cylindrical decomposition we can write(⊔
s∈N

∆0
k-Cs

)
∗Π1

1−Bound ≡W

((⊔
s∈N

∆0
k-Cs

)
× id

)
◦ Φe ◦ (Π1

1−Bound× id)

for some computable map Φe. Let Φ1,Φ2 be computable maps s.t. Φe(p) = ⟨Φ1(p),Φ2(p)⟩. Then
we have ((⊔

s∈N

∆0
k-Cs

)
× id

)
◦ Φe ◦ (Π1

1−Bound× id)(⟨p1, p2⟩) =

⟨

(⊔
s∈N

∆0
k-Cs

)
Φ1(Π

1
1−Bound(p1), p2),Φ2(Π

1
1−Bound(p1), p2)⟩.

Given an instance ⟨p1, p2⟩ of the above composition, we can think of p1 as coding an input A
to Π1

1−Bound via a tree T s.t. for each i, i ∈ A iff the subtree Ti := {σ ∈ T : σ(0) = i} of
T is well-founded. For any b ∈ Π1

1−Bound(p1), Φ1(b, p2) must be a name for an instance of⊔
s∈N ∆0

k-Cs. Then π1Φ1(b, p2) is a number s and π2Φ1(b, p2) is a ∆0
k-name for a non-empty

subset As of {0, . . . , s−1}, where πi(⟨p1, p2⟩) = pi denotes the projection on the i-th component.
Regardless of whether b ∈ Π1

1−Bound(p1), we will interpret π1Φ1(b, p2) and π2Φ1(b, p2) as above.
We define a ∆

0,⟨p1,p2⟩
k linear order as follows. First define

L := {(σ, n) : σ ∈ p1 and
π1Φ1(σ(0), p2) outputs a number in less than |σ| steps and
n lies in the set named by π2Φ1(σ(0), p2)}.



5.2. Presentation of orders 128

We order the elements of L by

(σ, n) ≤L (τ,m) :⇐⇒ σ <KB τ ∨ (σ = τ ∧ n ≤ m).

It is easy to see that (L,≤L) is ∆0,⟨p1,p2⟩
k . Notice that it is a linear order, as the pairs are ordered

lexicographically where the first components are ordered according to the Kleene-Brouwer order
on N<N and the second components are ordered according to the order on N.

Let (qi)i∈N be an <L-descending sequence, with qi = (σi, ni). Notice that for each i there is a
j > i s.t. σj <KB σi. Indeed, if there is an i s.t. for all j > i we have σj = σi then, by definition
of ≤L, the sequence (nj)j>i would be a descending sequence in the natural numbers, which is
impossible.

This implies that there is a subsequence (qik)k∈N s.t. (σik)k∈N is a <KB-descending sequence.
In particular, this implies that Tσ0(0) is ill-founded, i.e. σ0(0) ∈ Π1

1−Bound(p1). Moreover, by
definition of L, this implies that n0 lies in the set named by π2Φ1(σ0(0), p2).

In other words, given an <L-descending sequence (qi)i∈N we have that

(π1q0)(0) ∈ Π1
1−Bound(p1) ,

π2q0 ∈

(⊔
s∈N

∆0
k-Cs

)
Φ1(Π

1
1−Bound(p1), p2) .

From this we can compute Φ2(π1q0, p2) as well. This establishes the desired reduction.

This completes the proof of Theorem 5.36.
With a small modification of the argument in the proof of Lemma 5.37 we can prove the

following:

Proposition 5.39:
Fix k ≥ 1. For every f :⊆ X ⇒ N,

f ≤W ∆0
k-DS ⇐⇒ f ≤W Π1

1−Bound× lim[k−1].

If, in particular, f has codomain N for some N ≥ 1 then

f ≤W ∆0
k-DS ⇐⇒ f ≤W RT1

N ∗ lim[k−1].

If, additionally, f is single-valued, then

f ≤W ∆0
k-DS ⇐⇒ f ≤W limN ∗ lim[k−1].

Proof: The right-to-left implication follows from Proposition 5.7 and Theorem 5.34:

Π1
1−Bound× lim[k−1] ≤W Π1

1−Bound ∗ lim[k−1]

≤W DS ∗ lim[k−1] ≡W ∆0
k-DS.



5.2. Presentation of orders 129

To prove the left-to-right implication, fix a pair of Turing functionals Φ and Ψ witnessing the
reduction f ≤W ∆0

k-DS. Fix an f -instance with name x and let ≤x be the ∆0,x
k linear order

defined by Φx.
Define D, Ds and A as in the proof of Lemma 5.37. In that proof, we applied Π1

1−Bound
to A to obtain b ∈ N. Then we restricted our attention to B ⊆ Db. Here we will still apply
Π1

1−Bound to A, but we will concurrently consider a subset Bs of each Ds. For each s, define

Bs :=

{
F ∈ Ds : (∀G ∈ Ds)

(
min
<x

(G) ≤x min
<x

(F )

)}
,

Fs := minBs,

where Fs is intended to be the empty sequence if Bs (and hence Ds) is empty.
Notice that Bs ⊂ {0, . . . , s − 1} is ∆0

k (as each Ds is Π0
k−1) and therefore Fs is ∆0

k. Since
lim[k−1] ≡W ∆0

k-CA, it can determine which Bs is nonempty, and compute Fs if Bs is nonempty.
Therefore the sequence (Fs)s∈N can be computed using lim[k−1]. For every b ∈ Π1

1−Bound(A)
we have that Fb is extendible to an infinite <x-descending sequence and that Ψx⊕Fs converges
to some f -solution j (see also the proof of Lemma 5.37).

Assume now that f has codomain N for some N ≥ 1. We can modify the above argument as
follows: after computing the sequence (Fs)s∈N, we consider the RT1

N -instance c defined as

c(s) :=

{
0 if Fs = (),

Ψx⊕Fs(0) otherwise.

Since Fs is nonempty and extendible for cofinitely many s, if c(s) = i for infinitely many s (i.e.,
c has an RT1

N -solution of color i), then there is an extendible Fs s.t. Ψx⊕Fs(0) = i, hence i is an
f -solution.

If, additionally, f is single-valued, then there is only one possible i s.t. c has a homogeneous
solution with color i. This shows that the sequence (c(s))s∈N has a limit, and therefore it suffices
to use limN to get the solution.

The fact that RT1
N ∗ lim[k−1] and limN ∗ lim[k−1] are reducible to ∆0

k-DS follows from the fact
that the compositional product is a degree theoretic operation, as RT1

N ≤W DS (Theorem 5.29),
limN ≤W DS (Theorem 5.15) and ∆0

k-DS ≡W DS ∗ lim[k−1] (Theorem 5.34).

Notice that Π1
1−Bound× lim[k−1] is not a first-order problem, so the first statement in Propo-

sition 5.39 is not an alternative characterization of 1∆0
k-DS. It can be rephrased as

1∆0
k-DS ≡W

1(Π1
1−Bound× lim[k−1]).

This concludes our discussion of the first-order problems that are Weihrauch reducible to
∆0
k-DS. As for the deterministic part of ∆0

k-DS:

Corollary 5.40:
For every k ≥ 1, Det(∆0

k-DS) ≡W lim[k].



5.2. Presentation of orders 130

Proof: This follows from Det(DS) ≡W lim (Theorem 5.15) and the fact that, for cylinders, the
jump commutes with the deterministic part (Corollary 4.61).

Theorem 5.41:
For every k ≥ 1,

∆0
k-DS <W ∆0

k+1-DS.

In particular this shows that the Γ-DS-hierarchy does not collapse at any finite level.

Proof: This follows directly from Proposition 5.39 or, alternatively, from Corollary 5.40. Indeed
it suffices to notice that, for every k ≥ 1, LPO(k) ≤W lim[k+1] but LPO(k) ̸≤W lim[k], as LPO(k) is
the characteristic function of a Σ0

k+1-complete set while lim[k] is Σ0
k+1-measurable.

Theorem 5.42:
For every k ≥ 1, ∆0

k+1-DS ≡W Π0
k-DS.

Proof: The right-to-left reduction is trivial. To prove the left-to-right one it suffices to show
that ∆0

1-DS′ ≡W Π0
1-DS and the proof will follow from Theorem 5.34 as

∆0
k+1-DS ≡W ∆0

1-DS′ ∗ lim[k−1] ≡W Π0
1-DS ∗ lim[k−1] ≡W Π0

k-DS.

Let p = (pn)n∈N be a sequence in NN converging to the characteristic function of an ill-founded
linear order L. In the following it is convenient to consider also the sequence q = (qn)n∈N, where
qn(i) := pn(⟨i, i⟩). Clearly q converges to the characteristic function of dom(L) and is uniformly
computable from p.

For sake of readability, define the formula

φ((xn)n∈N, σ) := (∀i < |σ|)(xσ(i)(i) ̸= xσ(i)+1(i) ∧ (∀j > σ(i))(xj(i) = xj+1(i))).

Intuitively φ says that, for each i < |σ|, σ(i) codes the positions in which the sequence (xn)n∈N
changes for the last time in the i-th row. Let us also write xσ := |σ| − 1. We define

M := {(σ, τ) ∈ N<N × N<N : φ(q, σ) ∧
qσ(xσ)+1(xσ) = 1 ∧
φ(p, τ) ∧ |τ | = ⟨xσ, xσ⟩+ 1}

Notice that the first two conditions imply that xσ ∈ L. Intuitively xσ is the ≤N-largest
element that is witnessed by σ to enter in L. The last line says that τ is exactly as long as
needed to witness all the relations between the elements of L that are ≤N xσ.



5.2. Presentation of orders 131

We order the set M as follows:

(σ0, τ0) ≤M (σ1, τ1) :⇐⇒ xσ0
≤L xσ1

Notice that M is a Π0,p
1 linear order as M is Π0,p

1 and the order ≤M is p-computable: indeed,
given two pairs (σ0, τ0), (σ1, τ1) ∈ M , we can use the longer string between τ0 and τ1 to p-
compute whether xσ0

≤L xσ1
. Notice also that, for each l, there is exactly one string σ of length

l witnessing φ(q, σ) (by minimality). The third line in the definition of M implies that if σ
satisfies the first two conditions then there is a unique τ s.t. (σ, τ) ∈ M . The linearity of M
follows by the linearity of L.

To conclude the proof it is enough to notice that if ((σi, τi))i∈N is an <M -descending sequence
then (xσi

)i∈N is an <L-descending sequence.

The following is essentially a classical result (see e.g. [29, Thm. 2.4]). The proof is simple
enough that we can briefly sketch it.

Theorem 5.43:
For every k ≥ 1, Σ0

k-DS ≡W ∆0
k-DS.

Proof: Given a Σ0
k linear order L, we can uniformly consider a sequence ((Ls,≤s))s∈N of ∆0

k

linear orders approximating L. We then define

M := {(q, s) : q ∈ Ls and (∀t < s)(q /∈ Lt)},
(p, s) ≤M (q, t) :⇐⇒ p ≤L q.

Notice that (p, s) ≤M (q, t) can be written also as p = q ∨ (∀i)(q ̸≤i p), hence M is ∆0,L
k .

Moreover, since for every q ∈ L there is a unique s s.t. (q, s) ∈ M , it is easy to see that M is
computably isomorphic to L. In particular, given an <M -descending sequence we can obtain an
<L-descending sequence by projection.

Corollary 5.44:
For every k ≥ 1, we have

Π0
k-DS ≡W Π0

k-BS ≡W ∆0
k+1-BS ≡W ∆0

k+1-DS ≡W Σ0
k+1-DS.

Proof: It is straightforward to see that Π0
k-DS ≤W Π0

k-BS ≤W ∆0
k+1-BS. By Corollary 5.35,

∆0
k+1-BS ≡W ∆0

k+1-DS. It follows from Theorem 5.42 that the first four problems are equivalent.
Finally, ∆0

k+1-DS ≡W Σ0
k+1-DS by Theorem 5.43.



5.2. Presentation of orders 132

Theorem 5.45:
For every k ≥ 1, LPO(k) ≤W Σ0

k-BS and therefore Σ0
k-BS ̸≤W Σ0

k-DS.

Proof: The second statement follows from the first because LPO(k) ̸≤W ∆0
k-DS (proof of The-

orem 5.41) and ∆0
k-DS ≡W Σ0

k-DS (Theorem 5.43).
To prove the first statement, it is enough to show that LPO′ ≤W Σ0

1-BS, and the claim will
follow by Theorem 5.34 as

LPO(k) ≤W LPO′ ∗ lim[k−1] ≤W Σ0
1-BS ∗ lim[k−1] ≡W Σ0

k-BS.

Let (ps)s∈N be a sequence in NN converging to an instance p of LPO. For every s ∈ N we
define (as we did in the proofs of Theorem 5.17 and Proposition 5.19)

g(s) =

{
i+ 1 if i ≤ s ∧ ps(i) ̸= 0 ∧ (∀j < i)(ps(j) = 0),

0 otherwise.

Let us define a quasi-order Q inductively: at stage s = 0 we add ⟨g(0), 0⟩. At stage s+ 1 we
do the following:

1. if g(s) = g(s+ 1) we put ⟨g(s), s+ 1⟩ immediately below ⟨g(s), s⟩;

2. if g(s) ̸= g(s+ 1) we put ⟨g(s+ 1), s+ 1⟩ at the top and we put ⟨−1, s+ 1⟩ at the bottom.
Moreover we collapse to a single equivalence class all the elements ⟨g, t⟩ with t ≤ s and
g ̸= −1.

This construction produces a quasi-order (Q,⪯Q) which is computable in (ps)s∈N.
Notice that if there is an s s.t. for every t ≥ s, g(t) = g(s) (in particular, this is the case if

LPO(p) = 1) then the equivalence classes of ⪯Q form a linear order of type n+ω∗ and every ⪯Q-
bad sequence is a descending sequence of the form (⟨g(s), sn⟩)n∈N for some strictly increasing
sequence (sn)n∈N. On the other hand, if the sequence (g(s))s∈N does not stabilize then the
equivalence classes of ⪯Q are linearly ordered as ω∗, where all the elements ⟨g, s⟩ with g ̸= −1
are equivalent and lie in the top equivalence class. This shows that the construction produces a
non-well quasi-order.

For every ⪯Q-bad sequence (⟨gn, sn⟩)n∈N produced by Σ0
1-BS(Q), we compute the solution

for LPO′((ps)s∈N) = LPO(p) by returning 0 if g1 ≤ 0 and 1 otherwise. We consider two cases. If
the sequence (g(s))s∈N stabilizes, then the sequence (gn)n∈N is constant. Furthermore, its value
is 0 if LPO(p) = 0, otherwise its value is positive. On the other hand, if the sequence (g(s))s∈N
does not stabilize, then LPO(p) = 0. Furthermore, for every n > 0, we have gn = −1 ≤ 0. (The
first element ⟨g0, s0⟩ may lie in the top equivalence class, in which case g0 may be positive. Hence
we check g1 instead of g0).

5.2.2 Γ1
1-DS and Γ1

1-BS
We now turn our attention to the analytic classes. Notice first of all that being a descending
sequence through a Σ1

1 linear order is a Σ1
1-property, hence Σ1

1-DS ≤W Σ1
1-CNN ≡W CNN . We will



5.2. Presentation of orders 133

show that Σ1
1-DS is the strongest DS-principle that is still reducible to CNN (Theorem 5.56).

Proposition 5.46:
∆1

1-DS ≡W DS ∗ UCNN and ∆1
1-BS ≡W BS ∗ UCNN .

Proof: We will only prove the first statement. The proof of the second statement is similar.
To prove the left-to-right reduction, given a ∆1

1 name for L we use ∆1
1-CA (which is known

to be equivalent to UCNN , see [64, Thm. 3.11]) to compute a ∆0
1 name for L. We can then apply

DS to find a descending sequence through L.
To prove the converse reduction, using the cylindrical decomposition we can write

DS ∗ UCNN ≡W DS ◦ Φe ◦ UCNN

for some computable function Φe. In particular, given T ⊂ N<N with a unique path x, Φe(x) is
the characteristic function of a linear order L. Notice that x is ∆1,T

1 -computable. Indeed,

x(n) = k ⇐⇒ (∃σ ∈ T )(σ ∈ Ext ∧ σ(n) = k)

⇐⇒ (∀τ ∈ T )(τ ∈ Ext → τ(n) = k),

where Ext is the set of finite strings that extend to a path through T (σ ∈ Ext is a Σ1,T
1 property).

We can therefore obtain a ∆1,T
1 name for L as

a ≤L b ⇐⇒ Φe(x)(⟨a, b⟩) = 1,

and hence we use ∆1
1-DS to find a descending sequence through L.

In particular, this implies that ∆1
1 is the first level at which we can compute UCNN . Indeed, for

every k, we showed in the proof of Theorem 5.41 that LPO(k) ̸≤W ∆0
k-DS, while lim[k] ≤W UCNN

(see [11, Sec. 6]).
By adapting the proof of Corollary 5.35, we can relativize Proposition 5.5 and obtain the

following:

Corollary 5.47:
∆1

1-DS ≡W ∆1
1-BS.

Similarly, the proofs of Theorem 5.36 and of Proposition 5.39 lead to the following equivalences:

Theorem 5.48:

1∆1
1-DS ≡W

1(Π1
1−Bound× UCNN) ≡W

(⊔
s∈N

∆1
1-Cs

)
∗Π1

1−Bound.



5.2. Presentation of orders 134

The deterministic part of ∆1
1-DS and Σ1

1-DS can be easily characterized using Proposition 5.46,
as the following proposition shows.

Proposition 5.49:
UCNN ≡W Det(∆1

1-DS) ≡W Det(Σ1
1-DS).

Proof: The reductions UCNN ≤W Det(∆1
1-DS) ≤W Det(Σ1

1-DS) are straightforward from
UCNN ≤W ∆1

1-DS (Proposition 5.46), ∆1
1-DS ≤W Σ1

1-DS (trivial) and the fact that UCNN is
single-valued. To prove that Det(Σ1

1-DS) ≤W UCNN it is enough to notice that Σ1
1-DS ≤W CNN ,

and therefore Det(Σ1
1-DS) ≤W Det(CNN) ≡W UCNN (Theorem 4.64).

In particular, the deterministic part does not help us separate ∆1
1-DS and Σ1

1-DS. Instead, we
separate them by considering their first-order parts. We characterized 1∆1

1-DS in Theorem 5.48.
Notice that our proof (see the proof of Proposition 5.39) cannot be extended to establish the same
result for Σ1

1-DS, because the definition of the corresponding (Fs)s∈N would not be Σ1
1.

Proposition 5.50:
Σ̂1

1-CN ≤W Σ1
1-DS.

Proof: Let (Ai)i∈N be a sequence of non-empty Σ1
1 subsets of N. We define

L := {(n, σ) ∈ N× N<N : |σ| = n ∧ (∀i < n)(σ(i) ∈ Ai)},
(n, σ) ≤L (m, τ) ⇐⇒ n > m ∨ (n = m ∧ σ ≤lex τ).

It is easy to see that L is a Σ1
1 linear order (the linearity follows from the linearity of ≤ and of

≤lex).
Let ((ni, σi))i∈N be an <L-descending sequence. Notice that, since each Ai ⊂ N, for each n

the set {σ ∈ N<N : (n, σ) ∈ L} is ≤lex-well-founded. Therefore there must be a subsequence
((nik , σik))k∈N s.t. the sequence (nik)k∈N is strictly increasing.

This implies that, for each n, there is some m s.t. |σm| ≥ n. In particular, by definition of L,
(∀i < n)(σm(i) ∈ Ai) and the claim follows.

Proposition 5.50 implies that Σ1
1-CN ≤W

1Σ1
1-DS. This, together with 1CNN ≡W Σ1

1-CN (Propo-
sition 4.37) and the observation that Σ1

1-DS ≤W CNN , immediately yields the following:

Corollary 5.51:
1CNN ≡W

1Σ1
1-DS ≡W Σ1

1-CN.

As a consequence, CNN and Σ1
1-DS cannot be separated by means of their first-order part. But

∆1
1-DS and Σ1

1-DS can, albeit somewhat indirectly:



5.2. Presentation of orders 135

Proposition 5.52:
∆1

1-DS <W Σ1
1-DS.

Proof: Notice first of all that UCNN ≤W
̂Π1

1−Bound. Indeed, given a tree T ⊂ N<N with a
unique path, we can consider the following sequence of Π1,T

1 sets:

An := {k ∈ N : (∀σ ∈ T )((∃x ∈ [T ])(σ ⊏ x) → σ(n) ≤ k)}.

Clearly each An is bounded by x(n), where x is the unique path through T . Given
f ∈ ̂Π1

1−Bound((An)n∈N), consider the space X := {σ ∈ N<N : (∀i < |σ|)(σ(i) ≤ f(i))}
and define Tf := T ∩X. Notice that [Tf ] = [T ]. In particular, since [X] is f -computably com-
pact, we can uniformly (in f) compute the unique path through [Tf ] (see [17, Thm. 7.23 and
Cor. 7.26]). Notice that the reduction is actually strict, as UCNN ≤W Σ̂1

1-C2 ([64, Lem. 4.4 and
lem. 4.6]), while Π1

1−Bound ̸≤W Σ̂1
1-C2 ([2, Cor. 3.23]).

If Σ̂1
1-CN ≤W ∆1

1-DS then, by Theorem 5.48, Σ1
1-CN ≤W UCNN ×Π1

1−Bound and therefore

Σ̂1
1-CN ≤W

̂(UCNN ×Π1
1−Bound) ≡W

̂Π1
1−Bound,

contradicting Σ̂1
1-CN ̸≤W

̂Π1
1−Bound ([2, Cor. 3.23]).

To separate Σ1
1-DS from CNN we generalize a technique based on inseparable Π1

1 sets, first used
in [2] to separate Σ̂1

1-CN from CNN . Our result is, in fact, slightly stronger (by Proposition 5.50).
Recall that, for every A,B ⊂ NN, we say that A is Muchnik reducible to B, and write A ≤w B

if, for every b ∈ B there is a Turing functional Φe s.t. Φe(b) ∈ A.

Theorem 5.53:
ATR2 |W Σ1

1-DS, and therefore Σ1
1-DS <W CNN .

Proof: The fact that Σ1
1-DS ̸≤W ATR2 follows from the fact that CNN ≡W lim ∗ Σ1

1-DS while
lim ∗ ATR2 <W CNN ([44, Cor. 8.5]).

Let us now prove that ATR2 ̸≤W Σ1
1-DS. Assume towards a contradiction that there is a

reduction witnessed by the maps Φ,Ψ. Let (Le)e∈N be an enumeration of the computable linear
orders. Define the sets

Se := Σ1
1-DS(Φ(Le)),

DSe := {(xn)n ∈ NN : (xn)n is an <Le -descending sequence},
JHe := {(yn)n ∈ NN : (yn)n is a jump hierarchy on Le}.



5.2. Presentation of orders 136

Notice that, for each e, Se is Σ1
1 (being a descending sequence through a Σ1

1 linear order is a
Σ1

1 condition) while DSe and JHe are arithmetic.
Define now the sets

B := {e ∈ N : DSe ̸≤w Se},
C := {e ∈ N : JHe ̸≤w Se},

where ≤w represents Muchnik reducibility. In particular, if X is (hyper)arithmetic and Y is Σ1
1

then X ̸≤w Y is a Σ1
1 condition, and therefore B,C ∈ Σ1

1(N).
We now claim that B ∩C = ∅. Indeed, assume by contradiction that this is not the case and

let e ∈ B ∩ C. By definition of B and C this means that there are two descending sequences
(qn)n∈N and (pn)n∈N in Φ(Le) s.t. (qn)n∈N does not compute any <Le -descending sequence and
(pn)n∈N does not compute any jump hierarchy on Le.

