Università degli studi di Udine

On fractional Laplacians-2

Original

Availability:
This version is available http://hdl.handle.net/11390/1071100
since 2021-03-15T15:38:41Z

Publisher:

Published
DOI:10.1016/j.anihpc.2015.08.001

Terms of use:
The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The aim is to enable open access to all the world.

Publisher copyright
(Article begins on next page)

On fractional Laplacians - 2

Roberta Musina* and Alexander I. Nazarov ${ }^{\dagger}$

Abstract

The present paper is the natural evolution of arXiv:1308.3606, For $s>-1$ we compare two natural types of fractional Laplacians $(-\Delta)^{s}$, namely, the "Navier" and the "Dirichlet" ones. As a main tool, we give the "dual" Caffarelli-Silvestre and Stinga-Torrea characterizations of these operators for $s \in(-1,0)$.

1 Introduction

Recall that the Sobolev space $H^{s}\left(\mathbb{R}^{n}\right)=W_{2}^{s}\left(\mathbb{R}^{n}\right), s \in \mathbb{R}$, is the space of distributions $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ with finite norm

$$
\|u\|_{s}^{2}=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\mathcal{F} u(\xi)|^{2} d \xi
$$

see for instance Section 2.3.3 of the monograph [8]. Here \mathcal{F} denotes the Fourier transform

$$
\mathcal{F} u(\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} u(x) d x
$$

For arbitrary $s \in \mathbb{R}$ we define fractional Laplacian in \mathbb{R}^{n} by the quadratic form

$$
Q_{s}[u]=\left((-\Delta)^{s} u, u\right):=\int_{\mathbb{R}^{n}}|\xi|^{2 s}|\mathcal{F} u(\xi)|^{2} d \xi
$$

with domain

$$
\operatorname{Dom}\left(Q_{s}\right)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right): Q_{s}[u]<\infty\right\}
$$

[^0]Let Ω be a bounded and smooth domain in \mathbb{R}^{n}. We put

$$
H^{s}(\Omega)=\left\{\left.u\right|_{\Omega}: u \in H^{s}\left(\mathbb{R}^{n}\right)\right\},
$$

see [8, Sec. 4.2.1] and the extension theorem in [8, Sec. 4.2.3].
Also we introduce the space

$$
\widetilde{H}^{s}(\Omega)=\left\{u \in H^{s}\left(\mathbb{R}^{n}\right): \operatorname{supp} u \subset \bar{\Omega}\right\}
$$

By Theorem 4.3.2/1 [8], for $s-\frac{1}{2} \notin \mathbb{Z}$ this space coincides with $H_{0}^{s}(\Omega)$ that is the closure of $\mathcal{C}_{0}^{\infty}(\Omega)$ in $H^{s}(\Omega)$ while for $s-\frac{1}{2} \in \mathbb{Z}$ one has $\widetilde{H}^{s}(\Omega) \subsetneq H_{0}^{s}(\Omega)$. Moreover, $\mathcal{C}_{0}^{\infty}(\Omega)$ is dense in $u \in \widetilde{H}^{s}(\Omega)$.

We introduce the "Dirichlet" fractional Laplacian in Ω (denoted by $\left.\left(-\Delta_{\Omega}\right)_{D}^{s}\right)$ as the restriction of $(-\Delta)^{s}$. The domain of its quadratic form is

$$
\operatorname{Dom}\left(Q_{s, \Omega}^{D}\right)=\left\{u \in \operatorname{Dom}\left(Q_{s}\right): \operatorname{supp} u \subset \bar{\Omega}\right\}
$$

Also we define the "Navier" fractional Laplacian as s-th power of the conventional Dirichlet Laplacian in the sense of spectral theory. Its quadratic form reads

$$
Q_{s, \Omega}^{N}[u]=\left(\left(-\Delta_{\Omega}\right)_{N}^{s} u, u\right):=\sum_{j} \lambda_{j}^{s} \cdot\left|\left(u, \varphi_{j}\right)\right|^{2}
$$

Here, λ_{j} and φ_{j} are eigenvalues and eigenfunctions of the Dirichlet Laplacian in Ω, respectively, and $\operatorname{Dom}\left(Q_{s, \Omega}^{N}\right)$ consists of distributions in Ω such that $Q_{s, \Omega}^{N}[u]<\infty$.

