
13 May 2024

Università degli studi di Udine

Original

Existence for elastodynamic Griffith fracture with a weak maximal dissipation
condition

Publisher:

Published
DOI:10.1016/j.matpur.2018.08.006

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/1151222 since 2021-03-25T10:31:13Z



Existence for elastodynamic Griffith fracture with
a weak maximal dissipation condition

Gianni Dal Masoa, Christopher J. Larsenb, Rodica Toaderc

aSISSA, Via Bonomea 265, 34136 Trieste, Italy
bDepartment of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Road, Worcester

MA 01609-2280, USA
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Abstract

We consider a model of elastodynamics with fracture evolution, based on energy-dissipation
balance and a maximal dissipation condition. We prove an existence result in the case of
planar elasticity with a free crack path, where the maximal dissipation condition is satisfied
among suitably regular competitor cracks.

Résumé

Nous considérons un modèle élastodynamique de l’évolution d’une fracture, basé sur un
bilan énergie-dissipation et sur une condition de dissipation maximale. Nous obtenons un
résultat d’existence dans le cas de l’élasticité plane avec un chemin de fissure libre, lorsque
on considère seulement des fissures suffisamment régulières.

Keywords: Wave equation, elastodynamics, dynamic fracture mechanics, cracking
domains.
2010 MSC: 35L05, 35L20, 74J05, 74R10,

1. Introduction

Existence proofs for dynamic fracture models that predict crack paths remain a major
challenge. In [1] we proposed a model for dynamic fracture, based on the following ideas:

(a) the displacement solves elastodynamics out of the crack, with traction-free boundary
conditions on the crack;

(b) the dynamic energy-dissipation balance is satisfied: the sum of the kinetic energy and
of the elastic energy at time t , plus the energy dissipated by the crack between time
0 and time t , is equal to the initial energy plus the total work done by external forces
between time 0 and time t ;

(c) a maximal dissipation condition is satisfied, which forces the crack to run as fast as
possible, consistent with the energy-dissipation balance.

These general ideas were applied to the case of antiplane displacement with linear elasticity,
and a prescribed crack path. We refer to [2, 1] for a discussion on the mechanical motivation
of conditions (a)-(c) and for the literature on this subject.

URL: dalmaso@sissa.it (Gianni Dal Maso), cjlarsen@wpi.edu (Christopher J. Larsen),
rodica.toader@uniud.it (Rodica Toader)
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The purpose of this paper is to extend these ideas to both predict the crack path and
consider linear elasticity (not restricted to antiplane displacements). In particular, we give
the first existence proof for a model of dynamic fracture that predicts the crack path.

Our reference configuration is a bounded open set Ω ⊂ R2 with Lipschitz boundary and
the problem is studied in a bounded time interval [0, T ] . Cracks, as functions of time, will
be described as follows. For a prescribed a0 < 0, a sufficiently regular curve parameterized
by arc-length γ : [a0, bγ ]→ R2 , and a function s : [0, T ]→ [0, bγ ] , the crack at time t is

Γs(t) := γ([a0, s(t)]).

Here we also assume s(0) = 0, and for every t ∈ [0, T ] , s(t) provides the length of the crack
produced along the curve γ between time 0 and time T . The goal is then to determine
both the curve γ and the length as a function of time, t 7→ s(t). We assume that

(1) the initial part of the crack is prescribed: γ(s) = γ0(s) for every s ∈ [a0, 0], where
γ0 : [a0, 0]→ Ω is a given curve with γ0(a0) ∈ ∂Ω and γ0(s) ∈ Ω for s > a0 ;

(2) the unknown function γ , which describes the geometry of the crack, satisfies some
prescribed regularity estimates (see Definition 2.1), in particular a bound on the cur-
vature and an estimate, for every s ≥ 0, of the distance of γ(s) from the complement
of Ω;

(3) the unknown function t 7→ s(t), whose derivative ṡ(t) is the speed of the crack tip,
satisfies some prescribed regularity estimates (see Definition 2.7), in particular 0 ≤
ṡ(t) ≤ µ for a suitable constant µ > 0.

The results of [3] imply that, for any pair (γ, s) satisfying the properties considered
above, there exists one and only one solution u(t, x) of the system of elastodynamics in
the time-dependent cracking domains t 7→ Ω \ Γs(t) . The aim of this paper is to prove the
following result: among all pairs (γ, s) that, together with the corresponding solution u ,
satisfy the dynamic energy-dissipation balance, there exists one which satisfies a maximal
dissipation condition, whose formulation will be made precise below. For the mechanical
interpretation of this result we refer to [1].

We consider the collection Cpiec of all pairs (γ, s) satisfying (1)-(3), with s continuous
and piecewise regular, such that the triple (γ, s, u) satisfies the dynamic energy-dissipation
balance for every time t (see Definition 4.1). It is easy to see that Cpiec 6= Ø. Indeed, if s
is constant then the solution of the system of elastodynamics in a time-independent cracked
domain satisfies the energy balance (see Remark 4.2). It remains to prove that the collection
Cpiec contains an element that satisfies the maximal dissipation condition, which we now
describe.

Since in our model we neglect the effects of heat production and transfer, the only
dissipative mechanism is the process of crack formation and, assuming homogeneity and
isotropy, the only dissipated energy is proportional to the crack length s(t). For simplicity
we suppose that the proportionality constant is 1. Therefore, a natural formulation of the
maximal dissipation condition is as follows: (γ, s) ∈ Cpiec satisfies the maximal dissipation
condition on [0, T ] if there exists no (γ̂, ŝ) ∈ Cpiec such that, for some 0 ≤ τ0 < τ1 ≤ T ,

(MD1) sing(ŝ) ⊂ sing(s) (see Definition 2.7),

(MD2) ŝ(t) = s(t) and γ̂(ŝ(t)) = γ(s(t)) for every t ∈ [0, τ0] ,

(MD3) ŝ(t) > s(t) for every t ∈ (τ0, τ1] .

Conditions (MD1)-(MD3) say that there is no sufficiently regular crack which satisfies the
dynamic energy-dissipation balance, coincides with the crack described by (γ, s) up to time
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τ0 , and is longer at every time between τ0 and τ1 . In other words, a crack satisfying
this maximal dissipation condition cannot be overcome by longer cracks, still satisfying the
dynamic energy-dissipation balance.

As in [1] we can prove the existence of a pair (γ, s) ∈ Cpiec satisfying the previous
condition only in a quantitative way, depending on a prescribed threshold η > 0. This leads
to the following definition: (γ, s) ∈ Cpiec satisfies the η -maximal dissipation condition on
[0, T ] if there exists no (γ̂, ŝ) ∈ Cpiec such that (MD1)-(MD3) hold for some 0 ≤ τ0 < τ1 ≤ T
and, in addition,

(MD4) ŝ(τ1) > s(τ1) + η .

Our main result (see Theorem 5.2) is that, if the upper bound on crack speed µ that
appears in (3) is smaller than a suitable constant related to the speed of elastic waves, then
there exists a pair (γ, s) ∈ Cpiec which satisfies the η -maximal dissipation condition on
[0, T ] . To be precise, the condition on µ reads 0 < µ <

√
λ/2, where λ > 0 is the ellipticity

constant of the elasticity tensor (see Definition 3.1). The same quantitative condition was
considered in [4].

Following the scheme introduced in [1], the proof is based on a continuous dependence
result: the solutions u of the system of elastodynamics in cracking domains depend contin-
uously on the pair (γ, s) (see [3, Theorem 4.1]). It is easy to see that this theorem can be
applied if µ is sufficiently small, but to apply it when 0 < µ <

√
λ/2 we must localize the

problem, both in space and time, so that all diffeomorphisms used in [3, Theorem 4.1] are
very close to the identity. This property is crucial in order to apply this theorem without
requiring possibly very small values of µ .

To justify the localization argument we have to use a result on the finite speed of prop-
agation for the system of elastodynamics. We need this result in an irregular domain, due
to the presence of the crack. Usually the proof of the finite speed of propagation is given
assuming some regularity of the solution u , which is not available here. Therefore, in the
Appendix we give a complete proof of this property under minimal assumptions and in
arbitrary space dimension (see Theorem A.4).

2. Admissible cracks

In this paper we deal with two dimensional problems whose reference configuration is a
fixed bounded open set Ω ⊂ R2 with Lipschitz boundary ∂Ω. In this section we describe the
admissible cracks of our model. We first introduce the geometric constraints on the curves
along which the crack may grow (see Subsection 2.1). Then we consider the admissible time
evolutions of the cracks along their paths (see Subsection 2.2).

2.1. Geometry of the admissible cracks

In the following the curves are always parametrized using the arc-length parameter s
and for a given curve γ : [aγ , bγ ]→ R2 we set

Γ := γ([aγ , bγ ]) and Γs := γ([aγ , s]) for s ∈ [aγ , bγ ] .

We fix an initial curve γ0 : [a0, 0] → Ω of class C3,1 such that γ0(a0) ∈ ∂Ω, γ0(s) ∈ Ω
for every s ∈ (a0, 0] and we set

Γ0 = γ0([a0, 0]) . (2.1)

We assume that γ0 is transversal to ∂Ω at γ0(a0), i.e., there exists an isosceles triangle
contained in Ω with vertex in γ0(a0) and axis parallel to γ′0(a0).

Throughout the paper r > 0 and L > 0 are fixed constants.
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Definition 2.1 (Geometric constraints). Let Gr,L be the set of simple curves γ : [a0, bγ ]→ Ω
of class C3,1 , with a0 < 0 ≤ bγ , such that

(a) fixed initial crack: γ(s) = γ0(s) for every s ∈ [a0, 0];

(b) velocity one: |γ′(s)| = 1 for every s ∈ [a0, bγ ] ;

(c) uniform tangent balls condition: the two open disks of radius r tangent to Γ at γ(s)
do not intersect Γ,

(d) uniform distance: dist(γ([0, bγ ]), ∂Ω) ≥ 2r ,

(e) uniform bounds: |γ(3)(s)| ≤ L , |γ(3)(s2)− γ(3)(s1)| ≤ L|s2 − s1| , for every s, s1, s2 ∈
[a0, bγ ] ,

where γ(i) denotes the i-th derivative of γ .

We assume that γ0 , r , and L are fixed in such a way that Gr,L 6= Ø. In particular,
by (a) and (d) we must have

|a0| ≥ 2r . (2.2)

Remark 2.2 (Estimate on the second derivatives). Condition (c) of Definition 2.1 implies
that |γ(2)(s)| ≤ 1/r for every s ∈ [a0, bγ ] .

Definition 2.3 (convergence in Gr,L ). Let γk be a sequence of curves in Gr,L and let
γ ∈ Gr,L . We say that γk converges to γ uniformly if bγk → bγ and for every b ∈ (0, bγ)
we have γk|[a0,b] → γ|[a0,b] uniformly in [a0, b] .

Lemma 2.4 (Extension). There exist two constants r̂ and L̂ , with 0 < r̂ < r and L̂ > L ,
depending only on r and L , such that for every γ : [a0, bγ ]→ Ω with γ ∈ Gr,L there exists

an extension γ̂ : [a0, bγ + r̂] → Ω of γ with γ̂ ∈ Gr̂,L̂ , whose image will be indicated by Γ̂ .
Moreover, the extension can be chosen in such a way that the uniform convergence of γk
implies the uniform convergence of the corresponding extensions γ̂k .

Proof. For s > bγ let γ̂(s) be the arc-length parametrization of the curve σ 7→ γ(bγ) +
γ′(bγ)(σ− bγ) + 1

2γ
(2)(bγ)(σ− bγ)2 + 1

6γ
(3)(bγ)(σ− bγ)3 . It is easy to check that the uniform

tangent balls condition and the estimate dist(γ̂([0, bγ+r̂]), ∂Ω) ≥ 2r̂ are satisfied if r̂ is small
enough. Using Arzelà-Ascoli Theorem we see that conditions (b) and (e) of Definition 2.1
and Remark 2.2, together with the uniform convergence of γk , imply the convergence of the
derivatives up to the third order evaluated at bγk . This gives the uniform convergence of
the extensions γ̂k .

Lemma 2.5 (Compactness of Gr,L ). Let γk be a sequence of curves in Gr,L . Then there
exist a subsequence, not relabelled, and a curve γ ∈ Gr,L such that γk converges to γ
uniformly.

Proof. Since Ω is bounded, it is easy to deduce from the uniform tangent balls condition
that the length of the curves γk is uniformly bounded. Let bγ be the limit of a subsequence
of bγk . The uniform estimates on the derivatives imply that there exists a subsequence,
still denoted γk , and a curve γ : [a0, bγ ] → Ω of class C3,1 such that γk converges to γ
uniformly. The geometric constraints (c) and (d) pass to the limit as shown, e.g., in [5],
allowing us to conclude that γ ∈ Gr,L .

To apply [3, Theorems 3.2 and 4.1] we have to construct some time-dependent diffeo-
morphisms Φ(t, ·) and Ψ(t, ·) satisfying conditions (H1)-(H12) of [3]. They will be of the

form Φ(t, ·) = Φ̂(s(t), ·) and Ψ(t, ·) = Ψ̂(s(t), ·), where, for every σ , Φ̂(σ, ·) and Ψ̂(σ, ·)
depend only on Γ, and t 7→ s(t) is the function describing the length of the crack along Γ
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(see Subsection 2.2). We want to apply the results of [3] under our hypotheses on s(t) (see
Definition 2.7 below) and on the elasticity tensor (see Definition 3.1 below), assuming that
the relevant constants satisfy the natural assumption (3.19).

