
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Bifurcation analysis of liquid films over low wettability surfaces
To cite this article: Nicola Suzzi and Giulio Croce 2021 J. Phys.: Conf. Ser. 1868 012010

 

View the article online for updates and enhancements.

This content was downloaded from IP address 158.110.154.42 on 10/06/2021 at 15:28

https://doi.org/10.1088/1742-6596/1868/1/012010
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsu5uW1ApLQ2jzr182zqRGLhgo2zasIpEROSepIMGUYYgZG2DPoXCo02ywFEH9ElgbUki8DtfkP2YLKUqo5ab9Kt8unIlSxNd9ALSdET0Z_sY_p9rEX_WM2i_c_Ax7XrqIwlkPM1YblmECiLRxntCRG6BTTgzH3ab2BN60itJZ2S9MJSeOO_n_DWld6M-EhAPDRoLQqjLvqOYRD2kFbIrg7gNSSfs4AJNzqOS7pxOJvgh6lv7Vy4nLqh1lBN0JAMm7plNtSPp4cKd-swklYRGw&sig=Cg0ArKJSzNP8EP-M86vQ&fbs_aeid=[gw_fbsaeid]&adurl=https://www.electrochem.org/ecs-blog/call-for-nominations-editor-in-chief/%3Futm_source%3DIOPConferenceServicesEIC%26utm_medium%3DIOPConferenceServices%26utm_campaign%3DSENSEIC


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

2020 UIT Seminar on Heat Transfer (UIT-HTS 2020)
Journal of Physics: Conference Series 1868 (2021) 012010

IOP Publishing
doi:10.1088/1742-6596/1868/1/012010

1

Bifurcation analysis of liquid films over low wettability
surfaces

Nicola Suzzi1 and Giulio Croce1

1DPIA - Dipartimento Politecnico di Ingegneria e Architettura - Universitá di Udine - Via delle Scienze -
33100 - Udine (UD) - Italy

E-mail: suzzi.nicola@spes.uniud.it, giulio.croce@uniud.it

Abstract. Thin liquid layer evolution over a solid substrate and film instability phenomena are involved
in a number of engineering applications: in chemical absorption through structured packing, the corrugated
sheets are covered by the liquid solvent, offering an enhanced interface surface between the solvent and the
gas solute; in coating process, the liquid pattern influences the resulting coating quality; in condensation
over finned dehumidifier, heat transfer performances are influenced by the evolving liquid layer, which
may arrange as a droplets population or an ensemble of rivulets. Here, the evolution of a liquid layer
flowing down an inclined plate bounded by lateral walls, which is the simplest configuration describing
hydrodynamics inside structured packing, is numerically investigated. An in-house code, previously
developed and largely validated in case of film instability and rivulet buildup, is used in order to solve
governing lubrication equations. The full implementation of capillary pressure allows to simulate contact
angles up to 60◦.Film break is observed due to instability induced by lateral walls, if the imposed liquid flow
rate exceeds a critical value, leading to the formation of a rivulet pattern. Fixing the size of the investigated
physical domain, the number of observed rivulets, which strongly influences the resulting wetted area, is
traced as a function of the flow characteristics (identified by the Bond number), the substrate wettability
and the liquid properties; the corresponding bifurcation diagram is presented.