It is well known that for $s=1$ these operators coincide: $\left(-\Delta_{\Omega}\right)_{N}=\left(-\Delta_{\Omega}\right)_{D}$. We emphasize that, in contrast to $\left(-\Delta_{\Omega}\right)_{N}^{s}$, the operator $\left(-\Delta_{\Omega}\right)_{D}^{s}$ is not the s-th power of the Dirichlet Laplacian for $s \neq 1$. In particular, $\left(-\Delta_{\Omega}\right)_{D}^{-s}$ is not inverse to $\left(-\Delta_{\Omega}\right)_{D}^{s}$.

The present paper is the natural evolution of [6], where we compared the operators $\left(-\Delta_{\Omega}\right)_{D}^{s}$ and $\left(-\Delta_{\Omega}\right)_{N}^{s}$ for $0<s<1$. In the first result we extend Theorem 2 of [6].

T:main1 Theorem 1 Let $s>-1, s \notin \mathbb{N}_{0}$. Then for $u \in \operatorname{Dom}\left(Q_{s, \Omega}^{D}\right), u \not \equiv 0$, the following relations hold:

$$
\begin{array}{llll}
Q_{s, \Omega}^{N}[u]>Q_{s, \Omega}^{D}[u], & \text { if } \quad 2 k<s<2 k+1, & k \in \mathbb{N}_{0} \\
Q_{s, \Omega}^{N}[u]<Q_{s, \Omega}^{D}[u], & \text { if } & 2 k-1<s<2 k, & k \in \mathbb{N}_{0} . \tag{2}
\end{array}
$$

Next, we take into account the role of dilations in \mathbb{R}^{n}. We denote by $F(\Omega)$ the class of smooth and bounded domains containing Ω. If $\Omega^{\prime} \in F(\Omega)$, then any $u \in \operatorname{Dom}\left(Q_{s, \Omega}^{D}\right)$ can be regarded as a function in $\operatorname{Dom}\left(Q_{s, \Omega^{\prime}}^{D}\right)$, and the corresponding form $Q_{s, \Omega^{\prime}}^{D}[u]$ does not change. In contrast, the form $Q_{s, \Omega^{\prime}}^{N}[u]$ does depend on $\Omega^{\prime} \supset \Omega$. However, roughly speaking, the difference between these quadratic forms disappears as $\Omega^{\prime} \rightarrow \mathbb{R}^{n}$.

T:new Theorem 2 Let $s>-1$. Then for $u \in \operatorname{Dom}\left(Q_{s, \Omega}^{D}\right)$ the following facts hold:

$$
\begin{array}{lll}
Q_{s, \Omega}^{D}[u]=\inf _{\Omega^{\prime} \in F(\Omega)} Q_{s, \Omega^{\prime}}^{N}[u], \quad \text { if } \quad 2 k<s<2 k+1, \quad k \in \mathbb{N}_{0} ; \\
Q_{s, \Omega}^{D}[u]=\sup _{\Omega^{\prime} \in F(\Omega)} Q_{s, \Omega^{\prime}}^{N}[u], \quad \text { if } \quad 2 k-1<s<2 k, \quad k \in \mathbb{N}_{0} . \tag{4}
\end{array}
$$

For $-1<s<0$ we also obtain a pointwise comparison result reverse to the case $0<s<1$ (compare with [6, Theorem 1]).

