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Abstract

The problem of uniqueness of limit cycles for the Liénard equation ẍ+ f(x)ẋ+
g(x) = 0 is investigated. The classical assumption of sign-definiteness of f(x) is
relaxed. The effectiveness of our result as a perturbation technique is illustrated
by some constructive examples of small amplitude limit cycles, coming from
bifurcation theory.
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1. Introduction and discussion about some uniqueness results

The aim of this paper is to investigate the problem of uniqueness of the limit
cycle for the Liénard equation

ẍ+ f(x)ẋ+ g(x) = 0, (1)

where f, g : R → R are continuous function and g(x) is locally Lipschitz and
satisfies the sign condition g(x)x > 0 for x ̸= 0.

The first result in this direction was actually achieved by Liénard himself
his pioneering paper [15] which is still a milestone in this area. Observe that in
the same paper the Liénard plane¨

ẋ = y − F (x)

ẏ = −g(x)
(2)
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was introduced, where F (x) =
R x
0 f(s) ds. It is well known that the study of

equation (1) in such a plane is equivalent to the study in the phase-plane

ẋ = y ẏ = −f(x)y − g(x).

Liénard [15] proved the uniqueness of the limit cycle under the following as-
sumption

(F ) f(0) < 0, F (x) has precisely three zeros α < 0 < β, and is monotone
increasing outside the interval [α, β].

It should be observed that Liénard was treating the case f(x) even (and therefore
F (x) odd) and g(x) = x. This fact produces some obvious symmetries when
studying (2) and is useful in the proof because it gives the property:

(S ) All the possible limit cycles cross both the lines x = α and x = β

(clearly, in the case studied by Liénard it is α = −β). Such uniqueness result was
then improved by Levinson and Smith [14] and by Sansone [19], still keeping the
symmetry property. More in detail Levinson and Smith [14] assumed f(x) even
and g(x) odd, while Sansone [19] considered the case g(x) = x and F (α) = F (β).
As a consequence, in both the cases the property (S ) is satisfied. Such a
property plays a crucial role as it was shown in the classical counterexample by
Duff and Levinson [6]. Indeed, in [6] the authors produce an example in which
F (x) satisfies (F ), g(x) = x but three limit cycles are present, two of them not
intersecting one of the vertical lines. For this reason in the search of hypotheses
ensuring the uniqueness of the limit cycle and in order to avoid the symmetry
property F (x) and g(x) odd, one has to impose condition (S ). This fact was
well known, but to our knowledge it was explicitly stated by Roberto Conti in
[5] in his Italian notes for an advanced course in ODEs. Restating this result in
our context, we have in fact the following:

Theorem 1.1. Let f, g : R → R as above. Assume that there exist α, β with
α < 0 < β such that

(F1) F (α) = F (β) = 0 with F (x)x < 0 for x ∈ ]α, β[, x ̸= 0 and F (x)x > 0 for
x < α and for x > β;

(F2) F (x) is monotone increasing for x < α and for x > β.

Then system (2) has at most one limit cycle provided that property (S ) holds.

Notice that (F ) implies (F1) and (F2).Moreover, in Theorem 1.1 no symmetry
condition on f or g is required. On the other hand, to verify assumption (S ) is
not an easy task. In this light, an elegant and easy verifiable condition for (S )
is given by G(α) = G(β) (cf., for instance, [3]). Results depending on Theorem
1.1 were explicitly or implicitly used by several researchers with the main goal of
producing sufficient conditions for the property (S ) and hence the uniqueness
(see [1, 3, 10, 11, 12, 18, 20, 22, 23] ).
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In the study of this problem, Lefschetz in his classical book (still in the
framework of the symmetry conditions) [13, p. 272, Fig. 2] observed that if the
monotonicity property of F (x) outside the interval [α, β] is omitted, there is the
possibility of giving rise to a succession of “concentric” closed paths Γ1,Γ2, . . .
and Γi will be orbitally stable (unstable) alternatively. Perhaps in view of this
remark, surprisingly little attention has been paid to relax the monotonicity
hypothesis in this problem. Therefore, all the above quoted results must assume
f(x) to be positive for |x| large.