In particular, if we run the backward functional Ψ on (qn)n∈N and (pn)n∈N then, by continuity,
there is an n s.t. Ψ((qi)i<n) commits to producing a jump hierarchy on Le and Ψ((pi)i<n) commits
to producing an <Le

-descending sequence. W.l.o.g. assume that qn ≤Φ(Le) pn (in the opposite
case we just swap the roles of (qn)n∈N and (pn)n∈N) and consider the sequence

r := (p0, . . . , pn, qn+1, qn+2, . . .).

Notice that Ψ(r) must produce an <Le
-descending sequence, contradicting the fact that (qn)n∈N

does not compute any <Le
-descending sequence.

Let wfLO be the set of indexes for the computable well-orderings and let hds be the set of
indexes for computable linear orderings with a hyperarithmetic descending sequence. Notice that
wfLO ⊂ B, because for each e in wfLO, DSe = ∅ ̸≤w A for every non-empty set A. Likewise,
hds ⊂ C, as any ill-founded linear order which has a hyperarithmetic descending sequence cannot
support a jump hierarchy (see1 [38, Thm. 4]).

Since B,C are disjoint and Σ1
1, by Σ1

1-separation there must be a ∆1
1 set separating them.

Such a set would separate wfLO and hds as well. This contradicts the fact that every Σ1
1 set

which separates wfLO and hds must be Σ1
1-complete [42].

Finally we turn our attention to Σ1
1-BS and Π1

1-DS. We show below that these problems are
much stronger in uniform computational strength than the problems considered so far. Indeed all
the Γ-DS problems, where Γ = Σ1

1 or below, are s.t.

Γ-DS <W CNN ≡W lim ∗ Γ-DS.

In other words, Γ-DS is arithmetically Weihrauch equivalent to CNN , which is prominent among
the “ATR0 analogues”.

On the other hand, a natural analog of Π1
1−CA0 in the Weihrauch lattice is Π1

1-CA (see
Section 2.1.2).

We can notice that, using [75, Thm. 6.5], Π1
1-CA is equivalent to the problem of finding the

leftmost path through an ill-founded tree. Using this fact we show that Σ1
1-BS and Π1

1-DS are in
the realm of Π1

1−CA0.
1Friedman’s result assumes that the linear order is adequate. We do not need this assumption because we choose

to define jump hierarchies in a way such that each column (whether limit or successor) uniformly computes earlier
columns, such as in [44, Def. 3.1]. This allows us to run Friedman’s proof without assuming adequacy.



5.2. Presentation of orders 137

Theorem 5.54:
Π1

1-CA ≤W Σ1
1-BS.

Proof: Let T ⊂ N<N be an ill-founded tree. For each σ ∈ T , let Tσ := {τ ∈ T : τ ⊑ σ∨σ ⊑ τ}.
We define a quasi-order on the extendible strings in T :

Q := {σ ∈ T : [Tσ] ̸= ∅},
σ ⪯Q τ :⇐⇒ (∃ρ ∈ Q)(ρ <lex σ) ∨ τ ⊑ σ.

It is easy to see that (Q,⪯Q) is Σ1,T
1 . Moreover, all the σ which are not prefixes of the leftmost

path collapse in a bottom equivalence class. This shows that the equivalence classes of Q are
linearly ordered as 1 + ω∗. To conclude the proof it is enough to notice that any <Q-descending
sequence gives longer and longer prefixes of the leftmost path, hence it computes Π1

1-CA.

Corollary 5.55:
Σ1

1-DS <W Σ1
1-BS.

Proof: We have Σ1
1-DS ≤W CNN <W Π1

1-CA ≤W Σ1
1-BS.

Theorem 5.56:
Π1

1-CA ≤W Π1
1-DS.

Proof: Let T ⊂ N<N be an ill-founded tree. For each σ ∈ T , let Tσ := {τ ∈ T : τ ⊑ σ∨σ ⊑ τ}.
We define a linear order

L := {σ ∈ T : (∀τ ≤lex σ)([Tτ ] = ∅ ∨ τ ⊑ σ)},
≤L:=≤KB(T ) .

Clearly (L,≤L) is a Π1,T
1 linear order. Notice that if σ ∈ L and [Tσ] ̸= ∅ then σ must be a prefix

of the leftmost path. Moreover if ρ is strictly lexicographically above the leftmost path then
ρ /∈ L. In other words, L is the subset of T that is lexicographically below the leftmost path.

Moreover, every string that is not a prefix of the leftmost path lies in the well-founded part of
L (by definition of KB). In particular every <L-descending sequence computes arbitrarily long
prefixes of the leftmost path.



5.3. Conclusions 138

5.3 Conclusions

In this chapter we explored the uniform computational content of the problem DS, and showed
how it lies “on the side” w.r.t. the part of the Weihrauch lattice explored so far. We now draw the
attention to some of the questions that did not receive an answer.

Among the lower bounds for DS, the most interesting question is probably:

Question 5.57: KL ≤W DS?

We know that, if such a reduction exists, it must be strict (as KL is an arithmetic problem).
On the other hand, none of the characterizations we used in Section 5.1 to describe the lower cone
of DS can be used to prove a separation.

In Section 4.3.4 we introduced the problem wList2N,≤ω. Similarly to DS, this problem does not
fit well within the effective Baire hierarchy: Det(wList2N,≤ω) ≡W lim, but wList

[3]

2N,≤ω ≡W UCNN

([64, Prop. 6.14 and Cor. 6.16]), hence in particular wList2N,≤ω is not arithmetic.

Question 5.58: wList2N,≤ω ≤W DS?

Our results imply that DS ̸≤W wList2N,≤ω (as DS ∗ DS ≡W CNN), and hence a reduction would
be strict.

In the context of Γ-DS, there are a few problems that resisted full characterization. In partic-
ular:

Question 5.59: ∆0
2-DS ≤W Σ0

1-BS?

We expect that an answer to this question will yield a solution for every k (by relativization).
We notice that, in the statements involving Γ-BS we proved slightly more than what claimed:

indeed, in all the reductions, the quasi-order built is a linear quasi-order, i.e. a quasi-order whose
equivalence classes are linearly ordered. Notice that every bad sequence through a non-well linear
quasi-order is actually a descending sequence. If we introduce the problem Γ-DSLQO by restricting
Γ-BS to linear quasi-orders, our results imply that

∆0
k-DS <W Σ0

k+1-DSLQO ≤W Σ0
k+1-BS.

A natural question is therefore

Question 5.60: Σ0
k+1-BS ≤W Σ0

k+1-DSLQO?

A negative answer would imply that the possibility of having infinite antichains provides extra
uniform strength.

A very important structure that is left out of the picture is the one of partial orders. In the
same spirit of the paper we can consider the problems Γ-DSPO and Γ-BSPO. The former is readily
seen to be equivalent to CNN (see also the comment before Definition 5.4). Our results implicitly
characterize Γ-BSPO for Γ ∈ {∆0

k,Π
0
k} (by transitivity, as Γ-DS ≤W Γ-BSPO ≤W Γ-BS).



5.3. Conclusions 139

Question 5.61: What is the relation between Σ0
1-BSPO and the problems DS ≡W Σ0

1-DS,
Σ0

1-DSLQO and Σ0
1-BS?

Answering these questions would yield very interesting insights on how the possibility to have
equivalent non-equal elements can enhance the uniform computational strength.



6
On the descriptive complexity of Salem sets

In this chapter, I will present some results that lie at the intersection of (effective) descriptive set
theory, geometric measure theory, and the theory of fractal dimensions. Most of the results have
been collected in [77]. The results of Section 6.2 are joint work with Ted Slaman and Jan Reimann.

The notion of Salem set arises naturally in the context of geometric measure theory and the
theory of fractal dimension. A set A ⊂ Rd is called Salem iff dimH(A) = dimF(A), where dimH
and dimF denote the Hausdorff and the Fourier dimension respectively.

Hausdorff dimension is a fundamental notion in geometric measure theory and can be found
in almost every textbook in the field. It describes the “size” of a set using the diameter of open
sets covering it. When working with Borel subsets of Rd, Frostman’s lemma characterizes the
Hausdorff dimension of a set via the existence of finite Radon measures supported on the set with
certain regularity properties (see Section 6.1 for details).

This characterization establishes a close connection with the Fourier transform of a measure.
Indeed, it can be shown that the decay of the Fourier transform of a (probability) measure sup-
ported on the set provides a lower bound for the Hausdorff dimension. This leads to the notion
of Fourier dimension and hence to the one of Salem set. It is known that, for Borel subsets of Rd,
the Fourier dimension never exceeds the Hausdorff dimension.

This work is part of a long-term effort, involving many researchers, aimed at exploring the
recursion-theoretic properties of the Fourier dimension. In recent work, J. and N. Lutz [72] proved
a point-to-set principle linking the (classical) Hausdorff dimension of a set with the (relative)
effective Hausdorff dimension of its points. If we restrict our attention to singletons, we can
characterize the effective Hausdorff dimension of {ξ} by means of the Kolmogorov complexity of ξ
[73], which establishes a surprising connection between two (apparently) very distant notions.

While no point-to-set principles can hold for the Fourier dimension (in such a generality),
analyzing the complexity of the Fourier dimension in simpler cases can shed light on the general
behavior of the Fourier dimension itself (up to now, still not deeply understood).

The first non-trivial examples of Salem sets were based on random constructions ([97, 59]).
Later Kahane [58] modified the original construction by Salem to produce an explicit Salem set of
dimension α, for every α ∈ [0, 1]. An important example of an explicit Salem set comes from the
theory of Diophantine approximation of real numbers: Jarník [56] and Besicovitch [6] proved that,
for α ≥ 0, the set E(α) of α-well approximable numbers is a fractal with Hausdorff dimension
2/(2 + α). Kaufmann [61] improved the result by showing that there is a probability measure

140



6.1. Background 141

supported on a subset of E(α) witnessing the fact that dimF(E(α)) ≥ 2/(2 + α), which implies
that E(α) is Salem (the reader is referred to [7] or [114] for detailed proofs of Kaufmann’s theorem).

A classical example of a non-Salem set is Cantor middle-third set, which has Fourier dimension
0 and Hausdorff dimension log(2)/ log(3). Similarly, every symmetric Cantor set with dissection
ratio 1/n, with n > 1, is not Salem, as it has null Fourier dimension and Hausdorff dimension
log(2)/ log(n) (see [79, Sec. 4.10] and [80, Thm. 8.1]). It can be proved that, for every 0 ≤ x ≤ y ≤ 1
there is a compact subset of [0, 1] with Fourier dimension x and Hausdorff dimension y ([69, Thm.
1.4]).

There are not many explicit (i.e. non-random) examples of subsets of Rd which are known to
be Salem. As a corollary of a result of Gatesoupe [40], we know that if A ⊂ R is a Salem set
of dimension α and has at least two points then the set {x ∈ Rd : |x| ∈ A} is Salem and has
dimension d−1+α. Recently, using a higher-dimensional analogue of E(α), some explicit examples
of Salem subsets of R2 ([48]) and Rd ([36]) of arbitrary dimension have been constructed.

In this paper we study the complexity, from the point of view of descriptive set theory, of the
family {A ∈ F(X) : A ∈ S (X)}, where F(X) is the hyperspace of closed subsets of X, S (X) is
the family of Salem subsets of X, and X is either [0, 1], [0, 1]d or Rd. In other words, we study the
complexity of the property “being a Salem set”, when we restrict our attention to closed sets. For
the sake of readability we write Sc(X) := S (X)∩F(X) for the set of closed Salem subsets of X.
We show that it is Borel and classify it in the Borel hierarchy.

We summarize our results for X = [0, 1] in the following table.

p < 1 {A ∈ K([0, 1]) : dimH(A) > p} Σ0
2-complete

p > 0 {A ∈ K([0, 1]) : dimH(A) ≥ p} Π0
3-complete

p < 1 {A ∈ K([0, 1]) : dimF(A) > p} Σ0
2-complete

p > 0 {A ∈ K([0, 1]) : dimF(A) ≥ p} Π0
3-complete

{A ∈ K([0, 1]) : A ∈ S ([0, 1])} Π0
3-complete

The complexities remain the same if we replace [0, 1] with any interval, with [0, 1]d or Rd. In
particular, the fact that the family of closed Salem subsets of [0, 1] is Π0

3-complete answers a
question asked by Slaman during the IMS Graduate Summer School in Logic, held in Singapore
in 2018.

Our results can be used to obtain the classifications of the functions computing the dimensions
of closed sets, both in the Baire hierarchy and in the effective hierarchy defined via Weihrauch
reducibility, in particular answering a question raised by Fouché ([18]) and Pauly.

6.1 Background

For a general introduction to geometric measure theory the reader is referred to [35]. We briefly
introduce the notions and notations that are used in this chapter.

Let X be a separable metric space and let A ⊂ X. Let also diam(A) denote the diameter of A.
We say that a family {Ei}i∈I is a δ-cover of A if A ⊂

∪
i∈I Ei and diam(Ei) ≤ δ for each i ∈ I.



6.1. Background 142

For every s ≥ 0, δ ∈ (0,+∞] we define

Hs
δ(A) := inf

{∑
i∈I

diam(Ei)
s : {Ei}i∈I is a δ-cover of A

}
,

Hs(A) := lim
δ→0+

Hs
δ(A) = sup

δ>0
Hs
δ(A).

The function Hs is called s-dimensional Hausdorff measure. The Hausdorff dimension of A is
defined as

dimH(A) := sup{s ∈ [0,+∞) : Hs(A) > 0}.

As a consequence of Frostman’s lemma (see [79, Thm. 8.8]), for every Borel subset A of Rd (with the
Euclidean norm), the Hausdorff dimension of A coincides with its capacitary dimension dimc(A),
defined as

sup{s ∈ [0, d] : (∃µ ∈ P(A))(∃c > 0)(∀x ∈ Rd)(∀r > 0) (µ(B (x, r)) ≤ crs)},

where P(A) is the set of Borel probability measures with support included in A and B (x, r) denotes
the ball with center x and radius r. We notice that the Hausdorff dimension is countably stable
(i.e. for every family {Ai}i∈N we have dimH(

∪
iAi) = supi dimH(Ai), see [79, p. 59]) and, for every

α-Hölder continuous map f : Rn → Rm we have dimH(f(A)) ≤ α−1 dimH(A) (see [35, Prop. 3.3]).
In particular every bi-Lipschitz map preserves the Hausdorff dimension.

For every probability measure µ on Rd, we can define the Fourier transform of µ as the function
µ̂ : Rd → C defined as

µ̂(ξ) :=

∫
Rd

e−i ξ·x dµ(x)

where ξ · x denotes the scalar product. We define the Fourier dimension of A ⊂ Rd as

dimF(A) := sup{s ∈ [0, d] : (∃µ ∈ P(A))(∃c > 0)(∀x ∈ Rd) (|µ̂(x)| ≤ c|x|−s/2)}.

If we define dimF(µ) := sup{s ∈ [0, d] : (∃c > 0)(∀x ∈ Rd) (|µ̂(x)| ≤ c|x|−s/2)} then we have
dimF(A) = sup{dimF(µ) : µ ∈ P(A)}. For background notions on the Fourier transform the
reader is referred to [110]. For its applications to geometric measure theory see [80].

The Fourier dimension is not as stable as the Hausdorff dimension. Some stability properties
of the Fourier dimension have been investigated in [32]. We underline, however, that the definition
of Fourier dimension given in [32] differs from the definition we use in this work (which agrees with
the one that can be found in the literature [35, 79, 80, 114]). The “classical” definition of Fourier
dimension agrees with the compact Fourier dimension dimFC of [32, Sec. 1.3] (this can be showed,
e.g., using [32, Lem. 1]). The three notions agree if we restrict our attention to the dimension
of closed sets. In general, requiring that the measure µ witnessing that dimF(A) > s gives full
measure to A is strictly weaker1 than requiring that µ is supported on A.

The fact that dimF = dimFC implies that the Fourier dimension is inner regular for compact
sets, i.e.

dimF(A) = sup{dimF(K) : K ⊂ A and K is compact}.

On the other hand, the Fourier dimension is not finitely stable in general: the Bernstein set
B ⊂ R (see [62, Example 8.24]) is s.t. every closed subset of B or R \B is countable, and therefore

1In [32, Ex. 7], the authors show that there is a set X s.t. X is a countable union of compact sets and
dimFC(X) = dimF(X) = 0. However, admitting measures giving full measure to the set would give X full di-
mension.



6.1. Background 143

dimF(B) = dimF(R \ B) = 0. On the other hand dimF(B ∪ R \ B) = dimF(R) = 1 (see also [32,
Sec. 1.3]).

We can recover countable stability if we restrict our attention to closed sets:

Theorem 6.1 ([32, Prop. 5]):
If {Ak}k is a finite or countable family of closed subsets of Rd then

dimF

(∪
Ak

)
= sup

k
dimF(Ak).

It is also known that the Fourier dimension does not behave well under Hölder continuous
maps: there is a Hölder continuous transformation that maps the Cantor middle-third set to the
interval [0, 1], although they have Fourier dimension respectively 0 and 1 ([33, Sec. 8]). However,
the following fact, which we will use repeatedly in the paper, can be proved using the properties
of the Fourier transform (see also [33, Prop. 6]):

Theorem 6.2:
The Fourier dimension is invariant under affine invertible transformations.

As a consequence of Frostman’s lemma, for every Borel subset A of Rd, dimF(A) ≤ dimH(A)
(see [79, Chap. 12]). If dimF(A) = dimH(A) then A is called Salem set. We denote the collection
of Salem subsets of X ⊂ Rd with S (X).

For a topological space X, we denote by F(X) and K(X) respectively the hyperspaces of closed
and compact subsets of X.

There is no canonical choice for the topology on F(X), and several alternatives have been
explored in the literature [5, 67]. Let U be the collection of sets of the form

{F ∈ F(X) : F ∩ C = ∅},

where C ranges over all closed subsets of X. The topology having U as a prebase is called upper
topology or upper Vietoris topology ([67, Def. 1.3.1]). In the same spirit, we can define L as the
family of sets of the form

{F ∈ F(X) : F ∩ U ̸= ∅},

where U ranges over the open subsets of X. The topology having L as a prebase is called lower
topology or lower Vietoris topology ([67, Def. 1.3.2]). The Vietoris topology is the topology having
as a prebase the family L ∪ U .

The Vietoris topology is not always the preferred choice. As an alternative, we can consider
the collection UK of sets of the form

{F ∈ F(X) : F ∩K = ∅},

where K ranges over all compact subsets of X. The family UK is a prebase for a topology on
F(X) called upper Fell topology. We can define the Fell topology on F(X) as the topology having
as a prebase the set UK ∪L . For this reason, the lower Vietoris topology is often called lower Fell
topology. In the following, the Fell topology will be our default choice. For the sake of readability,



6.1. Background 144

we will write FU (X) (resp. FL(X), FUV (X), V(X)) for the hyperspace of closed subsets of X
endowed with the upper Fell topology (resp. lower Fell topology, upper Vietoris topology, Vietoris
topology). Unless otherwise mentioned, F(X) will be endowed with the Fell topology.

Unlike the hyperspace F(X), there is a canonical choice for the topology for the hyperspace
K(X) of compact subsets of X. In fact, K(X) is usually endowed with the topology induced from
the Vietoris topology on F(X).

If X is a bounded metric space with distance d, we can define the Hausdorff metric dH on
K(X) as follows:

dH(K,L) :=


0 if K = L = ∅
diam(X) if exactly one between K and L is ∅
max{δ(K,L), δ(L,K)} otherwise

where δ(K,L) := maxx∈K d(x, L). It is known that the Hausdorff metric dH is compatible with
the Vietoris topology on K(X) ([62, Ex. 4.21]) and that if X is Polish then so is K(X) ([62, Thm.
4.22]).

The choice of the Vietoris topology is, of course, not the only possible: any topology on F(X)
induces a topology on K(X). For the sake of readability, we will write KF (X) (resp. KU (X),
KL(X)) for the hyperspace of compact subsets of X, endowed with the Fell (resp. upper Fell,
lower Fell) topology.

One of the main reasons why the Vietoris topology is not the canonical choice for F(X) is
that it is not paracompact, and hence metrizable2, if X is not compact ([63, Thm. 2]). On the
other hand, if X Polish and locally compact then the Fell topology on F(X) gives rise to a Polish
compact space and its Borel space is exactly the Effros-Borel space. The Fell and the Vietoris
topologies coincide if X is compact ([62, Ex. 12.7]).

An important topological space is the space of Borel probability measures. If X is a separable
metrizable space, we consider the space P(X) of Borel probability measures on X, endowed with
the topology generated by the maps µ 7→

∫
f dµ, with f ∈ Cb(X) (i.e. f : X → R is continuous and

bounded, see [62, Sec. 17.E, p. 109]). A basis for the topology on P(X) is the family of sets of the
form

Uµ,ε,f0,...,fn :=

{
ν ∈ P(X) : (∀i ≤ n)

(∣∣∣∣∫
X

fi dν−
∫
X

fi dµ

∣∣∣∣ < ε

)}
,

where µ ∈ P(X), ε > 0, and fi ∈ Cb(X) for every i. The space P(X) is separable metrizable iff so
is X [86, Ch. II, thm. 6.2]. Moreover If X is compact metrizable (resp. Polish) then so is P(X)
([62, Thm. 17.22 and thm. 17.23]).

An important tool in descriptive set theory is Baire category. A set A ⊂ X is called nowhere
dense if its closure has empty interior, meager if it is the countable union of nowhere dense sets
and comeager if its complement is meager. By the Baire category theorem (see [62, Thm. 8.4]), in
every Polish space the intersection of countably many open dense sets is dense ([62, Prop. 8.1]).
In particular every comeager set is dense (it follows from the definition that a set is comeager iff
it contains a dense Gδ set).

We conclude this section with the following lemma:

2Intuitively, the max in the definition of δ(K,L) is not guaranteed to exist, and two closed sets can be infinitely
distant.



6.2. The complexity of closed Salem subsets of [0, 1] 145

Lemma 6.3 ([1, Lem. 1.3]):
Let X be Polish and Y metrizable and Kσ (i.e. countable union of compact sets). If F ⊂ X×Y
is Σ0

2 then projX(F ) is also Σ0
2.

6.2 The complexity of closed Salem subsets of [0, 1]

In this section, we characterize the complexity of the family of closed Salem subsets of [0, 1].
We first obtain an upper bound for the complexity of the conditions dimH(A) > p, dimH(A) ≥ p,
dimF(A) > p and dimF(A) ≥ p. Since the upper Fell topology is coarser than the Vietoris topology,
obtaining an upper bound for the above conditions when the hyperspace of compact subsets of
[0, 1] is endowed with the upper Fell topology immediately yields an upper bound for the same
conditions when the hyperspace is endowed with the Vietoris topology instead.

Lemma 6.4:
Let X be a closed subset of Rd. The set

{(µ,K, x) ∈ P(X)×KU (X)× R : µ(K) ≥ x}

is closed.

Proof: We prove that the complement is open. Let (µ,K, x) be s.t. µ(K) = x− ε < x. By the
outer regularity of µ, there are two open sets U, V s.t.

• K ⊂ U ⊂ U ⊂ V ⊂ X,

• µ(V ) < x− ε/2.

Similarly, by the inner regularity of µ, there are two open sets W,Z s.t. X \W is compact and

• W ⊂W ⊂ Z,

• µ(Z) < ε/8.

By Urysohn’s lemma, there are two continuous functions f, g : X → [0, 1] s.t.
f(U) = 1 = g(W ) and f(X \ V ) = 0 = g(X \ Z).