T:main2 Theorem 3 Let $-1<s<0$, and let $f \in \operatorname{Dom}\left(Q_{s, \Omega}^{D}\right), f \geq 0$ in the sense of distributions, $f \not \equiv 0$. Then the following relation holds:

$$
\begin{equation*}
\left(-\Delta_{\Omega}\right)_{N}^{s} f<\left(-\Delta_{\Omega}\right)_{D}^{s} f \tag{5}
\end{equation*}
$$

Actually, fractional Laplacians of orders $s \in(-1,0)$ play a crucial role in our arguments. In Section 2 we give a variational characterization of these operators, "dual" to variational characterization of fractional Laplacians of orders $s \in(0,1)$ given in 4 and [7]. Theorems 1 3 are proved in Section 3 ,

Note that our statements hold in more general setting. Let Ω be a bounded and smooth domain in a complete smooth Riemannian manifold \mathcal{M}. Denote by $\left(-\Delta_{\Omega}\right)_{N}^{s}$ and $\left(-\Delta_{\Omega}\right)_{D}^{s}$, respectively, the s-th power of the Dirichlet Laplacian in Ω and the restriction of s-th power of the Dirichlet Laplacian in \mathcal{M} to the set of functions supported in Ω. Then proofs of Theorems 1 (and of Theorem 1 in [6] as well) run with minimal changes.

2 Fractional Laplacians of negative orders

First, we recall some facts from the classical monograph [8] about the spaces $H^{s}(\Omega)$ and $\widetilde{H}^{s}(\Omega)$.

Hs Proposition 1 (a particular case of [8, Theorem 4.3.2/1]).

1. If $0<\sigma<\frac{1}{2}$ then $\widetilde{H}^{\sigma}(\Omega)=H_{0}^{\sigma}(\Omega)=H^{\sigma}(\Omega)$;
2. If $\sigma=\frac{1}{2}$ then $\widetilde{H}^{\sigma}(\Omega)$ is dense in $H^{\sigma}(\Omega)=H_{0}^{\sigma}(\Omega)$;
3. If $\frac{1}{2}<\sigma<1$ then $\widetilde{H}^{\sigma}(\Omega)=H_{0}^{\sigma}(\Omega)$ is a subspace of $H^{\sigma}(\Omega)$.
duality Proposition 2 (a particular case of [8, Theorem 2.10.5/1]).
For any $\sigma \in \mathbb{R}\left(\widetilde{H}^{\sigma}(\Omega)\right)^{\prime}=H^{-\sigma}(\Omega)$.
As an immediate consequence we obtain
H-s Corollary 1 1. If $0<\sigma<\frac{1}{2}$ then $\widetilde{H}^{-\sigma}(\Omega)=H^{-\sigma}(\Omega)$;
4. If $\sigma=\frac{1}{2}$ then $\tilde{H}^{-\sigma}(\Omega)$ is dense in $H^{-\sigma}(\Omega)$;
5. If $\frac{1}{2}<\sigma<1$ then $H^{-\sigma}(\Omega)$ is a subspace of $\widetilde{H}^{-\sigma}(\Omega)$.

1D Remark 1 In the one-dimensional case, for $\frac{1}{2}<\sigma<1$ the codimension of $H^{-\sigma}(\Omega)$ in $\widetilde{H}^{-\sigma}(\Omega)$ equals 2 since the same is codimension of $\widetilde{H}^{\sigma}(\Omega)$ in $H^{\sigma}(\Omega)$.

The next statement gives explicit description of domains of quadratic forms under consideration.
domain Lemma 1 Let $0<\sigma<1$. Then

1. $\operatorname{Dom}\left(Q_{-\sigma, \Omega}^{N}\right)=H^{-\sigma}(\Omega)$;
2. $\operatorname{Dom}\left(Q_{-\sigma, \Omega}^{D}\right)=\widetilde{H}^{-\sigma}(\Omega)$ if $n \geq 2$ or $\sigma<\frac{1}{2}$;
3. $\operatorname{Dom}\left(Q_{\sigma, \Omega}^{D}\right)=\left\{u \in \widetilde{H}^{-\sigma}(\Omega): \mathcal{F} u(0)=0\right\}$ if $n=1$ and $\sigma \geq \frac{1}{2}$.