In the present paper we attack the uniqueness problem for equation (1), by
relaxing the monotonicity assumption (F2) on F (x). More precisely, we will
give evidence of the fact that uniqueness of the limit cycle can be guaranteed
for a wide range of cases in which F (x), as well as f(x) oscillates or is eventually
negative. Constructive examples will be presented. Throughout the article when
speaking of uniqueness of limit cycle, we mean that we consider the fact that
at most one limit cycle does exist and we do not focus our attention on the
existence of limit cycles. For this latter aspect, which was widely investigated
in the literature, we refer to the recent work [4] and the references therein.

For sake of completeness, we recall that another classical approach for unique-
ness in the case g(x) = x come from the Massera theorem, where the mono-
tonicity assumptions are requested only on f(x) (instead on F (x)), without any
symmetry assumptions. Recently, the monotonicity assumptions in Massera
theorem have been relaxed to a fixed interval in [21] (see also [11] and [2]). The
case in which f(x) has no fixed sign, but still keeping the hypothesis of mono-
tonicity has been treated in [17]. However, the intriguing problem of generalizing
Massera theorem to a general function g(x) is still open. For an historical dis-
cussion about the theory of relaxation of the oscillation, we refer to the recent
papers of Ginoux [7, 8] and the notable survey of Mawhin [16].

The plan of the paper is the following. In Section 2 we discuss in detail a
proof of the uniqueness result in the monotone case, following Conti [5]. After
this step, we observe that the proof still holds if the monotonicity assumption
is dropped outside a certain strip including [α, β], provided that |F (x)| stays
bounded from below by certain values that can be explicitly produced. In
Section 3 we produce some examples which give the applicability of our result
as a perturbation approach which results extremely powerful in connection with
some results of bifurcation.

2. The uniqueness result revisited

Let f, g : R → R with f continuous and g locally Lipsctitz continuous
and satisfying g(x)x > 0 for all x ̸= 0. We consider the Liénard system (2)
with F (x) satisfying only (F1) at the moment. Associated with equation (2)
we have the conservative system ẋ = y, ẏ = −g(x), with associated energy
function E(x, y) := 1

2y
2 + G(x), for G(x) :=

R x
0 g(s) ds. If we evaluate the

derivative of the energy function along the trajectories of system (2) we obtain
Ė(x, y) = yẏ+g(x)ẋ = −yg(x)+g(x)(y−F (x)) = −g(x)F (x). As a consequence,
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for any limit cycle Γ we have

I
Γ
−g(x(t))F (x(t)) dt = 0. This because if we

consider a point P = (x, y) ∈ Γ and follow the trajectory for its period T , we
come back the the same point and therefore there is no gain or loss of energy.
Being g(x)F (x) < 0 for all x ̸= 0 in the interval ]α, β[ , we find that no limit
cycle lies entirely in the strip [α, β]× R. In fact, for any

In the above mentioned special case in which G(α) = G(β) we have that,
as the energy curve E(x, y) = G(α) = G(β) intersects the x-axis at the points
(α, 0) and (β, 0) we can conclude that all possible limit cycles intersect both the
lines x = −α and x = β and condition (S ) is fulfilled.

After these preliminary observations, we are now in position to start the
proof of Theorem 1.1 following Conti’s argument.

Proof. By contradiction, assume there are two limit cycles Γ1 and Γ2 with Γ1

included in the open region bounded by Γ2 crossing both the lines x = α and
x = β. This configuration is depicted in Figure 1.

Figure 1: Example of two limit cycles Γ1 and Γ2, with the points A1, B1, C1, D1 in evidence.

With reference to Figure 1, for i = 1, 2 and counting in the clockwise sense,
we denote by Ai and Bi the intersections of Γi with the line x = β and by Ci and
Di the intersections of Γi with the line x = α. Each limit cycle can be split into
four arcs and therefore, the integral

H
Γi

−g(x(t))F (x(t)) dt can be expressed as
sum of four integrals. The integrals for the arcs inside the strip α ≤ x ≤ β can
be parameterized in the x-variable, while, outside the strip, we parameterize in

the y-variable. We start first to compare the integrals along the arcs ùD1A1 andùD2A2.

