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A GAUSS–NEWTON ITERATION FOR TOTAL LEAST SQUARES

PROBLEMS ∗

DARIO FASINO† AND ANTONIO FAZZI‡

Abstract. The Total Least Squares solution of an overdetermined, approximate linear equation
Ax ≈ b minimizes a nonlinear function which characterizes the backward error. We show that a
globally convergent variant of the Gauss–Newton iteration can be tailored to compute that solution.
At each iteration, the proposed method requires the solution of an ordinary least squares problem
where the matrix A is perturbed by a rank-one term.
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1. Introduction. The Total Least Squares (TLS) problem is a well known tech-
nique for solving overdetermined linear systems of equations

Ax ≈ b, A ∈ R
m×n, b ∈ R

m (m > n),

in which both the matrix A and the right hand side b are affected by errors. We
consider the following classical definition of TLS problem, see e.g., [4, 13].

Definition 1.1 (TLS problem). The Total Least Squares problem with data

A ∈ R
m×n and b ∈ R

m, with m ≥ n, is

min
E,f

‖(E | f)‖
F
, subject to b+ f ∈ Im(A+ E), (1.1)

where E ∈ R
m×n and f ∈ R

m. Given a matrix (Ē | f̄) that attains the minimum in

(1.1), any x ∈ R
n such that

(A+ Ē)x = b+ f̄

is called a solution of the Total Least Squares problem (1.1).
Here and in what follows, ‖ · ‖F denotes the Frobenius matrix norm, while (E | f)

denotes the m× (n+ 1) matrix whose first n columns are the ones of E, and the last
column is the vector f .

In various applicative situations where a mathematical model reduces to the solu-
tion of an overdetermined, possibly inconsistent linear equation Ax ≈ b, solving that
equation in the TLS sense yields a more convenient approach than the ordinary least
squares approach, in which the data matrix is assumed exact and errors are confined
to the right-hand side b.

In the numerical linear algebra community, the TLS problem was firstly intro-
duced by Golub and Van Loan in [3, 4], motivated by an extensive statistical literature
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on “orthogonal regression”, “errors-in-variables”, and “measurement error” methods
and models. They proposed a numerical algorithm based on the singular value de-
composition of the matrix (A | b). That algorithm, which requires about 2mn2+12n3

arithmetic operations [5, §12.3.2] essentially due to SVD computations, is still today
one of the reference methods for the solution of general TLS problems.

Van Huffel and Vandewalle [12] extended the algorithm of Golub and Van Loan in
order to deal with a wider class of TLS problems also in the multiple right-hand side
case, namely, problems having non-unique solutions, and the so called non-generic
problems which have no solution in the sense of Definition 1.1. Since then, many
variants and solution methods have been introduced on the basic TLS problem because
of its occurrence in many different fields [9]. For example, Björck et al. [1] proposed
a method for large scale TLS problems based on Rayleigh quotient iteration; and
efficient algorithms have been introduced for solving structured TLS problems where
the data matrix (A | b) has a particular structure (e.g., Hankel, Toeplitz) that must
be preserved in the solution [8]. Other variants of (1.1) have been defined in terms of
generic unitarily invariant norms [6]. We point the reader to [7] for a recent overview
of the literature on the subject.

Throughout this paper we denote by

C = UΣV T , Σ = Diag(σ1, . . . , σn, σn+1),

a singular value decomposition of C = (A | b), with σ1 ≥ . . . ≥ σn+1. Furthermore,
all vector and matrix norms are 2-norms, unless stated otherwise. The following well
known statement characterizes the TLS solution along with the conditions for its
existence and uniqueness [5, 9, 13].

Theorem 1.2. Let vn+1 be the last column of the matrix V in the SVD C =
UΣV T . Define the partitioning vn+1 = (v̂T , γ)T with v̂ ∈ R

n and γ ∈ R. A solution

of (1.1) exists and is unique if and only if γ 6= 0 and σn 6= σn+1. If the TLS solution

exists and is unique, it is given by

xTLS = −(1/γ)v̂.

Alternative characterizations of xTLS also exist, based on the SVD of A, see e.g.,
[13, Thm. 2.7]. We also mention that the two conditions appearing in the preceding
theorem, namely, γ 6= 0 and σn 6= σn+1, are equivalent to the single inequality
σ′
n > σn+1, where σ

′
n is the smallest singluar value of A. The equivalence is shown in

[13, Corollary 3.4]. In particular, we remark that a necessary condition for existence
and uniqueness of the solution is that A has maximum (column) rank.