To this aim we have to prove that Φ̂(σ, ·) and Ψ̂(σ, ·) are close to the identity and that

the norm of the partial derivative ∂σΦ̂(σ, ·) is bounded by a constant close to 1. This can
be obtained only when σ ∈ [s0, s1] with s1 − s0 sufficiently small. Moreover, to apply [3,
Theorem 4.1] we also need a continuous dependence of the diffeomorphisms on the curve γ .
A technical difficulty is due to the fact that we need uniform estimates depending on the
smallness of s1 − s0 , but not on the values of s0 and s1 , nor on the specific curve γ . The
following lemma provides all properties we need.

Lemma 2.6 (Diffeomorphisms depending on the curves). Let ε > 0 and let 0 < ρ < r̂/2

(see Lemma 2.4). Then there exist two constants δ̂ ∈ (0, ρ) and Ĉ > 0 , depending only on

r̂, L̂, ε, and ρ , such that for every γ ∈ Gr,L and 0 ≤ s0 < s1 ≤ bγ , with s1− s0 ≤ δ̂ , we can

construct two functions Φ̂, Ψ̂ : [s0, s1]× Ω→ Ω of class C2,1 with the following properties:

(a) for every σ ∈ [s0, s1] we have Φ̂(σ,Ω) = Ω , Φ̂(σ, Γ̂) = Γ̂ (see Lemma 2.4), Φ̂(σ,Γs0) =

Γσ , and Φ̂(σ, y) = y on Ω \B(γ(s0), 2ρ) ;

(b) Φ̂(s0, y) = y for every y ∈ Ω ;

(c) for every σ ∈ [s0, s1] , Ψ̂(σ, ·) is the inverse of Φ̂(σ, ·) on Ω ;

(d) for every σ ∈ [s0, s1] we have 1−ε ≤ det∇Φ̂(σ, y) ≤ 1+ε and 1−ε ≤ det∇Ψ̂(σ, x) ≤
1 + ε for every x, y ∈ Ω , where ∇ denotes the spatial gradient;

(e) for every σ ∈ [s0, s1] we have |∂σΦ̂(σ, y)| ≤ 1 + ε for every y ∈ Ω ;

(f) the absolute values of all partial derivatives of Φ̂ and of Ψ̂ of order less than or equal

to two, as well as the Lipschitz constants of all second derivatives, are bounded by Ĉ ;

(g) if γk is a sequence in Gr,L converging to γ uniformly and such that s1 ≤ bγk for

every k , then the corresponding diffeomorphisms Φ̂k(σ, ·) satisfy Φ̂k(σ, x) → Φ̂(σ, x)
for every σ ∈ [s0, s1] and every x ∈ Ω .

Proof. Let us fix γ and s0 as in the statement of the lemma and let γ̂ : [a0, bγ + r̂]→ Ω be

the extension provided by Lemma 2.4. The construction of Φ̂ and Ψ̂ requires several steps.

Step 1. Construction of diffeomorphisms from [s0 − 3
2ρ, s0 + 3

2ρ] into itself.
Let us fix a C∞ function χ : R→ [0, 1] such that χ(s0) = 1, suppχ ⊂ (s0− 3

2ρ, s0 + 3
2ρ),

and |χ′(s)| ≤ 3
4ρ for every s ∈ R .

Let us fix δ̂ ∈ (0, ρ) and let ζ : [s0, s0 + δ̂]× [s0 − 3
2ρ, s0 + 3

2ρ]→ R be the C∞ function
defined by

ζ(σ, s) = s+ (σ − s0)χ(s) . (2.3)

We first observe that since 0 ≤ σ − s0 ≤ δ̂ , from the estimate on χ′ we obtain

1
4 < 1− 3

4
δ̂
ρ ≤ ∂sζ ≤ 1 + 3

4
δ̂
ρ <

7
4 . (2.4)

Moreover, ζ(σ, s) = s for s = s0 ± 3
2ρ . Together with (2.4) this shows that ζ(σ, ·) is a

diffeomorphism from [s0 − 3
2ρ, s0 + 3

2ρ] into itself for every σ ∈ [s0, s0 + δ̂] .
We observe also that

∂σζ(σ, s) = χ(s) ∈ [0, 1] for every σ ∈ [s0, s0 + δ̂] and every s ∈ [s0 − 3
2ρ, s0 + 3

2ρ] . (2.5)
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Step 2. Construction of diffeomorphisms in a neighbourhood of γ̂((s0 − 3
2ρ, s0 + 3

2ρ)) .
We begin by observing that a0 < s0 − 3

2ρ , since ρ < 1
4 |a0| by (2.2), and that s0 +

3
2ρ < bγ + r̂ . Therefore γ̂ is well-defined in the interval [s0 − 3

2ρ, s0 + 3
2ρ] . For every

s ∈ [s0 − 3
2ρ, s0 + 3

2ρ] let ν̂(s) be the unit normal to γ̂ at γ̂(s). Let us fix 0 < `0 <
1
2ρ .

Since `0 < r̂ , the map
(s, `) 7→ γ̂(s) + `ν̂(s) (2.6)

is a diffeomorphism of class C2,1 between [s0− 3
2ρ, s0+ 3

2ρ]×[−`0, `0] and its image, indicated
by A . Let us note that A ⊂ B(γ(s0), 2ρ) ⊂⊂ Ω, where the second inclusion follows from
the uniform distance condition (d) of Definition 2.1.

For every σ ∈ [s0, s0 + δ̂] the diffeomorphism ζ(σ, ·) induces a diffeomorphism from
γ̂([s0 − 3

2ρ, s0 + 3
2ρ]) into itself, which coincides with the identity near γ̂(s0 ± 3

2ρ). We now

want to extend it to a diffeomorphism Φ̂ between A and itself such that Φ̂(σ, y) = y for
every y in a neighbourhood of ∂A .

To this aim we fix an even C∞ function ϕ : [−1, 1]→ [0, 1] equal to 1 in a neighbourhood

of ±1 and equal to 0 in 0. For every σ ∈ [s0, s0 + δ̂] , ` ∈ [−`0, `0] , and y ∈ A we set

σ̂(σ, `) = (1− ϕ( ``0 ))σ + ϕ( ``0 )s0 , (2.7)

Φ̂(σ, y) = γ̂(ζ(σ̂(σ, `), s)) + `ν̂(ζ(σ̂(σ, `), s)) , (2.8)

where (s, `) ∈ [s0 − 3
2ρ, s0 + 3

2ρ]×[−`0, `0] is related to y by the equality y = γ̂(s) + `ν̂(s).

For every σ ∈ [s0, s0 + δ̂] and y ∈ A , we have Φ̂(σ, y) ∈ A . Moreover, Φ̂(σ, y) = y

for every y in a neighbourhood of ∂A . Using the fact that both Φ̂(σ, y) and y are at the

same (signed) distance ` from γ̂([s0− 3
2ρ, s0 + 3

2ρ]) , it is easy to see that Φ̂(σ, ·) : A→ A is

bijective. As for the regularity of Φ̂ , the regularity properties of ϕ , ζ , and γ̂ imply that Φ̂
is of class C2,1 and that the estimates in (f) hold for Φ̂ on A .

Step 3. Extension of the diffeomorphisms and proof of (a)–(f).

To obtain a diffeomorphism from Ω into Ω it is enough to set Φ̂(σ, y) = y if y ∈ Ω \A .

For every σ ∈ [s0, s0 + δ̂] let Ψ̂(σ, ·) be the inverse of Φ̂(σ, ·).

Since A ⊂ B(γ(s0), 2ρ), we have Φ̂(σ, y) = y for every y ∈ Ω \ B(γ(s0), 2ρ). It follows

from the construction that for every σ ∈ [s0, s0 + δ̂] we have Φ(σ, γ([s0 − 3
2ρ, s0])) =

γ̂([s0− 3
2ρ, σ]) and Φ̂(σ, γ̂([s0− 3

2ρ, s0 + 3
2ρ])) = γ̂([s0− 3

2ρ, s0 + 3
2ρ]) . Hence Φ̂(σ,Γs0) = Γ̂σ

and Φ̂(σ, Γ̂) = Γ̂. As Γ̂σ = Γσ for σ ∈ [0, bγ ] , this concludes the proof of (a).

Note that for every σ ∈ [s0, s0 + δ̂] and ` ∈ [−`0, `0] we have

|σ̂(σ, `)− s0| ≤ (1− ϕ( ``0 ))(σ − s0) ≤ δ̂ ,

and that by (2.3), (2.7), and (2.8) we have Φ̂(s0, y) = y for every y ∈ A , which proves (b).

Since (2.6) is a diffeomorphism, it follows from these remarks that Φ̂(σ, ·) is C1 -close to

the identity for δ̂ small enough, so that estimates (d) hold for x, y ∈ A for a suitable choice

of δ̂ ∈ (0, ρ).

Finally, for every σ ∈ [s0, s0 + δ̂] we have

∂σΦ̂(σ, y) = γ̂′(ζ(σ̂(σ, `), s))∂σ̂ζ(σ̂(σ, `), s)(1− ϕ( ``0 ))

+ `ν̂′(ζ(σ̂(σ, `), s))∂σ̂ζ(σ̂(σ, `), s)(1− ϕ( ``0 )) . (2.9)

Recalling that Γ̂ is parametrized by arc-length and satisfies the uniform tangent balls condi-
tion, we obtain that |γ̂′(σ)| = 1 and the curvature is bounded by 1/r̂ , hence |ν̂′(σ)| ≤ 1/r̂ .
Therefore, (2.5) and (2.9) give

|∂σΦ̂(σ, y)| ≤ 1 +
`0
r̂
.
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Taking 0 < `0 ≤ εr̂ we obtain |∂σΦ̂(σ, y)| ≤ 1 + ε for every σ ∈ [s0, s0 + δ̂] and for every
y ∈ A . This proves (e).

Since, by construction, Φ̂(σ, ·) coincides with the identity in a neighborhood of ∂A , it

follows from the estimates in A that Φ̂(σ, ·) is of class C2,1 in Ω and that the estimates

in (f) hold for Φ̂ as well as for its inverse function Ψ̂. Finally, the last statement concerning
the convergence follows easily from the construction.

2.2. The class of admissible time evolutions of the crack length

In order to use the results of [3], throughout the paper we fix a constant µ > 0, which
will bound the speed of the crack tip, and a constant M > 0, which will bound some higher
order derivatives of the crack length with respect to time. The regularity assumptions and
the constraints on the time evolution of the crack length in our model are prescribed by the
following definition.

Definition 2.7 (Time-dependence of the crack length). Let T0 < T1 . The class Sregµ,M (T0, T1)
is composed of all nonnegative functions satisfying the following conditions:

s ∈ C3,1([T0, T1]) , (2.10)

0 ≤ ṡ(t) ≤ µ , (2.11)

|s̈(t)| ≤M, |...s (t)| ≤M , |...s (t1)− ...
s (t2)| ≤M |t1 − t2| , (2.12)

for every t, t1, t2 ∈ [T0, T1] , where dots denote derivatives with respect to time.
We also consider the class Spiecµ,M (T0, T1) of all functions s ∈ C0([T0, T1]) such that there

exists a finite subdivision T0 = τ0 < τ1 < · · · < τk = T1 for which

s|[τj−1,τj ] ∈ S
reg
µ,M (τj−1, τj) .

The set of these intermediate times, where s may be discontinuous, is denoted by sing(s).

In our model an admissible crack at time t is given by

Γs(t) := γ([a0, s(t)])

where γ ∈ Gr,L and s ∈ Spiecµ,M (0, T ) for some T > 0 with s(T ) ≤ bγ . Since γ is an arc-
length parametrization, s(t) represents the length of the crack produced along the curve γ
between time 0 and time t .

For technical reasons, we assume an upper bound on the speed of the crack tip, related
to the speed of the elastic waves. We note that the existence of such a bound might follow
from more basic hypotheses, such as energy-dissipation balance, but for now, this is open.
Briefly, the reason for the specific bound (3.19) on the constant µ that appears in (2.11) is
that it will guarantee condition (3.1) in [3] is satisfied, which is crucial to our results.

On the other hand, the other constraints on s , as well as those on γ (see Definition 2.1),
have no mechanical motivation; they are needed in order to apply the existence, uniqueness,
and continuous dependence results of [3]. It is possible that at some point this (piecewise)
regularity will be established, but this is completely open, and we make no claim about it.

In order to prove our existence result, we construct some time-dependent diffeomorphisms
Φ(t, ·) and Ψ(t, ·) satisfying conditions (H1)-(H12) and (3.1) of [3]. To obtain (3.1) it is
convenient to prove that Φ(t, ·) and Ψ(t, ·) are close to the identity and that the norm of the
partial derivative ∂tΦ(t, ·) is bounded by a constant close to µ . This can be done only locally
in space and time. Moreover, to apply [3, Theorem 4.1] we also need a continuous dependence
of the diffeomorphisms on the curve γ and on the function s . For this application we need
uniform estimates depending on the smallness of the time interval, but not on the specific
choice of γ and s . The following lemma provides all technical properties we need.
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Lemma 2.8 (Time-dependent diffeomorphisms). Let ε > 0 and let 0 < ρ < r̂/2 (see
Lemma 2.4). Then there exist two constants δ ∈ (0, ρ/µ) and C > 0 , depending only on
r, L, µ,M, ε , and ρ , with the following property: for every γ ∈ Gr,L , for every t0 < t1 , and
for every s ∈ Sregµ,M (t0, t1) , with t1 − t0 ≤ δ , s(t1) ≤ bγ , we can construct two functions

Φ,Ψ: [t0, t1]× Ω→ Ω of class C2,1 with the following properties:

(a) for every t ∈ [t0, t1] we have Φ(t,Ω) = Ω , Φ(t, Γ̂) = Γ̂ (see Lemma 2.4),
Φ(t,Γs(t0)) = Γs(t) , and Φ(t, y) = y on Ω \B(γ(s(t0)), 2ρ) ;

(b) Φ(t0, y) = y for every y ∈ Ω ;

(c) for every t ∈ [t0, t1] , Ψ(t, ·) is the inverse of Φ(t, ·) on Ω ;

(d) for every t ∈ [t0, t1] we have 1− ε ≤ det∇Φ(t, y) ≤ 1 + ε and 1− ε ≤ det∇Ψ(t, x) ≤
1 + ε for every x, y ∈ Ω , where ∇ denotes the spatial gradient;

(e) for every t ∈ [t0, t1] we have |∂tΦ(t, y)| ≤ µ(1 + ε) for every y ∈ Ω ;

(f) the absolute values of all partial derivatives of Φ and of Ψ of order less than or equal
to two, as well as the Lipschitz constants of all second derivatives, are bounded by C ;

(g) if γk ∈ Gr,L converges to γ uniformly, sk ∈ Sregµ,M (t0, t1) converges to s uniformly, with
sk(t1) ≤ bγk for every k , then the corresponding diffeomorphisms satisfy Φk(t, x) →
Φ(t, x) for every t ∈ [t0, t1] and every x ∈ Ω .