1. Introduction
The dynamics of driven liquid films is a complex phenomenon, which involves physical discontinuities
due to moving contact lines and sudden transition between different patterns. Indeed, multiple rivulets
and moving dry patches may form from a continuous film, induced by fingering instability, or neighbor
droplets may coalesce and drain, forming a stable rivulet. Such film instability phenomena are largely
investigated in literature [1–8]. In [1], bifurcation analysis is numerically conducted in order to analyse
heterogeneous dewetting on a patterned substrate: the rupture of 1D film driven by capillary forces
and viscous dissipation is investigated, with the solid substrate wettability modeled through disjoining
pressure, and all the possible configurations are presented as a function of amplitude (multiplying
disjoining pressure) and periodicity (pattern length). Numerical bifurcation analysis is also carried out
in [2] for a 1D falling film in case of non-negligible inertia: the influence of two parameters identifying
the flow condition and the wavenumber of the periodic perturbations applied to the physical system is
investigated.
Knowing the evolution of a thin liquid layer over a solid substrate is crucial for many engineering
applications. For example, in carbon dioxide capture through chemical absorption in structured packing,
gas CO2 flows up, while a liquid solvent falls down a collection of corrugated layers composing the
packed column. Thus, the prediction of the hydrodynamics through structured packing is crucial for the
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design of packed columns. In fact, enhancing liquid-gas interface area ensures a more efficient mass
transfer. However, increasing the solvent flow rate in order to ensure a continuous film pattern leads to
high pressure drops on the contercurrent gas flow and promotes the occurrence of flooding condition
(liquid plug inside packed column). Different packing configurations and solvent flow rates were
experimentally investigated in [9] and the structured packing performances estimated in terms of both the
height equivalent to a theoretical plate (HETP) and the pressure drop on the gas side. A sensible influence
of the liquid flow rate on the pressure drop and the flooding condition occurrence was detected in [9].
Different packing configurations were also experimentally investigated in [10] and the effect of the liquid
flow rate on the pressure drop presented. Due to difficulty to physically observe what happens inside the
packed column, a number of numerical studies on hydrodynamics over structured packing geometries are
also available. A fully 3D approach is usually adopted [11–13], but the inherently multiscale physics just
allows to focus on a facet of the problem. In fact, packed columns may have a diameter of 10m, while the
characteristic length scale of the packing layer is 20cm and the film thickness may be less than 1mm. A
simplified configuration, defined by an inclined plate bounded by lateral walls, was investigated through
3D computations in [11, 12] and the effect of both the liquid properties and the flow characteristics
was presented in terms of plate wetted area. A larger portion of packing layer was simulated by [13]
using the VoF method incorporated in Ansys Fluent R© and running intensive parallel computations in
clusters. However, the computational costs deriving from a fully 3D model implementation allowed
the authors to investigate just one packing configuration. A 2D mathematical approach was proposed
by the authors [14], who numerically solved the lubrication equations. The small slope approximation,
usually adopted with lubrication theory [5, 15–18], was abandoned in favor of the full implementation
of capillary pressure, allowing to investigate relatively low wettable surfaces with equilibrium contact
angles up to θ = 60◦ [14,19]. Furthermore, a great reduction of computational costs compared to a fully
3D model was observed, without sensible loss of information about liquid pattern behavior. Here, the
same approach as [14] is adopted. The in-house solver, previously developed and largely validated in
case of film instability, rivulet build up, moving contact lines and droplet coalescence [14, 19–22], is
parallelized through OpenMP library and used to investigate the evolution of a gravity driven film over
an inclined plate bounded by lateral walls. Different plate dimensions and flow conditions (i.e. liquid
properties and flow rate) are investigated. Results are presented in nondimensional form for the sake of
generalization. The influence of the investigated parameters on the number of observed rivulets, which
in turn affects the normalized liquid-gas interface area, is discussed. In particular, the rivulet bifurcation
diagram is presented, looking for configurations leading to enhanced liquid-gas free surface area (and,
thus, allowing for optimization of the absorption process through structured packing).

2. Mathematical model
Consider a thin film flowing down an inclined plate, driven by gravity. Let α be the plate inclination, h0
and u0 the undisturbed film thickness and film velocity, calculated according to Nusselt theory:

u0 =
ρ gh0

2

3 µ
sinα (1)

Lubrication theory allows to integrate the continuity equation along the plate normal direction. Retaining
the viscous dissipation terms arising from velocity gradient across the film thickness and neglecting
liquid inertia, the momentum equation gives a parabolic velocity profile. Averaging the film velocity and
substituting in the continuity equation gives the well known lubrication equation,

∂h
∂ t

+∇ ·
(
−∇p

3 µ
h3
)
= 0 (2)

with h being the film thickness.
The local film pressure p is given by the hydrostatic, capillary and disjoining contributions,

p = ρ g (h cosα− y sinα)−2σ κ−Π (3)
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with y denoting the plate downhill direction and κ being the free surface curvature. The disjoining
pressure Π, related to the intermolecular forces between liquid and solid surface, allows to model the
substrate wettability and is defined as [15],

Π = B
[(

d
h

)n

−
(

d
h

)m]
(4)

B =
σ
d
(n−1)(m−1)

n−m
(1− cosθ) , n > m > 1 (5)

with d� h0 being the precursor film thickness and θ the equilibrium contact angle.
The small slope approximation, strictly valid for low free surface slope and usually adopted in literature,
is here abandoned and the free surface curvature is estimated according to [14, 19, 21].