Ri :=

Z
øDiAi

−g(x(t))F (x(t)) dt =
Z β

α

−F (x)g(x)
yi − F (x)

dx,

where yi = yi(x) is the parametrization by Dini’s theorem of y as a function of
x along Γi in the strip. From the assumption it follows that −F (x)g(x) > 0 for
]α, β[ with x ̸= 0. Since y1(x) < y2(x) for all x ∈ [α, β], we get that R2 < R1 .
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Analogously, one can see thatZ
øB2C2

−g(x(t))F (x(t)) dt <
Z
øB1C1

−g(x(t))F (x(t)) dt.

This because, now y1(x) > y2(x), but the strip is crossed in the opposite sense.
We compare now the integrals outside the strip which can be parameterized

with respect to the y-variable.

Si =

Z
øAiBi

−g(x(t))F (x(t)) dt =
Z yBi

yAi

F (xi) dy

where xi = xi(y) is the parametrization of x as a function of y along Γi for
x ≥ β. Now, S2 can be split as

S2 =

Z yA1

yA2

F (x2) dy +

Z yB1

yA1

F (x2) dy +

Z yB2

yB1

F (x2) dy.

Notice that the first and the third integrals give a negative contribution. This
because F (x) > 0 for x > β but yA2

> yA1
and yB1

> yB2
. On the other hand,Z yB1

yA1

F (x1) dy >

Z yB1

yA1

F (x2) dy

because yA1 > yB1 and x2(y) > x1(y) and F (x) is monotone increasing, ac-
cording to (F2). Therefore S2 < S1 . Arguing in the same way, one can prove
that Z

øC2D2

−g(x(t))F (x(t)) dt <
Z
øC1D1

−g(x(t))F (x(t)) dt.

This because yC2 < yC1 , yD1 < yD2 but F (x) is negative. Moreover, yC1 < yD1 ,
but now x2(y) < x1(y) with F (x) still monotone increasing.

In conclusion, summing up all the steps, we get

0 =

I
Γ2

−g(x(t))F (x(t)) dt <
I
Γ1

−g(x(t))F (x(t)) dt = 0,

a contradiction. �
As already discussed in the Introduction, we observe that under the symme-

try assumptions of the classical papers, condition (S ) is automatically fulfilled.
The main result of this paper, is actually based on a careful inspection of the

above proof. Indeed, the monotonicity property of F (x) for x < α and for x > β
was used only in the comparison of the integrals

R yB1
yA1

F (x) dy and
R yD1
yC1

F (x) dy

respectively. In all the remaining integrals only assumptions on the sign of
F (x) were required. This means that, outside the strips yB1 ≤ y ≤ yA1 and
yC1 ≤ y ≤ yD1 , no monotonicity of F (x) is required, that is no sign assumption
on f(x).

In order to clarify the situation, let us consider some possible behaviors for
F (x) for x > β, the case x < α being treated in the same way. There are only
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two possibilities:
CASE 1. F (x) < yA1 for all x > β. In this situation, the monotonicity assump-
tion cannot be relaxed to save the proof.
CASE 2. F (x) = yA1 for some x = x1 > β. In this situation, it will be suf-
ficient to require that F (x) is monotone increasing on [β, x1] and, moreover,
F (x) > yA1 for x > x1 . Notice that no monotonicity assumption will required
for x > x1 .

To summarize all the above observations, we can state the following result.

Theorem 2.1. Let f, g : R → R as above and let α, β with α < 0 < β be such
that (F1) and (S ) are satisfied. Suppose that there exists α1, β1 with α1 < α
and β1 > β such that

(F ′
2) F (x) is monotone increasing for α1 < x < α and for β < x < β1, with

F (x) ≤ F (α1) for all x ≤ α1 and F (x) ≥ F (β1) for all x ≥ β1.

If Γ is a limit cycle intersecting x = β at (β, yA) with yA > 0 and x = α at
(α, yC) with yC < 0, with yA ≤ F (β1) and yC ≥ F (α1), then the uniqueness of
the limit cycle for system (2) is guaranteed.