Another popular characterization of the the solution of the total least squares
problem with data A and b is given in terms of the function η(x),

η(x) =
‖Ax− b‖√
1 + xTx

. (1.2)

Indeed, it was shown in [4, Sect. 3] that, under well posedness hypotheses, the solution
xTLS can be characterized as the global minimum of η(x), by means of arguments
based on the SVD of the matrix (A | b), and η(xTLS) = σn+1. Actually, the function
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η(x) quantifies the backward error of an arbitrary vector x as approximate solution
of the equation Ax = b, as shown in the forthcoming result.

Lemma 1.3. For any vector x there exist a rank-one matrix (Ē | f̄) such that

(A + Ē)x = b + f̄ and ‖(Ē | f̄)‖F = η(x). Moreover, for every matrix (E | f) such

that (A+ E)x = b+ f it holds ‖(E | f)‖F ≥ η(x).
Proof. Let r = Ax− b and define

Ē =
−1

1 + xTx
rxT , f̄ =

1

1 + xTx
r.

Note that

(A+ Ē)x = Ax− xTx

1 + xTx
r = b+

1

1 + xTx
r = b+ f̄ .

Introducing the auxiliary notation y = (x,−1)T ∈ R
n+1, we have r = (A | b)y and

yT y = 1 + xTx, whence (Ē | f̄) = −ryT /yTy. Therefore (E | f) has rank one,

‖(Ē | f̄)‖F = ‖(Ē | f̄)‖ =
‖r‖
‖y‖ =

‖r‖√
1 + xTx

= η(x),

and we have the first part of the claim. Finally, if (A+ E)x = b+ f then

‖(E | f)‖F ≥ ‖(E | f)‖ ≥ ‖(E | f)y‖
‖y‖ =

‖Ax− b‖√
1 + xTx

= η(x),

and the proof is complete.
Hence, under the well posedness hypotheses recalled above, the solution xTLS is

characterized as the unique minimizer of the function η(x) in (1.2). In this paper, we
exploit that variational formulation of the TLS problem to derive an iterative method,
based on the Gauss–Newton iteration, which constructs a sequence of approximations
converging to xTLS.

The rest of the paper is organized as follows. In the next section we derive our
basic algorithm and discuss some of its geometric and computational properties. In
Section 3 we introduce a step size control which guarantees convergence and provides
precise convergence estimates, due to a rather involved relationship between our al-
gorithm and an inverse power iteration with the matrix CTC. Next, we we present
some final comments in Section 4. The present work is completed by Appendix A,
which contains the most technical part. In fact, our main results are better discussed
in a rather abstract setting, and we devote a separate place for that discussion, to
avoid notational ambiguities.

2. Solving TLS problems by the Gauss–Newton iteration. As recalled
before, under reasonable assumptions the solution xTLS can be characterized as the
point attaining

min
x∈Rn

η(x) :=
‖Ax− b‖√
1 + xTx

. (2.1)

Hereafter, we show how to approximate that minimum by means of the Gauss–Newton
method.
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2.1. The Gauss–Newton method for nonlinear least squares problems.

Let f : Rn → R
m be a continuously differentiable function, m ≥ n. Consider the

unconstrained optimization problem

min
x∈Rn

‖f(x)‖. (2.2)

Assume that f is a nonlinear function, and denote its Jacobian matrix by J(x).
Finding a stationary point of φ(x) := ‖f(x)‖2 is equivalent to solving the equation
∇φ(x) = 0. The Gauss–Newton algorithm [10, §8.5] is a popular method for solving
such kind of nonlinear problems which does not require computation or estimation of
the second order derivatives of φ. Rather, this method attempts to solve the nonlinear
least squares problem (2.2) by means of a sequence of standard least squares problems
obtained by the linearization of the function f(x) around the current approximation.
Hence, unlike Newton-type methods applied to the nonlinear system ∇φ(x) = 0,
the Gauss–Newton iteration does not require the Hessian matrix of φ(x) and can be
implemented with just the knowledge of f(x) and its Jacobian matrix J(x), as follows.