Proof. Let δ := δ̂/µ , where δ̂ is given by Lemma 2.6. Let us fix γ , s , t0 , and t1 as in
the statement, let s0 = s(t0) and let s1 = s(t1). If s0 = s1 we take Φ(t, y) = y for every

t ∈ [t0, t1] and every y ∈ Ω. If s0 < s1 let Φ̂ and Ψ̂ be the diffeomorphisms provided by
Lemma 2.6. For every t ∈ [t0, t1] , by (2.11) we have s(t) ∈ [s0, s1] , and so we can define

Φ(t, y) := Φ̂(s(t), y) and Ψ(t, x) := Ψ̂(s(t), x), for every x, y ∈ Ω. Properties (a)–(g) of the
functions Φ and Ψ follow now from Lemma 2.6.

3. The wave equation

In our model the displacement satisfies the system of linear elastodynamics out of the
crack. In this section we specify the notion of solution to the wave equation in domains with
a prescribed time-dependent crack and prove an existence and uniqueness result as well as
the continuous dependence of the solutions on the cracks.

Throughout the rest of the paper T > 0 is a fixed constant, which determines the time
interval [0, T ] for the evolution problem, and ∂DΩ is a fixed (possibly empty) Borel subset
of ∂Ω, where we will prescribe a time-dependent Dirichlet boundary condition. On the
complement ∂NΩ := ∂Ω \ ∂DΩ we will prescribe the traction-free boundary condition. Γ0

is the initial crack introduced in (2.1) and Ω0 is defined by Ω0 := Ω \ Γ0 .
Let M2×2 be the space of 2×2 real matrices and let M2×2

sym be the space of 2×2 real
symmetric matrices. For every F ∈ M2×2 the symmetric part F sym of F is defined by
F sym := 1

2 (F + FT ), where FT is the transpose of F . The space of linear maps from a
vector space X into a vector space Y is denoted by Lin(X,Y ).

Throughout the paper λ and Λ are two constants with 0 < λ < Λ. The following
definition introduces the class of elasticity tensors we are going to consider.

Definition 3.1 (Elasticity tensors). E(λ,Λ) is the collection of all functions C : Ω →
Lin(M2×2,M2×2) of class C2 such that for every x ∈ Ω we have

C(x)F = C(x)F sym ∈M2×2
sym for every F ∈M2×2 , (3.1)

C(x)F ·G = C(x)G · F for every F,G ∈M2×2 , (3.2)

λ|F sym|2 ≤ C(x)F · F ≤ Λ|F sym|2 for every F ∈M2×2 . (3.3)
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Let us fix C ∈ E(λ,Λ) and T > 0. We assume that the body forces f satisfy

f ∈ L2((0, T );L2(Ω;R2)) . (3.4)

Given γ ∈ Gr,L and s ∈ Spiecµ,M (0, T ), with s(T ) ≤ bγ , we now consider the wave equation on
the time-dependent cracking domains t 7→ Ω \ Γs(t)

ü(t, x)− div(C(x)∇u(t, x)) = f(t, x) for t ∈ (0, T ) and x ∈ Ω \ Γs(t) , (3.5)

where ü denotes the second partial derivative of u with respect to time, ∇ denotes the
spatial gradient, and div denotes the divergence with respect to the space variable, acting
here on the rows of the matrix C∇u . The equation is complemented with Dirichlet boundary
condition on ∂DΩ

u(t, x) = w(t, x) for t ∈ (0, T ) and x ∈ ∂DΩ , (3.6)

and homogeneous Neumann boundary condition on ∂NΩ ∪ Γs(t)

(C(x)∇u(t, x))ν(x) = 0 for t ∈ (0, T ) and x ∈ ∂NΩ ∪ Γs(t) . (3.7)

It is convenient to express the function w used in the Dirichlet boundary condition as
the trace on ∂DΩ of a function, denoted by the same symbol, satisfying

w ∈ L2((0, T );H2(Ω0;R2)) ∩H1((0, T );H1(Ω0;R2)) ∩H2((0, T );L2(Ω0;R2)) . (3.8)

We also assume that for every t ∈ [0, T ]

w(t) = 0 a.e. on {x ∈ Ω : dist(x, ∂Ω) ≥ r)} (3.9)

and that the following integration by parts formula holds

−〈C∇w(t),∇ϕ〉 = 〈div(C∇w(t)), ϕ〉 for every ϕ ∈ H1
D(Ω;R2), (3.10)

with H1
D(Ω0;R2) = {ϕ ∈ H1(Ω0;R2) : ϕ = 0 H1-a.e. on ∂DΩ} , where the values of ϕ on

∂DΩ are defined using the trace operator from H1(Ω0;R2) to L2(∂Ω;R2) and H1 is the
one-dimensional Hausdorff measure (see, e.g., [6, Definition 2.46]). Under suitable regularity
assumptions, condition (3.10) holds if w(t) satisfies the homogeneous Neumann boundary
condition

(C∇w(t))ν = 0 on ∂NΩ ∪ Γ0 .

To give a precise meaning to the notion of weak solution of the wave equation (3.5)
with boundary conditions (3.6) and (3.7) we introduce some additional notation. Given
γ ∈ Gr,L and s ∈ [0, bγ ] , we set Ωγs := Ω \ Γs and H1

D(Ωγs ;R2) = {ϕ ∈ H1(Ωγs ;R2) : ϕ =
0 H1-a.e. on ∂DΩ} , where the values of ϕ on ∂DΩ are defined using the trace operator from
H1(Ωγs ;R2) to L2(∂Ω;R2). Note that by property (a) of Definition 2.1 we have Ω0 = Ωγ0
and that (3.9) and (3.10) imply, for every t ∈ [0, T ] , the integration by parts formula

−〈C∇w(t),∇ϕ〉 = 〈div(C∇w(t)), ϕ〉 for every ϕ ∈ H1
D(Ωγs(t);R

2). (3.11)

Given a function u ∈ H1(Ωγs ;R2) for some s ∈ [0, bγ ] , it is convenient to regard its
gradient ∇u as an element of L2(Ω;M2×2), by extending it to 0 on Γs . To underline the
fact that this extension does not coincide with the distributional gradient of any extension
of u , we shall use the notation ∇̂u .

We now recall the notion of weak solution to this problem.
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Definition 3.2 (Wave equation in cracking domains). Given C ∈ E(λ,Λ), γ ∈ Gr,L , 0 ≤
T0 < T1 ≤ T , and s ∈ Spiecµ,M (T0, T1) with s(T1) ≤ bγ , assume that f and w satisfy (3.4),
(3.8), (3.9), and (3.10). We say that u is a weak solution of the wave equation (3.5) with
boundary conditions (3.6) and (3.7) on the time-dependent cracking domains t 7→ Ωγs(t) ,

T0 ≤ t ≤ T1 , if

u ∈ C1([T0, T1];L2(Ω;R2)), (3.12)

u(t)− w(t) ∈ H1
D(Ωγs(t);R

2) for every t ∈ [T0, T1], (3.13)

∇̂u ∈ C0([T0, T1];L2(Ω;M2×2)), (3.14)

u̇ ∈ AC([t, T1];H−1
D (Ωγs(t);R

2)) for every t ∈ [T0, T1), (3.15)

1
h (u̇(t+ h)− u̇(t))

h→0
⇀ ü(t) weakly in H−1

D (Ωγs(t);R
2) for a.e. t ∈ (T0, T1), (3.16)

t 7→ ‖ü(t)‖H−1
D (Ωγ

s(t)
;R2) is integrable on (T0, T1) , (3.17)

and for a.e. t ∈ (T0, T1) satisfies

〈ü(t), ϕ〉+ 〈C∇u(t),∇ϕ〉 = 〈f(t), ϕ〉 for every ϕ ∈ H1
D(Ωγs(t);R

2) , (3.18)

where ü(t) is the element of H−1
D (Ωγs(t);R

2) defined for a.e. t ∈ (T0, T1) by (3.16). Here

and in the rest of the paper 〈·, ·〉 denotes the duality product between spaces that are clear
from the context. For instance, its first occurrence in (3.18) refers to the duality between
H−1
D (Ωγs(t);R

2) and H1
D(Ωγs(t);R

2), the second one to the duality between L2(Ω;M2×2) and

L2(Ω;M2×2), while the third one regards the duality between L2(Ω;R2) and L2(Ω;R2).

In this paper we consider only the traction-free boundary condition (3.7); the case of
a nonhomogeneous Neumann boundary condition on ∂NΩ can be obtained under suitable
regularity assumptions on the data as in [3].

To obtain an existence and uniqueness result we assume that the constant µ which
appears in the Definition 2.7 satisfies

0 < µ <
√
λ/2 . (3.19)

We shall see that the constant
√
λ is related to an estimate on the speed of propagation for

the solutions to the wave equation corresponding to C (see Theorem A.4).

Theorem 3.3 (Existence and uniqueness). Under the assumptions of Definition 3.2, let
u0 ∈ H1(Ωγs(T0);R

2) and u1 ∈ L2(Ω;R2) . Suppose that (3.19) holds and that the compati-

bility condition
u0 − w(T0) ∈ H1

D(Ωγs(T0);R
2)

is satisfied. Then there exists a unique weak solution of problem (3.5)-(3.7) on the time-
dependent cracking domains t 7→ Ωγs(t) , T0 ≤ t ≤ T1 , satisfying the initial conditions

u(T0) = u0 and u̇(T0) = u1 in L2(Ω;R2).

The proof is based on an existence and uniqueness result proved in [3, Theorems 3.2 and
3.6]. Unfortunately, these theorems can be applied directly only if µ is very small. In the
general case 0 < µ <

√
λ/2 we apply them to a localized version of our problem, and show

that this is sufficient.
Among the hypotheses of these theorems there is an estimate of the tensor B(t, y) defined

by
B(t, y)F := [C(x)(F∇Ψ(t, x))]∇Ψ(t, x)T − F Ψ̇(t, x)⊗Ψ̇(t, x) (3.20)
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with x = Φ(t, y), where Φ(t, ·) : Ω0 → Ωγs(t) and Ψ(t, ·) : Ωγs(t) → Ω0 are suitable diffeomor-

phisms (see (3.1) in [3]). To obtain this estimate under the assumption 0 < µ <
√
λ/2 we

consider a small time interval [t0, t1] and use the diffeomorphisms Φ(t, ·) : Ωγs(t0) → Ωγs(t) and

Ψ(t, ·) : Ωγs(t) → Ωγs(t0) introduced in Lemma 2.8. The following lemma shows that B(t, y)

satisfies estimate (3.1) in [3] on a suitable ball B2 for every t ∈ [t0, t1] ; namely there exist
two constants α > 0 and β > 0, independent of the diffeomorphisms, such that

〈B(t)∇v,∇v〉L2(B2\Γs0 ;M2×2) ≥ α‖∇v‖2L2(B2\Γs0 ;M2×2) − β‖v‖
2
L2(B2;R2) (3.21)

for every v ∈ H1(B2 \ Γs0 ;R2), where s0 = s(t0). The proof is based on the results of
Lemma 2.8 and on a careful estimate of the constants in the second Korn inequality. In
view of the application to the proof of the continuous dependence of the solutions on the
cracks, we need an estimate independent of the pair (γ, s) which describes the crack.

Lemma 3.4 (Estimate for B). Assume that

0 < µ <
√
λ/2 . (3.22)

Let r̂ be the constant introduced in Lemma 2.4, let B1 and B2 be two open balls of radii
R1, R2 ∈ (0, r̂/4) , with B1 ⊂⊂ B2 ⊂⊂ Ω , and let

0 < ρ < R1/2. (3.23)

Then there exist α > 0 , β > 0 , and δ > 0 with the following property: for every γ ∈ Gr,L ,
for every t0 < t1 , with t1 − t0 ≤ δ , and for every s ∈ Sregµ,M (t0, t1) , with s(t1) ≤ bγ and

B(γ(s(t0)), 2ρ) ⊂⊂ B1 , we can construct two functions Φ,Ψ: [t0, t1] × Ω → Ω of class
C2,1 which satisfy properties (a)-(g) of Lemma 2.8 and such that for every C ∈ E(λ,Λ) the
corresponding B(t) , defined by (3.20), satisfies (3.21) in B2 \ Γs0 , where s0 = s(t0) . In
addition, we may assume

Φ(t, y) = y for every y /∈ B1 and every t ∈ [t0, t1] . (3.24)

Proof. Since µ2 < λ/4, we can fix ε > 0 such that

µ2(1 + ε)3 < λ(1− ε)
(1

4
− ε
)
. (3.25)

Let δ > 0 be the constant, depending on r, L, µ,M, ε , and ρ , provided by Lemma 2.8. Let
us fix γ, s, t0, t1 as required in the statement of the lemma.

