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Fast Online Lempel-Ziv Factorization in
Compressed Space

Alberto Policriti1,2 and Nicola Prezza1 ?

1 Department of Mathematics and Computer Science, University of Udine, Italy
2 Institute of Applied Genomics, Udine, Italy

Abstract. Let T be a text of length n on an alphabet Σ of size σ, and
let H0 be the zero-order empirical entropy of T . We show that the LZ77
factorization of T can be computed in nH0 + o(n log σ) +O(σ logn) bits
of working space with an online algorithm running in O(n logn) time.
Previous space-efficient online solutions either work in compact space
and O(n logn) time, or in succinct space and O(n log3 n) time.
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1 Introduction and Related Work

Let T = a1a2...an−1$ be a length-n text on an alphabet Σ of size σ, with $ ∈ Σ
being a symbol appearing only at the end of T (in this work we will implicitly
assume that the input text ends with $). The Lempel-Ziv factorization—LZ77
for brevity—of T [18] is a sequence

Z = 〈pos1, len1, c1〉...〈posi, leni, ci〉...〈posz, lenz, cz〉

where 0 ≤ posi, leni < n, ci ∈ Σ for i = 1, ..., z, and:

1. T = ω1c1...ωzcz, with ωi = ε if leni = 0 and ωi = T [posi, ..., posi + leni − 1]
otherwise.

2. For any i = 1, ..., z with leni > 0, it follows that posi <
∑i−1
j=1(lenj + 1).

3. For any i = 1, ..., z, ωi must be the longest prefix of ωici...ωzcz that occurs
in a previous position of T .

The Lempel-Ziv factorization is an important tool in text compression, being
its size z closely related with the number of repetitions in the processed string.
Moreover, by augmenting it with additional (light) structures, one can obtain
fast and high-order compressed full-text indexes [9,12]. Structures based on LZ77
have been shown to be competitive in terms of space on repetitive text collections
with respect to BWT-based self indexes [9], and a careful combination of the
two techniques stands at the basis of some of the most time-and-space efficient
repetition-aware indexes [1].
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The Lempel-Ziv factorization can be computed in linear time and O(n log n)
bits of working space by using suffix trees or suffix arrays [2,3,7]. Recent results—
building up on the FM index [4] data structure—reduced space to compact
(O(n log σ) bits), while retaining linear running time [13]. The best space bound
to date is achieved by the algorithm discussed in [8], which builds the LZ77 fac-
torization of the text in O(n log1+ε n) time (ε > 0) and n(Hk+2)+o(n log σ) bits
of space (although the O(n) term prevents space from being fully compressed).

A line on this research is focused on the online computation of the LZ
factorization. Okanohara et al. [14] showed that this task can be carried out
in O(n log3 n) time using only (1 + o(1))n log σ + O(n) bits of working space.
Starikovskaya in [16] reduced the running time to O(n log2 n), while slightly in-
creasing the working space to O(n log σ) bits. Finally, Yamamoto et al. in [17]
obtained O(n log n) running time within O(n log σ) bits of working space by
using Directed Acyclic Word Graphs (DAWGs).

In this paper, we improve upon the space of all the above discussed solutions
by describing an online algorithm that computes the LZ77 factorization of a
length-n string in O(n log n) time using only nH0 + o(n log σ) +O(σ log n) bits
of working space, H0 being the empirical zero-order entropy of the input text.
If one is interested in computing only the phrase boundaries, then running time
can be improved to O (n log n/ log log n). Our basic structure is a dynamic FM
index over the reversed text, updated by inserting T -characters from the first to
the last.

2 Notation

With T -, L- and F -positions we will denote positions on the text T and on the L
(last) and F (first) column of the BWT matrix, respectively. Indices start from
0, and we will assume that the text length n and the alphabet Σ = {0, ..., σ−1}
are known beforehand. The only restriction we pose on the alphabet size is
σ ≤ n (which is always true after a re-mapping of the symbols). BWT (T )
will denote the Burrows-Wheeler transform of string T , and, when clear from
the context, we will refer to it simply as BWT . With 〈l, r〉 we will denote the
right-open BWT interval [l, r). BWT.F (c), c ∈ Σ, will denote the starting F -
position of the block corresponding to character c in the BWT matrix. Letting
W ∈ Σ∗, the interval of W will be the interval [l, r) of rows prefixed by W in
the BWT matrix (r = l if W does not occur in T ). Letting S be a dynamic
string representation on the alphabet Σ, S[i] will indicate the i-th character of
S, S.rank(c, i), c ∈ Σ, 0 ≤ i ≤ |S| the number of characters equal to c in S
before position i excluded, and S.insert(c, i), c ∈ Σ, 0 ≤ i ≤ |S| the insertion of
a character c in S at position i.