Basic Gauss–Newton method

Input: f(x), J(x), x0; ε, maxit (stopping criteria)
Output: x̄, approximate solution of (2.2)

Set k := 0, f0 := f(x0), J0 := J(x0)
while ‖JT

k fk‖ ≥ ε and k < maxit
Compute hk := argminh ‖fk + Jkh‖
Set xk+1 := xk + hk

Set k := k + 1, fk := f(xk), Jk := J(xk)
end

x̄ := xk

According to this procedure, the iterate xk+1 is obtained by replacing the min-
imization of ‖f(xk + h)‖ with that of the linearized variant ‖f(xk) + J(xk)h‖. The
stopping criterion exploits the identity ∇φ(x) = 2J(x)T f(x), so that the smallness
of the norm of the latter could indicate nearness to a stationary point. The resulting
iteration is locally convergent to a solution of (2.2); if the minimum in (2.2) is positive
then the convergence rate is typically linear, otherwise quadratic, see e.g., [10, §8.5].

2.2. A basic Gauss–Newton iteration for TLS problems. The formulation
(2.1) of TLS can be recast as a nonlinear least squares problem in the form (2.2). In
fact, if we set

f(x) = µ(x)(Ax − b), µ(x) =
1√

1 + xTx
, (2.3)

then we have η(x) = ‖f(x)‖, and the TLS solution of Ax ≈ b coincides with the
minimum point of ‖f(x)‖. The function f(x) in (2.3) is a smooth function whose
Jacobian matrix is

J(x) = µ(x)A− µ(x)3(Ax− b)xT . (2.4)
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A good initial point to start up the Gauss–Newton iteration is given by the
solution of the standard least squares problem associated to the same data A and b,
which we denote by xLS. Indeed many theoretical results prove that xLS and xTLS

are usually not too far apart from each other and the angle between them is small, see
e.g., [13, Ch. 6] and [11]. Hereafter, we outline our adaptation of the Gauss–Newton
method to the solution of TLS problems.

Algorithm GN-TLS

Input: A, b (problem data); ε, maxit (stopping criteria)
Output: x̂TLS, approximate solution of (1.1)

Set k := 0
Compute x0 := argminx ‖Ax− b‖
Compute f0 := f(x0) and J0 := J(x0) via (2.3) and (2.4)
while ‖JT

k fk‖ ≥ ε and k < maxit
Compute hk := argminh ‖Jkh+ fk‖
Set xk+1 := xk + hk

Set k := k + 1
Compute fk := f(xk) and Jk := J(xk) via (2.3) and (2.4)

end

x̂TLS := xk

2.3. Reducing the computational cost. The main task required at each step
of the previous algorithm is the solution of a standard least squares problem, whose
classical approach by means of the QR factorization requires a cubic cost (about
2n2(m− n

3
), see [5]) in terms of arithmetic operations. However, the particular struc-

ture of the Jacobian matrix (2.4) allows us to reduce this cost to a quadratic one.
Indeed, apart of scaling coefficients, the matrix J(x) is a rank-one modification of
the data matrix A. This additive structure can be exploited in the solution of the
least squares problem minh ‖Jkh+fk‖ that yields the Gauss–Newton step at the k-th
iteration.

Hereafter, we recall from [5, §12.5] and [2] an algorithm that computes the (thin)
QR factorization of the matrix B = A + uvT by updating a known QR factorization
of A, also in the rectangular case. The steps of the algorithm are the following:

• Compute w = QTu so that B = A+ uvT = Q(R+ wvT ).
• Compute Givens matrices Jm−1, . . . , J1 such that

J1 · · ·Jm−1w = ±‖w‖e1,

where Ji is a plane rotation on the coordinates related to the indexes i and
i + 1 and e1 is the first canonical vector. Apply the same rotations to R to
obtain

H = J1 · · · Jm−1R,

which is an upper Hessenberg matrix. Hence,

(J1 · · ·Jm−1)(R + wvT ) = H ± ‖w‖e1vT = H1,

which is again an upper Hessenberg matrix.
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• Compute Givens matrices G1, . . . , Gn−1, where Gi is a plane rotation on the
coordinates i and i+ 1, such that

Gn−1 · · ·G1H1 = R1

and R1 is an upper triangular matrix. Finally set

Q1 = QJT
m−1 · · · JT

1 GT
1 · · ·GT

n−1

to obtain the sought QR factorization

B = A+ uvT = Q1R1.