Since 0 ≤ ṡ(t) ≤ µ and δ < ρ/µ , we have s(t0) ≤ s(t) ≤ s(t0) + ρ for every t ∈
[t0, t1] , which implies that |γ(s(t)) − γ(s(t0))| ≤ ρ by property (b) of Definition 2.1. Since
B(γ(s(t0)), 2ρ) ⊂⊂ B1 , we conclude that γ(s(t)) ∈ B1 for every t ∈ [t0, t1] .

Let us consider the extension γ̂ ∈ Gr̂,L̂ of γ given in Lemma 2.4. Since |γ̂′(s0)| = 1, from

the estimate on the second derivatives (see Remark 2.2), which holds for γ̂ with constant
1/r̂ , we obtain |γ̂(s0 + r̂) − γ̂(s0)| ≥ 1

2 r̂ > 2R2 . Since γ̂(s0) = γ(s0) ∈ B2 , we have

γ̂(s0 + r̂) /∈ B2 . On the other hand, we also have γ̂(a0) = γ(a0) /∈ B2 . Therefore Γ̂ meets
∂B2 in at least two points. Using the uniform tangent balls condition and the bound on
R2 , it follows that Γ̂ cannot meet ∂B2 in more than two points, so that B2 \ Γ̂ has two
connected components, B+

2 and B−2 .
It is then possible to find two connected C2 -domains A+ and A− such that B±2 ∩B1 ⊂

A± ⊂ B±2 . Therefore, setting A = A+ ∪ A− , for every t ∈ [t0, t1] we have A+, A− ⊂
B2 \ Γ̂ ⊂ B2 \Γs(t) and B1 \Γs(t) ⊂ A∪ Γ̂ . Moreover, the C2 -norms of ∂A+ and ∂A− can
be bounded uniformly with respect to γ, s , and t0 .
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For every v ∈ H1(A;R2) let Ev := (∇v+∇vT )/2 be the symmetric part of ∇v . By the
second Korn inequality in C2 -domains with optimal constants (see, e.g., [7, Theorem 5.1]),
applied separately to A+ and A− , we can find a constant β1 > 0, independent of γ, s, t0 ,
such that ∫

A

|Ev|2dx ≥ (
1

4
− ε)

∫
A

|∇v|2dx− β1

∫
A

|v|2dx (3.26)

for every v ∈ H1(A;R2).
We fix t ∈ [t0, t1] and define z(x) = v(Ψ(t, x)). By (a) of Lemma 2.8 we have Φ(t, A) =

Ψ(t, A) = A . Since 1− ε ≤ det∇Ψ(t, x) ≤ 1 + ε , and ∂tΨ(t, x) = −∇Ψ(t, x)∂tΦ(t,Ψ(t, x)),
by a change of variables, for every C ∈ E(λ,Λ), we obtain from (3.20) that∫

A

B(t, y)∇v(y)·∇v(y)dy ≥ (1− ε)
∫
A

C(x)∇z(x)·∇z(x)dx

− (1 + ε)

∫
A

|∇z(x)∂tΦ(t,Ψ(t, x)))|2dx.

Using the ellipticity of C in (3.3) and the estimate on ∂tΦ given in (e) of Lemma 2.8, from
(3.26) we get∫

A

B(t, y)∇v(y)·∇v(y)dy ≥ α1

∫
A

|∇z(x)|2dx− β1λ

∫
A

|z(x)|2dx ,

where α1 = ( 1
4 − ε)λ(1− ε)− (1 + ε)3µ2 > 0. By another change of variables we obtain that∫
A

B(t, y)∇v(y)·∇v(y)dy ≥ α2

∫
A

|∇v(y)|2dy − β2

∫
A

|v(y)|2dy , (3.27)

with α2 = (1 − ε)α1/C
2 > 0 and β2 = β1λ(1 + ε) > 0, where C is the constant in (f) of

Lemma 2.8.
On the other hand, we have Φ(t, y) = y on B2 \ B1 by (a) of Lemma 2.8, hence (3.3)

and (3.20) give∫
(B2\B1)\Γs0

B(t, y)∇v(y)·∇v(y)dy =

∫
(B2\B1)\Γs0

C(y)∇v(y)·∇v(y)dy ≥ λ
∫

(B2\B1)\Γs0
|Ev(y)|2dy .

Therefore, by the second Korn inequality in domains with piecewise smooth boundary (see,
e.g., [8]), there exist constants α3 > 0 and β3 > 0, independent of γ , s , t0 , and t1 , such
that∫

(B2\B1)\Γs0
B(t, y)∇v(y)·∇v(y)dy ≥ α3

∫
(B2\B1)\Γs0

|∇v(y)|2dy − β3

∫
(B2\B1)\Γs0

|v(y)|2dy . (3.28)

Let α = 1
2 min{α2, α3} and β = max{β2, β3} . Then

2α

∫
B2\Γs0
|∇v(y)|2dy ≤ α2

∫
A

|∇v(y)|2dy + α3

∫
(B2\B1)\Γs0

|∇v(y)|2dy

≤
∫
A

B(t, y)∇v(y)·∇v(y)dy +

∫
(B2\B1)\Γs0

B(t, y)∇v(y)·∇v(y)dy

+β2

∫
A

|v(y)|2dy + β3

∫
(B2\B1)\Γs0

|v(y)|2dy

≤ 2

∫
B2\Γs0

B(t, y)∇v(y)·∇v(y)dy + 2β

∫
B2\Γs0
|v(y)|2dy .

This proves (3.21).
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We now present the main ideas of the proof of Theorem 3.3. We consider a small
constant ρ > 0, two small concentric open balls B1 ⊂⊂ B2 ⊂⊂ Ω, and a small time
interval [t0, t1] ⊂ [T0, T1] such that B(γ(s(t)), 2ρ) ⊂ B1 for every t ∈ [t0, t1] . Supposing
that the solution exists and is unique in [T0, t0] , to extend the solution to [t0, t1] we localize
the problem to B2 , i.e., we consider the solution of the wave equation in the cracking
domains t 7→ B2 \ Γs(t) and in the time interval [t0, t1] . Thanks to Lemma 3.4, if t1 − t0
is sufficiently small we can apply the results of [3] and we find a unique weak solution
uint which satisfies the homogeneous Neumann condition on ∂(B2 \ Γs(t)) and the initial
conditions uint(t0) = u(t0) and u̇int(t0) = u̇(t0) in B2 \ Γs(t0) .

Similarly, noticing that Ω \ (B1 ∪ Γs(t)) = Ω \ (B1 ∪ Γs(t0)) for every t ∈ [t0, t1] , we

consider the wave equation in the time-independent cracked domain Ω\ (B1∪Γs(t0)) and in
the time interval [t0, t1] . We find a unique weak solution uext which satisfies the Dirichlet
boundary condition (3.6) on ∂DΩ, the homogeneous Neumann condition on the rest of the
boundary of Ω \ (B1 ∪Γs(t0)), and the initial conditions uext(t0) = u0 and u̇ext(t0) = u1 in

Ω \ (B1 ∪ Γs(t0)).

Thanks to the finite speed of propagation (see Theorem A.4) we find two balls B̂1 and

B̂2 , with B1 ⊂⊂ B̂1 ⊂⊂ B̂2 ⊂⊂ B2 , such that uint(t) = uext(t) in B̂2 \ B̂1 for every
t ∈ [t0, t1] . This shows that the function

u(t) =

{
uext(t) in Ω \ B̂1,

uint(t) in B̂2,

is well defined and provides a weak solution of the wave equation in the cracking domain
t 7→ Ω \ Γs(t) for t ∈ [t0, t1] . Moreover, the uniqueness of uint and uext leads to the
uniqueness of the solution u for t ∈ [t0, t1] .

Since Lemma 3.4 ensures that the same argument can be repeated when t1 − t0 is less
than a constant depending only on ρ , B1 , and B2 , existence and uniqueness hold for all
times t such that B(γ(s(t)), 2ρ) ⊂ B1 . To complete the proof in the global time interval
[T0, T1] it is enough to consider a finite number of carefully chosen triples (ρ,B1, B2).

Proof of Theorem 3.3. Since s ∈ Spiecµ,M (T0, T1), there exists a finite subdivision T0 = τ0 <

τ1 < · · · < τk = T1 for which s|[τj−1,τj ] ∈ S
reg
µ,M (τj−1, τj) . It is enough to prove the result in

each subinterval [τj−1, τj ] , therefore it is not restrictive to assume that s ∈ Sregµ,M (T0, T1).
Let us fix 0 < ρ < r̂/64 and η ∈ (4ρ/µ, 5ρ/µ). Without loss of generality we assume

that T1 ≤ T0 + η . Indeed, the result in the general case can be obtained by repeating the
same arguments on [T0 + η, T0 + 2η] , [T0 + 2η, T0 + 3η] , and so on.

We set B1 := B(γ(s(T0)), 8ρ) and B2 := B(γ(s(T0)), 16ρ). We note that B2 ⊂⊂ Ω by
property (d) in Definition 2.1. Moreover, since |γ′(s(t))| = 1, 0 ≤ ṡ(t) ≤ µ , T1 ≤ T0 + η ,
and µη < 5ρ , we have also

B(γ(s(t)), 3ρ) ⊂ B1 for every t ∈ [T0, T1] . (3.29)

Let γ̂ be the extension of γ given by Lemma 2.4. Arguing as in the proof of Lemma 3.4
we obtain that γ̂(s(T0)+r̂) /∈ B2 . Since γ̂(a0) = γ(a0) /∈ B2 , the manifold Γ̂ = γ̂([a0, bγ+r̂])
meets ∂B1 and ∂B2 . Since the radii of B1 and B2 are sufficiently small, the tangent balls
condition implies that Γ̂ is transversal to ∂B1 and ∂B2 . Hence conditions (H3) and (H4)

of [3] are satisfied with Ω and Γ replaced by B2 and Γ̂.
Let α, β, δ > 0 be the constants given by Lemma 3.4 corresponding to our choice of B1 ,

B2 , and ρ , and let
δ∗ = min

{
δ, 4ρ/

√
Λ
}
. (3.30)

We apply Lemma 3.4 with t0 = T0 and t1 = min{t0 +δ∗, T1} and we obtain that there exist
functions Φ,Ψ: [t0, t1]×Ω→ Ω of class C2,1 which satisfy properties (a)-(f) of Lemma 2.8
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and such that the corresponding B(t) satisfies (3.21) in B2 \ Γs(t0) . In addition, we can
suppose that

Φ(t, y) = y for every y /∈ B1 and t ∈ [t0, t1] . (3.31)

It is easy to check that the diffeomorphisms Φ(t, ·) and Ψ(t, ·) satisfy all hypotheses
of the existence and uniqueness results [3, Theorems 3.2 and 3.6] in the cracking domains
t 7→ B2 \ Γs(t) and in the time interval [t0, t1] . Therefore, the boundary value problem
for the wave equation (3.5)-(3.7), with Ω replaced by B2 , ∂DΩ replaced by Ø, and ∂NΩ
replaced by ∂B2 , has a unique weak solution uint which satisfies the initial conditions
uint(t0) = u0 and u̇int(t0) = u1 in L2(B2;R2).

Applying the same results of [3] to the set Ω \B1 we find that the same problem, with
Ω replaced by Ω \ B1 and ∂NΩ replaced by ∂NΩ ∪ ∂B1 , has a unique weak solution uext

which satisfies the initial conditions uext(t0) = u0 and u̇ext(t0) = u1 in L2(Ω \ B1;R2) and
the Dirichlet boundary condition uext(t) = w(t) on ∂DΩ.

Note that by (3.29) we have (B2 \B1)\Γs(t) = (B2 \B1)\Γs(t0) for every t ∈ [t0, t1] . We
now apply the result on the finite speed of propagation (see Theorem A.4) to the function
uext − uint , with U = (B2 \ B1) \ Γs(t0) , S0 = Ø, and S1 = (∂B2 ∪ ∂B1) \ Γs(t0) . We

obtain that for every t ∈ [t0, t1] we have uext(t) − uint(t) = 0 a.e. in (B̂2 \ B̂1) \ Γs(t) =

(B̂2 \ B̂1) \ Γs(t0) , where B̂1 and B̂2 are the balls concentric to B1 and B2 with radius

8ρ+ δ∗
√

Λ and 16ρ− δ∗
√

Λ respectively. Since B̂1 ⊂⊂ B̂2 by (3.30), the function

u(t) =

{
uext(t) in Ω \ B̂1,

uint(t) in B̂2,
(3.32)

is well defined and provides a weak solution of the boundary value problem (3.5)-(3.7) for the
wave equation on the cracking domains t 7→ Ωγs(t) for t ∈ [t0, t1] , according to Definition 3.2,

with initial conditions u(t0) = u0 and u̇(t0) = u1 in L2(Ω;R2).
To prove the uniqueness of this solution on this time interval, by difference we can

consider the case when u0 , u1 , and w(t) are identically zero, and we call v(t) a solution
of the corresponding problem. We apply the result on the finite speed of propagation
(Theorem A.4) with U = Ω \ B1 , S0 = ∂DΩ, and S1 = ∂B1 ∪ ∂DΩ and we obtain that

v(t) = 0 a.e. in Ω \ B̂1 , for every t ∈ [t0, t1] . In particular v(t) vanishes in a neighbourhood
of ∂B2 .