3 Fast Online LZ-factorization in Compressed Space

Our result builds upon a recent insight by Navarro and Nekrich on the optimal
representation of dynamic strings [11]: there exists a data structure that permits
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to represent a sequence S[0, n− 1] over an alphabet Σ = {0, ..., σ− 1} in nH0 +
o(n log σ) + O(σ log n) bits of space and that supports queries (access, rank,
select) and updates (insertions and deletions) in O(log n/ log log n) time. The
bound is worst-case for the queries and amortized for the updates.

We use the optimal sequence representation of Navarro and Nekrich to build a
dynamic FM index taking nH0+o(n log σ)+O(σ log n) bits of space that supports
(amortized) O(log n/ log log n)-time left-extension of the text with an arbitrary
character,O(log n/ log log n)-time LF function computation, andO(log2 n/ log σ)-
time locate. Our algorithm scans the text from its first to last character, building
the dynamic FM index of the reversed text. At each step (i.e. text character), we
(1) update the BWT interval of the current LZ phrase and (2) insert a new text
character in the index. Each time the BWT interval becomes empty, we have
reached the end of the current LZ phrase and we use a locate query to compute
the LZ-factor.

3.1 Dynamic FM Index

The principal component of our dynamic FM index is a dynamic BWT. There is
a simple and well-known algorithm that permits to update the Burrows-Wheeler
transform BWT (S) of a sequence S = s1s2...su−1#, # /∈ Σ being a character 3

lexicographically smaller than all s ∈ Σ, by left-extending S with a character c ∈
Σ (see, for example, section 10.3 of [11]). Letting j be such that BWT (S)[j] = #
and r = BWT (S).rank(c, j), we update BWT (S) by:

1) BWT (S)[j]← c and
2) BWT (S).insert(#, BWT (S).F (c) + r).

Let TR denote the reversed text. In our algorithm, we index the sequence
S = TR#. By using the dynamic sequence representation of [11], we can build
BWT (TR#) online in overall O(n log n/ log log n) time and nH0 + o(n log σ) +
O(σ log n) bits of space by inserting characters in the order #, T [0], ..., T [n− 1]
with the above procedure. In the following paragraphs, we will denote with BWT
the Burrow-Wheeler transform of the current suffix of S = TR#.

The second ingredient we need in order to compute the LZ77 factorization of
T is a dynamic suffix array sampling to support fast locate. The main challenge
is to add such functionality without asymptotically increasing space usage. Let
γ > 0 be the sample rate, and m = dn/γe be the number of stored suffix array
pointers. To this end, we employ two structures:

1. A compressed dynamic bitvector B to mark with a “1” sampled F -positions.
2. A dynamic sequence representation SA[0,m− 1] over the alphabet [0, n− 1]

taking compact space (O(m log n) bits) and supporting O(log n)-time access
and insert operations.

3 Note that we use two different terminator symbols—$ ∈ Σ and # /∈ Σ—to mark the
end of the forward (LZ77 algorithm) and reverse (BWT algorithm) text, respectively.
Our algorithm will therefore work on texts of the form #W$, W ∈ Σ∗.
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We use a sample rate of γ = logσ n log log n. For component (1), we use
again the dynamic sequence representation of Navarro and Nekrich. We remind
the reader that the size of a zero-order compressed bitvector B′ with b bits set
is nH0(B′) ≤ b log(n/b) + b log e. Since B has m = dn/γe = d n

logσ n log logne bits

set, it follows easily that B takes overall nH0(B) + o(n) +O(log n) = o(n) bits
of space.

For component (2), we use a simple balanced tree (e.g. a red-black tree or a
B-tree with constant fanout) where we store suffix array samples in the leafs and
we augment each internal node with the size of the corresponding subtree. Access
and insert in position i are then implemented by descending the tree according to
the subtree-size counters, accessing/inserting the suffix array pointer in the leafs,
and (in the case of insert) updating O(logm) subtree-size counters. The tree
takes overall O(m log n) = o(n log σ) bits of space, and access/insert operations
take O(logm) = O(log n) time. Structures B and SA take overall o(n log σ) bits
of space.