By means of this procedure, starting from a known QR factorization of A, the overall
computational cost of computing the QR factorization of the rank-one update B =
A+ uvT is about 6n2 + 2mn flops [2].

This procedure can be adopted in Algorithm GN-TLS to reduce the computational
cost of the iterative part. In fact, the QR factorization of the data matrix A can
be computed once, when solving the least squares problem needed to compute the
starting value x0. In all subsequent iterations, the least squares problem occurring in
the computation of hk can be attacked by updating the QR factorization of the matrix
Jk by means of the aforementioned procedure. Consequently, the computational cost
of each iteration of GN-TLS can be reduced to quadratic.

2.4. Geometric properties. As recalled in Section 1, a necessary condition for
existence and uniqueness of xTLS is that A has full column rank. Moreover, we can
safely assume that b /∈ Range(A), otherwise the overdetermined system Ax ≈ b is
consistent and the TLS problem is trivial. Hence we can restrict our attention to the
case where C = (A | b) has full column rank. Under this hypothesis, Algorithm GN-
TLS boasts certain interesting geometric properties, which are examined hereafter.

Lemma 2.1. Let f(x) be the function in (2.3). If C = (A | b) has full column

rank then the image of the function f , Im(f) ⊂ R
m, is an open subset of the ellipsoid

E = {v ∈ R
m : vTXv = 1} where X = (CCT )+ is the Moore–Penrose inverse of the

matrix CCT .

Proof. From (2.3) we have

f(x) = µ(x)(Ax − b) = µ(x)C

(

x
−1

)

.

By hypothesis, C+C = I. Hence, the 2-norm of C+f(x) is

‖C+f(x)‖ =

∥

∥

∥

∥

µ(x)C+C

(

x
−1

)
∥

∥

∥

∥

= µ(x)

∥

∥

∥

∥

(

x
−1

)
∥

∥

∥

∥

= 1,

independently on x. Moreover,

1 = ‖C+f(x)‖2 = f(x)T (C+)TC+f(x) = f(x)T (CCT )+f(x),

due to the equation (C+)TC+ = (CCT )+, whence f(x) ∈ E . On the other hand, if
v ∈ Im(f) then the vector y = C+v must belong to the unit sphere in R

n+1 and be
expressed as

y =

(

x
−1

)/∥

∥

∥

∥

(

x
−1

)∥

∥

∥

∥

2
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for some vector x ∈ R
n, which is possible if and only if yn+1 < 0, and we have the

thesis.
Consequently, the sequence {f(xk)} generated by Algorithm GN-TLS belongs to

the ellipsoid E introduced in the previous lemma and, if convergent, converges toward
f(xTLS), which is a point on that surface closest to the origin. Indeed, the semiaxes
of E are oriented as the left singular vectors of C and their lenghts correspond to the
respective singular values.

Remark 2.2. For later reference, we notice that yk = C+f(xk) is a unit vector

on the hemisphere {y ∈ R
n+1 : ‖y‖ = 1, yn+1 < 0}, and is related to xk via the

equation

C+f(xk) = µ(xk)

(

xk

−1

)

.

Moreover, let F : Rn+1 7→ R
n be the nonlinear function

F(v) =
−1

vn+1

(v1, . . . , vn)
T , v = (v1, . . . , vn+1)

T .

Then we have the inversion formula fk = f(xk) ⇐⇒ xk = F(C+fk).
Our next result reveals that any update f(x + h) can be written explicitly as a

linear combination of f(x) and J(x)h.
Lemma 2.3. For all x and h it holds f(x+ h) = τ(f(x) + θJ(x)h) where

θ =
1

1 + µ(x)2(xTh)
, τ =

µ(x+ h)

µ(x)
(1 + µ(x)2(xTh)). (2.5)

Proof. Using the expression of the Jacobian matrix in (2.4), we have

J(x)h = µ(x)Ah− µ(x)3(xTh)(Ax− b)

= µ(x)Ah− µ(x)2(xTh)f(x),

whence

µ(x)Ah = J(x)h+ µ(x)2(xTh)f(x).