Proof. The first statement follows from the relation $\operatorname{Dom}\left(Q_{\sigma, \Omega}^{N}\right)=\widetilde{H}^{\sigma}(\Omega)$, see, e.g., 8 , Theorems 1.15.3 and 4.3.2/2], and from Proposition 2.

The second and the third statements follow directly from definition of $\widetilde{H}^{-\sigma}(\Omega)$, if we take into account that $\mathcal{F} u$ is a smooth function.

By Lemma 1 and Corollary 11 for $0<\sigma \leq \frac{1}{2}$ we have $\operatorname{Dom}\left(Q_{-\sigma, \Omega}^{D}\right) \subseteq \operatorname{Dom}\left(Q_{-\sigma, \Omega}^{N}\right)$ (even $\operatorname{Dom}\left(Q_{-\sigma, \Omega}^{D}\right)=\operatorname{Dom}\left(Q_{-\sigma, \Omega}^{N}\right)$ if $\left.0<\sigma<\frac{1}{2}\right)$. In the case $\frac{1}{2}<\sigma<1$, $\operatorname{Dom}\left(Q_{-\sigma, \Omega}^{N}\right)$ is a subspace of $\operatorname{Dom}\left(Q_{-\sigma, \Omega}^{D}\right)$ (for $n=1$ this follows from Remark (1). However, for arbitrary $f \in \operatorname{Dom}\left(Q_{-\sigma, \Omega}^{D}\right)$ we can consider f as a functional on $H^{\sigma}(\Omega)$, put $\widetilde{f}=\left.f\right|_{\tilde{H}^{\sigma}(\Omega)} \in$ $\operatorname{Dom}\left(Q_{-\sigma, \Omega}^{N}\right)$ and define $Q_{-\sigma, \Omega}^{N}[f]:=Q_{-\sigma, \Omega}^{N}[\widetilde{f}]$.

Next, we recall that in the paper [4] the fractional Laplacian of order $\sigma \in(0,1)$ in \mathbb{R}^{n} was connected with the so-called harmonic extension in $n+2-2 \sigma$ dimensions and with generalized Dirichlet-to-Neumann map (see also [3] for the case $\sigma=\frac{1}{2}$). In particular, for any $u \in \widetilde{H}^{\sigma}(\Omega)$ the function $w_{\sigma}^{D}(x, y)$ minimizing the weighted Dirichlet integral

$$
\mathcal{E}_{\sigma}^{D}(w)=\int_{0}^{\infty} \int_{\mathbb{R}^{n}} y^{1-2 \sigma}|\nabla w(x, y)|^{2} d x d y
$$

over the set

$$
\mathcal{W}_{\sigma}^{D}(u)=\left\{w(x, y): \mathcal{E}_{\sigma}^{D}(w)<\infty,\left.\quad w\right|_{y=0}=u\right\}
$$

satisfies

$$
\begin{equation*}
Q_{\sigma, \Omega}^{D}[u]=\frac{C_{\sigma}}{2 \sigma} \cdot \mathcal{E}_{\sigma}^{D}\left(w_{\sigma}^{D}\right) \tag{6}
\end{equation*}
$$

quad_D
where the constant C_{σ} is given by

$$
C_{\sigma}:=\frac{4^{\sigma} \Gamma(1+\sigma)}{\Gamma(1-\sigma)}
$$

Moreover, $w_{\sigma}^{D}(x, y)$ is the solution of the BVP

$$
-\operatorname{div}\left(y^{1-2 \sigma} \nabla w\right)=0 \quad \text { in } \quad \mathbb{R}^{n} \times \mathbb{R}_{+} ;\left.\quad w\right|_{y=0}=u
$$

and for sufficiently smooth u

$$
\begin{equation*}
(-\Delta)^{\sigma} u(x)=-\frac{C_{\sigma}}{2 \sigma} \cdot \lim _{y \rightarrow 0^{+}} y^{1-2 \sigma} \partial_{y} w_{\sigma}^{D}(x, y), \quad x \in \mathbb{R}^{n} \tag{7}
\end{equation*}
$$

extension_D
(we recall that $\left(-\Delta_{\Omega}\right)_{D}^{\sigma} u=\left.(-\Delta)^{\sigma} u\right|_{\Omega}$).