Implementing extend With BWT.extend(c) ∈ {0, ..., |BWT |}, c ∈ Σ ∪ {#},
we will denote the function that:

1. updates the BWT of the current S suffix by left-extending it with a new
character c

2. updates the suffix array samples, and

3. returns the L-position of character # after the left-extension has taken place.

To avoid updating the already inserted suffix array pointers at each text ex-
tension, in structure SA we enumerate S-positions starting from the last. In
this sense, S[n] = # corresponds to SA-position 0, and S[0] corresponds to SA-
position n (remember that |S| = |TR#| = n + 1). Suppose we have built the
structures for the length-(i − 1) suffix of S and that we want to left-extend
it with the new character S[n − i + 1]. Let j be such that BWT [j] = #,
r = BWT.rank(S[n − i + 1], j), and k = BWT.F (S[n − i + 1]) + r. Opera-
tion BWT.extend(S[n− i+ 1]) is implemented as follows:

1. We update BWT with the new text character S[n − i + 1] as described at
the beginning of this section.

2. If i mod γ = 0, then we insert a new suffix array pointer in SA and mark
with a “1” the corresponding F -position in B: SA.insert(i−1, B.rank(1, k))
and B.insert(1, k).

3. Otherwise (i mod γ 6= 0), we mark with a “0” the new suffix F -position in
B: B.insert(0, k).

Step (1) takes O(log n/ log log n) amortized time. The insertion of a bit in B
takes O(log n/ log log n) time, and the insertion of a suffix array pointer in SA
takes O(log n) time. Since we update SA every logσ n log log n left-extensions,
extend takes overall O(log n/ log log n) amortized time.
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Implementing locate Let BWT be the Burrows-Wheeler transform of the
current S suffix. Operation BWT.locate(i) returns the S-position (enumerated
from right to left) corresponding to the F -position i. We implement this oper-
ation as usual, i.e. by backward-navigating the current S suffix until a sampled
F -position or the first suffix position is found:

1. If i is such that BWT [i] =′ #′, then we return |BWT | − 1.
2. Otherwise:

(a) If B[i] = 1, then we return SA[B.rank(1, i)].
(b) If B[i] = 0, then we return BWT.locate(i′)−1, where i′ = BWT.F (c) +

BWT.rank(c, i) and c = BWT [i].

Since we use a sample rate of logσ n log log n and access and rank operations on
BWT take O(log n/ log log n) time, after O(log2 n/ log σ) time we find a marked
F -position. Then, extracting the suffix array pointer from structure SA takes
O(log n) time. Since we assume σ ≤ n, locate takes overall O(log2 n/ log σ) time.

Implementing LF Function With BWT.LF (〈l, r〉, c), 0 ≤ l < |BWT |, 0 ≤
r ≤ |BWT |, c ∈ Σ∪{#}, we will denote function LF applied to BWT intervals:
if 〈l, r〉 is the interval of a string W ∈ Σ∗ in BWT , then BWT.LF (〈l, r〉, c)
returns the interval 〈l′, r′〉 of cW in BWT . LF requires a constant number of
rank and access operations on BWT , so it takes overall O(log n/ log log n) time.

3.2 Main Algorithm

The extension step of our algorithm is described in Algorithm 1. The algorithm
takes as input one T character c, and outputs either the LZ factor ended by c or
nothing if c does not end a factor. In Algorithm 1, variables BWT (the dynamic
BWT described in section 3.1), 〈l, r〉 (right-open BWT interval of the current
phrase), len (length of the current phrase), and i (L-position of character #)
are global, and are initialized at the beginning as BWT ←′ #′, 〈l, r〉 ← 〈0, 1〉,
len← 0, and i← 0.

First of all, in line 1 we perform one backward-search step using function
LF. The new BWT interval 〈l′, r′〉 is nonempty if and only if the current phrase
Wc, W ∈ Σ∗, does appear previously in the text. If this is the case (lines 16-19),
then we increment the current phrase length (line 17), left-extend the current S
suffix (line 18), and update the BWT interval of cWR (line 19) by incrementing
its right bound r′. This step is always needed since in line 18 the new S suffix
(prefixed by cWR) falls inside the closed interval [l′, r′].