From the equality f(x+ h) = µ(x + h)(A(x + h)− b), with simple manipulations we
obtain

µ(x)

µ(x+ h)
f(x+ h) = µ(x)(A(x + h)− b)

= µ(x)(Ax − b) + µ(x)Ah

= f(x) + J(x)h+ µ(x)2(xTh)f(x)

= (1 + µ(x)2(xTh))f(x) + J(x)h.

Finally,

f(x+ h) =
µ(x + h)

µ(x)

(

(1 + µ(x)2(xTh))f(x) + J(x)h
)
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and the claim follows.
The preceding lemma allows us to acquire a geometric view of the iterations

provided by the GN-TLS method. In fact, both f(x) and f(x + h) belong to the
ellipsoid E given in Lemma 2.1. On the other hand, for any h and θ, the point
f(x) + θJ(x)h lies in the tangent space in f(x) to that ellipsoid, and is external to it.
Hence, f(x+ h) is the projection, or better, the retraction of one of such points onto
the ellipsoid. Indeed, under very general hypotheses we have |τ | < 1, as shown in the
forthcoming lemma.

Lemma 2.4. Let τ be defined as in (2.5). Then, τ2 ≤ 1 with equality if and only

if x and h are parallel.

Proof. Recall that µ(x) = (1 + xTx)−1/2. Hence,

τ2 =
µ(x+ h)2

µ(x)2
(

1 + µ(x)2(xTh)
)2

=
1+ xTx

1 + (x+ h)T (x+ h)

(

1 +
(xTh)2

(1 + xTx)2
+ 2

xTh

1 + xTx

)

=
(1 + xTx)2 + (xTh)2 + 2(1 + xTx)(xTh)

(1 + xTx)(1 + (x + h)T (x+ h))

=
(1 + xT (x + h))2

(1 + xTx)(1 + (x+ h)T (x+ h))
.

Let v = (x, 1)T ∈ R
n+1 and w = (x + h, 1)T ∈ R

n+1. Cauchy–Schwartz inequality
yields

τ2 =
(vTw)2

(vT v)(wTw)
≤ 1,

and the proof is complete.
Remark 2.5. During the iterations of the proposed algorithm the value of η(xk)

is readily available from the identity η(xk) = ‖f(xk)‖. As pointed out in Lemma

1.3, that number quantifies the backward error in xk, hence the monitoring of the

sequence {η(xk)} can be used to devise a reliable termination criterion, as far as the

minimization of the backward error is of interest. In fact, numerical experiments

suggest that a few iterations may be sufficient to obtain a relevant reduction of the

backward error with respect to that of x0.

3. An improved variant. In this section we devise a variant of the basic GN-
TLS method. The aim of this variant is twofold, namely, to ensure convergence and
to increase the convergence speed of the iteration with respect to the first version.

As shown by Lemma 2.3, f(x + h) is the retraction onto the ellipsoid not of the
Gauss–Newton step f(x) + J(x)h, but rather that of a linear combination of f(x)
and f(x) + J(x)h. This fact may slow down the iteration, since ‖f(x) + J(x)h‖ <
‖f(x) + θJ(x)h‖ unless h = 0. In particular, when xTh > 0 equation (2.5) gives
us 0 < θ < 1, so that f(x) + θJ(x)h is a convex linear combination of f(x) and
f(x) + J(x)h.

In order to improve convergence, we introduce a step size parameter α and re-
formulate the iteration as x 7→ x + αh where h is the Gauss–Newton step. The step

8



length is chosen so that f(x+ αh) is the retraction onto E of f(x) + J(x)h, that is,

f(x+ αh) = τ̂ [f(x) + J(x)h]

for some scalar τ̂ 6= 0. We obtain the sought value from Lemma 2.3 by the condition
α = 1/θ,

α = 1 + µ(x)2xT (αh),

whose solution is

α =
1

1− µ2(x)xTh
. (3.1)

In summary, our revised iteration is described by the following pseudo-code:

Algorithm GN-TLS with “optimal” step length

Input: A, b (problem data); ε, maxit (stopping criteria)
Output: x̂TLS, approximate solution of (1.1)

Set k := 0
Compute x0 := argminx ‖Ax− b‖
Compute f0 := f(x0) and J0 := J(x0) via (2.3) and (2.4)
while ‖JT

k fk‖ ≥ ε and k < maxit
Compute hk := argminh ‖Jkh+ fk‖
Compute αk from (3.1)
Set xk+1 := xk + αkhk