In [7] this approach was developed in quite general situation. In particular, it was shown that for any $u \in \widetilde{H}^{\sigma}(\Omega)$ the function $w_{\sigma}^{N}(x, y)$ minimizing the energy integral

$$
\mathcal{E}_{\sigma}^{N}(w)=\int_{0}^{\infty} \int_{\Omega} y^{1-2 \sigma}|\nabla w(x, y)|^{2} d x d y
$$

over the set

$$
\mathcal{W}_{\sigma, \Omega}^{N}(u)=\left\{w(x, y) \in \mathcal{W}_{\sigma}^{D}(u):\left.w\right|_{x \in \partial \Omega}=0\right\}
$$

satisfies

$$
\begin{equation*}
Q_{\sigma, \Omega}^{N}[u]=\frac{C_{\sigma}}{2 \sigma} \cdot \mathcal{E}_{\sigma}^{N}\left(w_{\sigma}^{N}\right) \tag{8}
\end{equation*}
$$

Moreover, $w_{\sigma}^{N}(x, y)$ is the solution of the BVP

$$
\begin{equation*}
-\operatorname{div}\left(y^{1-2 \sigma} \nabla w\right)=0 \quad \text { in } \quad \Omega \times \mathbb{R}_{+} ;\left.\quad w\right|_{y=0}=u ;\left.\quad w\right|_{x \in \partial \Omega}=0 \tag{9}
\end{equation*}
$$

and for sufficiently smooth u it turns out that

$$
\begin{equation*}
\left(-\Delta_{\Omega}\right)_{N}^{\sigma} u(x)=-\frac{C_{\sigma}}{2 \sigma} \cdot \lim _{y \rightarrow 0^{+}} y^{1-2 \sigma} \partial_{y} w_{\sigma}^{N}(x, y) \tag{10}
\end{equation*}
$$

```
extension_N
```

In a similar way, negative fractional Laplacians are connected with generalized Neu-mann-to-Dirichlet map. Namely, let $u \in \operatorname{Dom}\left(Q_{-\sigma, \Omega}^{D}\right)$. We consider the problem of minimizing the functional

$$
\widetilde{\mathcal{E}}_{-\sigma}^{D}(w)=\mathcal{E}_{\sigma}^{D}(w)-2\left\langle u,\left.w\right|_{y=0}\right\rangle
$$

over the set $\mathcal{W}_{-\sigma}^{D}$, that is closure of smooth functions on $\mathbb{R}^{n} \times \overline{\mathbb{R}}_{+}$with bounded support, with respect to $\mathcal{E}_{\sigma}^{D}(\cdot)$. We recall that by Lemma $1 u$ can be considered as a compactly supported functional on $H^{\sigma}\left(\mathbb{R}^{n}\right)$, and thus the duality $\left\langle u,\left.w\right|_{y=0}\right\rangle$ is well defined by the result of 4].

First, let $n>2 \sigma$ (this is a restriction only for $n=1$). We claim that the Hardy type inequality

$$
\begin{equation*}
\mathcal{E}_{\sigma}^{D}(w) \geq\left(\frac{n-2 \sigma}{2}\right)^{2} \int_{0}^{\infty} \int_{\mathbb{R}^{n}} y^{1-2 \sigma} \frac{w^{2}(x, y)}{r^{2}} d x d y \tag{11}
\end{equation*}
$$

holds for $w \in \mathcal{W}_{-\sigma}^{D}$ (here $\left.r^{2}=|x|^{2}+y^{2}\right)$. Indeed, for a smooth function w with bounded support we consider the restriction of w to arbitrary ray in $\mathbb{R}^{n} \times \mathbb{R}_{+}$and write down the classical Hardy inequality

$$
\int_{0}^{\infty} r^{n+1-2 \sigma} w_{r}^{2} d r \geq\left(\frac{n-2 \sigma}{2}\right)^{2} \int_{0}^{\infty} r^{n-1-2 \sigma} w^{2} d r
$$

We multiply it by $\left(\frac{y}{r}\right)^{1-2 \sigma}$, integrate over unit hemisphere in \mathbb{R}^{n+1}, and the claim follows.