2κ '
∂ 2h
∂x2

[
1+
(

∂h
∂x

)2
]−1

+ ∂ 2h
∂y2

[
1+
(

∂h
∂y

)2
]−1

[
1+
(

∂h
∂x

)2
+
(

∂h
∂y

)2
]1/2 (6)

Eq. (6) was largely validated in [14] for contact angles up to 60◦.
Defining the following dimensionless quantities

H =
h
h0

,δ =
d
h0

, XXX =
xxx
h0

, T =
t

(µ h0/σ)

P =
P

(σ/h0)
, K = h0 κ, Π̃ =

Π

(σ/h0)

(7)

and introducing the Bond number

Bo =
ρ gh0

2

σ
(8)

the governing equations, Eqs. (2) and (3), are recast in a nondimensional form:

∂H
∂T

+∇ ·
(
−∇P

3
H3
)
= 0 (9)

P = Bo (H cosα−Y sinα)−2K− Π̃ (10)

Eqs. (9) and (10) are numerically solved on a structured, orthogonal grid. An in-house solver, developed
in FORTRAN by the authors and largely validated [14, 19, 21], is used. Space and time discretizations are
explained in detail in [14, 23]. In order to speed up simulations, the source code is parallelized through
OpenMP library for a shared memory machine, allowing for a sensible reduction of computational costs.
In particular, the two algebraic, pentadiagonal systems to be solved at each time step and deriving from
ADI approximate factorization, are respectively decomposed in nx and ny independent subsystems, that
are solved in parallel, with nx and ny being the number of elements of the implemented structured grid
along Cartesian directions.

3. Problem setup
The dynamics of a gravity driven film flowing down an inclined plate of nondimensional size LX ×LY ,
bounded by lateral walls, is investigated. However, only half of the plate is simulated along Y direction
due to symmetry of the problem, in order to reduce computational cost. The influence of both the Bond
number, Eq. (8), and the dimensionless plate width LX on the flow pattern evolution is investigated. The
undisturbed film flow rate is supposed to enter the computational domain through the top section of the
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plate. Thus, the nondimensional film flux and the nondimensional film thickness are imposed through
Y = 0,

QQQ · n̂nn =
Bo
3

sinα, H|Y=0 = 1 (11)

with QQQ being the nondimensional film flux, QQQ =−∇P
3 H3.

Fully developed flow condition, ∇P · n̂nn = 0, ∇H · n̂nn = 0, is imposed through the bottomest section of the
plate, Y = LY . Symmetry condition, QQQ · n̂nn = 0, ∇H · n̂nn = 0, is imposed through the middle section of the
plate, X = 0, while wall boundary condition is implemented through X = LX/2, leading to:

QQQ · n̂nn = 0, ∇H · n̂nn =−

√
1+
(

∂H
∂Y

)2

tanθ
(12)

The vertical plate is initially dry. Thus, the precursor film thickness covers the whole computational
domain, H|T=0 = δ , at the first stage of the computation. The dry initial condition allows us to study
contact line dynamics and phenomena related to finger instability of a falling film.

4. Result
Distillation and absorption processes through structured packing are very complex, multiphysics
phenomena, with many length scales involved. However, a gravity driven film down an inclined plate is
the simplest configuration for better understanding the hydrodynamics inside packed columns [11, 12].
Thus, a film flowing down a vertical plate, α = 90◦, is chosen as a representative setup. The instability
induced by the lateral walls determines the formation of a rivulets array, with dry regions observed over
the computational domain [12, 14]. However, different configurations may occur, in terms of rivulets
number and, thus, interface area, as observed in [14]. Thus, a parametric analysis is conducted, in order
to trace the flow regime transitions. In particular, the influence of both the Bond number, Bo= ρ gh0

2/σ ,
which is the ratio between gravitational and surface tension forces, and the nondimensional plate width
LX is analyzed. However, results are presented in terms of Bo and LX Bo1/2, the latter being the ratio
between the dimensional plate width Lx and the capillary length, Lc =