Remark 2.1. The main problem in order to apply this result is clearly to
determine yA and, symmetrically, yC . Instead of finding yA (resp. yC) one can
take the intersections of the limit cycle with y-axis because it is well known that
these intersections are respectively the maximum and the minimum ordinates
of the limit cycle. In this light, this result is more powerful if treated as a
perturbation method.

More in details, Theorem 2.1 can be viewed as a perturbation result. We
can start from a situation in which F (x) is monotone increasing outside the
interval [α, β] and therefore, in virtue of Theorem 1.1, there is exactly one limit
cycle intersecting the lines x = α and x = β. This determines uniquely the
values yA , yB , yC and yD which are the ordinates of the intersection points
with the above lines. Notice that, it is possible to determine such values by
rigorous numerics and nowadays this is very common in any kind of computing
environment.

A crucial role will be now played by yA and yC . Given yA we look wether
there exists β1 > β such that F (β1) ≥ yA . In this situation occurs, we can mod-
ify F (x) in the interval [β1,+∞), provided that the modified function remains
above the level F (β1) ≥ yA . Similarly, if there is α1 < α such that F (α1) ≤ yC ,
we can modify F (x) in the interval (−∞, α1] provided that the modified func-
tion remains below the level F (α1) ≤ yC . With this procedure we can provide
a broad family of non-monotone functions F (x) for which the uniqueness of the
limit cycle is guaranteed. We just remark that this theorem generalizes most of
the results present in the literature.

A different way to read Theorem 2.1 is the following. Assume that, by means
of some a priori bounds, we are able to determine an horizontal strip R× [ϕ, ψ]
such that all the possible limit cycles are contained in such a strip. This is
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a common procedure in order to apply the Poincaré-Bendixson theorem and
again, in many concrete situations, finding such a priori bounds is not an hard
task. Suppose also that the equation F (x) = ϕ has a unique solution x = α1

which is simple and, similarly, the equation F (x) = ψ has a unique solution
x = β1 which is simple, too. In the light of Theorem 2.1 to get the uniqueness
of the limit cycle it is sufficient to suppose the monotonicity of F (x) in the
interval [α1, α] and [β, β1]. As a side remark, we observe that, while, in the
classical case, we ask the limit cycles to cross the vertical strip α ≤ x ≤ β],
in this approach we ask the limit cicles to be confined in the horizontal strip
ϕ ≤ y ≤ ψ].

A few examples are given in the next section.

3. Examples and applications

As mentioned above, Theorem 2.1 can be read as a perturbation result. In
this light it is interesting the case in which there is a unique limit cycle of
small amplitude, because this clearly enlarges the possibility of perturbing the
function F outside a small region near the origin. In this light we consider
the Hopf bifurcation from the origin and the classical Van der Pol equation.
Namely, we consider, respectively, the equations

(E1) ẍ+(x2−a)ẋ+x = 0 (a > 0) and (E2) ẍ+µ(x2−1)ẋ+x = 0 (µ > 0).

It is well known that both equations have a unique stable limit cycle, in virtue
of Liénard theorem or Massera theorem. In the first case, we have a Hopf
bifurcation from the origin, therefore, when a > 0 is small, the limit cycle is
small. In the second case, a bifurcation from the circle of radius 2 occurs as
µ goes to 0 (see [9, p. 190]. Therefore, in both case, it is easy to determine
the range in which F (x) may be modified. As a result, the phase-portrait may
dramatically change but no new limit cycle appears and the existing limit cycle
does not move. Finally, we observe that F (x) may be perturbed in such a
way that it becomes eventually decreasing, provided that |F (x)| is bounded
away from a certain constant bounding the amplitude of the limit cycle. This
clearly produces examples in which f(x) is eventually negative and the classical
uniqueness results cannot be applied.
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Figure 2: Example of equations (E1) (left) and (E2) (right) with a = 0.5 and µ = 0, 5..
The function F (x) is drastically modified outside an interval whose length can be explicitly
determined. No new limit cycle appears according to Theorem 2.1. The simulations are
produced using MATLABr software.
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