Set k := k + 1, fk := f(xk), Jk := J(xk)
end

x̂TLS := xk

The forthcoming lemma collects specific geometric properties of this iteration.
Lemma 3.1. Let {xk} be the sequence generated by Algorithm GN-TLS with

“optimal” step length. Then, for all k = 0, 1, . . .
1. f(xk) ∈ E = {v ∈ R

m : vT (CCT )+v = 1}.
2. For some constant τ̂k it holds f(xk+1) = τ̂k[f(xk) + J(xk)hk] where hk is the

Gauss–Newton step at the k-th iteration. In particular, f(xk+1) is orthogonal
to J(xk)hk.

3. If hk 6= 0 then η(xk+1) < η(xk).
Proof. The first two claims are straightforward. Furthermore, from Lemma 2.4

and the orthogonality between f(xk+1) and J(xk)hk we get

η(xk+1)
2 ≤ ‖f(xk) + J(xk)hk‖2

= ‖f(xk)‖2 − ‖J(xk)h‖2 = η(xk)
2 − ‖J(xk)hk‖2,

and the last claim follows.
In Appendix A we analyze this iteration in a more abstract setting, for nota-

tional convenience. We prefer to place that analysis in a separate appendix to avoid
notational ambiguities. The final result is that the sequence {fk} generated by the
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foregoing algorithm coincides with that of a power method with the matrix (CCT )+.
This fact provides a complete understanding of the convergence properties of the pro-
posed algorithm. In particular, convergence guarantee and estimates are inherited
from this coincidence. The main result is the following.

Theorem 3.2. Suppose that the TLS problem defined by data A and b is well

posed, and let {xk} be the sequence computed by the Algorithm GN-TLS with optimal

step size. Then,

‖f(xk)− f(xTLS)‖ = O((σn+1/σn)
2k), |η(xk)− σn+1| = O((σn+1/σn)

4k).

Furthermore, ‖xk − xTLS‖ = O((σn+1/σn)
2k).

Proof. Because of Lemma 3.1 the sequence {f(xk)} is a particular case of the
generic iteration scheme introduced in Appendix A. Hereafter we prove that the hy-
potheses of Theorem A.2 are fulfilled, so that the claim will follow from that theorem.

Firstly note that by Theorem 1.2 existence and uniqueness of xTLS imply the
inequalities σn > σn+1 > 0. Let vn+1 = (v̂T , γ)T be as in the hypotheses of Theo-
rem 1.2. Consider vn+1 oriented so that γ < 0 and let Cvn+1 = σn+1un+1. Then
µ(xTLS) = −γ and

f(xTLS) = µ(xTLS)C

(

xTLS

−1

)

=
µ(xTLS)

−γ
Cvn+1 = σn+1un+1.

Moreover,

σn+1

µ(xLS)
uT
n+1f(xLS) = vTn+1C

TC

(

xLS

−1

)

= vTn+1

(

ATA AT b
bTA bT b

)(

xLS

−1

)

= vTn+1

(

0
bT (AxLS − b)

)

= γ bT (AxLS − b) > 0,

since bT (AxLS− b) = bT (AA+− I)b < 0, whence uT
n+1f(xLS) > 0. Therefore, the first

part of the claim is a direct consequence of Theorem A.2.

To complete the proof it suffices to show that there exists a constant c such that
for sufficiently large k we have ‖xk − xTLS‖ ≤ c‖f(xk) − f(xTLS)‖. Let en+1 be the
last canonical vector in R

n+1. Since limk→∞ C+f(xk) = vn+1 we have

lim
k→∞

eTn+1C
+f(xk) = γ < 0.

Therefore, for sufficiently large k the sequence {C+f(xk)} is contained into the set

Y = {y ∈ R
n+1 : ‖y‖ = 1, eTn+1y ≤ γ/2},

which is closed and bounded. Within that set the nonlinear function F introduced in
Remark 2.2 is Lipschitz continuous. Consequently, there exists a constant L > 0 such
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that for any y, y′ ∈ Y we have ‖F(y) − F(y′)‖ ≤ L‖y − y′‖. Finally, for sufficiently
large k we have

‖xk − xTLS‖ = ‖F(C+f(xk))−F(C+f(xTLS))‖
≤ L‖C+(f(xk)− f(xTLS))‖
≤ (L/σn+1)‖f(xk)− f(xTLS)‖,

and the proof is complete.