Recall that the set

Uµ,ε/16,f,g =

{
ν ∈ P(X) :

∣∣∣∣∫ f dν−
∫
f dµ

∣∣∣∣ < ε

16
∧
∣∣∣∣∫ g dν−

∫
g dµ

∣∣∣∣ < ε

16

}
is a basic open set for P(X). Define the set

U := {H ∈ KU (X) : H ⊂ U ∪W}.

Notice that U ∪W has compact complement, hence U is a basic open subset of KU (X).



6.2. The complexity of closed Salem subsets of [0, 1] 146

We claim that for every (ν,H, y) ∈ Uµ,ε/16,f,g × U ×B (x, ε/4) we have ν(H) < y. Indeed

ν(H) ≤ ν(U) + ν(W ) ≤
∫
f dν+

∫
g dν

≤
∫
f dµ+

∫
g dµ+

ε

8

≤ µ(V ) + µ(Z) +
ε

8
< x− ε

4
< y.

Notice that the same set is not closed if we consider the lower Fell topology on K(X), essentially
because X belongs to every non-empty open set U of KL(X).

Proposition 6.5:
• {(A, p) ∈ KU ([0, 1])× [0, 1] : dimH(A) > p} is Σ0

2;

• {(A, p) ∈ KU ([0, 1])× [0, 1] : dimH(A) ≥ p} is Π0
3.

Proof: As noticed in the previous section, for Borel (in particular closed) A ⊂ [0, 1], the Haus-
dorff dimension dimH(A) coincides with the capacitary dimension dimc(A). For ease of readabil-
ity define

D(A) := {s ∈ [0, 1] : (∃µ ∈ P(A))(∃c > 0)(∀x ∈ R)(∀r > 0)(µ(B (x, r)) ≤ crs)}.

Notice that D(A) is downward closed. Recall that dimc(A) = supD(A). Clearly

µ(B (x, r)) ≤ crs ⇐⇒ µ([0, 1] \B (x, r)) ≥ 1− crs.

Observe that the map (x, r) 7→ [0, 1] \ B (x, r) is continuous when the codomain is endowed
with the Vietoris topology. In particular, it is continuous as a function R2 → KU ([0, 1]). By
Lemma 6.4 the condition µ(B (x, r)) ≤ crs is closed, hence the set

C := {(s, c, µ) : (∀x ∈ R)(∀r > 0)(µ(B (x, r)) ≤ crs)}

is a closed subset of the product space [0, 1]× [0,+∞)× P(A). Notice also that

µ ∈ P(A) ⇐⇒ µ ∈ P([0, 1]) and µ(A) ≥ 1.

Since the condition µ(A) ≥ 1 is closed (again, by Lemma 6.4) we have that, for each closed subset
A of [0, 1], the set

Q := {(s, µ) ∈ [0, 1]× P([0, 1]) : (∃c > 0)(µ ∈ P(A) ∧ (s, c, µ) ∈ C)}

is Σ0
2.

Recall that the space P([0, 1]) is metrizable and compact. Using Lemma 6.3 we can conclude
that the set D(A) = proj[0,1]Q is Σ0

2. To conclude the proof we notice that the conditions

dimc(A) > p ⇐⇒ (∃s ∈ Q)(s > p ∧ s ∈ D(A)),

dimc(A) ≥ p ⇐⇒ (∀s ∈ Q)(s < p→ s ∈ D(A))

are Σ0
2 and Π0

3 respectively.



6.2. The complexity of closed Salem subsets of [0, 1] 147

Proposition 6.6:
• {(A, p) ∈ KU ([0, 1])× [0, 1] : dimF(A) > p} is Σ0

2;

• {(A, p) ∈ KU ([0, 1])× [0, 1] : dimF(A) ≥ p} is Π0
3.

Proof: For the sake of readability, let

D(A) := {s ∈ [0, 1] : (∃µ ∈ P(A))(∃c > 0)(∀x ∈ R)(|µ̂(x)| ≤ c|x|−s/2)}.

First of all we notice that the condition |µ̂(x)| > c|x|−s/2 is Σ0
1. To see this it is enough to show

that the map F : P([0, 1])×R → R s.t. F (µ, x) = |µ̂(x)| is continuous. Indeed, if that is the case,
then the tuple (µ, x, s, c) satisfies the condition |µ̂(x)| > c|x|−s/2 iff it belongs to the preimage of
(0,+∞) via the map (µ, x, s, c) 7→ F (µ, x)− c|x|−s/2, which is clearly continuous.

Recall that, for each finite Borel measure µ, the Fourier transform µ̂ is a bounded uniformly
continuous function.

Notice that the set

Vµ,ε,x := {ν ∈ P([0, 1]) : |µ̂(x)− ν̂(x)| < ε}

is open in the topology of P([0, 1]). Indeed, fix ν ∈ Vµ,ε,x and let δ s.t. |µ̂(x) − ν̂(x)| + δ < ϵ.
We claim that the basic open set Uν, δ2 ,cos(x ·),sin(x ·) is included in Vµ,ε,x. In fact, for each
η ∈ Uν, δ2 ,cos(x ·),sin(x ·) we have

|ν̂(x)− η̂(x)| =
∣∣∣∣∫ e−i xt dν(t)−

∫
e−i xt dη(t)

∣∣∣∣ ≤
≤
∣∣∣∣∫ cos(xt) dν(t)−

∫
cos(xt) dη(t)

∣∣∣∣+ ∣∣∣∣∫ sin(xt) dν(t)−
∫

sin(xt) dη(t)

∣∣∣∣ ≤ δ

and therefore

|µ̂(x)− η̂(x)| ≤ |µ̂(x)− ν̂(x)|+ |ν̂(x)− η̂(x)| ≤ |µ̂(x)− ν̂(x)|+ δ < ε.

To conclude the proof of the continuity we show that for each ε > 0 and each µ and x we
can choose δ sufficiently small s.t. for every (ν, y) ∈ Vµ,δ,x × B (x, δ) we have |µ̂(x) − ν̂(y)| < ε.
Indeed, by the triangle inequality

|µ̂(x)− ν̂(y)| ≤ |µ̂(x)− ν̂(x)|+ |ν̂(x)− ν̂(y)|.

The first term is bounded by δ by definition of Vµ,δ,x. Moreover

|ν̂(x)− ν̂(y)| =
∣∣∣∣∫ e−ixt − e−iyt dν(t)

∣∣∣∣ ≤
≤
∫

| cos(xt)− cos(yt)| dν(t)+
∫

| sin(xt)− sin(yt)| dν(t) .

By the sum-to-product formulas∫
| cos(xt)− cos(yt)| dν(t) =

∫
2

∣∣∣∣sin( (x+ y)t

2

)
sin

(
(x− y)t

2

)∣∣∣∣ dν(t) ≤
≤ 2 sin

(
x− y

2

)



6.2. The complexity of closed Salem subsets of [0, 1] 148

and similarly ∫
| sin(xt)− sin(yt)| dν(t) ≤ 2 sin

(
x− y

2

)
.

hence the claim follows.
Since µ ∈ P(A) is a closed condition (see the proof of Proposition 6.5), the set

{(s, c, µ) ∈ [0, 1]× [0,+∞)× P([0, 1]) : µ ∈ P(A) ∧ (∀x ∈ R)(|µ̂(x)| ≤ c|x|−s/2)}

is closed and, therefore, the set

Q := {(s, µ) ∈ [0, 1]× P([0, 1]) : (∃c > 0)(∀x ∈ R)(µ ∈ P(A) ∧ |µ̂(x)| ≤ c|x|−s/2)}

is Σ0
2. As in the proof of Proposition 6.5, we can use Lemma 6.3 to conclude that the set

D(A) = proj[0,1]Q is Σ0
2 and hence the conditions

dimF(A) > p ⇐⇒ (∃s ∈ Q)(s > p ∧ s ∈ D(A)),

dimF(A) ≥ p ⇐⇒ (∀s ∈ Q)(s < p→ s ∈ D(A))

are Σ0
2 and Π0

3 respectively.

Theorem 6.7:
The set {A ∈ KU ([0, 1]) : A ∈ S ([0, 1])} is Π0

3.

Proof: To prove that A ∈ S ([0, 1]) is a Π0
3 condition recall that, for Borel subsets of Rd,

dimF(A) ≤ dimH(A). For a closed subset A of [0, 1], the condition dimH(A) = dimF(A) can be
written as

(∀r ∈ Q)(dimH(A) > r → dimF(A) > r).

The claim follows from Proposition 6.5 and Proposition 6.6, as both dimH(A) > r and
dimF(A) > r are Σ0

2 conditions.

We now show that the above conditions are complete for their respective classes (i.e. the upper
bounds are tight) when the hyperspace of compact subsets of [0, 1] is endowed with the Vietoris
topology. Since the Vietoris topology is finer than the upper Fell topology, the same lower bounds
hold when the hyperspace of compact subsets of [0, 1] is endowed with the upper Fell topology.

The proof of the following Lemma 6.9 exploits the properties of the set E(α) of α-well approx-
imable numbers.

Definition 6.8 ([35, Sec. 10.3]): For every α ≥ 0, we say that x ∈ [0, 1] is α-well approx-
imable if there are infinitely many n ∈ N s.t.

min
m∈Z

|nx−m| ≤ n−1−α.

The set of α-well approximable numbers is denoted by E(α).



6.2. The complexity of closed Salem subsets of [0, 1] 149

0.2 0.4 0.6 0.8 1

−0.2

0.2

0.4

0.6

Figure 6.1: As an example, let n = 4 and α = 0.3. The red line is the plot of the function
minm∈Z |nx−m|, while the blue line is the constant function n−1−α. The set Gn(α) is the set of
points s.t. the red line lies below the blue line.

As mentioned in the introduction, E(α) is a Salem set of dimension 2/(2+α). Notice that, by
definition, the set E(α) is Π0

3, as it can be written in the form

E(α) =
∩
k∈N

∪
n≥k

Gn,

where Gn := {x ∈ [0, 1] : minm∈Z |nx − m| ≤ n−1−α} is a closed set (it is a finite union of
non-degenerate closed intervals), see Figure 6.1.

If α = 0 then, by Dirichlet’s theorem ([35, Ex. 10.8]), E(α) = [0, 1]. However, if α > 0 then
E(α) is not closed (because E(α) is dense in [0, 1] but does not have full dimension).

In the construction presented in [7], the author explicitly writes the support3 S(α) of a measure
witnessing that dimF(E(α)) ≥ 2/(2+α). This, in particular, implies that S(α) itself is Salem with
dimension 2/(2 + α). The set S(α) can be written as

S(α) =
∩
k∈N

∪
k′≤n≤k′′

Gn.

In other words, it is obtained from E(α) by making the inner union finite, where k′ and k′′ depend
on k (and α) and are strictly increasing. Clearly S(α) is closed (as it is the infinite intersection of
closed sets). We can rewrite S(α) as follows:

S(α) =
∩
k∈N

S(k)(α)

where
S(k)(α) =

∪
i≤Mk

Ii(α, k)

and, for each k, the Ii(α, k) are disjoint non-degenerate closed intervals.
3In [7] it is denoted with Sα.



6.2. The complexity of closed Salem subsets of [0, 1] 150

We modify S(α) to obtain

R(α) =
∩
k∈N

R(k)(α) =
∩
k∈N

∪
j≤Nk

Jj(α, k),

where each Jj(α, k) is a non-degenerate closed interval with the property that R(k+1)(α) ⊂ R(k)(α),
and, moreover, for every i ≤ Nk there exists j ≤ Nk+1 s.t. Jj(α, k + 1) ⊂ Ji(α, k). To this end,
define R(k)(α) inductively as follows: R(0)(α) := S(0)(α). At stage k + 1, let

R̃(k+1)(α) := S(k+1)(α) ∪
∪
n∈Uk

Gn,

where Uk ⊂ N is a finite set of indexes s.t. for every interval j ≤ Nk,

Int(Jj(α, k)) ∩ R̃(k+1)(α) ̸= ∅,

where Int(·) denotes the interior. Such a choice of Uk is always possible by the density of E(α).
We obtain R(k+1)(α) by considering the finitely many intervals whose union is R̃(k+1)(α)∩R(k)(α)
and removing the degenerate ones.

Notice that, for every k, S(k)(α) \R(k)(α) is finite. This implies that S(α) \R(α) is countable
and therefore, by Theorem 6.1, dimF(S(α)) = dimF(R(α)). Notice, moreover, that R(α) ⊂ E(α),
and therefore R is still a Salem set and dim(R(α)) = 2/(2 + α).

Lemma 6.9:
For every p ∈ [0, 1] there exists a continuous map fp : 2N → K([0, 1]) s.t. for every x, fp(x) is
Salem and

dim(fp(x)) =

{
p if x ∈ Q2

0 if x /∈ Q2

Proof: Recall that Q2 = {x ∈ 2N : (∀∞k)(x(k) = 0)} is Σ0
2-complete.

The case p = 0 is trivial (just take the constant map x 7→ ∅), so assume p > 0. Let α ≥ 0 s.t.
2/(2 + α) = p and consider the Salem set S(α) as defined above.

For each x ∈ 2N we define a sequence (F
(k)
x )k∈N of nested closed sets s.t. each F

(k)
x is a

finite union of closed intervals. The idea is to follow the construction of R(α) until we find a
k s.t. x(k) = 1. If this never happens then in the limit we obtain R(α), which is a Salem set
of Fourier dimension p. On the other hand, each time we find a k s.t. x(k) = 1 we modify the
next step of the construction by replacing each of the (finitely many) intervals J0, . . . , JNk

whose
union is the k-th level of the construction with sufficiently small subintervals H0, . . . , HNk

, and
we reset the construction, starting again a (proportionally scaled down) construction of R(α)
on each subinterval Hi. By carefully choosing the length of the subintervals Hi we can ensure
that, if there are infinitely many k s.t. x(k) = 1 then Fx has null Hausdorff (and hence Fourier)
dimension.

Formally, if I = [a, b] is an interval then we define R(α, I) as the fractal obtained by scaling
R(α) to the interval I. Notice that, by Theorem 6.2, R(α, I) is still a Salem set of dimension p.

We define F (k)
x recursively as



6.2. The complexity of closed Salem subsets of [0, 1] 151

Stage k = 0 : F (0)
x := [0, 1];

Stage k + 1 : Let J0, . . . , JNk
be the disjoint closed intervals s.t. F (k)

x =
∪
i≤Nk

Ji. If x(k+1) = 1
then choose, for each i ≤ Nk, a (non-degenerate) subinterval Hi = [ai, bi] ⊂ Ji so that∑

i≤Nk

diam(Hi)
2−k

≤ 2−k.

Define then F
(k+1)
x :=

∪
i≤Nk

Hi.
If x(k + 1) = 0 then let s ≤ k be largest s.t. x(s) = 1 (or s = 0 if there is none) and let
I0, . . . , INs

be the intervals of F (s)
x . For each i ≤ Ns, apply the (k + 1 − s)-th step of the

construction of R(α, Ii). Define F (k+1)
x :=

∪
i≤Ns

R(k+1−s)(α, Ii).

We define the map fp as fp(x) := Fx =
∩
k∈N F

(k)
x . Clearly Fx is closed, as intersection of

closed sets. To show that fp is continuous, recall that the Vietoris topology is compatible with
the Hausdorff metric dH. Fix x ∈ 2N. For each ε > 0 we can choose k large enough so that all the
intervals J0, . . . , JNk

of F (k)
x have length ≤ ε. By construction, for every y ∈ 2N that extends x[k]

we have Fy∩Ji ̸= ∅ (i.e. none of the intervals is ever removed completely) and Fy ⊂ J0∪ . . .∪JNk

(i.e. nothing is ever added outside of F (k)
x ). This implies that

dH(Fx, Fy) ≤ max{diam(Ji) : i ≤ Nk} ≤ ε,

which proves the continuity.
If x ∈ Q2 then x is eventually null (i.e. there are finitely many 1s in x). Letting s be the

largest index s.t. x(s) = 1 (or s = 0 if there is none) then Fx =
∪
i≤Ns

R(α, Ji). Each set R(α, Ji)
is a Salem set of dimension p (as we fixed α accordingly). Since the intervals Ji are closed and
disjoint, using Theorem 6.1, we can conclude that Fx is a Salem set of dimension p.

On the other hand, if x /∈ Q2 then we want to show that dimH(Fx) = 0. We will show that
for each s > 0 and ε > 0 there is a cover (An)n∈N of Fx s.t.

∑
n∈N diam(An)

s ≤ ε, i.e. for each
s > 0, Hs(Fx) = 0.

For fixed s and ε we can pick k large enough s.t. 2−k ≤ s, 2−k ≤ ε and x(k + 1) = 1. Notice
that the intervals (Hi)i≤Nk

(as defined in the construction of Fx) form a cover of Fx s.t.∑
i≤Nk

diam(Hi)
s ≤

∑
i≤Nk

diam(Hi)
2−k

≤ 2−k ≤ ε,

as desired.

Proposition 6.10:
For every p < 1 the sets

{A ∈ K([0, 1]) : dimH(A) > p},
{A ∈ K([0, 1]) : dimF(A) > p}

are Σ0
2-complete.



6.2. The complexity of closed Salem subsets of [0, 1] 152

Proof: The hardness is a straightforward corollary of Lemma 6.9: fix q s.t. p < q < 1 and the
Σ0

2-complete subset Q2 of 2N. We can consider the map fq : 2
N → Sc([0, 1]) as in Lemma 6.9

and notice that
dim(fq(x)) > p ⇐⇒ x ∈ Q2.

The completeness follows from Proposition 6.5 and Proposition 6.6.

Theorem 6.11:
For every p ∈ (0, 1] there exists a continuous map F : 2N×N → K([0, 1]) s.t. for every x ∈ 2N×N,
F (x) is a Salem set and dim(F (x)) ≥ p iff x ∈ P3. Letting

X1 := {A ∈ K([0, 1]) : dimH(A) ≥ p},
X2 := {A ∈ K([0, 1]) : dimF(A) ≥ p}

we have that every set X s.t. X2 ⊂ X ⊂ X1 is Π0
3-hard. In particular, X1 and X2 are

Π0
3-complete.

Proof: The last statement follows from the first one using Proposition 6.5 and Proposition 6.6.
Consider the map Φ: 2N×N → 2N×N defined as

Φ(x)(m,n) := max
i≤m

x(i, n).

It is easy to see that Φ is continuous. Notice also that x ∈ P3 iff Φ(x) ∈ P3. On the other hand,

x /∈ P3 ⇐⇒ (∃k)(∀m ≥ k)(∃∞n)(Φ(x)(m,n) = 1).

Intuitively, we are modifying the N × N matrix x so that if there is a row of x that contains
infinitely many 1s, then, from that row on, every row will contain infinitely many 1s.

We build a continuous map f : 2N×N → K([0, 1]) s.t. F := f ◦ Φ is the desired function.
For every n, let Tn := [2−n−1, 2−n], qn := p(1 − 2−n−1) and consider the function

fqn : 2
N → Sc([0, 1]) of Lemma 6.9. Fix also a similarity transformation τn : [0, 1] → Tn and

define gn : 2N → Sc(Tn) as gn := τnfqn , so that, by Theorem 6.2,

dim(gn(y)) =

{
qn if y ∈ Q2,

0 if y /∈ Q2.

Let xm be the m-th row of x ∈ 2N×N. We define

f(x) := {0} ∪
∪
m∈N

gm(xm).

Intuitively, we are dividing the interval [0, 1] into countably many intervals and, on each interval,
we are applying the construction we described in the proof of Lemma 6.9 (proportionally scaled
down). The continuity of f follows from the continuity of each gm. The accumulation point 0 is
added to ensure that f(x) is a closed set.



6.2. The complexity of closed Salem subsets of [0, 1] 153

Recall that Hausdorff dimension is stable under countable unions, so

dimH(f(x)) = sup
m∈N

dimH(gm(xm)).

Moreover, since the sets {Tm}m∈N are closed, we can apply Theorem 6.1 and conclude that

dimF(f(x)) = sup
m∈N

dimF(gm(xm)).

Since each gm(xm) is Salem we have that f(x) is Salem (and, in turn, F (x) is Salem) and

dim(f(x)) = sup
m∈N

dimH(gm(xm)) = sup
m∈N

dimF(gm(xm)).

If x ∈ P3 then Φ(x) ∈ P3 and, for every m, Φ(x)m ∈ Q2. This implies that gm(Φ(x)m) is a
Salem set of dimension qm and therefore

dim(F (x)) = sup
m∈N

qm = p.

On the other hand, if x /∈ P3 then there is a k > 0 s.t. for every m ≥ k, Φ(x)m /∈ Q2 and hence
dim(gm(Φ(x)m)) = 0. This implies that

dim(F (x)) ≤ qk < p,

and this completes the proof.

Theorem 6.12:
The set {A ∈ K([0, 1]) : A ∈ S ([0, 1])} is Π0

3-complete.

Proof: Let K ∈ K([0, 1]) be s.t. dimH(K) = p and dimF(K) = 0. Let also F be the map
provided by Theorem 6.11 and define the map h : 2N×N → K([0, 1]) as

h(x) := F (x) ∪K.

Then h is continuous (see e.g. [62, Ex. 4.29(iv)]) and

dimH(h(x)) = max{dim(F (x)), p},
dimF(h(x)) = dim(F (x)).

In particular, h(x) is Salem iff dim(F (x)) ≥ p iff x ∈ P3. The claim follows by Theorem 6.7.

This shows that the upper bounds we obtained in Proposition 6.5, Proposition 6.6 and Theo-
rem 6.7 are sharp. In particular, since K([0, 1]) is a Polish space, this implies that the hyperspace
of closed Salem subsets of [0, 1] is not a Polish space (in the relative topology). This follows from
[62, Thm. 3.11], as a subset of a Polish space is Polish iff it is Gδ.



6.3. The complexity of closed Salem subsets of [0, 1]d 154

Notice that, if we endow Sc([0, 1]) with the topology induced by KU ([0, 1]) then, by Proposi-
tion 6.5 (or, equivalently, by Proposition 6.6), we have that

{(A, p) ∈ Sc([0, 1])× [0, 1] : dim(A) > p} is Σ0
2,

{(A, p) ∈ Sc([0, 1])× [0, 1] : dim(A) ≥ p} is Π0
3.

Moreover, the proofs of Proposition 6.10 and Theorem 6.11 show that, for every p < 1 and every
q > 0,

Q2 ≤W {A ∈ Sc([0, 1]) : dim(A) > p},
P3 ≤W {A ∈ Sc([0, 1]) : dim(A) ≥ q}.

However we cannot say that they are complete for their respective classes, because the definition
of completeness requires the ambient space to be Polish, and Sc([0, 1]) is not.

Recall that the Fourier dimension of A is based on an estimate on the decay of the Fourier trans-
form of a probability measure supported on A. In particular dimF(A) = sup{dimF(µ) : µ ∈ P(A)}.
This is equivalent to let µ range over finite (non-trivial) Radon measures on A, as the estimate
on the decay of the Fourier transform is only up to a multiplicative constant. One may wonder
whether it is possible to strengthen this condition by defining the Fourier dimension of A as

sup{s ∈ [0, 1] : (∃µ ∈ P(A))(∀x ∈ R)(|µ̂(x)| ≤ |x|−s/2)}.

The Π0
3-completeness of Sc([0, 1]) implies that the notion of dimension we would obtain is different.

Indeed, the space P([0, 1]) is a compact space (as already noticed in the proof of Proposition 6.5),
while the space [0,∞)×P([0, 1]) is not. In particular, removing the constant c in the condition on
the decay of the Fourier transform would imply that Sc([0, 1]) is Π0

2 (as the projection of a closed
set along a compact space is closed, see the proofs of Proposition 6.5 and Proposition 6.6), and
therefore not Π0

3-complete.