Now we apply the uniqueness results [3, Theorems 3.2 and 3.6] to the cracking domains
t 7→ B2 \ Γs(t) with the Dirichlet boundary condition v(t) = 0 on ∂B2 , and we obtain that

v(t) = 0 a.e. in B2 \ Γs(t) for every t ∈ [t0, t1] . Since (Ω \ B̂1) ∪ B2 = Ω we obtain that
v(t) = 0 a.e. in Ω for every t ∈ [t0, t1] , which proves uniqueness in this time interval.

If t1 = T1 , the proof of existence and uniqueness in [T0, T1] is concluded. Otherwise we
can repeat the same arguments with the same B1 , B2 , and ρ , with t0 replaced by t1 , with
t1 replaced by t2 := min{t1 +δ∗, T1} , and with initial data u(t1) and u̇(t1). Lemma 3.4 can
be applied again because of (3.29). To prove existence and uniqueness in the time interval
[t1, t2] we have to check that u(t1) and u̇(t1) are well defined, which is given by (3.12) in
[t0, t1] , and that u(t1) satisfies the compatibility condition u(t1)−w(t1) ∈ H1

D(Ωγs(t1);R
2) ,

which is a consequence of (3.13) in [t0, t1] . Therefore we obtain existence and uniqueness
in [t1, t2] . Since in this argument we always apply Lemma 3.4 with the same B1 , B2 , and
ρ , the constant δ∗ does not change. Hence, iterating this process, after a finite number of
steps we obtain existence and uniqueness in [T0, T1] .

We are now ready to prove the continuous dependence of the solutions on the cracks.

Theorem 3.5 (Continuous dependence). Suppose that 0 < µ <
√
λ/2 . Let C ∈ E(λ,Λ) ,

γk, γ ∈ Gr,L , 0 ≤ T0 < T1 ≤ T , sk, s ∈ Sregµ,M (T0, T1) , u0
k ∈ H1(Ωγksk(T0);R

2) , u0 ∈
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H1(Ωγs(T0);R
2) , and u1

k, u
1 ∈ L2(Ω;R2) . Assume that

sk → s uniformly, (3.33)

γk → γ uniformly, (3.34)

sk(T1) ≤ bγk for every k, (3.35)

u0
k → u0 strongly in L2(Ω;R2) , (3.36)

∇̂u0
k → ∇̂u0 strongly in L2(Ω;M2×2) , (3.37)

u1
k → u1 strongly in L2(Ω;R2) . (3.38)

For T0 ≤ t ≤ T1 let t 7→ uk(t) and t 7→ u(t) be the weak solutions of problems (3.5)-(3.7)
on the time-dependent cracking domains t 7→ Ωγksk(t) and t 7→ Ωγs(t) respectively, satisfying

the initial conditions

uk(T0) = u0
k , u̇k(T0) = u1

k and u(T0) = u0, u̇(T0) = u1 respectively .

Then

uk(t, ·)→ u(t, ·) strongly in L2(Ω;R2) , (3.39)

∇̂uk(t, ·)→ ∇̂u(t, ·) strongly in L2(Ω;M2×2) , (3.40)

u̇k(t, ·)→ u̇(t, ·) strongly in L2(Ω;R2) , (3.41)

for every t ∈ [T0, T1] .

As in the proof of Theorem 3.3, on a small time interval [t0, t1] we consider local problems
in the time-dependent cracking domains t 7→ B2 \ Γksk(t) , where B2 is a suitable small

ball. The continuous dependence results of [3] cannot be applied directly, since one of
the hypotheses of [3, Theorem 4.1] is that all cracks have a common initial part. This
condition is satisfied for the global problem in Ω, but not for the problems localized to B2 .
To overcome this difficulty we have to consider a sequence of diffeomorphisms ωk which
map Ω onto Ω, B2 onto B2 , and the image of (an extension of) γ onto the image of (an
extension of) γk . Then we consider the problem satisfied by vintk (t, x) := uintk (t, ωk(x)) and
vextk (t, x) := uextk (t, ωk(x)), where uintk and uextk are defined as in the proof of Theorem 3.3.
The crucial point in the proof of Theorem 3.5 is the convergence of vintk to uint and of vextk

to uext , which are obtained by using a slight modification of [3, Theorem 4.1].

Proof of Theorem 3.5. Let us fix ρ and η as at the beginning of the proof of Theorem 3.3.
Without loss of generality we assume that T1 ≤ T0 + η . Let B1 and B2 be as in the proof
of Theorem 3.3, let γ̂k and γ̂ be the extensions of γk and γ provided by Lemma 2.4, and
let Γ̂k and Γ̂ be the corresponding images.

Since γk(sk(t)) → γ(s(t)) uniformly in [T0, T1] , it is not restrictive to assume that
|γk(sk(t))− γ(s(t))| < ρ , hence (3.29) implies that

B(γk(sk(t)), 2ρ) ⊂⊂ B1 for every k and for every t ∈ [T0, T1] . (3.42)

As in the proof of Lemma 3.4 we obtain that γ̂k(s(T0) + r̂) /∈ B2 . Since we have also
γ̂k(a0) = γk(a0) /∈ B2 , there exist s0

k , s1
k , with a0 < s0

k < sk(T0) < s1
k < sk(T0) + r̂ such

that γ̂k(sik) ∈ ∂B2 for i = 0, 1. By the uniform tangent balls condition it is easy to see that

s0
k and s1

k are uniquely determined, hence γ̂k(s) ∈ B2 for every s ∈ (s0
k, s

1
k) and Γ̂k ∩B2 =

γ̂k([s0
k, s

1
k]) . Similarly, there exist s0 and s1 , with a0 < s0 < s(T0) < s1 < s(T0) + r̂ , such

that γ̂(si) ∈ ∂B2 for i = 0, 1, γ̂(s) ∈ B2 for every s ∈ (s0, s1), and Γ̂ ∩B2 = γ̂([s0, s1]) .
Since the radii of the balls B1 and B2 are sufficiently small with respect to r̂ , the

uniform tangent balls condition implies that Γ̂k meets ∂B1 and ∂B2 transversally. Hence
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for every t0 ∈ [T0, T1] and for every k we can construct a diffeomorphism ωk : Ω → Ω of
class C3,1 such that

ωk(x) = x for x in a neighborhood of ∂Ω , (3.43)

ωk(Γ̂) = Γ̂k, ωk(B1) = B1 , ωk(B2) = B2 , (3.44)

ωk(Γs(T0)) = Γksk(T0) and ωk(γ(s(T0)) = γk(sk(T0)) . (3.45)

By (3.42) for every t ∈ [T0, T1] we have γk(sk(t)) ∈ Γ̂k ∩ B2 , hence ω−1
k (γk(sk(t))) ∈

Γ̂ ∩ B2 . This implies that there exists a unique s̃k(t) ∈ [s0, s1] such that γ(s̃k(t)) =
ω−1
k (γk(sk(t))). The regularity assumptions on γ , γk , sk , and ωk imply that s̃k is of

class C3,1 . Note that (3.44) implies that s̃k(T0) = s(T0).
Moreover, since γk → γ and sk → s uniformly, taking into account the bounds on the

derivatives contained in Definitions 2.1 and 2.10, we may assume that

ωk → id and ω−1
k → id in C3(Ω;R2) , (3.46)

s̃k → s in C3([s0, s1]), (3.47)

and that there exists a constant L̃ , independent of T0 and k , such that the third derivatives
of the components of ωk are Lipschitz continuous with Lipschitz constant less than L̃ .

We now choose ε ∈ (0, λ) and µ0 > 0 such that

µ < µ0 < min
{5ρ

η
,

√
λ− ε
2

}
, (3.48)

Using (3.46), (3.47), and the bounds on the derivatives of γk , sk , and ωk (see Definitions 2.1
and 2.10, and the remark after (3.47)) we can prove that there exists a constant M0 > M
such that s̃k ∈ Sregµ0,M0

(T0, T1) for k large enough.
Let α, β, δ > 0 be the constants given by Lemma 3.4 applied with our choice of ρ , B1 ,

and B2 , and with µ , M , λ , and Λ replaced by µ0 , M0 , λ − ε , and Λ + ε , respectively.
Furthermore, let

δ∗ = min
{
δ,

4ρ√
Λ + ε

}
. (3.49)

We now choose t0 = T0 and t1 = min{t0 + δ∗, T1} .
Let uint and uext be defined as in the proof of Theorem 3.3. We also consider the

boundary value problem for the wave equation (3.5)-(3.7), with Ω replaced by B2 , ∂DΩ
replaced by Ø, ∂NΩ replaced by ∂B2 , and γ replaced by γk . Let uintk be the unique solution
of this problem (see Theorem 3.3) with initial conditions uintk (t0) = u0

k and u̇intk (t0) =
u1
k in L2(B2;R2). Moreover, we consider the same problem with Ω replaced by Ω \B1 and
∂NΩ replaced by ∂NΩ ∪ ∂B1 , and with γ replaced by γk . Let uextk be its unique weak
solution satisfying the initial conditions uextk (t0) = u0

k and u̇extk (t0) = u1
k in L2(Ω \ B1;R2)

and the Dirichlet boundary condition uextk (t) = w(t) on ∂DΩ.
Note that, since δ∗ ≤ δ ≤ ρ/µ and 0 ≤ ṡk(t) ≤ µ , we have γk(sk(t)) ∈ B(γk(sk(t0)), 2ρ) ⊂

B1 for every t ∈ [t0, t1] , hence (B2 \B1) \ Γksk(t) = (B2 \B1) \ Γksk(t0) .

We now apply the result on the finite speed of propagation (see Theorem A.4) to the
function uextk − uintk , with Uk = (B2 \ B1) \ Γksk(t0) , S0 = Ø, and S1 = ∂B2 ∪ ∂B1 . We

obtain that for every t ∈ [t0, t1] we have uextk (t)−uintk (t) = 0 a.e. in (B̂2 \ B̂1)\Γksk(t) where

B̂1 and B̂2 are the balls concentric to B1 and B2 with radii 8ρ + δ∗
√

Λ and 16ρ− δ∗
√

Λ
respectively. Since B̂1 ⊂⊂ B̂2 by (3.49), the function

u∗k(t) =

{
uextk (t) in Ω \ B̂1,

uintk (t) in B̂2,
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is well defined and provides a weak solution of the boundary value problem (3.5)-(3.7) for
the wave equation on the cracking domains t 7→ Ωγksk(t) for t ∈ [t0, t1] , with initial conditions

u∗k(t0) = u0
k and u̇∗k(t0) = u1

k in L2(Ω;R2). By uniqueness (see Theorem 3.3) we have

uk(t) =

{
uextk (t) in Ω \ B̂1,

uintk (t) in B̂2.
(3.50)

We now want to prove that uintk (t) → uint(t) and uextk (t) → uext(t) for every t ∈
[t0, t1] . To this aim we introduce the function vintk (t, x) := uintk (t, ωk(x)). To write the
equation satisfied by vintk , for every x ∈ Ω we define Ck(x) ∈ Lin(M2×2,M2×2), ak(x) ∈
Lin(M2×2,R2), and fk(x) ∈ R2 and imposing, for y = ωk(x), the equalities

Ck(x)F ·G = C(y)[F∇ω−1
k (y)] · [G∇ω−1

k (y)] , (3.51)

ak(x)F · ζ = C(y)[F∇ω−1
k (y)] · [ζ ⊗∇(log(det∇ω−1

k ))(y)] , (3.52)

fk(x) = f(y) , (3.53)

for every F,G ∈M2×2 and every ζ ∈ R2 . By a change of variables we see that

〈v̈intk (t), ϕ〉+ 〈Ck∇vintk (t),∇ϕ〉+ 〈ak∇vintk (t), ϕ〉 = 〈fk, ϕ〉 (3.54)

for every ϕ ∈ H1(B2 \ Γs̃k(t);R2). By (3.46) we have

Ck → C in C2(Ω; Lin(M2×2,M2×2)), (3.55)

ak → 0 in C1(Ω; Lin(M2×2,R2)), (3.56)

fk → f in L2(Ω;R2) . (3.57)

This implies that for every ε > 0 there exists kε such that for k ≥ kε and every x ∈ Ω

(λ− ε)|F sym|2 ≤ Ck(x)F · F ≤ (Λ + ε)|F sym|2 for every F ∈M2×2 . (3.58)

We now apply Lemma 3.4 with our choice of ρ , B1 , and B2 , and with µ , M , λ , and
Λ replaced by µ0 , M0 , λ − ε , Λ + ε , respectively. Therefore, we can associate to γ and
s̃k two functions Φk,Ψk : [t0, t1] × B2 → B2 of class C2,1 which satisfy properties (a)-(g)
of Lemma 2.8 and such that the tensors Bk(t) corresponding to these functions and to Ck
satisfy (3.21) in B2 \ Γs(t0) , with constants α and β independent of k . Moreover,

Φk(t, y) = y for every y /∈ B1 and t ∈ [t0, t1] . (3.59)

A slight modification of [3, Theorem 4.1], due to the presence of the term ak , yields

vintk (t, ·)→ uint(t, ·) strongly in L2(B2;R2) ,

∇̂vintk (t, ·)→ ∇̂uint(t, ·) strongly in L2(B2;M2×2) ,

v̇intk (t, ·)→ u̇int(t, ·) strongly in L2(B2;R2) ,

for every t ∈ [t0, t1] . Since uintk (t, x) := vintk (t, ω−1
k (x)), by (3.46) we have

uintk (t, ·)→ uint(t, ·) strongly in L2(B2;R2) , (3.60)

∇̂uintk (t, ·)→ ∇̂uint(t, ·) strongly in L2(B2;M2×2) , (3.61)

u̇intk (t, ·)→ u̇int(t, ·) strongly in L2(B2;R2) , (3.62)

for every t ∈ [t0, t1] .
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We now set vextk (t, x) := uextk (t, ωk(x)) for every t ∈ [t0, t1] . By (3.44) and (3.45) we
have vextk (t) ∈ H1((Ω\B1)\Γs(t0);R2). By the same change of variables considered for vintk

we see that
〈v̈extk (t), ϕ〉+ 〈Ck∇vextk (t),∇ϕ〉+ 〈ak∇vextk (t), ϕ〉 = 〈fk, ϕ〉 (3.63)

for every ϕ ∈ H1((Ω \ B1) \ Γs(t0);R2) with ϕ = 0 on ∂DΩ, where Ck , ak , and fk are
given by (3.51)–(3.53).