By (11), a non-zero constant cannot be approximated by compactly supported functions. Thus, the minimizer of $\widetilde{\mathcal{E}}_{-\sigma}^{D}$ is determined uniquely. Denote it by $w_{-\sigma}^{D}(x, y)$. Then formulae (6) and (7) imply relations

$$
\begin{equation*}
Q_{-\sigma, \Omega}^{D}[u]=-\frac{2 \sigma}{C_{\sigma}} \cdot \widetilde{\mathcal{E}}_{-\sigma}^{D}\left(w_{-\sigma}^{D}\right) ; \quad\left(-\Delta_{\Omega}\right)_{D}^{-\sigma} u(x)=\frac{2 \sigma}{C_{\sigma}} w_{-\sigma}^{D}(x, 0), \quad x \in \Omega, \tag{12}
\end{equation*}
$$

that give the "dual" Caffarelli-Silvestre characterization of $\left(-\Delta_{\Omega}\right)_{D}^{-\sigma}$.
In case $n=1 \leq 2 \sigma$ the above argument needs some modification. Namely, the minimizer $w_{-\sigma}^{D}(x, y)$ in this case is defined up to an additive constant. However, by Lemma 1 we have

$$
\mathcal{F} u(0) \equiv\langle u, \mathbf{1}\rangle=0 .
$$

Therefore, $\widetilde{\mathcal{E}}_{-\sigma}^{D}\left(w_{-\sigma}^{D}\right)$ does not depend on the choice of the constant, and the first relation in (12) holds. The second equality in (12) also holds if we choose the constant such that $w_{-\sigma}^{D}(x, 0) \rightarrow 0$ as $|x| \rightarrow \infty$.

Remark 2 Note that for sufficiently smooth u the function $w_{-\sigma}^{D}$ solves the Neumann problem

$$
\begin{equation*}
-\operatorname{div}\left(y^{1-2 \sigma} \nabla w\right)=0 \quad \text { in } \quad \mathbb{R}^{n} \times \mathbb{R}_{+} ; \quad \lim _{y \rightarrow 0^{+}} y^{1-2 \sigma} \partial_{y} w=-u \tag{13}
\end{equation*}
$$

Analogously, formulae (8) and (10) imply the "dual" Stinga-Torrea characterization of $\left(-\Delta_{\Omega}\right)_{N}^{-\sigma}$. Namely, the function $w_{-\sigma}^{N}(x, y)$ minimizing the functional

$$
\widetilde{\mathcal{E}}_{-\sigma}^{N}(w)=\mathcal{E}_{\sigma}^{N}(w)-2\left\langle u,\left.w\right|_{y=0}\right\rangle
$$

over the set

$$
\mathcal{W}_{-\sigma, \Omega}^{N}(u)=\left\{w(x, y) \in \mathcal{W}_{-\sigma}^{D}:\left.w\right|_{x \notin \Omega}=0\right\},
$$

satisfies

$$
\begin{equation*}
Q_{-\sigma, \Omega}^{N}[u]=-\frac{2 \sigma}{C_{\sigma}} \cdot \widetilde{\mathcal{E}}_{-\sigma}^{N}\left(w_{-\sigma}^{N}\right) ; \quad\left(-\Delta_{\Omega}\right)_{N}^{-\sigma} u(x)=\frac{2 \sigma}{C_{\sigma}} w_{-\sigma}^{N}(x, 0) . \tag{14}
\end{equation*}
$$