6.3 The complexity of closed Salem subsets of [0, 1]d

Let us now turn our attention to the family of closed Salem subsets of [0, 1]d.

Proposition 6.13:
For every d ≥ 1:

1. {(A, p) ∈ KU ([0, 1]
d)× [0, d] : dimH(A) > p} is Σ0

2;

2. {(A, p) ∈ KU ([0, 1]
d)× [0, d] : dimH(A) ≥ p} is Π0

3;

3. {(A, p) ∈ KU ([0, 1]
d)× [0, d] : dimF(A) > p} is Σ0

2;

4. {(A, p) ∈ KU ([0, 1]
d)× [0, d] : dimF(A) ≥ p} is Π0

3;

5. {A ∈ KU ([0, 1]
d) : A ∈ S ([0, 1]d)} is Π0

3.



6.3. The complexity of closed Salem subsets of [0, 1]d 155

Proof: For the first two points, the proof is a straightforward adaptation of the proof of Propo-
sition 6.5. Indeed, recall that Frostman’s lemma holds for Borel subsets of Rd ([79, Thm. 8.8]),
hence we can characterize the Hausdorff dimension by means of the capacitary dimension. More-
over, since [0, 1]d is compact, the condition µ(B(x, r)) ≤ crs is closed and the space P([0, 1]d) is
compact. Therefore dimc(A) is the supremum of a Σ0

2 set, from which the claim follows.
Similarly, points 3 and 4 follow by adapting the proof of Proposition 6.6. Indeed the map

F := (µ, x) 7→ |µ̂(x)| is continuous and the condition |µ̂(x)| > c|x|−t/2 is open, therefore the
Fourier dimension is the supremum of a Σ0

2 set.
Finally, the last point can be proved by following the proof of Theorem 6.7 and using points

1 and 3.

The fact that the lower bounds for the complexity of the above sets are tight does not come
as a corollary of the results in the 1-dimensional case. Indeed, it is well known that the Fourier
dimension is sensitive to the ambient space: any m-dimensional hyperplane has null Fourier di-
mension when seen as a subset of Rd, with d > m (in particular, the unit interval [0, 1] has full
Fourier dimension if seen as a subset of itself or of R, but it has null Fourier dimension if seen as
a subset of R2).

We will instead prove a d-dimensional analogue of Lemma 6.9. In recent work, Fraser and
Hambrook ([36]) presented a construction of a Salem subset of [0, 1]d of dimension p, for every
p ∈ [0, d].

Definition 6.14 ([36]): Let K be a number field of degree d, i.e. K is a field extension of Q
and dimQK = d. Let B = {ω0, . . . , ωd−1} be an integral basis for K. We can identify Qd with
K by mapping a vector q = (q0, . . . , qn−1) to

∑
i<n qiωi ∈ K. Moreover, since B is an integral

basis, we can also identify Zd with the ring of integers O(K) for K. For every α ≥ 0 we define

E(K,B, α) :=

{
x ∈ [0, 1]d : (∃∞(q, r) ∈ Zd × Zd)

(∥∥∥∥x− r

q

∥∥∥∥
∞

≤ ∥q∥−2−α
∞

)}
,

where ∥ · ∥∞ is the max-norm on Rd.

The set E(K,B, α) is a higher dimensional analogue of the fractal E(α).

Theorem 6.15 ([36, Thm. 4.1]):
For every α ≥ 0, the set E(K,B, α) is a Salem set of dimension 2d/(2 + α).

The fact that E(K,B, 0) is Salem of dimension d is not explicitly mentioned in [36], but a
simple proof was suggested by Hambrook (personal communication): indeed it is enough to notice
that, for every α and every ε > 0, E(K,B, α + ε) ⊂ E(K,B, α), and therefore the claim follows
from the monotonicity of the Fourier dimension.

Notice that, in general, the set E(K,B, α) is not closed but Π0
3. Analogously to the one-

dimensional case, the proof of Theorem 6.15 shows that there is a closed Salem subset S(K,B, α)
of E(K,B, α) with dimension 2d/(2 + α). To prove the following Lemma 6.16 we cannot proceed
as in the one-dimension case, as we do not know whether E(K,B, α) is dense in [0, 1]d.



6.3. The complexity of closed Salem subsets of [0, 1]d 156

Lemma 6.16:
Fix d > 0. For every p ∈ [0, d] there exists a continuous map fp : 2N → K([0, 1]d) s.t. for every
x, fp(x) is Salem and

dim(fp(x)) =

{
p if x ∈ Q2

0 if x /∈ Q2

Proof: The idea of the proof is similar to the one of Proposition 6.10: given x ∈ 2N, we define
a closed set Fx by following the construction of the set S(K,B, α), having care of controlling the
Hausdorff dimension whenever x(k) = 1.

Formally, let p > 0 (otherwise the claim follows trivially by considering the map x 7→ ∅) and
let α s.t. 2d/(2 + α) = p.

Fix K and B as in Definition 6.14. For the sake of readability, let S(α) := S(K,B, α). We
can write S(α) as intersection of closed nested sets S(k)(α) defined as

S(k)(α) := {y ∈ [0, 1]d : d(y, S(α)) ≤ 2−k}.

Clearly, S(k)(α) is closed with non-empty interior.
For each non-degenerate hypercube C, define S(α,C) := τ(S(α)), where τ is a similarity

transformation that maps [0, 1]d onto C, and S(k)(α,C) accordingly.
We define F (k)

x recursively, ensuring that, for each k, F (k)
x is closed and has non-empty interior,

and F
(k+1)
x ⊂ F

(k)
x :

Stage k = 0 F
(0)
x := C0 := [0, 1]d, P0 := ∅;

Stage k + 1 If x(k + 1) = 1, let Pk := {p(k)i }i≤Nk
be a finite set of points in F

(k)
x s.t. for each

t ∈ F
(k)
x there exists i ≤ Nk s.t. |t− p

(k)
i | ≤ 2−(k+1). Let Ck be the largest (non-degenerate)

hypercube contained in F
(k)
x . Define

F (k+1)
x := S(0)(α,Ck) ∪ Pk.

If x(k+1) = 0 then let s < k be largest s.t. x(s+1) = 1 (or s = 0 if there is none). We define

F (k+1)
x := S(k+1−s)(α,Cs) ∪ Ps.

Define fp := x 7→ Fx =
∩
k∈N F

(k)
x . Clearly Fx is closed, as intersection of closed sets. The

continuity of the map fp is guaranteed by the fact that for each k,

dH(F (k)
x , F (k+1)

x ) ≤ 2−(k+1).

This follows from our choice of Pk in the first case, and dH(S(k)(α), S(k+1)(α)) ≤ 2−(k+1) in the
second case.

Adapting the proof of Lemma 6.9, it is possible to show that Fx is Salem and that dim(Fx) = p
iff x ∈ Q2.



6.3. The complexity of closed Salem subsets of [0, 1]d 157

From Lemma 6.16 we can derive the following results, as we did with their analogs in the
previous section.

Proposition 6.17:
For every p ∈ [0, d) the sets

{A ∈ K([0, 1]d) : dimH(A) > p},
{A ∈ K([0, 1]d) : dimF(A) > p}

are Σ0
2-complete.

Theorem 6.18:
For every p ∈ (0, d] there exists a continuous map F : 2N×N → K([0, 1]d) s.t. for every x ∈ 2N×N,
F (x) is a Salem set and dim(F (x)) ≥ p iff x ∈ P3. Letting

X1 := {A ∈ K([0, 1]d) : dimH(A) ≥ p},
X2 := {A ∈ K([0, 1]d) : dimF(A) ≥ p}

we have that every set X s.t. X2 ⊂ X ⊂ X1 is Π0
3-hard. In particular, X1 and X2 are

Π0
3-complete.

Theorem 6.19:
The set {A ∈ K([0, 1]d) : A ∈ S ([0, 1]d)} is Π0

3-complete.

We now discuss an alternative proof for the Π0
3-completeness of the closed Salem subsets of

[0, 1]d: as noticed in the introduction, using a theorem of Gatesoupe [40] we can show that if
A ⊂ [0, 1] has at least two points4 and is Salem with dimension α, then the rotationally invariant
set Ã := {x ∈ [−1, 1]d : |x| ∈ A} is a Salem set with dimension d − 1 + α. Using Theorem 6.2,
we can map Ã to a Salem subset of C, for every d-dimensional cube C. Moreover, for each
p ∈ [d − 1, d] there is a compact set Yp ⊂ [0, 1]d with null Fourier dimension and Hausdorff
dimension p (e.g. consider the cartesian product of [0, 1]d−1 with a non-empty subset of [0, 1] with
Hausdorff dimension p− (d− 1)). Let {Cn}n∈N be a family of mutually disjoint closed cubes s.t.

• Cn ⊂ [0, 1]d,

•
∪
n∈N Cn = {0} ∪

∪
n∈N Cn ,

where 0 is the origin of the d-dimensional Euclidean space. We mimic the proof of Theorem 6.11 and
construct a set Xn within each Cn, where each Xn is the image, under a similarity transformation,
of either Yp or a radial set of the type Ãn for some An ⊂ [0, 1]. Then we define X := {0}∪

∪
n∈NXn.

Since the cubes are disjoint we have that dimF(X) = supn dimF(Xn) and therefore, by carefully
choosing the dimensions of each An, we obtain the results on the complexities.

4The requirement of having at least two points is just to avoid trivial counterexamples.



6.4. The complexity of closed Salem subsets of Rd 158

Notice however that each Ãn has Fourier (and hence Hausdorff) dimension at least d−1. Hence,
while this argument suffices to show the Π0

3-completeness of {A ∈ K([0, 1]d) : A ∈ S ([0, 1]d)}, it
gives no information on the complexity of the first two sets listed in Theorem 6.18 when p < d−1.
On the other hand, the construction presented in Lemma 6.16 has the advantage to work for every
p ∈ [0, d].

6.4 The complexity of closed Salem subsets of Rd

Let us now turn our attention to the closed Salem subsets of Rd. In this section, we deter-
mine the descriptive complexity of the conditions dimH(A) > p, dimH(A) ≥ p, dimF(A) > p,
dimF(A) ≥ p, A ∈ S (Rd), when A is a closed subset of Rd and p ∈ R.

The hardness results lift easily from the compact cases.

Proposition 6.20:
For every p ∈ (0, d] and every q ∈ [0, d), we have

• {A ∈ F(Rd) : dimH(A) > q} is Σ0
2-hard;

• {A ∈ F(Rd) : dimH(A) ≥ p} is Π0
3-hard;

• {A ∈ F(Rd) : dimF(A) > q} is Σ0
2-hard;

• {A ∈ F(Rd) : dimF(A) ≥ p} is Π0
3-hard;

• {A ∈ F(Rd) : A ∈ S (Rd)} is Π0
3-hard.

Proof: This is a corollary of Proposition 6.17, Theorem 6.18 and Theorem 6.19. Indeed, since
the Fourier and Hausdorff dimensions of A ⊂ [0, 1]d do not change if we see A as a subset of Rd,
it is enough to notice that the inclusion map K([0, 1]d) ↪→ F(Rd) is continuous.

Notice that, since the inclusion K([0, 1]d) ↪→ V(Rd) is continuous as well, the same proof
provides a lower bound for the above conditions when the hyperspace F(Rd) is endowed with the
Vietoris topology. However, since V(Rd) is not Polish, we cannot say that the conditions are hard
for their respective classes.

As in the previous sections, we obtain the upper bounds endowing F(Rd) with the upper
Fell topology. This will yield, as a corollary, that each of the above conditions is complete for its
respective class when F(Rd) is endowed with the Fell topology (in case of the upper Fell or Vietoris
topology we only obtain a Wadge-equivalence).

Since the proofs of Proposition 6.5, Proposition 6.6 and Proposition 6.13 exploit the compact-
ness of the ambient space, some extra care is needed when working in a non-compact environment.



6.4. The complexity of closed Salem subsets of Rd 159

Lemma 6.21:
• {(K, p) ∈ KU (Rd)× [0, d] : dimH(K) > p} is Σ0

2;

• {(K, p) ∈ KU (Rd)× [0, d] : dimH(K) ≥ p} is Π0
3.

Proof: Define

D(K) := {s ∈ [0, d] : (∃µ ∈ P(K))(∃c > 0)(∀x ∈ Rd)(∀r > 0)(µ(B (x, r)) ≤ crs)}

and recall that dimH(K) = supD(K). For every n, let Kn := B (0, n). Observe that

µ ∈ P(K) ⇐⇒ µ ∈ P(Rd) ∧ µ(K) ≥ 1 ∧ (∃n ∈ N)(µ(Kn) ≥ 1).

We can therefore rewrite D(K) as follows

D(K) = {s ∈ [0, d] : (∃µ ∈ P(Rd))(∃c > 0)(∃n ∈ N)
(µ(K) ≥ 1 ∧ µ(Kn) ≥ 1 ∧ (∀x ∈ Rd)(∀r > 0)(µ(B (x, r)) ≤ crs))}.

In particular µ(Kn) ≥ 1 implies that sptµ ⊂ Kn, hence

µ(B (x, r)) ≤ crs ⇐⇒ µ(H) ≥ 1− crs,

where H := B (0, n+ x+ r) \ B (x, r). It is routine to prove that the function
φ : N × R+ × Rd → KU (Rd) that sends (n, r, x) to the above-defined H is continuous. No-
tice that if we had set H = K \ B (x, r) then the resulting map would not be continuous. This
motivates the use of Kn in the above characterization of D(K).

By Lemma 6.4 the set

{(µ,K, a) ∈ P(Rd)×KU (Rd)× R : µ(K) ≥ a}

is closed. In particular the condition µ(B (x, r)) ≤ crs is closed and the set

Q := {(s, µ) ∈ [0, d]× P(Rd) : (∃c > 0)(∃n ∈ N)
(µ(K) ≥ 1 ∧ µ(Kn) ≥ 1 ∧ (∀x ∈ Rd)(∀r > 0)(µ(B (x, r)) ≤ crs))}

is Σ0
2.

Notice that we can equivalently consider Q as a subset of [0, d]×
∪
n∈N P(Kn). In particular,

D(K) is the projection of a Σ0
2 set along a metrizable and Kσ space (as P(X) is compact if X

is). Therefore, using Lemma 6.3 we can conclude that D(K) is Σ0
2 and that the conditions

dimH(K) > p ⇐⇒ (∃s ∈ Q)(s > p ∧ s ∈ D(K)),

dimH(K) ≥ p ⇐⇒ (∀s ∈ Q)(s < p→ s ∈ D(K))

are Σ0
2 and Π0

3 respectively.



6.4. The complexity of closed Salem subsets of Rd 160

Lemma 6.22:
The set {(A,B) ∈ FU (Rd)× F(Rd) : B ⊂ A} is Π0

1.

Proof: It suffices to show that the complement of the set is open. If B ̸⊂ A, fix
x ∈ B \ A and let ε := d(x,A) > 0. Let U1 := {F ∈ F(Rd) : F ∩ B (x, ε/2) = ∅} and
U2 := {F ∈ F(Rd) : F ∩ B (x, ε/2) ̸= ∅}. Clearly U1 × U2 is open in FU (Rd) × F(Rd),
(A,B) ∈ U1 × U2 and every (A′, B′) ∈ U1 × U2 is s.t. B′ ̸⊂ A′.

Theorem 6.23:
The sets

X1 :={(A, p) ∈ FU (Rd)× [0, d] : dimH(A) > p},
X2 :={(A, p) ∈ FU (Rd)× [0, d] : dimH(A) ≥ p}

are Σ0
2 and Π0

3 respectively. In particular, for every p ∈ [0, d) and q ∈ (0, d], the sets

{A ∈ F(Rd) : dimH(A) > p},
{A ∈ F(Rd) : dimH(A) ≥ q}

are Σ0
2-complete and Π0

3-complete respectively.

Proof: Notice that, as a consequence of the countable stability of the Hausdorff dimension, we
have

dimH(A) = sup{dimH(K) : K ⊂ A and K is compact},

and therefore

dimH(A) > p ⇐⇒ (∃K ∈ F(Rd))(K ⊂ A ∧K ∈ K(Rd) ∧ dimH(K) > p).

Notice that the condition K ⊂ A is Π0
1 by Lemma 6.22. We claim that the conjunction

K ∈ K(Rd) ∧ dimH(K) > p is Σ0
2. This follows from the fact K ∈ K(Rd) is equivalent to

(∃n)(K ⊂ B (0, n)), hence it is Σ0
2 using again Lemma 6.22; moreover, since the inclusion map

F(X)|K(X) ↪→ KU (X) is continuous, by Lemma 6.21 the condition dimH(K) > p is Σ0
2 when K

is compact.
This shows that the set X1 is the projection of a Σ0

2 set along F(Rd). Since F(Rd) is compact,
we can use Lemma 6.3 and conclude that X1 is Σ0

2.
Moreover, since dimH(A) ≥ p iff (∀r ∈ Q)(r < p→ dimH(A) > r), this also shows that X2 is

Π0
3. The completeness follows from Proposition 6.20.

With a similar strategy, we can characterize the upper bounds for the Fourier dimension:



6.4. The complexity of closed Salem subsets of Rd 161

Theorem 6.24:
The sets

X1 :={(A, p) ∈ FU (Rd)× [0, d] : dimF(A) > p},
X2 :={(A, p) ∈ FU (Rd)× [0, d] : dimF(A) ≥ p}

are Σ0
2 and Π0

3 respectively. In particular, for every p ∈ [0, d) and q ∈ (0, d], the sets

{A ∈ F(Rd) : dimF(A) > p},
{A ∈ F(Rd) : dimF(A) ≥ q}

are Σ0
2-complete and Π0

3-complete respectively.

Proof: Notice that the condition

(∀x ∈ Rd)(|µ̂(x)| ≤ c|x|−s/2)

is closed, as the map (µ, x, s, c) 7→ |µ̂(x)| − c|x|−s/2 is continuous (see also the proof of Proposi-
tion 6.6). In particular, this implies that the sets

{(K, p) ∈ KU (Rd)× [0, d] : dimF(K) > p},
{(K, p) ∈ KU (Rd)× [0, d] : dimF(K) ≥ p}

are Σ0
2 and Π0

3 respectively.
Since the Fourier dimension is inner regular for compact sets, we can write

dimF(A) > p ⇐⇒ (∃K ∈ F(Rd))(K ⊂ A ∧K ∈ K(Rd) ∧ dimF(K) > p).

As in the proof of Theorem 6.23, using Lemma 6.22 and the fact that the inclusion map
F(X)|K(X) ↪→ KU (X) is continuous, we have that X1 is the projection of a Σ0

2 set along F(Rd).
Lemma 6.3 implies that X1 is Σ0

2 and X2 is Π0
3.

The completeness follows from Proposition 6.20.

Theorem 6.25:
The set {A ∈ F(Rd) : A ∈ S (Rd)} is Π0

3-complete.

Proof: Using Theorem 6.23 and Theorem 6.24 we have that, for every p, the conditions
dimH(A) > p and dimF(A) > p are Σ0

2. The fact that {A ∈ F(Rd) : A ∈ S (Rd)} is Π0
3

follows as in the proof of Theorem 6.7, while the completeness follows from Proposition 6.20.



6.5. Further results 162

6.5 Further results

Let X be [0, 1]d or Rd, for some d ≥ 1. Notice that the set Sc(X) is comeager in V(X).
Indeed, the set {K ∈ V(X) : dimH(K) ≤ 0} ⊂ Sc(X) is Π0

2 by Proposition 6.5 (and its higher-
dimensional analogues), and dense because it contains the set {K ∈ V(X) : K is finite}, which
is dense. The same argument also shows that for every p the sets {K ∈ V(X) : dimH(K) ≤ p}
and {K ∈ V(X) : dimF(K) ≤ p} are comeager. The same argument shows that the above
sets are comeager in F(X). This, in turn, implies that the sets {K ∈ F(X) : dimH(K) > 0},
{K ∈ F(X) : dimF(K) > 0}, and {K ∈ F(X) : K /∈ Sc(X)} are meager and not comeager (as
F(X) is Polish, and hence it is a Baire space).

Notice that our results easily imply that the maps dimH, dimF
H, dimF, and dimF

F are Σ0
3-

measurable. Using [62, Thm. 24.3], this is equivalent to both dimH and dimF being Baire class 2.
We will prove a stronger result in Theorem 7.23.

An interesting question is whether the converse inequality in Gatesoupe’s theorem holds. Pre-
cisely, fixed d, we denoted with Ã the d-dimensional radial expansion of A. The question is whether
dimF(Ã) = d−1+dimF(A). In the following, we adapt a classical argument to answer affirmatively
for d = 1 + 4k.

The proof of the following lemma was suggested by Betsy Stovall.

Lemma 6.26:
Let A ⊂ Rd be a radial set and let µ ∈ M(A), where M(A) denotes the set of finite Radon
measures supported on A. There is a radial measure ν ∈ M(A) s.t. dimF(µ) ≤ dimF(ν).

Proof: Given µ we can define a measure ν on A as

ν(E) :=

∫
O(d)

µ(g(E)) dθd(g)

where O(d) is the orthonormal group in dimension d and θd is the d-dimensional Haar measure.
Since spt(µ) ⊂ A it is clear that spt(ν) ⊂ A. Moreover, it follows from the invariance of the Haar
measure that the measure ν is radial, i.e. ν(E) = ν(h(E)) for every h ∈ O(d). Notice that

ν̂(ξ) =

∫
e−i xξ dν(x) =

=

∫
e−i xξ

∫
O(d)

dµ(g(x)) dθd(g) =

=

∫
O(d)

∫
e−i xξ dµ(g(x)) dθd(g) =

=

∫
O(d)

∫
e−i g

−1(x)ξ dµ(x) dθd(g) =

=

∫
O(d)

∫
e−i xg(ξ) dµ(x) dθd(g) =

∫
O(d)

µ̂(g(ξ)) dθd(g) .

In particular, since g preserves the norm,

|ν̂(ξ)| ≤
∫
O(d)

|µ̂(g(ξ))| dθd(g) ≤
∫
O(d)

|g(ξ)|−α dθd(g) = |ξ|−α,



6.5. Further results 163

which concludes the proof.

Proposition 6.27:
Let A ⊂ [a, b] with a > 0 and let Ã be the d-dimensional radial expansion of A, namely

Ã := {x ∈ Rd : |x| ∈ A}

where | · | denotes the Euclidean norm. If d = 1 + 4k, for some k ∈ N, then

dimF(Ã) = d− 1 + dimF(A)

Proof: The inequality dimF(Ã) ≥ n−1+dimF(A) follows from [40, Lem., p. 125]. To prove the
converse inequality, let µ be a finite Radon measure on Ã s.t. dimF(µ) ≥ d−1+α. By Lemma 6.26
we can assume that µ is radial. In particular, it can be written as the product measure of the
(d − 1)-dimensional surface measure σd−1 and of a 1-dimensional measure supported on A. In
particular, let µ∗ be s.t.

dµ = r−
d−1
2 dµ∗ ⊗ dσd−1 .

Using the classical formula for integration in polar coordinates we have

µ̂(ξ) =

∫ ∞

0

∫
Sd−1

r
d−1
2 e−i ξrα dσd−1(α) dµ∗(r) .