4. Conclusions. We presented an iterative method for the solution of generic
TLS problems Ax ≈ b with single right hand side. The iteration is based on the
Gauss–Newton method for the solution of nonlinear least squares problems, endowed
by a suitable starting point and step size choice that guarantee convergence. In exact
arithmetics, the method turns out to be related to an inverse power method with
the matrix CTC. The main task of the iterative method consists of a sequence of
ordinary least squares problems associated to a rank-one perturbation of the matrix
A. Such least squares problems can be attacked by means of well known updating
procedures for the QR factorization, whose computational cost is quadratic. Alterna-
tively, one can consider the use of Krylov subspace methods for least squares problems
as, e.g., CGNR or QMR [5, §10.4], where the coefficient matrix is only involved in
matrix-vector products; if A is sparse, the matrix-vector product (A + uvT )x can
be implemented as Ax + u(vTx), thus reducing the computational core to a sparse
matrix-vector product at each inner iteration. Moreover, our method provides a mea-
sure of the backward error associated to the current approximation, which is steadily
decreasing during iteration. Hence, iteration can be terminated as soon as a suitable
reduction of that error is attained. On the other hand, an increase of that error
indicates that iteration is being spoiled by rounding errors.

The present work has been maily devoted to the construction and theoretical
analysis of the iterative method. Implementation details and numerical experiments
on practical TLS problems will be consiedered in a further work.

Appendix A. An iteration on an ellipsoid.

The purpose of this appendix is to discuss the iteration in Algorithm GN-TLS with
optimal step size, which is rephrased hereafter in a more general setting. Notations
herein mirror those in the previous sections, with some exceptions.

Let C ∈ R
p×q be a full column rank matrix, let S = {s ∈ R

q : ‖s‖ = 1} and
E = {y ∈ R

p : y = Cs, s ∈ S}. Therefore, E is a differentiable manifold of Rp; more
precisely, it is an ellipsoid whose (nontrivial) semiaxes are directed as the left singular
vectors of C; and the corresponding singular values are the respective lengths. If
p > q then Range(C) is a proper subspace of Rp and some semiaxes of E vanish.

For any nonzero vector z ∈ Range(C) there exists a unique vector y ∈ E such
that z = αy for some scalar α > 0; we say that y is the retraction of z onto E .

For any f ∈ E let Tf be the tangent space of E in f . Hence, Tf is an affine
(q − 1)-dimensional subspace, and f ∈ Tf . If f = Cs then it is not difficult to verify
that Tf admits the following description:

Tf = {f + Cw, sTw = 0}.
In fact, the map s 7→ Cs transforms tangent spaces of the unit sphere S into tangent
spaces of E .

11



Consider the following iteration:
• Choose f0 ∈ E
• For k = 0, 1, 2, . . .

– Let zk be the minimum norm vector in Tfk
– Let fk+1 be the retraction of zk onto E .

Owing to Lemma 3.1 it is not difficult to recognize that the sequence {f(xk)} pro-
duced by Algorithm GN-TLS with optimal step length fits into the framework of the
foregoing iteration.

Hereafter, we consider the behavior of the sequence {fk} ⊂ E and of the auxiliary
sequence {sk} ⊂ S defined by the equation sk = C+fk. We will prove that the
sequence {fk} is produced by a certain power method and converges to a point in E
corresponding to the smallest (nontrivial) semiaxis, under appropriate circumstances.
In the subsequent Theorem A.2 we provide some convergence estimates. To this
aim, we need the following preliminary result characterizing the solution of the least
squares problem with a linear constraint.

Lemma A.1. Let A be a full column rank matrix and let v be a nonzero vector.