ext Remark 3 Formula (14) shows that $w_{-\sigma}^{N}$ is the Stinga-Torrea extension of $\frac{C_{\sigma}}{2 \sigma}\left(-\Delta_{\Omega}\right)_{N}^{-\sigma} u$. Similarly, from (12) we conclude that $w_{-\sigma}^{D}$ is the Caffarelli-Silvestre extension of $\frac{C_{\sigma}}{2 \sigma}(-\Delta)^{-\sigma} u$ but not of $\frac{C_{\sigma}}{2 \sigma}\left(-\Delta_{\Omega}\right)_{D}^{-\sigma} u$. This is due to the fact, already noticed in the introduction, that $\left(-\Delta_{\Omega}\right)_{D}^{-\sigma}$ is not the inverse of $\left(-\Delta_{\Omega}\right)_{D}^{\sigma}$.

Remark 4 The representation of $(-\Delta)^{-\sigma} u$ via solution of the problem (13) was used in [2]. Similar representation of $\left(-\Delta_{\Omega}\right)_{N}^{-\sigma} u$ via solution of corresponding mixed boundary value problem was used earlier in [55. However, variational characterizations of negative fractional Laplacians (the first parts of formulae (12) and (14)) which play key role in what follows, are given for the first time.

3 Proofs of main theorems

compar

We start by recalling an auxiliary result.

Lemma 2 Let $s>1$. Then

$$
\begin{array}{lll}
\operatorname{Dom}\left(Q_{s, \Omega}^{D}\right)=\widetilde{H}^{s}(\Omega)=\operatorname{Dom}\left(Q_{s, \Omega}^{N}\right) & \text { for } \quad s<3 / 2 \\
\operatorname{Dom}\left(Q_{s, \Omega}^{D}\right)=\widetilde{H}^{s}(\Omega) \subsetneq \operatorname{Dom}\left(Q_{s, \Omega}^{N}\right) & \text { for } & s \geq 3 / 2
\end{array}
$$

Proof. For $Q_{s, \Omega}^{D}$ the conclusion follows directly from its definition. For $Q_{s, \Omega}^{N}$ this fact is well known for $s \in \mathbb{N}$; in general case it follows immediately from [8, Theorem 1.17.1/1] and [8, Theorem 4.3.2/1].
Proof of Theorem 1. We split the proof in three parts.

1. Let $0<s<1$. Then the relation (11) is proved in [6, Theorem 2].
2. Let $-1<s<0$. We define $\sigma=-s \in(0,1)$ and construct extensions $w_{-\sigma}^{D}$ and $w_{-\sigma}^{N}$ as described in Section 2 .

We evidently have $\mathcal{W}_{-\sigma, \Omega}^{N} \subset \mathcal{W}_{-\sigma}^{D}$ and $\widetilde{\mathcal{E}}_{-\sigma}^{N}=\left.\widetilde{\mathcal{E}}_{-\sigma}^{D}\right|_{\mathcal{W}_{-\sigma, \Omega}^{N}}$. Therefore, (12) and (14) provide

$$
Q_{s, \Omega}^{N}[u]=-\frac{2 \sigma}{C_{\sigma}} \cdot \inf _{w \in \mathcal{W}_{-\sigma, \Omega}^{N}} \widetilde{\mathcal{E}}_{-\sigma}^{N}(w) \leq-\frac{2 \sigma}{C_{\sigma}} \cdot \inf _{w \in \mathcal{W}_{-\sigma}^{D}} \widetilde{\mathcal{E}}_{-\sigma}^{D}(w)=Q_{s, \Omega}^{D}[u]
$$