Following [80, Sec. 3.3], letting ρ = |ξ|, we have

µ̂(ξ) = c0ρ
1− d

2

∫
A

r
1
2 J d−2

2
(ρr) dµ∗(r)

where c0 is a constant that only depends on the dimension of the space and J d−2
2

is the Bessel
function with index d−2

2 . We use the following asymptotics for the Bessel function for x→ ∞

J d−2
2
(x) =

√
2

πx
cos
(
x+

π

4
(d− 1)

)
+R(x),

where R = O(x−
3
2 ). Writing the cos as sum of complex exponentials, we have

µ̂(ξ) = c0ρ
− d−1

2

√
2

π

(
c1

∫ b

a

e−i rρ dµ∗(r)+c1

∫ b

a

ei rρ dµ∗(r)

)
+

+ c2ρ
1− d

2

∫ b

a

r
1
2R(ρr) dµ∗(r) =

= c′ρ−
d−1
2

(
c1µ̂∗(ρ) + c1µ̂∗(ρ)

)
+ c2ρ

1− d
2

∫ b

a

r
1
2R(ρr) dµ∗(r) =

= c′ρ−
d−1
2 2Re(c1µ̂∗(ρ)) + c2ρ

1− d
2

∫ b

a

r
1
2R(ρr) dµ∗(r)



6.5. Further results 164

where c′ := c0
√
2/π, and c1, c2 are constants that only depend on the dimension of the space.

In particular c1 = e−iβ , with β := π
4 (d− 1). Therefore

|µ̂(ξ)| ≥
∣∣∣c′ρ− d−1

2 2Re(c1µ̂∗(ρ))
∣∣∣− ∣∣∣∣∣c2ρ1− 1

2

∫ b

a

r
1
2R(ρr) dµ∗(r)

∣∣∣∣∣
hence ∣∣∣c′ρ− d−1

2 2Re(c1µ̂∗(ρ))
∣∣∣ ≤ |µ̂(ξ)|+

∣∣∣∣∣c2ρ1− d
2

∫ b

a

r
1
2R(ρr) dµ∗(r)

∣∣∣∣∣ ≤
≤ |µ̂(ξ)|+ |c2|ρ1−

d
2

∫ b

a

r
1
2 |ρr|− 3

2 dµ∗(r) ≤

≤ ρ−
d−1+α

2 + |c2|ρ−
d+1
2

∫ b

a

r−
d−3
2 dµ∗(r) ≤

≤ ρ−
d−1+α

2 + |c3|ρ−
d+1
2

for some constant c3, where we used the fact that a > 0 and hence r− d−3
2 attains a maximum in

[a, b]. This shows that, for some constant c > 0

|2Re(c1µ̂∗(ρ))| ≤ c ρ−
α
2 .

Since d = 1 + 4k, we have c1 = e−ikπ and therefore

|2Re(c1µ̂∗(ρ))| = |2Re(µ̂∗(ρ))| .

Define the measure ν as
ν(E) := µ∗(E) + µ∗(−E).

Clearly spt(ν) = spt(µ∗) ∪ − spt(µ∗) ⊂ A ∪ −A. To conclude the proof, it suffices to show
that dimF(ν) ≥ α. Indeed, dimF(A) = dimF(−A) (as the Fourier dimension is invariant under
invertible affine transformations) and dimF(A∪−A) = max{dimF(A),dimF(−A)} as A is closed5.
In particular, dimF(ν) ≥ α implies dimF(A ∪ −A) = dimF(A) ≥ α.

Notice that

ν̂(t) =

∫
e−i xt dν(t) =

=

∫
A

e−i xt dµ∗(x)+

∫
−A

e−i xt dµ∗(−x) =

=

∫
A

e−i xt dµ∗(x)+

∫
A

e−i xt dµ∗(x) =

= µ̂∗(t) + µ̂∗(t) = 2Re(µ̂∗(t))

The claim follows from the estimate we obtained on |2Re(µ̂∗(t))|.

5The closedness is not necessary in this case, as A and −A are not only disjoint but also “nicely separated”.



7
Effective aspects of the Hausdorff and Fourier

dimension

In this section, we study the effective counterparts of the results on the (boldface) complexity of
the family of closed Salem sets. We first introduce a few notions from computable measure theory,
and then, in Section 7.3 we will study the Hausdorff and Fourier dimension from the point of view
of the lightface hierarchy.

7.1 Basic tools

Definition 7.1: Let (X, d, α) be a computable metric space and let B⟨i,j⟩ := B (α(i), qj). We
say that a compact K ⊂ X is co-c.e. compact ifσ ∈ N<N : K ⊂

∪
i<|σ|

Bσ(i)

 ∈ Σ0
1 .

We say that K is computably compact if it is co-c.e. compact and there exists a computable
dense sequence in K.

We say that a sequence (Kn)n∈I is uniformly co-c.e. compact if each Kn is co-c.e. compact
in a computable metric space Xn and the set(n, σ) ∈ N× N<N : Kn ⊂

∪
i<|σ|

Bnσ(i)


is c.e., where Bnk is the k-th basic open ball in Xn. In other words, the sequence {Kn}n∈I is
uniformly co-c.e. compact if there is a unique computable function witnessing that each Kn is
co-c.e. compact.

165



7.1. Basic tools 166

The notions of co-c.e. compact and computably compact are standard notions in computable
analysis (see e.g. [17, Def. 2.10]). Notice that being co-c.e. compact implies being Π0

1(X) and that
every Π0

1(X) subset of a co-c.e. compact space is co-c.e. compact. Clearly a computable metric
space is co-c.e. compact iff it is computably compact. Moreover, if K is co-c.e. compact (resp.
computably compact) and f : K → Y is computable and surjective, then Y is co-c.e. compact
(resp. computably compact) as well (see [89, Prop. 5.3]). A list of equivalent conditions to being
computably compact are listed in [89, Prop. 5.2]. The notion of co-c.e. compact can be extended
in a straightforward way to effective spaces.

We also mention the following simple lemma:

Lemma 7.2:
If X is co-c.e. compact then so is XN.

Proof: The fact that the finite product of co-c.e. compact spaces is co-c.e. compact follows from
[89, Prop. 5.4]. To prove that XN is co-c.e. compact, recall that an open set in XN is of the type
B :=

∏
j∈NBj , where each Bj is open in X and Bj ̸= X only for finitely many indexes. Such

an open set is canonically represented via (a name for) a finite sequence (Bj)j<N s.t. for every
j ≥ N , Bj = X.

Let (Bi)i<k be a finite sequence of open subsets of XN, where Bi is represented by
(Bij)j<Ni . This sequence trivially induces a finite sequence (Ci)i<k of open subsets of XN ,
where N := maxi<kNi: for every i and every j ∈ {Ni, . . . , N − 1}, let Bij := X and define
Ci :=

∏
j<N B

i
j . The sequence (Bi)i<k covers XN iff (Ci)i<k covers XN . The claim follows from

the fact that the sets (Xn)n∈N are uniformly co-c.e. compact.

We now give a brief introduction on how computable measure theory can be developed in
the context of TTE. For a more thorough presentation we refer the reader to [24]. While the
theory can be developed more generally for Borel measures on sequential topological spaces [99],
for our purposes it is enough to focus on probability measures on X, where X is (computably
homeomorphic to) either [0, 1]d or Rd. Notice that, since every represented space can be endowed
with the final topology (which is sequential, as mentioned in Section 1.1.2), the theory can be
developed for every represented space X.

Recall that, in general, if X is a separable metric space then so is P(X). A canonical choice for
a dense subset of P(X) is the set D of probability measure concentrated on finitely many points
of the dense subset of X, assigning rational mass to each of them (i.e. a weighted sum of Dirac
deltas, where each weight is rational). Moreover, the Prokhorov metric on P(X) can be explicitly
defined as

ρ(µ, ν) := inf{ε > 0 : (∀A ∈ B(X))(µ(A) ≤ ν(Aε) + ε)},

with Aε := {x ∈ X : d(x,A) < ε}. This metric induces the weak topology on P(X) defined
in Section 6.1. It is known that the space (P(X), ρ,D) is a computable metric space ([55, Prop.
4.1.1]). As such, a canonical choice for a representation of a measure is the Cauchy representation.

From a computational point of view, it is often convenient to look at Borel (probability) measure
from a different point of view. A (probability) valuation is a map ν : Σ0

1(X) → [0, 1] s.t.

• ν(∅) = 0;



7.1. Basic tools 167

• ν(X) = 1;

• ν(U) + ν(V ) = ν(U ∪ V ) + ν(U ∩ V ).

Probability valuations can be defined in a slightly more general context as maps over a lattice
([99, Sec. 2.2]). Every Borel measure µ naturally induces a valuation ν := µ|Σ0

1(X). The induced
valuation is lower semicontinuous1, i.e. if (Ai)i∈N are nested open sets then ν(

∪
iAi) = supi ν(Ai).

Since every finite Borel measure is uniquely identified by its restriction to the open sets (as every
such measure on the Euclidean space is regular, and in particular outer regular, see e.g. [95, Thm.
2.18]), we can identify P(X) with the family of lower semicontinuous valuations on Σ0

1(X).
The lower semicontinuity of the valuation functions can be naturally translated in the context

of TTE. We define the represented space (R<, δ<) as the set of real numbers, where x ∈ R is
represented by a monotonically increasing sequence of rational numbers converging to x. Equiv-
alently, we can think of a δ<-name for x as the list of all the rational numbers smaller than x.
This is the so-called left-cut representation of the real numbers, and we say that a real is left-c.e.
if it has a computable δ<-name (see [112, Sec. 4.1]). The final topology induced on R by δ< is
exactly the topology of lower semicontinuity (i.e. the topology whose open sets are of the form
(x,∞) for some x ∈ R, see [112, Lem. 4.1.4]). Similarly, we can define the represented space
(R>, δ>) of the right-c.e. reals, where δ> is the right-cut representation map, naming a real as a
monotonically decreasing sequence of rationals converging to it. The final topology of δ> is the
topology of the upper-semicontinuity (again, see [112, Lem. 4.1.4]). It is straightforward to see
that given a δ<-name for x we can computably find a δ>-name for −x (and vice versa). Notice
that +: R< × R< → R< and sup: RN

< → R< are computable, but − : R< × R< → R< is not. As
a notational convenience, we can use I< to denote the unit interval [0, 1] represented using the
left-cut representation.

With this in mind, we can define another representation on the space of Borel (probability)
measures: the canonical representation δC for a (probability) measure names a measure µ using
a name for the (realizer-)continuous function µ|Σ0

1(X) : Σ
0
1(X) → I< ([99, Sec. 3.1]). The final

topology on P(X) induced by δC coincides with the weak topology on P(X) ([99, Cor. 3.5]).
Moreover, the canonical representation is equivalent to the Cauchy representation on P(X) ([99,
Prop. 3.7]). In the development of the theory, it is often more convenient to think of a (probability)
measure as being represented using the canonical representation, i.e. using a name for the induced
valuation. We can therefore think of a name for a (probability) measure µ on X as a list of
δ<-names for the measures of the basic open balls.

Theorem 7.3:
Let (X, δX) and (Y, δY ) be represented spaces, endowed with the final topology induced by
their respective representation maps. Let also C(X,Y ) be the set of continuous (equivalently,
realizer-continuous) functions X → Y . The following maps are computable:

1. P(X)×Σ0
1(X) → R< := (µ,U) 7→ µ(U);

2. P(X)×Π0
1(X) → R> := (µ, F ) 7→ µ(F );

3. P(X)×∆0
1(X) → R := (µ,D) 7→ µ(D);

4. P(X)×C(X,Y ) → P(Y ) := (µ, f) 7→ µf , where µf (E) := µ(f−1(E)) is the push-forward
measure;

1Equivalently, it is continuous w.r.t. the Scott topology on [0, 1], see e.g. [55, Rem. 3.1.1].



7.1. Basic tools 168

5.
∫
: C(X,R<)× P(X) → R< := (f, µ) 7→

∫
f dµ;

6.
∫
: Cebd(X,R) × P(X) → R := (f, µ) 7→

∫
f dµ, where Cebd(X,R) denotes the space of

effectively bounded continuous functions, i.e. a name for f ∈ Cebd(X,R) is ⟨pf , pa, pb⟩,
where pf is a δC(X,R)-name for f and pa, pb are computable names for a, b ∈ R s.t. for
every x ∈ X, a < f(x) < b.

Proof: Point 1. is straightforward from the definition of the canonical representation for P(X)
(see also [55, Prop. 4.2.1]) and point 2. is a corollary of point 1. (as µ(F ) = 1−µ(X \F )). Point
3. follows trivially from the points 1. and 2. as a δR-name for x ∈ R can be computably obtained
from a δR<

-name and a δR>
-name of x. Point 4. is (essentially) a diagram-chasing exercise, see

also [24, Prop. 49]. Points 5. and 6. are presented in [24, Sec. 3, in particular point 4. is prop.
7]. See also [99, Prop. 3.6] for a slightly more general version of point 5..

For our purposes, we will also need an effective analog of the fact that if X is compact metrizable
then so is P(X) ([62, Thm. 17.22]). The proof of the following theorem was suggested to us by
Matthias Schröder.

Theorem 7.4:
For every computable metric space (X, d, α), if X is computably compact then so is P(X).

Proof: Since X is a computably compact computable metric space, there is a representation
map δ : 2N → X for X which is (computably) equivalent to the Cauchy representation on X ([11,
Prop. 4.1]).

Every probability measure µ ∈ P(2N) can be identified with a function πµ ∈ [0, 1]N (identifying
N with 2<N) s.t.

(∀σ ∈ N<N) (πµ(()) = 1 and πµ(σ) = πµ(σ
⌢(0)) + πµ(σ

⌢(1))) . (⋆)

The map Φ := µ 7→ πµ is a computable homeomorphism (i.e. a computable bijection with
computable inverse) between P(NN) and a Π0

1 subset of [0, 1]
N. Indeed, it is computable by

Theorem 7.3(3) and its inverse Φ−1 is straightforwardly computable. Moreover, π ∈ ran(Φ) iff it
satisfies (⋆), which is a Π0

1 condition relative to π. This, in turn, implies that ran(Φ) is co-c.e.
compact, as [0, 1]

N is computably compact (by Lemma 7.2). In particular, the fact that P(K) is
computably homeomorphic to a co-c.e. compact space implies it is co-c.e. compact.

To conclude the proof, define ψ : P(2N) → P(X) as the pushforward operator ψ(µ) := µδ
where µδ(E) := µ(δ−1(E)). This map is computable (Theorem 7.3) and surjective ([101, Thm.
14]), and therefore P(X) is co-c.e. compact.



7.1. Basic tools 169

Corollary 7.5:
For every computable metric space X that admits an admissible representation δ :⊆ kN → X
with co-c.e. compact domain, the space P(X) is co-c.e. compact.

Proof: Trivial from Theorem 7.4 as if X admits an admissible representation δ :⊆ kN → X
with co-c.e. compact domain then it is computably compact.

We conclude this section with the effective counterpart of Lemma 6.3:

Lemma 7.6:
Let X,Y be computable metric spaces. If Y is computably compact then, for every
F ∈ Π0

1(X × Y ), projX F ∈ Π0
1(X). If Y =

∪
n∈N Yn where the sequence (Yn)n∈N is uni-

formly co-c.e. compact, then for every F ∈ Σ0
2(X × Y ), projX F ∈ Σ0

2(X).

Proof: Let us first assume that Y is computably compact and let F ∈ Π0
1(X × Y ). Let p ∈ NN

be a computable map s.t. FC =
∪
n∈NB

X
p(n)0

×BYp(n)1 . We can notice that BXn ⊂ (projX F )
C iff

the preimage BXn ×Y of BXn via the projection map projX is contained in the complement of F .
Let φp : N<N × N → N be a computable function s.t., for all σ ∈ N<N∩

i∈ran(σ)

BXp(i)0 =
∪
k∈N

BXφp(σ,k)
.

Such a map exists because X is a computable metric space.
To show that (projX F )

C is effectively open, notice thatn ∈ N : (∃σ ∈ N<N)

 ∪
i∈ran(σ)

BYp(i)1 = Y and n ∈ ran(φp(σ, ·))

 ∈ Σ0
1.

This follows from the fact that φp is computable and that
∪
i∈ran(σ)B

Y
p(i)1

= Y is Σ0
1 because Y

is co-c.e. compact. This shows that we can computably enumerate a list of open sets exhausting
the complement of projX F , i.e. projX F ∈ Π0

1(X).
The same argument shows (still assuming Y co-c.e. compact) that if D ∈ Π0

1(N × X × Y )
then projN×X D ∈ Π0

1(N×X) (it is enough to replace X with N×X). If F ∈ Σ0
2(X × Y ) then

it can be written as F = projX×Y D, for some D ∈ Π0
1(N×X × Y ). In particular,

projX F = projX projN×X D ,

and therefore projX F ∈ Σ0
2(X).

Finally, assume that F ∈ Σ0
2(X × Y ) and Y =

∪
n∈N Yn where the (Yn)n∈N are uniformly

co-c.e. compact. Let D ∈ Π0
1(N×X×Y ) be s.t. F = projX×Y D (as above). Notice that, defining



7.2. The represented (hyper)spaces of closed and compact sets 170

Dn := {(k, x, y) ∈ D : y ∈ Yn}, the sequence (projN×X Dn)n∈N is uniformly Π0
1, as (Yn)n∈N is

uniformly co-c.e. compact. In other words,

E := {(n, k, x) : (∃y)((k, x, y) ∈ Dn)} ∈ Π0
1(N× N×X),

and therefore projX F = projX E ∈ Σ0
2 (using a canonical computable identification N2 → N).

7.2 The represented (hyper)spaces of closed and com-
pact sets

In order to characterize the complexity of the Hausdorff and Fourier dimension from the point
of view of the Kleene hierarchy, we first need to specify the lightface structure of the hyperspaces
F(X) and K(X) are endowed with (recall that the lightface complexity is not uniquely determined
by the topology, and, in fact, it is not invariant under homeomorphisms).

In general, for a computable metric space (X, d, α), there is a canonical choice for an admissible
representation on the hyperspaces FU (X) and F(X). Indeed, the negative information representa-
tion we commonly use for the closed subsets of a represented space is an admissible representation
for FU (X), while the full information representation ψ is admissible for F(X) (see [12])2.

If X is compact then FU (X) and KU (X) coincide, and, in turn, they are equal, as represented
spaces, with the represented space we denoted as Π0

1(X). Moreover, F(X) and K(X) coincide, and
they are Polish spaces. In particular, a natural choice for a dense subset of K(X) is an enumeration
β of the finite subsets of ran(α), i.e.

β(⟨σ⟩) :=
∪
i<|σ|

{α(σ(i))} .

The space (K(X),dH, β) is therefore a computable metric space, and hence, it is canonically en-
dowed with the Cauchy representation. This, in turn, induces a representation on the pointclasses
Γ(K(X)) as described in Section 1.2.2.

As an alternative representation for K(X) (when X is compact), we can consider the following:
for every σ ∈ N<N, define

Dσ :=
∪

i<|σ|−1

B
(
α(σ(i+ 1)), qσ(0)

)
,

where (qi)i∈N is the standard enumeration of Q. It is clear that the set {Dσ}σ∈N<N is a countable
basis for X (as it contains the basic open balls centered in ran(α) and with rational radius).

A countable basis for K(X) is given by the sets {V⟨σ,τ⟩}σ,τ∈N<N , with

V⟨σ,τ⟩ := {F ∈ K(X) : F ⊂ Dσ ∧ (∀i < |τ |)(F ∩Bτ(i) ̸= ∅)}.

Notice that, in general, we cannot replace Dσ with a basic open ball for X. Indeed, if B1 and B2

are basic disjoint open balls for X then

{F : F ⊂ B1} ∪ {F : F ⊂ B2} ⊊ {F : F ⊂ B1 ∪B2} .
2For the sake of completeness we should mention that the positive information representation is admissible for

the space FL(X), which also makes it (intuitively) clearer why the full information representation is admissible for
F(X).



7.2. The represented (hyper)spaces of closed and compact sets 171

It is easy to see that the family {V⟨σ,τ⟩}σ,τ∈N<N is a basis for K(X). Indeed, if we denote with

BH (F, r) := {G ∈ K(X) : dH(F,G) < r}

the open ball with respect to the Hausdorff metric, then every basic open ball BH (β(⟨ρ⟩), q)
can be written as V⟨σ,τ⟩, where σ, τ are s.t. Dσ =

∪
i<|ρ|B (α(ρ(i)), q) and, for every j < |τ |,

Bτ(j) = B (α(ρ(j)), q) (this is just a definition-chasing problem).
In particular, a closed set F is equivalently represented with the Cauchy representation or with

a list (Vi)i∈N, where Vi is a basic open ball w.r.t. to the Hausdorff metric that contains F and has
radius 2−i.

If X is a (not necessarily compact) subspace of the Euclidean space, the Cauchy representation
for the space K(X) \ {∅} was studied in [22] under the name δHaus. The authors showed that it
is (computably) equivalent to the representation map δ=K |K ∗ that names a non-empty compact
subset K of X via a full information representation name of K and an index of a basic open ball B
s.t. K ⊂ B [22, Thm. 4.10]. The Cauchy representation for the hyperspace of non-empty compact
subsets of a generic computable metric space was studied in [20] (under the name δHausdorff).

We now explicitly show that, if X is a computably compact metric space, the representation
δHaus and the full information representation ψ on K(X) are equivalent (i.e. the empty set is not
problematic).

Proposition 7.7:
If (X, d, α) is a computably compact metric space the Cauchy representation δHaus and the full
information representation ψ on K(X) are equivalent.

Proof: Recall that, given two representations δ and δ′, δ ≤ δ′ if there is a computable
map that translates δ-names into δ′-names. Recall also that for every non-empty closed G,
dH(G, ∅) = diam(X).

δHaus ≤ ψ : Let p be a δHaus-name for F , i.e. p is a list of (indexes for) basic open balls (Bn)n∈N
w.r.t. the Hausdorff metric s.t. all the balls contain F and the radius of Bn is 2−n. Since
the empty set is isolated in K(X), it is enough to consider n sufficiently large so that
2−n < diam(X). Indeed, recall that we can assume that the enumeration of the dense
subset of a metric space is injective (see the comments after Definition 1.9). In particular,
we can computably tell whether the i-th ball is centered on ∅. If Bn is centered on ∅ then
F = ∅ (as Bn = {∅}). Otherwise F ̸= ∅, hence we can use the fact that δHaus ≤ δ=K |K ∗ ≡ ψ
(the equivalence δ=K |K ∗ ≡ ψ follows from the fact that F ⊂ B (∅,diam(X))).

ψ ≤ δHaus : Let ⟨p, q⟩ be a ψ-name for F , where p is a negative information name and q is a
positive information name for F . Notice that, if F = ∅ then p is a list of basic open balls that
cover X. On the other hand, if F ̸= ∅ then q eventually lists some basic open ball (in X) that
intersects F (q is allowed to not produce any information at stage i). In other words, we wait
for some sufficiently large n so that either

∪
i<nBi covers X or Bq(i) ∩ F ̸= ∅. This allows

us to determine whether F is empty or not. If F = ∅ we can trivially compute a sequence of
basic open balls (in K(X)) centered on ∅ with rapidly decreasing radii. Otherwise, as in the
previous reduction, we can use the fact that ψ ≡ δ=K |K ∗ ≤ δHaus to produce a δHaus-name
for F .



7.2. The represented (hyper)spaces of closed and compact sets 172

The following lemma is the effective counterpart of [62, Thm. 4.26].

Lemma 7.8:
If X is computably compact then so is K(X).

Proof: Let (Vi)i<k be a finite sequence of basic open sets in K(X), with Vi = V⟨σi,τi⟩ defined
as above.