We can now apply [3, Theorem 4.1] with a sequence of elasticity tensors and with a
time-independent crack, so that all diffeomorphisms considered there are the identity map.
A slight modification of this theorem, due to the presence of the term ak , implies that

vextk (t, ·)→ uext(t, ·) strongly in H1((Ω \B1) \ Γs(t0);R2) ,

v̇extk (t, ·)→ u̇ext(t, ·) strongly in L2(Ω \B1;R2) ,

for every t ∈ [t0, t1] . Since uextk (t, x) := vextk (t, ω−1
k (x)), by (3.46) we have

uextk (t, ·)→ uext(t, ·) strongly in L2(B2;R2) , (3.64)

∇̂uextk (t, ·)→ ∇̂uext(t, ·) strongly in L2(B2;M2×2) , (3.65)

u̇extk (t, ·)→ u̇ext(t, ·) strongly in L2(B2;R2) , (3.66)

for every t ∈ [t0, t1] . By (3.32), (3.50), (3.60)-(3.62), and (3.64)-(3.66) we conclude that
(3.39)-(3.41) hold for every t ∈ [t0, t1] . To obtain the result for every t ∈ [T0, T1] we argue
as in the final part of the proof of Theorem 3.3.

4. Energy balance

In this section we consider the issue of the dynamic energy-dissipation balance on [T0, T1] ,
which plays an important role in our model: the sum of the kinetic energy and of the elastic
energy at time T1 , plus the energy dissipated by the crack between time T0 and time T1 ,
is equal to the initial energy at time T0 plus the total work done between time T0 and
time T1 . We are here in a situation similar to that considered in [1, Section 3].

The sum of the elastic and kinetic energies of a solution u at time t is given by

E(∇̂u(t), u̇(t)) :=
1

2
〈C∇̂u(t), ∇̂u(t)〉+

1

2
‖u̇(t)‖2 . (4.1)

The work of the external forces on the solution u over a time interval [t1, t2] ⊂ [T0, T1]
is given by

Wload(u; t1, t2) :=

∫ t2

t1

〈f(t), u̇(t)〉dt , (4.2)

which is well defined by (3.4) and (3.12).
As explained in [1, Proposition 3.1] it is convenient to express the work Wbdry(u; t1, t2)

due to the time-dependent boundary conditions w in the form

Wbdry(u; t1, t2) := 〈u̇(t2), ẇ(t2)〉 − 〈u̇(t1), ẇ(t1)〉

−
∫ t2

t1

〈ẅ(t), u̇(t)〉dt−
∫ t2

t1

〈f(t), ẇ(t)〉dt+

∫ t2

t1

〈C∇̂u(t),∇ẇ(t)〉dt ,
(4.3)

which has good continuity properties with respect to u .
The total work on the solution u over a time interval [t1, t2] ⊂ [T0, T1] is defined by

W(u; t1, t2) :=Wload(u; t1, t2) +Wbdry(u; t1, t2) .
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According to Griffith’s theory (see [9]), the energy dissipated by the crack in the interval
[t1, t2] is proportional to the length of the crack produced in the same interval, since we are
assuming that the toughness of the material is homogeneous and isotropic. For simplicity it
is assumed that the proportionality constant is one, hence the energy dissipated is given by
s(t2)− s(t1).

Definition 4.1 (Cracks satisfying the energy-dissipation balance). Assume that 0 < µ <√
λ/2. Let C ∈ E(λ,Λ), 0 ≤ T0 < T1 ≤ T , s0 ≥ 0, and γ̄ ∈ Gr,L , with bγ̄ = s0 .

Assume that f and w satisfy (3.4), (3.8), (3.9), and (3.11). Let u0 ∈ H1(Ωγ̄s0 ;R2), with
u0 − w(T0) ∈ H1

D(Ω0;R2), and let u1 ∈ L2(Ω;R2).
The class Creg(T0, T1) = Creg(T0, T1, s0, γ̄,C, f, w, u0, u1) is composed of all pairs (γ, s),

with γ ∈ Gr,L , γ|[a0,s0] = γ̄|[a0,s0] , s ∈ Sregµ,M ([T0, T1]) , s(T0) = s0 , and s(T1) ≤ bγ , such
that the unique weak solution u of (3.5)-(3.7) on the time-dependent cracking domains
t 7→ Ωγs(t) for T0 ≤ t ≤ T1 , with the initial conditions u(T0) = u0, u̇(T0) = u1 , satisfies the

dynamic energy-dissipation balance

E(∇̂u(t2), u̇(t2))− E(∇̂u(t1)), u̇(t1)) + s(t2)− s(t1) =W(u; t1, t2) (4.4)

for every interval [t1, t2] ⊂ [T0, T1] .
Similarly, the class Cpiec(T0, T1) = Cpiec(T0, T1, s0, γ̄,C, f, w, u0, u1) is defined in the

same way replacing s ∈ Sregµ,M ([T0, T1]) by s ∈ Spiecµ,M ([T0, T1]) .

As remarked in [1], equality (4.4) expresses conservation of energy: The work W done on

the system is balanced by the change in mechanical energy E(∇̂u(t2), u̇(t2))−E(∇̂u(t1)), u̇(t1))
and by the energy dissipated in the process of crack growth in the same time interval [t1, t2] .

Remark 4.2 (Nonempty class). The class Creg(T0, T1) is nonempty. Indeed, it is well
known that the wave equation in a time-independent domain satisfies the energy balance.
In the case w = 0, we refer to [10, Chapter 3, Lemma 8.3]. The general case can be obtained
by considering the equation satisfied by u−w , taking into account the integration by parts
formula (3.11) and using the identity∫ t

0

〈C∇u(τ),∇ẇ(τ)〉dτ = 〈C∇u(t),∇w(t)〉 − 〈C∇u(0),∇w(0)〉 − 1

2
〈C∇w(t),∇w(t)〉

+
1

2
〈C∇w(0), E∇w(0)〉+

∫ t

0

〈div(C∇w(τ)), u̇(τ)− ẇ(τ)〉dτ ,

which can be easily proved by regularizing u with respect to time and using (3.11) again.
The energy balance for the wave equation in a time-independent domain implies that the
pair (γ̄, s), with s(t) = s0 for every t ∈ [T0, T1] , belongs to Creg(T0, T1).

Remark 4.3 (Concatenation). Under the assumptions of Definition 4.1, let

(γ1, s1) ∈ Cpiec(T0, T1, s0, γ̄,C, f, w, u0, u1) .

Let T1 < T2 ≤ T and let

(γ2, s2) ∈ Cpiec(T1, T2, s1(T1), γ1,C, f, w, u(T1), u̇(T1)) ,

where u is as in Definition 4.1. Let s : [T0, T2]→ R be defined by

s(s) :=

{
s1(t) if t ∈ [T0, T1] ,

s2(t) if t ∈ [T1, T2] .

Then (γ2, s) ∈ Cpiec(T0, T2, s0, γ̄,C, f, w, u0, u1).
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Theorem 4.4 (Compactness). Under the assumptions of Definition 4.1, let (γk, sk) ∈
Creg(T0, T1) . Then there exist (γ, s) ∈ Creg(T0, T1) and a subsequence (not relabelled) such
that γk → γ uniformly (in the sense of Definition 2.3) and sk → s in C3([T0, T1]) .

Proof. By the compactness of Gr,L (see Lemma 2.5) there exist γ ∈ Gr,L and a subsequence
γk such that γk → γ uniformly. By the Arzelà-Ascoli Theorem there exist s ∈ C3([T0, T1])
and a further subsequence such sk → s in C3([T0, T1]) . It is easy to see that the estimates
on the third derivatives also hold for s , so that s ∈ Sregµ,M ([T0, T1]) . It remains to prove (4.4)
for the solution corresponding to (γ, s). For every k let uk be the unique weak solution of
(3.5)-(3.7) on the time-dependent cracking domains t 7→ Ωγksk(t) for T0 ≤ t ≤ T1 , with the

initial conditions uk(T0) = u0, u̇k(T0) = u1 . Since (γk, sk) ∈ Creg(T0, T1) we have

E(∇̂uk(t2), u̇k(t2))− E(∇̂uk(t1)), u̇k(t1)) + sk(t2)− sk(t1) =W(uk; t1, t2) (4.5)

for every interval [t1, t2] ⊂ [T0, T1] . By (3.40) and (3.41) proved in Theorem 3.5 we can pass
to the limit in (4.5) and obtain (4.4).

5. Existence of an η -maximal dissipation evolution

In our model the crack satisfies a maximality condition, which forces the crack tip to
move, when possible, and to choose a path which allows for a maximal speed. In this section
we introduce this maximality condition (see Definition 5.1), which depends on a threshold
parameter η > 0, as explained in the Introduction. Then we prove the main result of the
paper: the existence of a crack satisfying this η -maximality condition (see Theorem 5.2).

Given s ∈ Spiecµ,M (0, T ), we consider its singular set sing(s) introduced in Definition 2.7.

Definition 5.1 (η -maximal dissipation). Assume that 0 < µ <
√
λ/2 and that f and w

satisfy (3.4), (3.8), (3.9), and (3.10). Let C ∈ E(λ,Λ), u0 ∈ H1(Ω0;R2), with u0 − w(0) ∈
H1
D(Ω0;R2), and u1 ∈ L2(Ω;R2).

Given η > 0 we say that (γ, s) ∈ Cpiec(0, T ) satisfies the η -maximal dissipation condition
on [0, T ] if there exists no (γ̂, ŝ) ∈ Cpiec(0, τ1), for some 0 < τ1 ≤ T , such that

(a) sing(ŝ) ⊂ sing(s),

(b) ŝ(t) = s(t) and γ̂(ŝ(t)) = γ(s(t)) for every t ∈ [0, τ0] , for some 0 ≤ τ0 < τ1 ,

(c) ŝ(t) > s(t) for every t ∈ (τ0, τ1] and ŝ(τ1) > s(τ1) + η .

Theorem 5.2 (Existence of an η -maximally dissipative crack). Under the assumptions
of Definition 5.1, for every η > 0 there exists a pair (γ, s) ∈ Cpiec(0, T ) satisfying the
η -maximal dissipation condition on [0, T ] .

Proof. We proceed as in [1]. Let us fix η > 0 and a finite subdivision 0 = T0 < T1 < · · · <
Tk = T of the time interval [0, T ] such that Tj − Tj−1 <

η
µ for every j .

The solution will be constructed recursively in the intervals [Tj−1, Tj ] . Fix j ∈ {1, . . . , k}
and assume the pair (γj−1, sj−1) ∈ Cpiec(0, Tj−1) = Cpiec(0, Tj−1, 0, γ0,C, f, w, u0, u1) has
already been defined, where γ0 is the function that appears in condition (a) of Definition 2.1.

To define the next pair (γj , sj) we consider the class Aj of pairs (γ, s) ∈ Cpiec(0, Tj) =
Cpiec(0, Tj , 0, γ0,C, f, w, u0, u1) such that s|[Tj−1,Tj ] ∈ S

reg
µ,M (Tj−1, Tj), s(t) = sj−1(t), and

γ(s(t)) = γj−1(sj−1(t)) for every t ∈ [0, Tj−1] . For j = 1 we define A1 as the set of all
pairs (γ, s) ∈ Cpiec(0, T1) = Cpiec(0, T1, 0, γ0,C, f, w, u0, u1) such that s ∈ Sregµ,M (0, T1) and
s(0) = 0.

Note that Aj 6= Ø. Indeed, (γj−1, s̄j−1) ∈ Aj if s̄j−1 is defined by s̄j−1(t) = sj−1(t)
for 0 ≤ t ≤ Tj−1 and s̄j−1(t) = sj−1(Tj−1) for Tj−1 ≤ t ≤ Tj (see Remarks 4.2 and 4.3).
In the case of A1 we consider the pair (γ0, 0).
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We choose (γj , sj) ∈ Aj such that∫ Tj

Tj−1

sj(t) dt = max
(γ,s)∈Aj

∫ Tj

Tj−1

s(t) dt . (5.1)

The existence of (γj , sj) is guaranteed by Lemma 5.3 below.

We now define (γ, s) := (γk, sk), where (γk, sk) is the pair obtained in the final step
j = k of our construction. Let us prove that (γ, s) satisfies the η -maximal dissipation
condition on [0, T ] . Assume, by contradiction, that there exist 0 ≤ τ0 < τ1 ≤ T , and
(γ̂, ŝ) ∈ Cpiec(0, τ1) such that:

(a) sing(ŝ) ⊂ sing(s) ⊂ {T1, . . . , Tk−1} ,

(b) s(t) = ŝ(t) and γ(s(t)) = γ̂(ŝ(t)) for every t ∈ [0, τ0] ,

(c) s(t) < ŝ(t) for every t ∈ (τ0, τ1] and ŝ(τ1)− s(τ1) > η .

Let j ∈ {1, . . . , k} be the index such that Tj−1 ≤ τ0 < Tj . Let us prove that τ1 > Tj . The
monotonicity of s , together with (b) and (c), gives ŝ(τ1) > s(τ1)+η ≥ s(τ0)+η = ŝ(τ0)+η ,
which implies that ŝ(τ1) − ŝ(τ0) > η . On the other hand, by the definition of the class
Spiecµ,M (0, τ1) we have ŝ(τ1) − ŝ(τ0) ≤ µ(τ1 − τ0), hence τ1 − τ0 > η/µ > Tj − Tj−1 . This
implies τ1 > Tj .