Otherwise, if Wc does not occur previously and len = |W | > 0 (lines 2-
8), then Wc is a new LZ factor and interval 〈l, r〉 holds all occurrences of WR

seen until now in the reversed text. Notice, however, that 〈l, r〉 holds also the
current occurrence of WR (i.e. i ∈ [l, r)) in addition to at least one previous
occurrence (i.e. r − l ≥ 2). We must therefore be careful to output a previous
occurrence of WR: in lines 4-8 we locate either l or r−1, depending on which one
is different than i. Moreover, we must subtract len from the located text position
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since locate returns an occurrence of WR in the reversed text, and position 0 is
reserved for the terminator character #. After locating the occurrence, we can
extend the BWT with character c (line 12), reset the BWT interval to the full
range 〈0, |BWT |〉 (line 13), reset phrase length to zero (line 14), and return the
factor.

The last case to consider is when Wc does not occur previously and len =
|W | = 0 (lines 9 and 10). Then, this is the first occurrence of c in the text and
we simply output a factor 〈null, 0, c〉 after extending the BWT with character c
and resetting the global variables as described above (lines 13-14).

Algorithm 1: add character(c)

input : Character c ∈ Σ (right-extending current T prefix)
output: A factor 〈pos, len, c〉 if c ends a factor. Nothing otherwise.

1 〈l′, r′〉 ← BWT.LF (〈l, r〉, c); /* backward search step */

2 if l′ ≥ r′ then
3 if len > 0 then
4 if i = l then
5 occ← r − 1;

6 else
7 occ← l;

8 P ← BWT.locate(occ)− len; /* locate a previous occurrence */

9 else
10 P ← null; /* first occurrence of c */

11 L← len; /* length of current phrase (c excluded) */

12 BWT.extend(c); /* insert character c in the BWT */

13 〈l, r〉 ← 〈0, |BWT |〉; /* reset interval */

14 len← 0; /* reset phrase length */

15 return 〈P,L, c〉; /* return LZ factor */

16 else
17 len← len+ 1; /* increase current phrase length */

18 i← BWT.extend(c); /* insert character c in the BWT */

19 〈l, r〉 ← 〈l′, r′ + 1〉; /* new suffix falls inside [l′, r′) */

From the analysis carried out in section 3.1 it is clear that, excluding lo-
cate, all steps in Algorithm 1 take (amortized) O(log n/ log log n) time. Notice
that we call locate once per phrase. It is known that the number z of LZ77
phrases satisfies z ∈ O(n/ logσ n) [10]. Since the cost of a single locate query is
O(log2 n/ log σ), in Algorithm 1 locate takes O(log n) amortized time. We can
state our final result:
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Theorem 1. Let T ∈ Σn. By calling Algorithm 1 on T [0], ..., T [n− 1], we build
the LZ77 factorization of T online in nH0+o(n log σ)+O(σ log n) bits of working
space and O(n log n) time.

Notice that, if we wish to compute only the LZ phrase boundaries, then we do
not need locate, and the LZ factorization can be built using a simplified version
of Algorithm 1 in O(n log n/ log log n) time.

4 Conclusions

In this paper, we presented an online algorithm for computing the LZ77 fac-
torization of a text in nH0 + o(n log σ) + O(σ log n) bits of working space and
O(n log n) time. To our knowledge, ours is the first solution of this problem
reaching fully compressed working space. Moreover, we obtain this result while
being as fast as the fastest online LZ77-construction algorithms described in
literature.

Solving this task in small space is of great importance in areas such as LZ-
based self-indexing, where computing the LZ77 parse of the text is a spatial
bottleneck during index construction. Ideally, it would be desirable being able
to solve the problem in O(z) words of working space (result easily reachable
with LZ78), considering that for repetitive text collections z can be exponen-
tially smaller than n. One first improvement over our approach could be to
obtain high-order compressed space, e.g. by using techniques similar to those
employed in [6,11,15]. However, this strategy would still not perform well over
highly repetitive text collections—being Hk not sensitive to long repetitions—
and being entropy-based techniques usually affected by an o(n) spatial term
that could be exponentially larger than z. Alternatively, one could consider us-
ing a run-length compressed BWT. Yet, this approach would also require a more
sparse SA sampling, which in the most efficient implementations [1,5] is based
on the LZ parse itself.
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