We describe a c.e. procedure to determine if (Vi)i<k is a cover for K(X). We first check
whether there is i s.t. τi = (). If this is not the case then the procedure returns a negative answer
(or, equivalently, enters an infinite loop). Otherwise, let Y0 := X. At stage s + 1, we wait for
some unmarked i < k s.t. Dσi

covers Ys. If such i is found, we mark it as visited and define
Ys+1 := Ys \ (

∪
j<|τi|Bτi(j)), then go to the next stage. The procedure ends if Ys+1 = ∅, in which

case (Vi)i<k is a cover for K(X).
Let us show that the procedure is c.e.: first of all, the search for some i s.t. τi = () is

computable (as there are only finitely many such τi). Notice that, at each stage, Ys is co-c.e.
compact (as so is X). In particular, determining whether Dσi covers Ys is a c.e. condition.
Moreover, determining whether Ys+1 = ∅ is also c.e. (as it is equivalent to being covered by the
empty set). This shows that the procedure is c.e.. Notice also that if the procedure reaches the
stage s+ 1 = k then it halts iff Ys+1 ̸= ∅ (as there are no more unmarked i).

To prove that it correctly determines if (Vi)i<k is a cover, we first notice that the initial search
for some i s.t. τi = () is only a technical step to be sure that the empty set (which is isolated) is
covered. If i1, . . . , is are the indexes selected by stage s, then

F /∈
s∪

n=1

Vin ⇒ F ⊂ Ys+1

(this just follows from the definitions). In particular, if Ys+1 = ∅ then every F ∈ K(X) belongs
to some Vi.

Finally, if the procedure does not halt then, for some s ≤ k, Ys ̸= ∅ and there are no unmarked
i s.t. Dσi covers Ys. In particular, Ys witnesses the fact that (Vi)i<k is not a cover.

Proposition 7.9:
F(Rd) is computably compact.

Proof: We show that there is a computable surjection f : K([0, 1]d) → F(Rd), and the claim
will follow using Lemma 7.8. Fix a computable homeomorphism φ : (0, 1)d → Rd and define

f(K) := φ(K ∩ (0, 1)d) .

It is easy to see that, for K ∈ K([0, 1]d), f(K) is closed: indeed, if x /∈ f(K) then
φ−1(x) /∈ K ∩ (0, 1)d. Since K ∩ (0, 1)d is closed (in the relative topology on (0, 1)d), there



7.2. The represented (hyper)spaces of closed and compact sets 173

is a open neighborhood U ⊂ (0, 1)d of φ−1(x) s.t. U ∩ K = ∅. Since φ is a homeomorphism,
φ(U) is a open neighborhood of x and φ(U) ∩ f(K) = ∅.

Moreover, f is surjective: for every F ∈ F(Rd), φ−1(F ) is closed in the relative topology
of (0, 1)d. If we denote with G its closure w.r.t. the relative topology of [0, 1]d, we have that
G \ φ−1(F ) ⊂ ∂([0, 1]d), hence, in particular, f(G) = F .

Finally, we show that f is computable. Recall that both K([0, 1]d) and K(Rd) are admis-
sibly represented with the full information representation ψ. Let ⟨p, q⟩ ∈ NN be a name for
K ∈ K([0, 1]d). A negative information name for f(K) can be computed from p as φ is com-
putable: in fact, for every basic open B ⊂ KC we can computably list a sequence of basic open
balls of Rd covering φ(B). On the other hand, notice that a basic open ball B of Rd intersects
f(K) iff there is i ∈ N s.t. Bq(i) ⊂ φ−1(B) (this follows from the fact that φ is a homeomorphism).
In particular, to produce a positive information name for f(K), we list Bn ⊂ Rd whenever we
find some i s.t. Bq(i) ⊂ φ−1(B) (which is a computable condition).

Recall that, if X is not compact, then the hyperspace V(X) of closed subsets X endowed with
the Vietoris topology is not metrizable. We now show that it is not even admissibly represented.

Proposition 7.10:
The space FUV (R) (and hence FUV (Rd)) does not have a countable pseudobase. In particular,
it is not second-countable and it is not admissibly represented.

Proof: Recall that, by definition, a countable pseudobase for FUV (R) is a family {Pi}i∈N s.t.
for every open set U ⊂ FUV (R), every closed set F ∈ U and every sequence (Gn)n∈N converging
to F ,

(∃i)(∃n0)({F} ∪ {Gn : n ≥ n0} ⊂ Pi ⊂ U).

Fix a countable family {Pi}i∈N. We want to build a closed set F and an open set U which
contains F s.t. for every i, either F /∈ Pi or Pi ̸⊂ U . We define F := {xi : i ∈ N}, where (xi)i∈N
is a strictly increasing sequence iteratively defined as follows: for each i, let ni be the smallest
integer greater than xj+1 for every j < i (if i = 0 we let ni := 0). Choose an unbounded Pi ∈ Pi.
If there is none we just define xi := ni. Let yi ∈ Pi ∩ [ni,∞) and choose xi s.t. xi > yi + 1.
Notice that d(yi, {xj}j≤i) > 1.

Notice that, for every i ̸= j, d(xi, xj) > 1, hence the sequence (xi)i∈N is a non-convergent
sequence with no accumulation points. In particular, the set F := {xi : i ∈ N} is closed (as it is
sequentially closed). Fix ε sufficiently small, e.g. ε = 1/4, and define Fε := {x ∈ R : d(x, F ) < ε}
and U := {G ∈ F(R) : G ⊂ Fε}.

The set U and the closed set F witness the fact that {Pi}i∈N is not a pseudobase. Indeed,
for every i, either every P ∈ Pi is bounded (and hence F /∈ Pi), or the set Pi defined above
witnesses that Pi ̸⊂ U (as by construction d(yi, F ) > 1).

This implies also that FUV (R) is not second-countable, as every base is a pseudobase. The fact
that it is not admissibly represented follows by Theorem 1.13. The claim generalizes to FUV (Rd)
as every pseudobase of FUV (Rd) would induce a pseudobase on FUV (R) by projection.



7.3. The effective complexity of closed Salem sets 174

Corollary 7.11:
The space V(R) (and hence V(Rd)) does not have a countable pseudobase. In particular, it is
not second-countable and it is not admissibly represented.

Proof: This follows from the proof of Proposition 7.10. Indeed, the above proof only uses a the
closed set F ∈ F(R) and an open set U ⊂ F(R) to show that no countable subfamily of F(R)
is a pseudobase. Since FUV (R) is coarser than V(R) the same argument applies to V(R) (the
claim would not follow immediately if, in the proof of Proposition 7.10 we would have exploited
a convergent sequence to F , as convergence is a weaker notion in FUV (R)).

7.3 The effective complexity of closed Salem sets

We are now ready to prove the effective counterparts of Proposition 6.5 and Proposition 6.6.

Proposition 7.12:
For every d and every compact K ⊂ Rd,

• {(A, p) ∈ KU (K)× [0, d] : dimH(A) > p} is Σ0,K
2 ;

• {(A, p) ∈ KU (K)× [0, d] : dimH(A) ≥ p} is Π0,K
3 .

Proof: Following the proofs of Proposition 6.5 and Lemma 6.21, let

D(A) := {s ∈ [0, d] : (∃µ ∈ P(A))(∃c > 0)(∀x ∈ Rd)(∀r > 0)(µ(B (x, r)) ≤ crs)}.

Notice that, if a ∈ R< and b ∈ R (with the standard Cauchy representation) then the condition
a ≤ b is a Π0

1 predicate of a and b (as it is equivalent to (∀i)(pa(i) ≤ b), where pa ∈ δ−1
< (a)),

hence µ(B (x, r)) ≤ crs is Π0
1 as a predicate of µ, x, r, c, and s.

Moreover, D(A) can be equivalently written as

{s ∈ [0, d] : (∃µ ∈ P(A))(∃c ∈ Q, c > 0)(∀q0 ∈ Qd)(∀q1 ∈ Q, q1 > 0)(µ(B (q0, q1)) ≤ cqs1)}.

Indeed, since the measure µ is regular, for every x ∈ Rd and r > 0

µ(B (x, r)) = inf{µ(U) : U ∈ Σ0
1(Rd) and B (x, r) ⊂ U}.

In particular, for every ε > 0 there are q0 ∈ Qd and q1 ∈ Q s.t. B (x, r) ⊂ B (q0, q1) and q1 < r+ε.
Hence

µ(B (x, r)) ≤ inf{µ(B (q0, q1)) : B (x, r) ⊂ B (q0, q1) and q1 < r + ε and ε > 0}
≤ inf{cqs1 : B (x, r) ⊂ B (q0, q1) and q1 < r + ε and ε > 0}
≤ inf{c(r + ε)s : ε > 0} = crs



7.3. The effective complexity of closed Salem sets 175

Since the existential quantification on c can be trivially restricted to the rationals, we have

S := {(s, µ) ∈ [0, d]× P(A) : (∃c > 0)(∀x ∈ Rd)(∀r > 0)(µ(B (x, r)) ≤ crs)} ∈ Σ0,A
2 .

Observe that µ ∈ P(A) iff µ ∈ P(K) and µ(A) ≥ 1. In particular, since KU (K) is admissibly
represented with the negative information representation, by Theorem 7.3.(2), given two names
for µ and A, we can computably obtain a right-cut representation for µ(A), hence the the
condition µ(A) ≥ 1 is a Π0

1 predicate of µ and A (as if x ∈ R> the condition x ≥ 1 is x-co-c.e.).
Since P(K) is computably compact (??), using (the relativized version of) Lemma 7.6, we have

D(A) = proj[0,d]{(s, µ) ∈ [0, d]× P(K) : µ(A) ≥ 1 ∧ (s, µ) ∈ S} ∈ Σ0,A
2 .

To conclude the proof we notice that the conditions

dimH(A) > p ⇐⇒ (∃s ∈ Q)(s > p ∧ s ∈ D(A)),

dimH(A) ≥ p ⇐⇒ (∀s ∈ Q)(s < p→ s ∈ D(A))

are Σ0
2 and Π0

3 respectively (as predicates of A and p), from which the claim follows.

Proposition 7.13:
For every d and every compact K ⊂ Rd,

• {(A, p) ∈ KU (K)× [0, d] : dimF(A) > p} is Σ0,K
2 ;

• {(A, p) ∈ KU (K)× [0, d] : dimF(A) ≥ p} is Π0,K
3 .

Proof: As in the proof of Proposition 6.6, consider the set

D(A) := {s ∈ [0, d] : (∃µ ∈ P(A))(∃c > 0)(∀x ∈ Rd)(|µ̂(x)| ≤ c|x|−s/2)}.

Recall that, by definition,

µ̂(x) =

∫
e−ix·t dµ(t) =

∫
cos(x · t) dµ(t)− i

∫
sin(x · t) dµ(t) .

Since both cos and sin are effectively bounded, by Theorem 7.3.(5) the map

P(Rd)× R → R := (µ, x) 7→ |µ̂(x)|

is computable. By the continuity of the Fourier transform, the universal quantification on x ∈ Rd
can be restricted to Qd. Since the quantification on c can be trivially restricted to the rationals,
we obtain that D(A) = proj[0,d]Q, with

Q := {(µ, s) ∈ P(K)× [0, d] : (∃c ∈ Q, c > 0)(∀q ∈ Qd)(µ ∈ P(A) ∧ |µ̂(q)| ≤ c|q|−s/2)}.

The claim follows as in the proof of Proposition 7.12: since the condition µ ∈ P(A) is a Π0
1

predicate of µ and A and P(K) is computably compact, we have that Q ∈ Σ0,A
2 . Using (the



7.3. The effective complexity of closed Salem sets 176

relativized version of) Lemma 7.6 we conclude that D(A) ∈ Σ0,A
2 , and finally

dimF(A) > p ⇐⇒ (∃s ∈ Q)(s > p ∧ s ∈ D(A)),

dimF(A) ≥ p ⇐⇒ (∀s ∈ Q)(s < p→ s ∈ D(A))

are, respectively, a Σ0
2 and a Π0

3 predicate of A and p.

Corollary 7.14:
For every compact K ⊂ Rd, the set {A ∈ KU (K) : A ∈ S ([0, d])} is Π0,K

3 .

Proof: As in the proof of Theorem 6.7, dimH(A) = dimF(A) iff

(∀r ∈ Q)(dimH(A) > r → dimF(A) > r),

which is a Π0,A
3 condition by Proposition 7.12 and Proposition 7.13.

We now show that, if we take d = 1 and K = [0, 1] then the above conditions are lightface
complete for their respective classes. To do so, we prove an effective analogue of Lemma 6.9. Recall
that, on p. 149, for every α ≥ 0 we introduced the set S(α) as a closed Salem subset of E(α). In
Section 6.2, we wrote the set as

S(α) =
∩
k∈N

∪
k′≤n≤k′′

Gn(α) ,

where Gn(α) = {x ∈ [0, 1] : minm∈Z |nx−m| ≤ n−1−α}, and k′ and k′′ are integers that depend
on k and α.

We now show that the map α 7→ S(α) is computable. To do so, we need to be more precise on
the relation between α, k and the integers k′ and k′′. This requires some tedious checking of the
effectiveness of the propositions presented in [7]. We isolate these technicalities in the following
lemma, while the result of the (relative) effectiveness of the set S(α) is stated Proposition 7.16.

Lemma 7.15:
The maps (α, k) 7→ k′ and (α, k) 7→ k′′ are computable.

Proof: This proof assumes familiarity with [7]. Precisely, we now prove that [7, Lem. 3.2] is
effective. First of all, since k′′ is the greatest prime number smaller than 2k′, we only need to
show that the map φ := (α, k) 7→ k′ is computable. For the sake of readability, we adopt the
same notation used in [7] and recall the relevant definitions: let PM be the set of prime numbers
between M and 2M . Let also N be sufficiently large so that, for every M > N , |PM | ≥ M

2 log(M) .
The existence of such N follows from the asymptotic law of distribution of prime numbers (see
[50, Sec. 22.19 and eq. (22.19.3)]).



7.3. The effective complexity of closed Salem sets 177

Fix M s.t. R := (4M)−1−α < 1/2 and define FM : R → R as the periodic extension with
period 1 of the function on [−1/2, 1/2] defined as

x 7→

{
15
16R

−5(R2 − x2)2 if |x| ≤ R

0 if R < |x| ≤ 1
2

Let
∑
m∈Z a

(M)
m e2πimx be the Fourier series expansion of FM . Define

qM (x) :=
∑
p∈PM

FM (px) =
∑
p∈PM

∑
m∈Z

a(M)
m e2πimpx ,

and let gM (x) := qM (x)/|PM |, so that ĝM (0) = 1. We stress that the choice of M (and hence
the definition of FM , qM and gM ) depends on α.

Finally, define the function θ : R× R → R as

θ(α, x) := (1 + |x|)−
1

2+α log(e+ |x|) log log(e+ |x|) .

Let C2
cebd(R) be the space of effectively bounded C2(R) functions with compact support. In

particular, a name for f ∈ C2
cebd(R) is a name for a compact set K ⊂ R and three δCebd(R)-names

p0, p1, p2 respectively for f, f ′, f ′′.
The effective version of [7, Lem. 3.2] can be stated as follows: there is a computable functional

Φ that, given α ≥ 0, ψ ∈ C2
cebd(R), and δ > 0, produces a positive integer M0 s.t. for every

M ≥M0 and every x ∈ R
|ψ̂gM (x)− ψ̂(x)| ≤ δθ(α, x) .

Before proving the claim, we show how it implies the computability of the map φ. Let
ψ0 : R+ → R+ be a computable function in C2

cebd(R) with spt(ψ0) = [0, 1] and
∫
ψ0(x) dx = 1. For

every α ≥ 0 and k ≥ 1 define Mα,k to be the integer produced by Φ(α, ψ0 ·
∏k−1
j=1 gMα,j

, 2−k−2),
and define φ(α, k) :=Mα,k = k′.

To prove the effective version of [7, Lem. 3.2] we follow the steps of [7, Sec. 4]. Recall that
we do not need to show that the proof is constructive, but only that the map Φ is computable.
The proof of [7, Lem. 3.2] is divided into three steps.
Step 1: there exists M1 > 0 and A = A(α) s.t. for every M ≥M1

1. for every k ∈ Z \ {0}, |ĝM (k)| ≤ A logM
M ;

2. for every k ∈ Z with |k| > (4M)2+α, |ĝM (k)| ≤ A|k|−
1

2+α log |k|.

The argument in [7] shows that, if we choose A := 4(2 + α) (which is, of course, computable in
α), the second estimate always holds. Moreover, the first estimate holds for the same A, every
M > N and every k s.t. |k| ≤ (4M)2+α. To obtain a M1 s.t. the first estimate holds for every
k ̸= 0, a simple observation is that

log |k|
|k|

1
2+α

= (2 + α)
log |k|

1
2+α

|k|
1

2+α

−−−−→
|k|→∞

0 .

In particular, since the function log(x)/x is strictly decreasing for x > e, if we choose M1 > N

s.t. M1/(2+α)
1 > e then, for every M > M1 we have

log |k|
|k|

1
2+α

≤ (2 + α)
logM

M
,



7.3. The effective complexity of closed Salem sets 178

hence the claim follows using the second estimate. In short, the estimates of step 1 hold if we
choose M1 > max{N, e2+α} and A = 4(2 + α).
Step 2: for every M > M1 there exists B > 0 that depends on ψ and α s.t. for every x ∈ R

|ψ̂gM (x)− ψ̂(x)| ≤ B
logM

M
.

This inequality is verified choosing B := 2AB1, where B1 is a constant s.t.

|ψ̂(x)| ≤ B1

(1 + |x|)2
.

The existence of such B1 follows by the classical formula that relates the Fourier transform of ψ
with the Fourier transform of its derivative, namely ψ̂(n)(x) = (ix)nψ̂(x). To prove that such a
constant can be found computably in ψ, notice that

|ψ̂(x)|(1 + |x|)2 = |ψ̂(x)|+ 2|ψ̂′(x)|+ |ψ̂′′(x)| ≤ ∥ψ ∥L1 + ∥ψ′ ∥L1 + ∥ψ′′ ∥L1 .

Since the L1-norm of a continuous and effectively bounded function is computable (see Theo-
rem 7.3.6), the constant B1 is computable from a name of ψ.
Step 3: there exists M2 > 0 s.t. for all M ≥M2,

|ψ̂gM (x)− ψ̂(x)| ≤ δθ(α, x) .

The constant M2 can be found by unbounded search. Indeed, given two monotonically decreasing
functions f and g s.t. f = o(g), we can computably find x0 s.t. for every x ≥ x0, f(x) < g(x).
In particular, the claim follows from the fact that the estimates needed to compute M2 do not
depend (directly) on ψ and gM , but only on the mutual relation between the upper bounds
obtained in step 1 and the function cθ(α, x), where c is a constant that depends on B, α and δ.

The proof of the effectiveness of [7, Lem. 3.2], and hence of the current lemma, is concluded
defining Φ(α, ψ, δ) as M2.

Proposition 7.16:
The following maps are computable:

N× R → K([0, 1]) := (n, α) 7→ Gn(α)

N× R → K([0, 1]) := (n, α) 7→
∪

k′≤n≤k′′
Gn(α)

R → Π0
1(R) := α 7→ S(α)

Proof: Recall that

Gn(α) = {x ∈ [0, 1] : min
m∈Z

|nx−m| ≤ n−1−α} =
∪
m≤n

B
(m
n
,n−1−α

)
∩ [0, 1] .



7.3. The effective complexity of closed Salem sets 179

It is straightforward to see that, given (n, α), we can computably produce a ψ-name (i.e. a name
w.r.t. the full information representation) for Gn(α).

By Lemma 7.15, the maps (α, n) 7→ k′ and (α, n) 7→ k′′ are computable, which implies that
the second map in the statement of the proposition is computable.

The computability of the last map follows from the fact that
∩
: (Π0

1(R))
N → Π0

1(R) is
computable (see e.g. [10, Prop. 3.2(6)]).

In particular, if α is computable then S(α) is Π0
1(R). Notice however that, in the previous propo-

sition, we only get a δΠ0
1
-name for S(α). Indeed, in general, the map

∩
: (K([0, 1]))

N → K([0, 1]) is
not computable (it is not even continuous, see e.g. [62, Ex. 4.29(viii)]). In the construction used in
proof of Lemma 6.9, we exploited instead a superset R(α) of S(α), defined specifically to deal with
this problem. However, the construction of R(α) from S(α) is not computable: indeed, the set
R(k+1)(α) was obtained from R̃(k+1)(α) and R(k)(α) by removing the (finitely many) degenerate
intervals in R̃(k+1)(α) ∩ R(k)(α), which is not a computable operation (as we cannot computably
tell whether a given interval is a singleton or not). However, this step was only useful to make
the presentation neater; indeed, retaining finitely many points at each stage does not affect the
dimension of the final set.

Lemma 7.17:
There is a computable function f : [0, 1]< × 2N → K([0, 1]) s.t. for every p, x, f(p, x) is Salem
and

dim(f(p, x)) =

{
p if x ∈ Q2

0 if x /∈ Q2

Proof: Before proving the lemma, let us notice that a (possibly degenerate) closed interval
I = [a, b] can be equivalently represented via the full information representation ψ, or via a
pair of Cauchy names for the endpoints a and b. In turn, a finite union

∪
i<k Ii of closed

intervals Ii = [ai, bi] can be equivalently represented via a ψ-name or via a finite sequence of
pairs ((pi, qi))i<k, s.t. pi (resp. qi) is a Cauchy name for ai (resp. bi).

The proof of the lemma is essentially based on the proof of Lemma 6.9, however, we change
some of the details to ensure the computability of the map. As anticipated, we will not use the
set R(α). To avoid ambiguities, for every α ≥ 0, we define a superset P (α) of S(α) as follows:

P (α) =
∩
k∈N

P (k)(α) =
∩
k∈N

∪
j≤Nk

Jj(α, k),

where each Jj(α, k) is a (possibly degenerate) closed interval. We define the levels P (k)(α) of the
construction so that P (k+1)(α) ⊂ P (k)(α), and, moreover, for every i ≤ Nk there exists j ≤ Nk+1

s.t. Jj(α, k + 1) ⊂ Ji(α, k). We define P (k)(α) inductively as follows: P (0)(α) := S(0)(α). At
stage k + 1, let

P̃ (k+1)(α) := S(k+1)(α) ∪
∪
n∈Uk

Gn(α),

where Uk ⊂ N is a finite set of indexes s.t. for every interval j ≤ Nk,

Int(Jj(α, k)) ∩ P̃ (k+1)(α) ̸= ∅, (⋆)



7.3. The effective complexity of closed Salem sets 180

where Int(·) denotes the interior. Such a choice of Uk is always possible by the density of E(α).
Moreover, if we represent P̃ with the full information representation, then (⋆) is computable
(straightforward from the definition of full information), hence we can computably find a suffi-
ciently large set Uk that satisfies (⋆).

We obtain P (k+1)(α) by considering the finitely many intervals whose union is
P̃ (k+1)(α) ∩ P (k)(α). In particular, since (k, α) 7→ S(k)(α) is computable (Proposition 7.16),
then so is the map (k, α) 7→ P (k)(α). We also define P (k)(∞) := ∅.

Notice that, given two intervals I, J ∈ K([0, 1]), we can computably find two intervals I ′, J ′

s.t. I ∪ J = I ′ ∪ J ′ and |I ′ ∩ J ′| ≤ 1 (i.e. their intersection contains at most a point). Hence we
can always assume that, if α ≠ ∞, a name of P (k)(α) is a finite sequence (pj)j<Mk

of names of
mutually almost disjoint (their intersection contains at most one point) closed intervals whose
union is P (k) (Mk is possibly larger than Nk).