The solution x̄ of the constrained least squares problem

min
x : vT x=0

‖Ax− b‖

is given by x̄ = PxLS where xLS = A+b is the solution of the unconstrained least

squares problem and

P = I − 1

vT (ATA)−1v
(ATA)−1vvT

is the oblique projector onto 〈v〉⊥ along (ATA)−1v.
Proof. Simple computations using Lagrange multipliers, see e.g., [5, §12.1], prove

that x̄ fulfills the linear equation
(

ATA v
vT 0

)(

x̄
λ

)

=

(

AT b
0

)

,

for some scalar λ. To solve this equation, consider the block triangular factorization
(

ATA v
vT 0

)

=

(

ATA 0
vT 1

)(

I w
0 −vTw

)

where w = (ATA)−1v. Solving the corresponding block triangular systems we get
(

ATA 0
vT 1

)(

xLS

−vTxLS

)

=

(

AT b
0

)

,

and
(

I w
0 −vTw

)(

x̄
λ

)

=

(

xLS

−vTxLS

)

,

with λ = −vTxLS/v
Tw and

x̄ = xLS − λw = xLS − vTxLS

vT (ATA)−1v
(ATA)−1v.
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The claim follows by rearranging terms in the last formula.
Let sk ∈ S and let fk = Csk be the corresponding point on E . The minimum

norm vector in Tfk can be expressed as zk = fk + Cwk where

wk = arg min
w : sT

k
w=0

‖fk + Cw‖.

A straightforward application of the preceding lemma yields the formula

wk = −
(

I − 1

sTk (C
TC)−1sk

(CTC)−1sks
T
k

)

sk

=
1

sTk (C
TC)−1sk

(CTC)−1sk − sk.

In fact, the solution of the unconstrained problem minw ‖fk + Cw‖ clearly is wLS =
−sk, and sTk sk = 1. Then, the minimum norm vector in Tfk admits the expression

zk = C(sk + wk) = αkC(CTC)−1sk, αk =
1

sTk (C
TC)−1sk

.

Since fk+1 is the retraction of zk onto E and C+C = I, we conclude that fk+1 = Csk+1

with

sk+1 = C+fk+1 = βk(C
TC)−1sk, βk = 1/‖(CTC)−1sk‖. (A.1)

Finally,

fk+1 = βkC(CTC)−1C+fk = βk(C
+)TC+fk = βk(CCT )+fk,

as (C+)TC+ = (CCT )+. Therefore, the sequence {sk} coincides with a sequence ob-
tained by the normalized inverse power method for the matrix CTC, and the sequence
{fk} coincides with a properly normalized sequence obtained by the power method
for the matrix (CCT )+. We are now in position to describe the asymptotic behavior
of {fk}.

Theorem A.2. Let σ1 ≥ . . . ≥ σq−1 > σq > 0 be the singular values of C, and

let uq be an unitary left singular vector associated to σq. If uq is oriented so that

uT
q f0 > 0 then

‖fk − σquq‖ = O((σq/σq−1)
2k), |‖fk‖ − σq| = O((σq/σq−1)

4k).

Proof. As shown in equation (A.1), the sequence {sk} corresponds to a power
method for the matrix (CTC)−1 with normalization. The spectral decomposition of
(CTC)−1 can be readily obtained from the SVD C = UΣV T ,

(CTC)−1 = V ΛV T , Λ = diag(σ−2
1 , . . . , σ−2

q ).

By hypotheses, the eigenvalue σ−2
q is simple and dominant, and the angle between the

respective eigenvector vq and the initial vector s0 is acute. Indeed, from the identity
Cvq = σquq we obtain

vTq s0 = σ−2
q vTq C

TCs0 = σ−1
q uT

q f0 > 0.
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For notational simplicity let ρ = σ2
q/σ

2
q−1. Noting that (CTC)−1 is symmetric and

positive definite, classical results on convergence properties of the power method [5,
§8.2] give us immediately the asymptotic convergence estimates

‖sk − vq‖ = O(ρk), sTk (C
TC)−1sk − σ−2

q = O(ρ2k).

The first part of the claim follows by the inequality

‖fk − σquq‖ = ‖C(sk − vq)‖ ≤ σ1‖sk − vq‖.

Finally, using again (A.1) we get

‖fk‖2 = sTk C
TCsk =

sTk−1(C
TC)−1CTC(CTC)−1sk−1

‖(CTC)−1sk−1‖2

=
sTk−1(C

TC)−1sk−1

‖(CTC)−1sk−1‖2
=

σ−2
q +O(ρ2k)

σ−4
q +O(ρ2k)

= σ2
q + O(ρ2k),

and the proof is complete.
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