√
σ/(ρ g):

LX Bo1/2 =
Lx ρ1/2 g1/2

σ1/2 =
Lx

Lc
(13)

Physically, fixing LX Bo1/2 and varying the Bond number can be interpreted as fixing both the physical
domain dimension and the liquid properties, while varying the liquid flow rate through the plate with Bo.
However, the following results can be extended to arbitrary fluid properties and physical plate dimensions
and, thus, are valid for a wide range of applications, since dimensionless parameters are used in the
analysis. The equilibrium contact angle, which also affects the contact line dynamics, is set to a fixed
value of θ = 60◦, giving a solid surface that can be considered low wettable in the context of lubrication
theory, while the precursor film thickness and the disjoining parameters are set to δ = 5× 10−2 and
n = 3, m = 2 according to [5, 14, 15].
The contact angle hysteresis, which is implicitly modeled by disjoining pressure, is checked running
preliminary computations of a 1D falling film. Reduction to 1D mathematical problem is obtained
through imposition of symmetry condition at X = 0 and X = LX . Film rupture (occurring when the
falling 1D film breaks forming a train of self similar droplets, as reported in Fig. 1) is always observed
when Bo ≤ 5.01× 10−2. The contact angle hysteresis, estimated for Bo = 5.01× 10−2, is given by
receding and advancing contact angles of a self similar droplet: θrec = 41.3◦ and θadv = 65.5◦. Moreover,
it was verified that a spatial discretization step equal to ∆X = 10−1 ensures grid independency, since
refining the mesh to ∆X = 5×10−2 leads to a less than 1% uncertainty in the computed θrec, θadv. Thus,
∆X , ∆Y ≤ 10−1 is set for all the 2D computations.
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Figure 1. Self similar solution of 1D falling film for Bo = 5.01×10−2 (film rupture observed, θrec and
θadv computed) and Bo = 6.31×10−2 (stable film). θ = 60◦, α = 90◦.
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Figure 2. Film distribution at T = 10.1 (a) and stationary solution, T = 54.0 (b). Bo = 0.11,
LX Bo1/2 = 22.6, θ = 60◦, α = 90◦.
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Figure 3. Film distribution at T = 8.87 (a) and stationary solution, T = 28.7 (b). Bo = 0.12,
LX Bo1/2 = 22.6, θ = 60◦, α = 90◦.

Some of the observed configurations from fully 2D simulations are reported in Figs. 2, 3, 4 and 5,
referred to computations at fixed LX Bo1/2, that show the film thickness distribution during the transient
and the steady state solution. A bifurcation of the solution, i.e. a sudden change in the qualitative film
behavior, is observed whenever a change in the number of rivulets occurs. As expected, the number
of observed rivulets during the transient regime decreases for increasing Bond number, with 5 rivulets
observed in Figs. 2(a), 3(a) for Bo ≤ 0.12 and 4 rivulets observed in Figs. 4(a), 5(a) for Bo > 0.12,
meaning that, physically, increasing the liquid flow rate leads to a reduction of the rivulets number, at
fixed liquid properties and plate dimension. However, some of the induced dry patches may not be stable
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Figure 4. Film distribution at T = 5.76 (a) and stationary solution, T = 28.5 (b). Bo = 0.16,
LX Bo1/2 = 22.6, θ = 60◦, α = 90◦.
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Figure 5. Film distribution at T = 4.45 (a) and stationary solution, T = 12.9 (b). Bo = 0.19,
LX Bo1/2 = 22.6, θ = 60◦, α = 90◦.

and shed away. Thus, the corresponding rivulets, observed in the transient film distribution, shed as
well and disappear in the stationary solution. Note that residual droplets may form during shedding of
unstable dry patches, Fig. 3(b); a similar phenomenon is experimentally and numerically reported in
literature [14,24]. This further bifurcation, related to dry patch stability, explains the trend of the number
of stationary rivulets, that may both increase or decrease with a small variation in the Bond number.
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Figure 6. Bifurcation diagram − number of observed rivulets during the transient regime (a), number of
stationary rivulets (b) as a function of Bond number and nondimensional plate width. θ = 60◦, α = 90◦.
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Figure 7. Bifurcation diagram − normalized liquid-air interface area as a function of Bond number for
different nondimensional plate width: LX Bo1/2 = 25.0 (a), LX Bo1/2 = 24.2 (b), LX Bo1/2 = 23.3 (c),
LX Bo1/2 = 22.6 (d). θ = 60◦, α = 90◦.