As in the proof of Lemma 6.9, for every interval I = [a, b] and every k let P (k)(α, I) be the
fractal obtained by scaling P (k)(α) to the interval I. Notice that the mapping x 7→ a+ (b− a)x
computably sends [0, 1] onto I and is affine and invertible if I is non-degenerate. In particular,
the map

N× R×K([0, 1]) → K([0, 1]) := (k, α, I) 7→ P (k)(α, I)

is computable.
We first define a map g :⊆ Q× 2N → K([0, 1]) s.t. for every q ∈ [0, 1) and x, g(q, x) is Salem

and dim(g(q, x)) = q if x ∈ Q2 and 0 otherwise. We will then obtain a function f with a similar
strategy to the one we used in the proof of Theorem 6.11, namely considering countably many
disjoint intervals Tn := [2−2n−1, 2−2n] and building a separate set on each of them, so that the
resulting set will have the prescribed dimension.

If q = 0 we just take g(q, x) := ∅. Assume q ∈ (0, 1) ∩Q and let α be s.t. 2/(2 + α) = q. We
run the construction used in the proof of Lemma 6.9: we define F (k)

x recursively as

Stage k = 0 : F (0)
x := [0, 1];

Stage k + 1 : Let J0, . . . , JMk
be the almost disjoint closed intervals s.t. F (k)

x =
∪
i≤Mk

Ji. If
x(k + 1) = 1 then, for each i ≤ Mk, let Hi := B ((ai + bi)/2, ε), where Ji = [ai, bi] and ε is
sufficiently small so that ∑

i≤Mk

diam(Hi)
2−k

≤ 2−k.

Define then F
(k+1)
x :=

∪
i≤Mk

Hi ∩ Ji.
If x(k + 1) = 0 then let s ≤ k be largest s.t. x(s) = 1 (or s = 0 if there is none) and let
I0, . . . , IMs

be the intervals of F (s)
x . For each i ≤ Ms, apply the (k + 1 − s)-th step of the

construction of T (α, Ii). Define F (k+1)
x :=

∪
i≤Ms

P (k+1−s)(α, Ii).

We then define g(q, x) := Fx :=
∩
k∈N F

k
x . The facts that g(q, x) is continuous and that Fx is

Salem with dimension q follow as in the proof of Lemma 6.9. To conclude the proof we only need
to show that a δK([0,1])-name for Fx can be uniformly computed from q and x.

Notice that, since the map (k, α, I) 7→ P (k)(α, I) is computable, then so is the map
(k, p, x) 7→ F

(k)
x (where the codomain is represented with the full information representation).

Hence, a δΠ0
1([0,1])

-name for Fx can be computed from a sequence (rk)k∈N where rk is a δΠ0
1([0,1])

-
name for F (k)

x . To compute a ψ+-name for Fx (i.e. a positive information name), we use the
fact that no interval is ever entirely removed and that no interval is entirely contained in Fx (as



7.3. The effective complexity of closed Salem sets 181

dim(Fx) < 1). In particular, a ψ+-name for Fx is obtained by listing all the basic open balls U
s.t. there are k and i ≤Mk s.t. U contains a k-th level interval Ji. Notice that, since no interval
is entirely removed, U ∩ Ji ̸= ∅ implies U ∩Fx ̸= ∅. Moreover, if V ∩Fx ̸= ∅ for some basic open
ball V , then for some k and i ≤Mk, V contains the k-th level interval Ji.

To conclude the proof, let p ∈ [0, 1]< and let (qn)n∈N be a monotonically increasing sequence
of rationals in [0, 1] that converge to p. W.l.o.g. we can assume that the sequence is strictly
increasing (with the possible exception of a prefix of zeroes at the beginning of the sequence).
Using a similar strategy as in the proof of Theorem 6.11, we define

f(p, x) := {0} ∪
∪
n∈N

τng(qn, x),

where τn : [0, 1] → Tn is a computable similarity transformation. The fact that f(p, x) has the
prescribed dimension follows from the countable stability for closed sets of dimH and dimF.
Notice that a δK([0,1])-name for f(p, x) can be obtained by carefully merging the δK([0,1])-names
of the sets τng(qn, x). We can briefly sketch the argument as follows: a basic open set intersects
f(p, x) iff it intersects τng(qn, x) for some n. On the other hand, to list the open sets that are
contained in the complement of f(p, x) it is enough to list all the open sets of the type

∪
nBn

where Bn is a basic open ball contained in relative topology of Tn \ τng(qn, x). The claim follows
from the fact that the intervals Tn are uniformly co-c.e. closed.

A slightly different way to obtain the same result would be to explicitly define g(q, x) also if
q = 1. In this case, we skip the k + 1 stage of the construction when x(k + 1) = 0 so that the set
Fx is either an interval or a singleton. With this modification, when defining the map f(p, x) we
could avoid assuming that the sequence (qn)n∈N is strictly increasing.

We can now state the effective counterpart of Proposition 6.10 and Theorem 6.11.

Proposition 7.18:
For every p < 1 the sets

{A ∈ K([0, 1]) : dimH(A) > p},
{A ∈ K([0, 1]) : dimF(A) > p}

are Σ0
2-complete. For every q ∈ (0, 1], the sets

{A ∈ K([0, 1]) : dimH(A) ≥ q},
{A ∈ K([0, 1]) : dimF(A) ≥ q},
{A ∈ K([0, 1]) : A ∈ S ([0, 1])}

are Π0
3-complete.

Proof: The upper bounds have been shown in Proposition 7.12 and Proposition 7.13. A proof of
the hardness is readily obtained by adapting the arguments used in the proofs of Proposition 6.10,
Theorem 6.11, and Theorem 6.12 using Lemma 7.17 in place of Lemma 6.9.



7.3. The effective complexity of closed Salem sets 182

We now turn our attention to the closed Salem subsets of X, where X is [0, 1]d or Rd. We first
notice the following result, which comes as a corollary of Proposition 7.12 and Proposition 7.13

Corollary 7.19:
• {(K, p) ∈ K(Rd)× [0, d] : dimH(K) > p} is Σ0

2;

• {(K, p) ∈ K(Rd)× [0, d] : dimH(K) ≥ p} is Π0
3;

• {(K, p) ∈ K(Rd)× [0, d] : dimF(K) > p} is Σ0
2;

• {(K, p) ∈ K(Rd)× [0, d] : dimF(K) ≥ p} is Π0
3.

Proof: We only prove the statement for dimH(K) > p, the proof of the complexity of the other
sets is analogous. Notice that, if we define

Xn := {(K, p) ∈ K([0, n]d)× [0, d] : dimH(K) > p},

then
dimH(K) > p ⇐⇒ (∃n)(K ∈ Xn).

Hence, it is enough to show that the sets (Xn)n∈N are uniformly Σ0
2, i.e. that

{(n,K, p) : K ∈ Xn} ∈ Σ0
2(N×K(Rd)× [0, d]).

Notice that, since the sets ([0, n])n∈N are uniformly co-c.e. compact, then so are the sets
(K([0, n]))n∈N (the argument of Lemma 7.8 can be run uniformly in n). This, in turn, implies
that the set

{(n,K, p) : (K, p) ∈ Xn}

is Σ0
2, as the argument in the proof of Proposition 7.12 can be run uniformly in n.

This corollary can be used to obtain the upper bounds in the non-compact case, i.e. the effective
counterpart of the upper bounds obtained in Theorem 6.23 and Theorem 6.24.

Proposition 7.20:
• {(A, p) ∈ F(Rd)× [0, d] : dimH(A) > p} is Σ0

2;

• {(A, p) ∈ F(Rd)× [0, d] : dimH(A) ≥ p} is Π0
3;

• {(A, p) ∈ F(Rd)× [0, d] : dimF(A) > p} is Σ0
2;

• {(A, p) ∈ F(Rd)× [0, d] : dimF(A) ≥ p} is Π0
3;

• {A ∈ F(Rd) : A ∈ S ([0, d])} is Π0
3.



7.3. The effective complexity of closed Salem sets 183

Proof: We only prove the statement for the Hausdorff dimension, the proof of the complexity of
the Fourier dimension is analogous (as both are stable under countable union of closed sets), and
the result on the complexity of the Salem sets is obtained in the usual way (see Corollary 7.14).

As in the proof of Theorem 6.23 we have

dimH(A) > p ⇐⇒ (∃K ∈ F(Rd))(K ⊂ A ∧K ∈ K(Rd) ∧ dimH(K) > p) .

Notice that, if F,G are two closed sets represented with the full information representation, the
predicate F ⊂ G is Π0

1 as a predicate of F and G. In fact we can prove something slightly
stronger: if pF is a positive information name for F and qG is a negative information name for
G then the condition F ⊂ G is Π0

1 in pF and qG. Indeed,

F ⊂ G ⇐⇒ GC ∩ F = ∅ ⇐⇒ (∀i)(∀j)(qG(i) ̸= pF (j)) .

This shows that K ⊂ A and K ∈ K(Rd) are respectively Π0
1 (as a predicate of K and A) and Σ0

2

(as a predicate of K, as it is equivalent to (∃n)(K ⊂ B (0, n))).
This implies that

{(K,A, p) ∈ F(Rd)× F(Rd)× [0, d] : K ⊂ A ∧K ∈ K(Rd) ∧ dimH(K) > p} is Σ0
2 .

Since F(Rd) is computably compact (Proposition 7.9) we can apply Lemma 7.6 and conclude
that

{(A, p) ∈ F(Rd)× [0, d] : dimH(A) > p} is Σ0
2 .

Since dimH(A) ≥ p iff (∀r ∈ Q)(r < p → dimH(A) > r), this also shows that dimH(A) ≥ p is a
Π0

3 predicate of A and p.

The arguments we used do not yield automatically the Σ0
2-completeness of the conditions

dimH(A) > p and dimF(A) > p when p < d and A ∈ K([0, 1]d) or A ∈ F(Rd). Similarly, we
cannot conclude that the conditions dimH(A) ≥ p and dimF(A) ≥ p are Π0

3-complete when p > 0
and A ∈ K([0, 1]d) or A ∈ F(Rd).

In fact, we are not aware of any proof of the effectiveness of the construction of the closed
subset S(K,B, α) of E(K,B, α) (Definition 6.14) that was used in the proof of Lemma 6.16. More
generally, it would suffice any computable map f : [0, d] × 2N → K([0, 1]d) s.t. f(p, x) is a closed
Salem set of dimension p iff x ∈ Q2, and dimension 0 otherwise.

However, we can follow the strategy mentioned after Theorem 6.18 and exploit a theorem of
Gatesoupe to obtain a (slightly weaker) result, namely the completeness of the above conditions
when p is sufficiently large. We briefly sketch the argument to stress that the proof is effective.

Theorem 7.21:
Let X be [0, 1]d or Rd. For every computable p ∈ [d− 1, d) the sets

{A ∈ F(X) : dimH(A) > p},
{A ∈ F(X) : dimF(A) > p}



7.4. The Weihrauch degree of the Hausdorff and Fourier dimension 184

are Σ0
2-complete. For every computable q ∈ (d− 1, d], the sets

{A ∈ F(X) : dimH(A) ≥ q},
{A ∈ F(X) : dimF(A) ≥ q},
{A ∈ F(X) : A ∈ S (X)}

are Π0
3-complete.

Proof: By Proposition 7.20, it is enough to show that the above sets are hard for their respective
class.

Recall that, by a theorem of Gatesoupe [40], if A ⊂ [0, 1] has at least two points and is Salem
with dimension α then the set Ã := {x ∈ [0, 1]d : |x| ∈ A} is Salem with dimension d− 1+α. It
is easy to see that the map r : K([0, 1]) → K([0, 1]d) := A 7→ Ã is computable.

To show that the first two sets are Σ0
2-hard, observe that, for x ∈ 2N,

x ∈ Q2 ⇐⇒ dimH(r(f(1, x))) > p ⇐⇒ dimF(r(f(1, x))) > p .

Let (Cn)n∈N be a sequence of mutually disjoint closed cubes s.t.

• Cn ⊂ [0, 1]d,

•
∪
n∈N Cn = {0} ∪

∪
n∈N Cn,

• the sets have uniformly computable ψ-names, i.e. there is a computable map that, given n,
produces a ψ-name for Cn,

where 0 is the origin of the d-dimensional Euclidean space. It is easy to produce examples of
sequences of closed sets that satisfy the above conditions. In particular, the last point guarantees
that the similarity transformations τn : [0, 1]d → Cn are uniformly computable.

To prove that the last three sets are Π0
3-hard, we mimic the proof of Theorem 6.11. When

we consider the family of closed Salem sets we also need a computable compact set Y ⊂ C0 with
null Fourier dimension and Hausdorff dimension d.

7.4 The Weihrauch degree of the Hausdorff and Fourier
dimension

The results we obtained can be used to characterize the Weihrauch degree of the maps com-
puting the Hausdorff and Fourier dimension of a closed subset of Rd, for some fixed d. To avoid
ambiguity, we write

dimH,dimF : FU (Rd) → R

dimF
H,dim

F
F : F(Rd) → R

to stress the fact that the closed sets are represented using the negative information representation
in the first case, and the full information in the second one.



7.4. The Weihrauch degree of the Hausdorff and Fourier dimension 185

Let Γ be a Borel pointclass. We say that f :⊆ X → Y is Γ-measurable if, for every open
U ⊂ Y , f−1(U) ∈ Γ(dom(f)), i.e. there exists V ∈ Γ(X) s.t. f−1(U) = V ∩ dom(f). If X and Y
are represented spaces, we say that f is effectively Γ-measurable or Γ-computable if the map

Γ−1(f) : Σ0
1(Y ) ⇒ Γ(X) := U 7→ {V ⊂ X : f−1(U) = V ∩ dom(f)}

is computable. In particular, if f is total then Γ−1(f) is single-valued. This notion can be
generalized in a straightforward way to multi-valued functions (see [10, Def. 3.5]).

In the proof of Theorem 7.23 we will use the following important result:

Theorem 7.22 ([17, Thm. 6.5]):
f is effectively Σ0

k+1-measurable iff f is Weihrauch reducible to lim[k].

This is a generalization of [10, Thm. 9.1], and (intuitively) says that lim[k] is the hardest
effectively Σ0

k+1-measurable problem.

Theorem 7.23:
lim[2] ≡W dimF

H ≡W dimH ≡W dimF
F ≡W dimF .

Proof: It is immediate to see that dimF
H ≤W dimH and dimF

F ≤W dimF. To prove that
dimH ≤W lim[2] and dimF ≤W lim[2], by Theorem 7.22 it suffices to prove that the maps dimH
and dimF are effectively Σ0

3-measurable. This follows by Proposition 7.20 as

dim−1
H ((a, b)) = {F ∈ F(Rd) : dimH(F ) > a ∧ dimH(F ) < b}.

In fact, given a, b ∈ [0, d] we can uniformly compute a (a ⊕ b)-computable δΣ0
3
-name for

dim−1
H ((a, b)).
Finally, to show that lim[2] ≤W dimH and lim[2] ≤W dimF we prove that, given a sequence

(xi)i∈N in 2N, we can uniformly build a closed Salem subset A of [0, 1]d s.t. dim(A) uniformly
computes whether xi ∈ Q2, where Q2 is the fixed Σ0

2-complete set (as in the proof of Lemma 6.9).
Let f be the computable map provided by Lemma 7.17. Let also r := F 7→ F̃ , where

F̃ = {x ∈ Rd : |x| ∈ F} and define g := r ◦ f . Recall that, by [40], if F is Salem with dimension
α and has at least two points then F̃ is Salem with dimension d− 1 + α. For every finite I ⊂ N,
let pI :=

∑
i∈I 2

−i. Define yI ∈ 2N by yI(n) := maxi∈I xi(n). Clearly

(∀i ∈ I)(xi ∈ Q2) ⇐⇒ yI ∈ Q2

⇐⇒ dim(f(pI , yI)) = pI ⇐⇒ dim(g(pI , yI)) = d− 1 + pI .

As in the proof of Theorem 7.21, let (Cn)n∈N be a sequence of mutually disjoint closed cubes s.t.

• Cn ⊂ [0, 1]d,

•
∪
n∈N Cn = {0} ∪

∪
n∈N Cn,

• the sets have uniformly computable ψ-names, i.e. there is a computable map that, given n,
produces a ψ-name for Cn,



7.4. The Weihrauch degree of the Hausdorff and Fourier dimension 186

where 0 is the origin of the d-dimensional Euclidean space.
For every I as above, we can uniformly translate and scale the set g(pσ, yσ) to a subset Gσ

of C⟨σ⟩. Consider now the closed set A := {0} ∪
∪
σ Gσ. It is easy to see that A is Salem and

dim(A) = d− 1 +
∑
i∈N 2−iχQ2(xi) and this concludes the proof.

The Weihrauch equivalence between lim[2] and the map computing the Hausdorff dimension of
a closed subset of [0, 1] (and, more generally, of a compact subset of R) was already proved in [92,
Thm. 48]. Our approach extends that result (since in the proof of lim[2] ≤W dimH we always build
a compact set) and, at the same time, characterizes the degree of the map computing the Fourier
dimension. The same ideas can be used e.g. to show that χSc(Rd) ≡W LPO(2).



Bibliography

[1] Andretta, Alessandro and Marcone, Alberto, Ordinary differential equations and descriptive
set theory: uniqueness and globality of solutions of Cauchy problems in one dimension,
Fundamenta Mathematicae 153 (1997), no. 2, 157–190.

[2] Anglès d’Auriac, Paul-Elliot and Kihara, Takayuki, A Comparison Of Various Analytic
Choice Principles, 2019, available at https://arxiv.org/abs/1907.02769v1.

[3] Astor, Eric P., Dzhafarov, Damir D., Solomon, Reed, and Suggs, Jacob, The uniform content
of partial and linear orders, Annals of Pure and Applied Logic 168 (2017), no. 6, 1153–1171,
doi:10.1016/j.apal.2016.11.010.

[4] Avigad, Jeremy, An effective proof that open sets are Ramsey, Archive for Mathematical
Logic 37 (1998), no. 4, 235–240, doi:10.1007/s001530050095.

[5] Beer, Gerald, Topologies on Closed and Closed Convex Sets, 1 ed., Mathematics and Its
Applications, vol. 268, Springer, 1993, doi:10.1007/978-94-015-8149-3.

[6] Besicovitch, A. S., Sets of Fractional Dimensions (IV): On Rational Approximation to
Real Numbers, Journal of the London Mathematical Society s1-9 (1934), no. 2, 126–131,
doi:10.1112/jlms/s1-9.2.126.

[7] Bluhm, Christian, On a theorem of Kaufman: Cantor-type construction of linear fractal
Salem sets, Ark. Mat. 36 (1998), no. 2, 307–316, doi:10.1007/BF02384771.

[8] Blum, Lenore, Shub, Mike, and Smale, Steve, On a theory of computation and complexity over
the real numbers: NP -completeness, recursive functions and universal machines, Bulletin
of the American Mathematical Society 21 (1989), no. 1, 1–47, doi:10.1090/s0273-0979-1989-
15750-9.

[9] Brattka, Vasco, Computability and Analysis, In preparation, draft of 28 March 2018.

[10] , Effective Borel measurability and reducibility of functions, Mathematical Logic Quar-
terly 51 (2005), no. 1, 19–44, doi:10.1002/malq.200310125.

[11] Brattka, Vasco, de Brecht, Matthew, and Pauly, Arno, Closed choice and a Uniform
Low Basis Theorem, Annals of Pure and Applied Logic 163 (2012), no. 8, 986–1008,
doi:https://doi.org/10.1016/j.apal.2011.12.020.

[12] Brattka, Vasco and Gherardi, Guido, Borel Complexity of Topological Operations on
Computable Metric Spaces, Journal of Logic and Computation 19 (2008), no. 1, 45–76,
doi:10.1093/logcom/exn027.

[13] , Weihrauch degrees, omniscience principles and weak computability, The Journal of
Symbolic Logic 76 (2011), no. 1, 143–176.

[14] , Weihrauch goes Brouwerian, The Journal of Symbolic Logic 85 (2020), no. 4, 1614–
1653, doi:10.1017/jsl.2020.76.

187

https://arxiv.org/abs/1907.02769v1
http://dx.doi.org/10.1016/j.apal.2016.11.010
http://dx.doi.org/10.1007/s001530050095
http://dx.doi.org/10.1007/978-94-015-8149-3
http://dx.doi.org/10.1112/jlms/s1-9.2.126
http://dx.doi.org/10.1007/BF02384771
http://dx.doi.org/10.1090/s0273-0979-1989-15750-9
http://dx.doi.org/10.1090/s0273-0979-1989-15750-9
http://dx.doi.org/10.1002/malq.200310125
http://dx.doi.org/https://doi.org/10.1016/j.apal.2011.12.020
http://dx.doi.org/10.1093/logcom/exn027
http://dx.doi.org/10.1017/jsl.2020.76


Bibliography 188

[15] , Completion of Choice, Annals of Pure and Applied Logic 172 (2021), no. 3, 102914,
doi:10.1016/j.apal.2020.102914.

[16] Brattka, Vasco, Gherardi, Guido, and Marcone, Alberto, The Bolzano-Weierstrass Theorem
is the jump of Weak König’s Lemma, Annals of Pure and Applied Logic 163 (2012), no. 6,
623–655, doi:https://doi.org/10.1016/j.apal.2011.10.006.

[17] Brattka, Vasco, Gherardi, Guido, and Pauly, Arno, Weihrauch Complexity in Computable
Analysis, 07 2017, available at https://arxiv.org/pdf/1707.03202v4.

[18] Brattka, Vasco, Kawamura, Akitoshi, Marcone, Alberto, and Pauly, Arno, Measuring the
Complexity of Computational Content (Dagstuhl Seminar 15392), Dagstuhl Reports 5 (2016),
no. 9, 77–104, doi:10.4230/DagRep.5.9.77.

[19] Brattka, Vasco and Pauly, Arno, On the algebraic structure of Weihrauch degrees, Logical
Methods in Computer Science 14 (2018), no. 4, 1–36, doi:10.23638/LMCS-14(4:4)2018.

[20] Brattka, Vasco and Presser, Gero, Computability on subsets of metric spaces, Theoretical
Computer Science 305 (2003), no. 1, 43–76, doi:10.1016/S0304-3975(02)00693-X.

[21] Brattka, Vasco and Rakotoniaina, Tahina, On the uniform computational content of Ramsey’s
theorem, The Journal of Symbolic Logic 82 (2017), no. 4, 1278–1316, doi:10.1017/jsl.2017.43.

[22] Brattka, Vasco and Weihrauch, Klaus, Computability on subsets of Euclidean space I:
closed and compact subsets, Theoretical Computer Science 219 (1999), no. 1, 65–93,
doi:10.1016/S0304-3975(98)00284-9.

[23] Callard, Antonin and Hoyrup, Mathieu, Descriptive Complexity on Non-Polish Spaces,
37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)
(Dagstuhl, Germany) (Paul, Christophe and Bläser, Markus, eds.), Leibniz International
Proceedings in Informatics (LIPIcs), vol. 154, Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik, 2020, doi:10.4230/LIPIcs.STACS.2020.8, pp. 8:1–8:16.

[24] Collins, Pieter, Computable Stochastic Processes, 2015, available at https://arxiv.org/
abs/1409.4667v2.

[25] de Brecht, Matthew, Quasi-Polish spaces, Annals of Pure and Applied Logic 164 (2013),
no. 3, 356–381, doi:https://doi.org/10.1016/j.apal.2012.11.001.

[26] , Levels of discontinuity, limit-computability, and jump operators, Logic, Computa-
tion, Hierarchies (Brattka, Vasco, Diener, Hannes, and Spreen, Dieter, eds.), De Gruyter,
2014, doi:10.1515/9781614518044.79, pp. 79–108.

[27] de Brecht, Matthew, Pauly, Arno, and Schröder, Matthias, Overt choice, Computability 9
(2020), no. 3-4, 169–191, doi:10.3233/COM-190253.