By (a) we have ŝ|[Tj−1,Tj ] ∈ S
reg
µ,M (Tj−1, Tj). Taking (b) into account it follows that

(γ̂, ŝ) ∈ Aj . By construction s = sj on [Tj−1, Tj ] and, by (c), ŝ(t) > s(t) = sj(t) for every
t ∈ (τ0, Tj ] . This contradicts (5.1) and concludes the proof.

Lemma 5.3 (Solution of a maximum problem). For every j = 1, . . . , k there exists (γj , sj) ∈
Aj such that ∫ Tj

Tj−1

sj(t) dt = max
(γ,s)∈Aj

∫ Tj

Tj−1

s(t) dt . (5.2)

Proof. Fix j = 1, . . . , k and set Imax := sup
(γ,s)∈Aj

∫ Tj

Tj−1

s(t)dt and, for every n ∈ N , let

(γn, sn) ∈ Aj be such that ∫ Tj

Tj−1

sn(t)dt ≥ Imax −
1

n
. (5.3)

Let uj−1 be the unique weak solution of (3.5)-(3.7) on the time-dependent cracking domains
t 7→ Ω

γj−1

sj−1(t) for 0 ≤ t ≤ Tj−1 , with initial conditions uj−1(0) = u0 and u̇j−1(0) = u1 .

We now define the new initial conditions at time Tj−1 , by setting s0
j−1 := sj−1(Tj−1),

u0
j−1 = uj−1(Tj−1), and u1

j−1 = u̇j−1(Tj−1). By the compactness of Creg(Tj−1, Tj) =

Creg(Tj−1, Tj , s
0
j−1, γj−1,C, f, w, u0

j−1, u
1
j−1) (see Theorem 4.4) there exists a subsequence

of (γn, sn|[Tj−1,Tj ]), not relabelled, and a pair (γj , ŝ) ∈ Creg(Tj−1, Tj) such that γn → γj
and sn → ŝ uniformly. Let us define sj(t) = sj−1(t) for t ∈ [0, Tj−1] and sj(t) = ŝ(t) for
t ∈ [Tj−1, Tj ] . Since (γn, sn) ∈ Aj we have γn(sj−1(t)) = γn(sn(t)) = γj−1(sj−1(t)) for all
t ∈ [0, Tj−1] . Passing to the limit as n→∞ and using the definition of sj on [0, Tj−1] we
obtain that γj(sj(t)) = γj−1(sj−1(t)) for all t ∈ [0, Tj−1] . From Lemma 4.3 we obtain that
(γj , sj) ∈ Cpiec(0, Tj). Hence (γj , sj) ∈ Aj . Passing to the limit in n , from (5.3) we get∫ Tj

Tj−1

sj(t)dt = Imax , which immediately gives (5.2).
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Appendix

In this section we prove the finite speed of propagation for the system of elastodynamics
under very weak assumptions. Since the proof does not depend on the dimension, we will
state the result in any dimension n ≥ 1.

Let U be a bounded open subset of Rn and let ∂LU be the Lipschitz part of the
boundary ∂U , defined as the set of points x ∈ ∂U with the following property: there exist
an orthogonal coordinate system y1, . . . , yn , a neighborhood V of x of the form A×I , with
A open in Rn−1 and I open interval in R , and a Lipschitz function g : A → I , such that
V ∩ U = {(y1, . . . , yn) ∈ V : yn < g(y1, . . . , yn−1)} .

Let Mn×n be the space of n×n real matrices and let Mn×n
sym be the space of n×n

real symmetric matrices. The elasticity tensor A : U → Lin(Mn×n,Mn×n) is a measurable
function with the following properties: for a.e. x ∈ U we have

A(x)F = A(x)F sym ∈Mn×n
sym for every F ∈Mn×n , (A.4)

A(x)F ·G = A(x)G · F , for every F,G ∈Mn×n , (A.5)

λ|F sym|2 ≤ A(x)F · F ≤ Λ|F sym|2 , for every F ∈Mn×n . (A.6)

Let us fix T > 0, f ∈ L2(0, T ;L2(U ;Rn)), u0 ∈ H1(U ;Rn), u1 ∈ L2(U ;Rn), and two
Borel sets S0 and S1 , with S0 ⊂ S1 ⊂ ∂LU . We consider a weak solution u of the system
of elastodynamics

ü− div(A∇u) = f in (0, T )× U (A.7)

with boundary conditions

u = 0 on (0, T )× S0 , (A.8)

(A∇u)ν = 0 on (0, T )× (∂U \ S1) , (A.9)

and initial conditions
u(0) = u0 and u̇(0) = u1 in U . (A.10)

To give a precise meaning to (A.7)-(A.9) for every Borel set S ⊂ ∂LU we introduce the
space

H1
S(U ;Rn) := {u ∈ H1(U ;Rn) : u = 0 Hn−1-a.e. on S} ,

where Hn−1 is the (n − 1)-dimensional Hausdorff measure (see, e.g., [6, Definition 2.46])
and the equality on S refers to the trace of u . It is clear that H1

S(U ;Rn), endowed with
the norm of H1(U ;Rn), is a Hilbert space. Its dual is denoted by H−1

S (U,Rn).
By a weak solution of (A.7)-(A.9) we mean a function u such that

u ∈ L2(0, T ;H1
S0

(U ;Rn)) , (A.11)

u̇ ∈ L2(0, T ;L2(U ;Rn)) , (A.12)

ü ∈ L2(0, T ;H−1
S1

(U ;Rn)) , (A.13)

and for a.e. t ∈ (0, T ) satisfies

〈ü(t), ϕ〉+ 〈A∇u(t),∇ϕ〉 = 0 for every ϕ ∈ H1
S1

(U ;Rn) . (A.14)

By (A.11)-(A.13), a weak solution u satisfies

u ∈ C0([0, T ];L2(U ;Rn)) , (A.15)

u̇ ∈ C0([0, T ];H−1
S1

(U ;Rn)) , (A.16)

therefore the initial conditions (A.10) have to be interpreted as equalities in L2(U ;Rn) and
H−1
S1

(U ;Rn), respectively.
We are now in a position to state the main result of this section.
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Theorem A.4 (Finite speed of propagation). Let T > 0 , let U ⊂ Rn be a bounded open
set, let A : U → Lin(Mn×n,Mn×n) be a measurable function satisfying (A.4)-(A.6), let S0

and S1 be Borel sets with S0 ⊂ S1 ⊂ ∂LU , and for every t ∈ [0, T ] let

Ut := {x ∈ U : dist(x, S1 \ S0) > t
√

Λ } . (A.17)

If u is a weak solution of (A.7)-(A.10) in the sense of (A.11)-(A.14), with f = 0 , u0 = 0 ,
and u1 = 0 , then

u(t) = 0 a.e. in Ut (A.18)

for every t ∈ [0, T ] .

To prove the theorem we need the following lemma.

Lemma A.5 (Auxiliary estimates). Let E be a bounded set in Rn and let a ≥ 0 , b > 0 ,
and T > 0 . For every t ∈ [−a/b, T ] let

Et := {x ∈ Rn : dist(x,E) ≤ a+ bt } and ψ(t) := 1Et ∗ ρ ,

where 1Et is the characteristic function of Et , ρ ∈ C∞c (B1(0)) is a nonnegative function
with

∫
Rn ρ dx = 1 , and ∗ denotes the convolution with respect to the spatial variable. Let B

be an open ball in Rn containing ET + B1(0) . Then ψ : [−a/b, T ] → L∞(B) is absolutely
continuous and for a.e. t ∈ [−a/b, T ] there exists ψ̇(t) ∈ L∞(B) such that

(ψ(t+ h)− ψ(t))/h→ ψ̇(t) (A.19)

weakly∗ in L∞(B) and strongly in Lp(B) for every 1 ≤ p < +∞ . Moreover, for a.e.
t ∈ [−a/b, T ] we have

|∇ψ(t)| ≤ |ψ̇(t)|/b a.e. in B . (A.20)

Proof. We begin by proving that t 7→ Ln(Et) is absolutely continuous on [−a/b, T ] . For
every x ∈ B let g(x) := dist(x,E) and let P denote the perimeter of a set in Rn (see [6,
Definition 3.35]). Since |∇g(x)| = 1 for a.e. x ∈ B\E , by the co-area formula [6, Theorem
3.40], the function s 7→ P ({g ≤ s}) is integrable and for every t ∈ [−a/b, T ]

Ln(Et)− Ln(E) =

∫
B

|∇(g ∧ (a+ bt))|dx =

∫ a+bt

0

P ({g ≤ s})ds ,

where α ∧ β := min{α, β} . This shows that t 7→ Ln(Et) is absolutely continuous on
[−a/b, T ] .

Since for s < t we have

‖1Et − 1Es‖L1(B) ≤ Ln(Et)− Ln(Es) ,

the function t 7→ 1Et is absolutely continuous from [−a/b, T ] into L1(B).
Let us prove that

1

h
(1Et+h − 1Et)⇀bHn−1 ∂∗Et weakly∗ in Mb(B), (A.21)

where the space Mb(B) of bounded Radon measures on B is regarded as the dual of the
Banach space C0

0 (B) of continuous functions on B vanishing on ∂B . Here and in the rest
of the paper, ∂∗ denotes the reduced boundary (see [6, Definition 3.54]) and, for every Borel
set F , Hn−1 F denotes the measure defined by (Hn−1 F )(A) = Hn−1(F ∩A) for every
Borel set A .
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Let ϕ ∈ C0
0 (B). Using again the co-area formula, together with De Giorgi’s characteri-

zation of the derivative of a characteristic function (see [6, Theorem 3.59]), we obtain that
the function s 7→

∫
∂∗{g≤s} ϕdH

n−1 is integrable and that for every t ∈ [−a/b, T ] we have∫
Et

ϕdx =

∫
B

|∇(g ∧ (a+ bt))|ϕdx =

∫ a+bt

0

∫
∂∗{g≤s}

ϕdHn−1ds ,

therefore

lim
h→0

1

h

(∫
Et+h

ϕdx−
∫
Et

ϕdx
)

= b

∫
∂∗Et

ϕdHn−1

for a.e. t ∈ [−a/b, T ] . This proves (A.21).
Since the convolution by ρ is a continuous linear operator mapping L1(B) into L∞(B),

the absolute continuity of t 7→ 1Et implies that ψ is absolutely continuous from [−a/b, T ]
into L∞(B). Moreover, since the convolution by ρ maps weakly∗ convergent sequences in
Mb(B), supported by ET , into weakly∗ convergent sequences in L∞(B), from (A.21) we
obtain (A.19) weakly∗ in L∞(B), with

ψ̇(t) = b(Hn−1 ∂∗Et) ∗ ρ. (A.22)

As for the strong convergence in Lp(B) for 1 < p < +∞ , we observe that the absolute
continuity of ψ : [−a/b, T ] → L∞(B) implies the absolute continuity of ψ : [−a/b, T ] →
Lp(B). Since Lp(B) is reflexive we can apply [11, Corollaire A.2] and we obtain (A.19)
strongly in Lp(B) for 1 < p < +∞ . The result for p = 1 is now obvious.

To prove (A.20) we observe that for every t ∈ [−a/b, T ] we have

∇ψ(t) = D1Et ∗ ρ ,

where D denotes the distributional gradient. By the co-area formula for a.e. t ∈ [−a/b, T ]
the set Et has finite perimeter and therefore

D1Et = νtHn−1 ∂∗Et ,

where νt is the inner unit normal of Et . It follows that

|∇ψ(t)| ≤ (Hn−1 ∂∗Et) ∗ ρ

which, together with (A.22), gives (A.20).

Proof of Theorem A.4. Let u be as in the statement of the theorem. We extend u by setting

u(t) = 0 for every t ∈ (−T, 0] . (A.23)

Since u(0+) = 0 in L2(U ;Rn) and u̇(0+) = 0 in H−1
S1

(U ;Rn), we have that

u ∈ L2(−T, T ;H1
S0

(U ;Rn)) , (A.24)

u̇ ∈ L2(−T, T ;L2(U ;Rn)) , (A.25)

ü ∈ L2(−T, T ;H−1
S1

(U ;Rn)) , (A.26)

〈ü(t), ϕ〉+ 〈A∇u(t),∇ϕ〉 = 0 for a.e. t ∈ (−T, T ) and for every ϕ ∈ H1
S1

(U ;Rn) . (A.27)

For a.e. t ∈ (0, T ) we define

e(t) :=
1

2

∫
Ut

|u̇(t)|2dx+
1

2

∫
Ut

A∇u(t) · ∇u(t) dx . (A.28)
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We want to prove that

e(t) = 0 for a.e. t ∈ (0, T ). (A.29)

Before doing this, let us show that (A.29) implies that for every t ∈ [0, T ] we have u(t) = 0
a.e. in Ut . Let us fix t ∈ (0, T ] . Since Ut ⊂ Us for 0 < s < t , (A.28) and (A.29) give
u̇(s) = 0 a.e. in Ut for a.e. s ∈ (0, t). Since u ∈ H1(0, t;L2(Ut,Rn)) and u(0) = 0, we
conclude that u(t) = 0 a.e. in Ut . Therefore, to prove the theorem it is enough to show
that (A.29) holds.