Such a behavior is reported in Figs. 6(a) and 6(b), where the results from 176 computations are plotted.
Each symbol, which identifies a solution family, corresponds to a different number of observed rivulets
(ranging from 3 to 5), that are traced during the whole transient. The maximum number of rivulets, Fig.
6(a), monotonically increases for decreasing Bo and increasing LX Bo1/2, i.e. for decreasing liquid flow
rate and increasing plate dimension at given liquid properties. The same trend is not observed for the
stationary rivulets, Fig. 6(b), since the presence of unstable dry patches leads to a sudden decrease in the
number of rivulets close to the transition points. This can be observed for LX Bo1/2 = 22.6: 5 rivulets
form for low values of the Bond number, while 4 rivulets form if the Bond number is higher than a
transition value of about Bo∼ 0.12, as reported in Fig. 6(a); however, 2 rivulets disappear from transient
to stationary solution due to instability when Bo < 0.12 (thus, 3 stationary rivulets are observed instead
of 5), as reported in Fig. 6(b).
Since the maximization of the interface area between liquid solvent and gas mixture is crucial in
absorption process through structured packing, the normalized interface area,

ξI =
1

LX LY

∫ LX

0

∫ LY

0

√
1+
(

∂H
∂X

)2

+

(
∂H
∂Y

)2

dXdY (14)

resulting from the stationary film distribution, is also computed over the wetted domain (i.e. where
H > δ ) and plotted in Fig. 7 as a function of the Bond number. Note that the normalized interface
area increases for increasing Bo, until the bifurcation point is reached; in fact, a discontinuity, with a
sudden decrease of ξI , is observed. Thus, local maximum points are observed, at different values of the
Bond number, for each plate width. The maximum value of the normalized interface area, ξI ' 0.49,
is obtained in Fig. 7(a) for Bo = 0.16 and LX Bo1/2 = 25.0, corresponding to the 5 rivulets solution
family. Thus, an optimal configuration in terms of plate width and Bond number can be identified, in
order to maximize the liquid-gas interface area. Physically, this means that, for a given liquid solvent,
both the optimal corrugation frequency of the structured packing geometry and the optimal liquid flow
rate can be determined, in order to enhance the absorption process. It is important to point out that further
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increasing the Bond number (i.e. the solvent flow rate) leads to the fully wetted condition. However, this
may not correspond to the optimal configuration, due to: higher pressure drop of the gas flow, induced by
a reduction of the available void volume, through which the gas mixture flows; reduction of the loading
and flooding gas velocities.

5. Conclusion
Instability of a falling film over a vertical plate bounded by lateral walls was numerically investigated.
The effect of nondimensional plate dimension and Bond number on the resulting pattern was analysed
in terms of number of observed rivulets and normalized free surface area. Two different bifurcations
were observed: depending on the imposed parameters, namely LX and Bo, from 3 to 5 rivulets were
observed during the transient solution; however, if some of the generated dry patches are not stable, they
sheds away and the number of stationary rivulets reduces. The influence of bifurcations on the interface
area were also discussed, showing that, fixing the physical plate dimension and the liquid properties
(fixed LX Bo1/2), a local maximum of the free surface area can be obtained at low flow rate (at low
Bond number). Since the investigated test case is the simplest configuration describing hydrodynamics
in structured packing, the presented results can be used as a novel approach to test the packing geometry
and enhance absorption process, that requires increased liquid-gas interface area at low solvent flow rate
in order to promote mass transfer and reduce the pressure drops of the gas flow. Equilibrium contact
angle equal to 60◦ was successfully investigated due to the full implementation of the capillary pressure,
while it was demonstrated in [25] that small slope approximation leads to inaccurate results for θ ≥ 30◦.
Furthermore, the effect of lateral walls on the film stability was never investigated in literature involving
lubrication theory. As a future work, the solver should be coupled with the core flow solver, in order
to investigate the effect of shear, applied at the free surface by the gas flow. The effect of liquid inertia
should be also included in the mathematical model.
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