[28] Dorais, François G., Dzhafarov, Damir D., Hirst, Jeffry L., Mileti, Joseph R., and Shafer,
Paul, On uniform relationships between combinatorial problems, Transactions of the Ameri-
can Mathematical Society 368 (2016), 1321–1359, doi:https://doi.org/10.1090/tran/6465.

[29] Downey, Rod G., Computability theory and linear orderings, Handbook of Recursive Math-
ematics (Ershov, Yu. L., Goncharov, S.S., Nerode, A., Remmel, J.B., and Marek, V.W.,
eds.), Studies in Logic and the Foundations of Mathematics, vol. 139, Elsevier, 1998,
doi:10.1016/S0049-237X(98)80047-5, pp. 823–976.

http://dx.doi.org/10.1016/j.apal.2020.102914
http://dx.doi.org/https://doi.org/10.1016/j.apal.2011.10.006
https://arxiv.org/pdf/1707.03202v4
http://dx.doi.org/10.4230/DagRep.5.9.77
http://dx.doi.org/10.23638/LMCS-14(4:4)2018
http://dx.doi.org/10.1016/S0304-3975(02)00693-X
http://dx.doi.org/10.1017/jsl.2017.43
http://dx.doi.org/10.1016/S0304-3975(98)00284-9
http://dx.doi.org/10.4230/LIPIcs.STACS.2020.8
https://arxiv.org/abs/1409.4667v2
https://arxiv.org/abs/1409.4667v2
http://dx.doi.org/https://doi.org/10.1016/j.apal.2012.11.001
http://dx.doi.org/10.1515/9781614518044.79
http://dx.doi.org/10.3233/COM-190253
http://dx.doi.org/https://doi.org/10.1090/tran/6465
http://dx.doi.org/10.1016/S0049-237X(98)80047-5


Bibliography 189

[30] Dzhafarov, Damir D., Goh, Jun Le, Hirschfeldt, Denis R., Patey, Ludovic, and Pauly, Arno,
Ramsey’s theorem and products in the Weihrauch degrees, Computability 9 (2020), no. 2,
85–110, doi:10.3233/COM-180203.

[31] Dzhafarov, Damir D., Solomon, Reed, and Yokoyama, Keita, On the first-order parts of
Weihrauch degrees, In preparation, 2019.

[32] Ekström, Fredrik, Persson, Tomas, and Schmeling, Jörg, On the Fourier dimension and a
modification, Journal of Fractal Geometry 2 (2015), no. 3, 309–337, doi:10.4171/JFG/23.

[33] Ekström, Fredrik and Schmeling, Jörg, A Survey on the Fourier Dimension, Patterns of Dy-
namics, Springer International Publishing, 2017, doi:10.1007/978-3-319-64173-7_5, pp. 67–
87.

[34] Escardó, Martín, Synthetic Topology: of Data Types and Classical Spaces, Electronic Notes
in Theoretical Computer Science 87 (2004), 21–156, doi:10.1016/j.entcs.2004.09.017, Pro-
ceedings of the Workshop on Domain Theoretic Methods for Probabilistic Processes.

[35] Falconer, Kenneth, Fractal Geometry, Mathematical Foundations and Applications, 3 ed.,
Wiley, 2014.

[36] Fraser, Robert and Hambrook, Kyle, Explicit Salem sets in Rn, September 2019, available
at https://arxiv.org/abs/1909.04581v2.

[37] Friedman, Harvey, Some systems of second order arithmetic and their use, in Proceedings of
the International Congress of Mathematicians, Vancouver 1974, 1975, pp. 235–242.

[38] , Uniformly Defined Descending Sequences of Degrees, The Journal of Symbolic Logic
41 (1976), no. 2, 363–367, doi:10.2307/2272234.

[39] Galvin, Fred and Prikry, Karel, Borel Sets and Ramsey’s Theorem, The Journal of Symbolic
Logic 38 (1973), no. 2, 193–198.

[40] Gatesoupe, Michel, Sur un théorème de R. Salem, Bulletin des Sciences Mathématiques.
Deuxième Série 91 (1967), 125–127.

[41] Gherardi, Guido and Marcone, Alberto, How Incomputable Is the Separable Hahn-
Banach Theorem?, Notre Dame Journal of Formal Logic 50 (2009), no. 4, 393–425,
doi:10.1016/j.entcs.2008.12.009.

[42] Goh, Jun Le, Inseparable Π1
1 sets, In preparation.

[43] , Measuring the relative complexity of mathematical constructions and theorems, Ph.D.
thesis, Cornell University, 2019, pp. vii–196.

[44] , Some computability-theoretic reductions between principles around ATR0, 2019,
available at https://arxiv.org/abs/1905.06868v1.

[45] , Embeddings between well-orderings: Computability-theoretic reductions, Annals of
Pure and Applied Logic 171 (2020), no. 6, 102789, doi:10.1016/j.apal.2020.102789.

[46] Goh, Jun Le, Pauly, Arno, and Valenti, Manlio, Finding descending sequences through ill-
founded linear orders, The Journal of Symbolic Logic (to appear), doi:10.1017/jsl.2021.15.

http://dx.doi.org/10.3233/COM-180203
http://dx.doi.org/10.4171/JFG/23
http://dx.doi.org/10.1007/978-3-319-64173-7_5
http://dx.doi.org/10.1016/j.entcs.2004.09.017
https://arxiv.org/abs/1909.04581v2
http://dx.doi.org/10.2307/2272234
http://dx.doi.org/10.1016/j.entcs.2008.12.009
https://arxiv.org/abs/1905.06868v1
http://dx.doi.org/10.1016/j.apal.2020.102789
http://dx.doi.org/10.1017/jsl.2021.15


Bibliography 190

[47] Gregoriades, Vassilios, Kispéter, Tamás, and Pauly, Arno, A comparison of concepts from
computable analysis and effective descriptive set theory, Mathematical Structures in Com-
puter Science 27 (2017), no. 8, 1414–1436, doi:10.1017/S0960129516000128.

[48] Hambrook, Kyle, Explicit Salem sets in R2, Advances in Mathematics 311 (2017), 634–648,
doi:10.1016/j.aim.2017.03.009.

[49] Hamkins, Joel David and Lewis, Andy, Infinite Time Turing Machines, The Journal of
Symbolic Logic 65 (2000), no. 2, 567–604, doi:10.2307/2586556.

[50] Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers, 6 ed., Oxford
University Press, Oxford, 2008.

[51] Harrison, Joseph, Recursive pseudo-well-orderings, Transactions of the American Mathemat-
ical Society 131 (1968), no. 2, 526–543, doi:10.2307/1994961.

[52] Hirschfeldt, Denis R., Slicing The Truth: On The Computable And Reverse Mathematics Of
Combinatorial Principles, 1 ed., Lecture Notes Series, Institute for Mathematical Sciences,
National University of Singapore, vol. 28, World Scientific Publishing, July 2014.

[53] Hirschfeldt, Denis R. and Jockusch, Carl G., On notions of computability-theoretic
reduction between Π1

2 principles, Journal of Mathematical Logic 16 (2016), no. 01,
doi:10.1142/s0219061316500021.

[54] Hirschfeldt, Denis R. and Shore, Richard A., Combinatorial principles weaker than Ram-
sey’s theorem for pairs, The Journal of Symbolic Logic 72 (2007), no. 1, 171–206,
doi:10.2178/jsl/1174668391.

[55] Hoyrup, Mathieu and Rojas, Cristobal, Computability of probability measures and Martin-Löf
randomness over metric spaces, Information and Computation 207 (2009), no. 7, 830–847,
doi:10.1016/j.ic.2008.12.009.

[56] Jarník, Vojtĕch, Zur metrischen Theorie der diophantischen Approximationen, Prace
Matematyczno-Fizyczne 36 (1928-1929), no. 1, 91–106.

[57] Jockusch, Carl G., Kastermans, Bart, Lempp, Steffen, Lerman, Manuel, and Solomon,
Reed, Stability and Posets, The Journal of Symbolic Logic 74 (2009), no. 2, 693–711,
doi:10.2178/jsl/1243948336.

[58] Kahane, Jean-Pierre, Sur certains ensembles de Salem, Acta Mathematica Academiae Sci-
entiarum Hungarica 21 (1970), no. 1, 87–89, doi:10.1007/BF02022490.

[59] , Some Random Series of Functions, 2 ed., Cambridge Studies in Advanced Mathe-
matics, Cambridge University Press, 1993.

[60] Kastanas, Ilias G., On the Ramsey Property for Sets of Reals, The Journal of Symbolic Logic
48 (1983), no. 4, 1035–1045.

[61] Kaufmann, R., On the theorem of Jarník and Besicovitch, Acta Arithmetica 39 (1981), no. 3,
265–267.

[62] Kechris, Alexander S., Classical Descriptive Set Theory, 1 ed., Springer-Verlag, 1995.

[63] Keesling, James, Normality and Properties Related to Compactness in Hyperspaces, Proceed-
ings of the American Mathematical Society 24 (1970), no. 4, 760–766.

http://dx.doi.org/10.1017/S0960129516000128
http://dx.doi.org/10.1016/j.aim.2017.03.009
http://dx.doi.org/10.2307/2586556
http://dx.doi.org/10.2307/1994961
http://dx.doi.org/10.1142/s0219061316500021
http://dx.doi.org/10.2178/jsl/1174668391
http://dx.doi.org/10.1016/j.ic.2008.12.009
http://dx.doi.org/10.2178/jsl/1243948336
http://dx.doi.org/10.1007/BF02022490


Bibliography 191

[64] Kihara, Takayuki, Marcone, Alberto, and Pauly, Arno, Searching for an analogue of ATR0

in the Weihrauch lattice, The Journal of Symbolic Logic 85 (2020), no. 3, 1006–1043,
doi:10.1017/jsl.2020.12.

[65] Kihara, Takayuki, Ng, Keng Meng, and Pauly, Arno, Enumeration degrees and non-
metrizable topology, 2020, available at https://arxiv.org/abs/1904.04107v2.

[66] Kihara, Takayuki and Pauly, Arno, Point degree spectra of represented spaces, 2017, available
at https://arxiv.org/abs/1405.6866v4.

[67] Klein, Erwin and Thompson, Anthony C., Theory of Correspondences - Including Applica-
tions to Mathematical Economics, Wiley, 1984.

[68] Koepke, Peter, Turing Computations on Ordinals, The Bulletin of Symbolic Logic 11 (2005),
no. 3, 377–397.

[69] Körner, Thomas William, Hausdorff and Fourier dimension, Studia Mathematica 206 (2011),
no. 1, 37–50.

[70] Le Roux, Stéphane and Pauly, Arno, Finite choice, convex choice and finding roots, Logical
Methods in Computer Science 11 (2015), no. 4, 1–30, doi:10.2168/lmcs-11(4:6)2015.

[71] Louveau, Alain, Effective Descriptive Set Theory, Unpublished notes.

[72] Lutz, Jack H. and Lutz, Neil, Algorithmic Information, Plane Kakeya Sets, and Conditional
Dimension, 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)
(Dagstuhl, Germany) (Vollmer, Heribert and Vallée, Brigitte, eds.), Leibniz International
Proceedings in Informatics (LIPIcs), vol. 66, Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2017, doi:10.4230/LIPIcs.STACS.2017.53, pp. 53:1–53:13.

[73] Lutz, Jack H. and Mayordomo, Elvira, Dimensions of Points in Self-similar Fractals, CO-
COON 2008: Computing and Combinatorics (Hu, X. and Wang, J., eds.), Lecture Notes in
Computer Science, vol. 5092, Springer Berlin Heidelberg, 2008, doi:10.1007/978-3-540-69733-
6_22, pp. 215–224.

[74] Mansfield, Richard, A Footnote to a Theorem of Solovay on Recursive Encodability, Logic
Colloquium ’77 (Macintyre, Angus, Pacholski, Leszek, and Paris, Jeff, eds.), Studies in Logic
and the Foundations of Mathematics, vol. 96, North-Holland, Amsterdam-New York, 1978,
doi:https://doi.org/10.1016/S0049-237X(08)72002-0, pp. 195–198.

[75] Marcone, Alberto, On the Logical Strength of Nash-Williams’ Theorem on Transfinite Se-
quences, Logic: From Foundations to Applications: European Logic Colloquium, Oxford
Science Publications, Clarendon Press, USA, 1996, pp. 327–351.

[76] Marcone, Alberto and Shore, Richard A., The maximal linear extension theorem in
second order arithmetic, Archive for Mathematical Logic 50 (2011), no. 5, 543–564,
doi:10.1007/s00153-011-0231-1.

[77] Marcone, Alberto and Valenti, Manlio, On the descriptive complexity of Salem sets, Submit-
ted, 2020, available at https://arxiv.org/abs/2009.09888.

[78] , The open and clopen Ramsey theorems in the Weihrauch lattice, The Journal of
Symbolic Logic (to appear), doi:10.1017/jsl.2021.10.

http://dx.doi.org/10.1017/jsl.2020.12
https://arxiv.org/abs/1904.04107v2
https://arxiv.org/abs/1405.6866v4
http://dx.doi.org/10.2168/lmcs-11(4:6)2015
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.53
http://dx.doi.org/10.1007/978-3-540-69733-6_22
http://dx.doi.org/10.1007/978-3-540-69733-6_22
http://dx.doi.org/https://doi.org/10.1016/S0049-237X(08)72002-0
http://dx.doi.org/10.1007/s00153-011-0231-1
https://arxiv.org/abs/2009.09888
http://dx.doi.org/10.1017/jsl.2021.10


Bibliography 192

[79] Mattila, Pertti, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifia-
bility, Cambridge University Press, 1995.

[80] , Fourier Analysis and Hausdorff Dimension, 1 ed., Cambridge University Press, 2015.

[81] Miller, Joseph S., Degrees of unsolvability of continuous functions, The Journal of Symbolic
Logic 69 (2004), no. 2, 555–584, doi:10.2178/jsl/1082418543.

[82] Moschovakis, Yiannis Nicholas, Descriptive Set Theory, 2 ed., North Holland, 2009.

[83] Nash-Williams, C. St. J. A., On well-quasi-ordering transfinite sequences, Mathemat-
ical Proceedings of the Cambridge Philosophical Society 61 (1965), no. 1, 33–39,
doi:10.1017/S0305004100038603.

[84] Neumann, Eike and Pauly, Arno, A topological view on algebraic computation models, Journal
of Complexity 44 (2018), 1–22, doi:https://doi.org/10.1016/j.jco.2017.08.003.

[85] Odifreddi, Piergiorgio, Classical Recursion Theory - The Theory of Functions and Sets of
Natural Numbers, 1 ed., Elsevier, 1992.

[86] Parthasarathy, Kalyanapuram Rangachari, Probability Measures on Metric Spaces, Proba-
bility and Mathematical Statistics: A Series of Monographs and Textbooks, Academic Press,
Inc., New York-London, 1967, doi:https://doi.org/10.1016/C2013-0-08107-8.

[87] Patey, Ludovic, The weakness of being cohesive, thin or free in reverse mathematics, Israel
Journal of Mathematics volume 216 (2016), 905–955, doi:https://doi.org/10.1007/s11856-
016-1433-3.

[88] Pauly, Arno, The Descriptive Theory of Represented Spaces, 08 2014, available at https:
//arxiv.org/pdf/1408.5329v1.

[89] , On the topological aspects of the theory of represented spaces, Computability 5
(2016), no. 2, 159–180, doi:10.3233/COM-150049.

[90] , Computability on the space of countable ordinals, 2017, available at https://arxiv.
org/abs/1501.00386v3.

[91] Pauly, Arno and de Brecht, Matthew, Descriptive Set Theory in the Category of Represented
Spaces, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science, July 2015,
doi:10.1109/LICS.2015.48, pp. 438–449.

[92] Pauly, Arno and Fouché, Willem L., How constructive is constructing measures?, Journal of
Logic and Analysis 9 (2017), 1–30, doi:https://doi.org/10.4115/jla.2017.9.c3.

[93] Pour-El, Marian Boykan and Richards, J. Ian, Computability in Analysis and Physics, Per-
spectives in Mathematical Logic, Springer, 1989.

[94] Rogers, Hartley, Theory of Recursive Functions and Effective Computability, 1 ed., McGraw-
Hill Book Co., New York-Toronto, Ont.-London, 1967.

[95] Rudin, Walter, Real and Complex Analysis, 3 ed., McGraw-Hill, Inc., New York, NY, USA,
1987.

[96] Sacks, Gerald E., Higher Recursion Theory, 1 ed., Springer-Verlag, Berlin, 1990.

http://dx.doi.org/10.2178/jsl/1082418543
http://dx.doi.org/10.1017/S0305004100038603
http://dx.doi.org/https://doi.org/10.1016/j.jco.2017.08.003
http://dx.doi.org/https://doi.org/10.1016/C2013-0-08107-8
http://dx.doi.org/https://doi.org/10.1007/s11856-016-1433-3
http://dx.doi.org/https://doi.org/10.1007/s11856-016-1433-3
https://arxiv.org/pdf/1408.5329v1
https://arxiv.org/pdf/1408.5329v1
http://dx.doi.org/10.3233/COM-150049
https://arxiv.org/abs/1501.00386v3
https://arxiv.org/abs/1501.00386v3
http://dx.doi.org/10.1109/LICS.2015.48
http://dx.doi.org/https://doi.org/10.4115/jla.2017.9.c3


Bibliography 193

[97] Salem, R., On singular monotonic functions whose spectrum has a given Hausdorff dimension,
Arkiv för Matematik 1 (1950), no. 26, 353–365, doi:10.1007/BF02591372.

[98] Schröder, Matthias, Extended admissibility, Theoretical Computer Science 284 (2002), no. 2,
519–538, doi:10.1016/S0304-3975(01)00109-8.

[99] , Admissible representations for probability measures, Mathematical Logic Quarterly
53 (2007), no. 4‐5, 431–445, doi:10.1002/malq.200710010.

[100] , Admissibly Represented Spaces and Qcb-Spaces, 2020, available at https://arxiv.
org/abs/2004.09450v1.

[101] Schröder, Matthias and Simpson, Alex, Representing probability measures using probabilistic
processes, Journal of Complexity 22 (2006), no. 6, 768–782, doi:10.1016/j.jco.2006.05.003,
Computability and Complexity in Analysis.

[102] Selivanov, Victor Lvovich, Difference Hierarchy in φ-Spaces, Algebra and Logic 43 (2004),
no. 4, 238–248, doi:10.1023/B:ALLO.0000035115.44324.5d.

[103] Silver, Jack, Every Analytic Set is Ramsey, The Journal of Symbolic Logic 35 (1970), no. 1,
60–64.

[104] Simpson, Stephen G., Nonprovability of Certain Combinatorial Properties of Finite Trees,
Harvey Friedman’s Research on the Foundations of Mathematics (Harrington, L.A., Mor-
ley, M.D., Sĉêdrov, A., and Simpson, S.G., eds.), Studies in Logic and the Foundations of
Mathematics, vol. 117, Elsevier, 1985, doi:https://doi.org/10.1016/S0049-237X(09)70156-9,
pp. 87–117.

[105] , Mass Problems and Intuitionism, Notre Dame Journal of Formal Logic 49 (2008),
no. 2, 127–136, doi:10.1215/00294527-2008-002.

[106] , Subsystems of Second Order Arithmetic, 2 ed., Cambridge University Press, Cam-
bridge, 2009.

[107] Soare, Robert I., Recursively Enumerable Sets and Degrees: A Study of Computable Functions
and Computably Generated Sets, 1 ed., Springer-Verlag Berlin Heidelberg, 1987.

[108] Solovay, Robert M., Hyperarithmetically Encodable Sets, Transactions of the American Math-
ematical Society 239 (1978), 99–122.

[109] Sorbi, Andrea, The Medvedev Lattice of Degrees of Difficulty, Computability, Enumerability,
Unsolvability (Cooper, S. B., Slaman, T. A., and Wainer, S. S., eds.), Cambridge University
Press, New York, NY, USA, 1996, pp. 289–312.

[110] Stein, Elias M. and Weiss, Guido, Introduction to Fourier analysis on Euclidean spaces, 1
ed., Princeton University Press Princeton, N.J, 1971.

[111] Weihrauch, Klaus, The Degrees of Discontinuity of some Translators between Representations
of the Real Numbers, Technical report tr-92-050, International Computer Science Institute,
1992.

[112] , Computable Analysis: An Introduction, 1 ed., Springer-Verlag, Berlin, November
2000.

http://dx.doi.org/10.1007/BF02591372
http://dx.doi.org/10.1016/S0304-3975(01)00109-8
http://dx.doi.org/10.1002/malq.200710010
https://arxiv.org/abs/2004.09450v1
https://arxiv.org/abs/2004.09450v1
http://dx.doi.org/10.1016/j.jco.2006.05.003
http://dx.doi.org/10.1023/B:ALLO.0000035115.44324.5d
http://dx.doi.org/https://doi.org/10.1016/S0049-237X(09)70156-9
http://dx.doi.org/10.1215/00294527-2008-002


Bibliography 194

[113] Westrick, Linda Brown, A note on the diamond operator, Computability 10 (2021), no. 2,
107–110, doi:10.3233/COM-20029.

[114] Wolff, Thomas H., Lectures on harmonic analysis, 1 ed., American Mathematical Society,
September 2003.

[115] Ziegler, Martin, Revising Type-2 Computation and Degrees of Discontinuity, Electronic Notes
in Theoretical Computer Science 167 (2007), 255–274, doi:10.1016/j.entcs.2006.08.015, Pro-
ceedings of the Third International Conference on Computability and Complexity in Analysis
(CCA 2006).

http://dx.doi.org/10.3233/COM-20029
http://dx.doi.org/10.1016/j.entcs.2006.08.015

	Preface
	Introduction
	Background
	Computable analysis
	Computability in the Baire space
	Computability on problems and theory of represented spaces

	Descriptive set theory
	Effective descriptive set theory
	Descriptive set theory and represented spaces

	Reverse mathematics

	Computable reducibilities
	Weihrauch reducibility
	Operations on problems
	An overview of the Weihrauch lattice

	Arithmetic Weihrauch reducibility

	The open and clopen Ramsey theorems in the Weihrauch lattice
	Ramsey theorems
	Some useful tools

	Ramsey theorems in the Weihrauch lattice
	Definitions
	Problems reducible to UC
	Problems reducible to C
	Problems not reducible to C
	A 0-1 law for strong Weihrauch reducibility

	Arithmetic Weihrauch reducibility
	Conclusions

	Operators on multi-valued functions
	The union of problems
	Choice on CBaire and union
	Open Ramsey theorem and union
	Further comments

	First-order part of a problem
	First-order part and parallelization
	First-order part and other operations

	Deterministic part of a problem
	Impact of the codomain space
	The deterministic part and the first-order part
	Interaction with other operations on Weihrauch degrees
	Previous appearances in the literature


	Finding descending sequences in ill-founded linear orders
	Finding descending sequences
	The uniform strength of DS
	Combinatorial principles on linear orders
	Relations with Ramsey theorems

	Presentation of orders
	Gamma0k-DS and Gamma0k-BS
	Gamma11-DS and Gamma11-BS

	Conclusions

	On the descriptive complexity of Salem sets
	Background
	The complexity of closed Salem subsets of [0,1] 
	The complexity of closed Salem subsets of [0,1]d
	The complexity of closed Salem subsets of Rd
	Further results

	Effective aspects of the Hausdorff and Fourier dimension
	Basic tools
	The represented (hyper)spaces of closed and compact sets
	The effective complexity of closed Salem sets
	The Weihrauch degree of the Hausdorff and Fourier dimension

	Bibliography