To obtain an estimate for (A.28) we consider the set

Vt := {x ∈ Rn : dist(x, S1 \ S0) > t
√

Λ }, (A.30)

so that Ut = Vt∩U . To regularize the characteristic function 1Vt of Vt we fix a nonnegative
ρ ∈ C∞c (Rn) with ρ(x) = 0 for |x| ≥ 1 and

∫
Rn ρ dx = 1. For every ε ∈ (0, T

√
Λ)

let ρε(x) = 1/εnρ(x/ε) and, for every t ∈ (−ε/
√

Λ, T ) let ψε(t) = 1Vt+αε ∗ ρε , where

α = 2/
√

Λ. We remark that by (A.30) we have

ψε(t) = 0 in a neighbourhood of S1 \ S0 (A.31)

for every ε ∈ (0, T
√

Λ) and for every t ∈ (−ε/
√

Λ, T ).
Let eε(t) be the approximation of e(t) defined by

eε(t) :=
1

2

∫
U

|u̇(t)|2ψε(t)dx+
1

2

∫
U

A∇u(t) · ∇u(t)ψε(t)dx

=
1

2
〈u̇(t), u̇(t)ψε(t)〉+

1

2
〈A∇u(t),∇u(t)ψε(t)〉 (A.32)

for every ε ∈ (0, T
√

Λ) and for a.e. t ∈ (−ε/
√

Λ, T ). By (A.24) and (A.25) we have
that eε ∈ L1(−ε/

√
Λ, T ). Moreover, by standard properties of convolutions and by the

integrability properties of |u̇(t)|2 and A∇u(t) · ∇u(t), we obtain

eε(t)→ e(t) for a.e. t ∈ (0, T ) . (A.33)

To obtain an estimate for eε(t) we first consider the differences eε(t + h) − eε(t) for a
given h ∈ (0, ε/

√
Λ). We have

2(eε(t+ h)− eε(t)) = 〈u̇(t+ h) + u̇(t), (u̇(t+ h)− u̇(t))ψε(t+ h)〉
+ 〈u̇(t), u̇(t)(ψε(t+ h)− ψε(t))〉
+ 〈A∇u(t+ h) + A∇u(t), (∇u(t+ h)−∇u(t))ψε(t+ h)〉
+ 〈A∇u(t),∇u(t)(ψε(t+ h)− ψε(t))〉 = I1 + I2 + I3 + I4 . (A.34)

It is convenient to write I1 and I3 as

I1 = 〈u̇(t+ h) + u̇(t)), ddt (u(t+ h)− u(t))ψε(t+ h))〉
− 〈u̇(t+ h) + u̇(t), (u(t+ h)− u(t))ψ̇ε(t+ h)〉 , (A.35)

I3 = 〈A∇u(t+ h) + A∇u(t),∇((u(t+ h)− u(t))ψε(t+ h))〉
− 〈A∇u(t+ h) + A∇u(t), (u(t+ h)− u(t))⊗∇ψε(t+ h)〉 . (A.36)

We now integrate by parts we respect to t .
Since u satisfies (A.25) and (A.26), if

ζ ∈ L2(−ε/
√

Λ, T ;H1
S1

(U ;Rn)) and ζ̇ ∈ L2(−ε/
√

Λ, T ;L2(U ;Rn)),
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it is easy to prove by approximation that the function t 7→ 〈u̇(t), ζ(t)〉 is absolutely contin-
uous in [−ε/

√
Λ, T ] and

d

dt
〈u̇(t), ζ(t)〉 = 〈ü(t), ζ(t)〉+ 〈u̇(t), ζ̇(t)〉 . (A.37)

By Lemma A.5 and by (A.24), (A.25), and (A.31), we can apply this formula with

ζ(t) := (u(t+ h)− u(t))ψε(t+ h) (A.38)

and we obtain that

I1 =
d

dt
〈u̇(t+ h) + u̇(t), (u(t+ h)− u(t))ψε(t+ h)〉

− 〈ü(t+ h) + ü(t), (u(t+ h)− u(t))ψε(t+ h)〉
− 〈u̇(t+ h) + u̇(t), (u(t+ h)− u(t))ψ̇ε(t+ h)〉 (A.39)

for a.e. t ∈ (−ε/
√

Λ, T ).

Let us now fix t ∈ [0, T ] . By integrating (A.34) between −h and t−h , and using (A.23),
(A.36), and (A.39) we obtain

2

∫ t−h

−h
(eε(s+ h)− eε(s))ds = 〈u̇(t) + u̇(t− h)), (u(t)− u(t− h))ψε(t))〉

−
∫ t−h

−h
〈ü(s+ h) + ü(s), (u(s+ h)− u(s))ψε(s+ h)〉ds

−
∫ t−h

−h
〈u̇(s+ h) + u̇(s), (u(s+ h)− u(s))ψ̇ε(s+ h)〉ds

+

∫ t−h

−h
〈u̇(s), u̇(s)(ψε(s+ h)− ψε(s))〉ds

+

∫ t−h

−h
〈A∇u(s+ h) + A∇u(s),∇((u(s+ h)− u(s))ψε(s+ h))〉ds

−
∫ t−h

−h
〈A∇u(s+ h) + A∇u(s), (u(s+ h)− u(s))⊗∇ψε(s+ h)〉ds

+

∫ t−h

−h
〈A∇u(s),∇u(s)(ψε(s+ h)− ψε(s))〉ds . (A.40)

Note that by (A.27) for a.e. s ∈ (−h, t− h) we have

〈ü(s) + ü(s+h), ϕ〉+ 〈A(∇u(s) +∇u(s+h)),∇ϕ〉 = 0 for every ϕ ∈ H1
S1

(U ;Rn) . (A.41)

By (A.31), for a.e. s ∈ (−h, t−h) we may take ϕε(s) = (u(s+h)−u(s))ψε(s+h) as a test
function in (A.41) obtaining

〈ü(s+ h) + ü(s), u(s+ h)− u(s))ψε(s+ h)〉
+ 〈A(∇u(s+ h) +∇u(s)),∇((u(s+ h)− u(s))ψε(s+ h))〉 = 0 . (A.42)
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Substituting in (A.40) we get

2

∫ t−h

−h
(eε(s+ h)− eε(s))ds = 〈u̇(t) + u̇(t− h)), (u(t)− u(t− h))ψε(t))〉

− 2

∫ t−h

−h
〈ü(s+ h) + ü(s), (u(s+ h)− u(s))ψε(s+ h))〉ds

−
∫ t−h

−h
〈u̇(s+ h) + u̇(s), (u(s+ h)− u(s))ψ̇ε(s+ h)〉ds

+

∫ t−h

−h
〈u̇(s), u̇(s)(ψε(s+ h)− ψε(s))〉ds

−
∫ t−h

−h
〈A∇u(s+ h) + A∇u(s), (u(s+ h)− u(s))⊗∇ψε(s+ h)〉ds

+

∫ t−h

−h
〈A∇u(s),∇u(s)(ψε(s+ h)− ψε(s))〉ds . (A.43)

Integrating by parts, thanks to (A.23) and (A.37) we obtain

− 2

∫ t−h

−h
〈ü(s+ h) + ü(s), (u(s+ h)− u(s))ψε(s+ h))〉ds

= −2〈u̇(t) + u̇(t− h), (u(t)− u(t− h))ψε(t))〉

+ 2

∫ t−h

−h
〈u̇(s+ h) + u̇(s), (u̇(s+ h)− u̇(s))ψε(s+ h))〉ds

+ 2

∫ t−h

−h
〈u̇(s+ h) + u̇(s), (u(s+ h)− u(s))ψ̇ε(s+ h))〉ds . (A.44)

Hence, substituting in (A.43) and using again (A.23) we obtain

2

∫ t

t−h
eε(s) ds = 2

∫ t

t−h
eε(s) ds− 2

∫ 0

−h
eε(s) ds = −〈u̇(t) + u̇(t− h), (u(t)− u(t− h))ψε(t)〉

+ 2

∫ t−h

−h
〈u̇(s+ h) + u̇(s), (u̇(s+ h)− u̇(s))ψε(s+ h)〉ds

+

∫ t−h

−h
〈u̇(s+ h) + u̇(s), (u(s+ h)− u(s))ψ̇ε(s+ h)〉ds

+

∫ t−h

−h
〈u̇(s), u̇(s)(ψε(s+ h)− ψε(s))〉ds

−
∫ t−h

−h
〈A∇u(s+ h) + A∇u(s), (u(s+ h)− u(s))⊗∇ψε(s+ h)〉ds

+

∫ t−h

−h
〈A∇u(s),∇u(s)(ψε(s+ h)− ψε(s))〉ds . (A.45)
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Note that

2

∫ t−h

−h
〈u̇(s+ h) + u̇(s), (u̇(s+ h)− u̇(s))ψε(s+ h)〉ds

+

∫ t−h

−h
〈u̇(s), u̇(s)(ψε(s+ h)− ψε(s))〉ds

= 2

∫ t−h

−h
〈u̇(s+ h), u̇(s+ h)ψε(s+ h)〉ds− 2

∫ t−h

−h
〈u̇(s), u̇(s)ψε(s)〉ds

−
∫ t−h

−h
〈u̇(s), u̇(s)ψε(s+ h)〉ds+

∫ t−h

−h
〈u̇(s), u̇(s)ψε(s)〉ds

= 2

∫ t

t−h
〈u̇(s), u̇(s)ψε(s)〉ds−

∫ t−h

−h
〈u̇(s), u̇(s)(ψε(s+ h)− ψε(s))〉ds , (A.46)

where in the last equality we used again (A.23). Therefore substituting in (A.45) we obtain

2

∫ t

t−h
eε(s) ds = −〈u̇(t) + u̇(t− h), (u(t)− u(t− h))ψε(t)〉

+

∫ t−h

−h
〈u̇(s+ h) + u̇(s), (u(s+ h)− u(s))ψ̇ε(s+ h)〉ds

+ 2

∫ t

t−h
〈u̇(s), u̇(s)ψε(s)〉ds−

∫ t−h

−h
〈u̇(s), u̇(s)(ψε(s+ h)− ψε(s))〉ds

−
∫ t−h

−h
〈A∇u(s+ h) + A∇u(s), (u(s+ h)− u(s))⊗∇ψε(s+ h)〉ds

+

∫ t−h

−h
〈A∇u(s),∇u(s)(ψε(s+ h)− ψε(s))〉ds . (A.47)

We divide by h the terms in the right-hand side of (A.47). Thanks to (A.24) and (A.25)
we can pass to the limit in L1(0, T ) as h→ 0+ and we obtain

− 1

h
〈u̇(t) + u̇(t− h), (u(t)− u(t− h))ψε(t)〉 → −2〈u̇(t), u̇(t)ψε(t)〉 , (A.48)

1

h

∫ t−h

−h
〈A∇u(s),∇u(s)(ψε(s+ h)− ψε(s))〉ds→

∫ t

0

〈A∇u(s),∇u(s)ψ̇ε(s)〉ds , (A.49)

1

h

∫ t−h

−h
〈A∇u(s+ h) + A∇u(s), (u(s+ h)− u(s))⊗∇ψε(s+ h)〉ds

→ 2

∫ t

0

〈A∇u(s), u̇(s)⊗∇ψε(s)〉ds , (A.50)

1

h

∫ t−h

−h
〈u̇(s+ h) + u̇(s), (u(s+ h)− u(s))ψ̇ε(s+ h))〉ds

− 1

h

∫ t−h

−h
〈u̇(s), u̇(s)(ψε(s+ h)− ψε(s))〉ds→

∫ t

0

〈u̇(s), u̇(s)ψ̇ε(s)〉ds . (A.51)

Since

2

h

∫ t

t−h
eε(s) ds→ 2eε(t)
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in L1(0, T ) as h→ 0+, from (A.47)-(A.51) we get

2eε(t) =

∫ t

0

〈u̇(s), u̇(s)ψ̇ε(s)〉ds+

∫ t

0

〈A∇u(s),∇u(s)ψ̇ε(s)〉ds

+ 2

∫ t

0

〈A∇u(s), u̇(s)⊗∇ψε(s)〉ds (A.52)

for a.e. t ∈ (0, T ).
Let ξε(s) be the function on U defined by ξε(s) = ∇ψε(s)/|∇ψε(s)| on {∇ψε(s) 6= 0}∩U

and ξε(s) = 0 on {∇ψε(s) = 0} ∩ U . By the Cauchy inequality for the quadratic form on
L2(U ;Rn×n) determined by A , for every α > 0 we have

2〈A∇u(s), u̇(s)⊗∇ψε(s)〉
≤ 2〈A∇u(s),∇u(s)|∇ψε(s)|〉1/2 〈Au̇(s)⊗ξε(s), u̇(s)⊗ξε(s)|∇ψε(s)|〉1/2

≤ α〈A∇u(s),∇u(s)|∇ψε(s)|〉+
1

α
〈Au̇(s)⊗ξε(s), u̇(s)⊗ξε(s)|∇ψε(s)|〉

for a.e. s ∈ (0, T ). Therefore, by (A.6) and (A.20) we obtain

2〈A∇u(s), u̇(s)⊗∇ψε(s)〉

≤ α√
Λ
〈A∇u(s),∇u(s)|ψ̇ε(s)|〉+

√
Λ

α
〈u̇(s), u̇(s)|ψ̇ε(s)|〉 .

Taking α =
√

Λ and recalling that ψ̇ε(s) ≤ 0 we obtain

2〈A∇u(s), u̇(s)⊗∇ψε(s)〉+ 〈A∇u(s),∇u(s)ψ̇ε(s)〉+ 〈u̇(s), u̇(s)ψ̇ε(s)〉 ≤ 0

for a.e. s ∈ (0, T ). This inequality together with (A.52) gives eε(t) ≤ 0 for a.e. t ∈ (0, T ),
hence e(t) ≤ 0 for a.e. t ∈ (0, T ), by (A.33). Since e(t) ≥ 0, this concludes the proof.
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