To complete the proof, we observe that for $u \not \equiv 0$ the function $w_{-\sigma}^{N}$ cannot be a solution of the homogeneous equation in (9) in the whole half-space, since such a solution is analytic in the half-space. Thus, it cannot provide $\inf _{w \in \mathcal{W}_{-\sigma}^{D}} \widetilde{\mathcal{E}}_{-\sigma}^{D}(w)$, and (22) follows.
3. Now let $s>1, s \notin \mathbb{N}$. We put $k=\left\lfloor\frac{s-1}{2}\right\rfloor$ and define for $u \in \widetilde{H}^{s}(\Omega)$

$$
v=(-\Delta)^{k} u \in \widetilde{H}^{s-2 k}(\Omega), \quad s-2 k \in(-1,0) \cup(0,1)
$$

Note that $v \not \equiv 0$ if $u \not \equiv 0$. Then we have

$$
Q_{s, \Omega}^{N}[u]=Q_{s-2 k, \Omega}^{N}[v], \quad Q_{s, \Omega}^{D}[u]=Q_{s-2 k, \Omega}^{D}[u]
$$

and the conclusion follows from cases 1 and 2.
Proof of Theorem 2. Here we again distinguish three cases.

1. Let $0<s<1$. Then the relation (3) is proved in [6, Theorem 3].
2. Let $-1<s<0$. We define $\sigma=-s \in(0,1)$ and proceed similarly to the proof of [6. Theorem 3]. It is sufficient to prove the statement for $u \in \mathcal{C}_{0}^{\infty}(\Omega)$.

For $\Omega^{\prime} \supset \Omega$ we have $\mathcal{W}_{-\sigma, \Omega}^{N} \subset \mathcal{W}_{-\sigma, \Omega^{\prime}}^{N}$. By (14), the quadratic form $Q_{s, \Omega}^{N}[u]$ is monotone increasing with respect to the domain inclusion. Taking (2) into account, we obtain

$$
\begin{equation*}
Q_{s, \Omega}^{D}[u]>Q_{s, \Omega^{\prime}}^{N}[u] \geq Q_{s, \Omega}^{N}[u] \tag{15}
\end{equation*}
$$

Denote by $w=w_{-\sigma}^{D}$ the Caffarelli-Silvestre extension of $\frac{C_{\sigma}}{2 \sigma}(-\Delta)^{-\sigma} u$, described in Section 2. Next, for any $y \geq 0$ let $\phi_{R}(\cdot, y)$ be the harmonic extension of $w(\cdot, y)$ on the ball B_{R}, that is,

$$
-\Delta \phi_{R}(\cdot, y)=0 \quad \text { in } B_{R} ; \quad \phi_{h}(\cdot, y)=w(\cdot, y) \quad \text { on } \partial B_{R}
$$

Finally, for $x \in B_{R}$ and $y \geq 0$ we put

$$
w_{R}(x, y)=w(x, y)-\phi_{R}(x, y)
$$

It is shown in the proof of [6, Theorem 3] that there exists a sequence $R_{h} \rightarrow \infty$ such that

$$
\mathcal{E}_{\sigma}^{N}\left(w_{R_{h}}\right) \leq \mathcal{E}_{\sigma}^{D}(w)+o(1)
$$

Further, since $\left(-\Delta_{\Omega}\right)_{D}^{-\sigma} u$ vanishes at infinity, for any multi-index β we evidently have $D^{\beta} \phi_{R_{h}}(\cdot, 0) \rightarrow 0$ locally uniformly as $R_{h} \rightarrow \infty$. This gives $\left\langle u, \phi_{R_{h}}(\cdot, 0)\right\rangle=o(1)$, and we obtain by (12) and (14)

$$
\begin{align*}
Q_{s, B_{R_{h}}}^{N}[u] & \geq-\frac{2 \sigma}{C_{\sigma}} \cdot \widetilde{\mathcal{E}}_{-\sigma}^{N}\left(w_{R_{h}}\right) \\
& \geq-\frac{2 \sigma}{C_{\sigma}} \cdot \widetilde{\mathcal{E}}_{\sigma}^{D}(w)-o(1)=Q_{s, \Omega}^{D}[u]-o(1) \tag{16}
\end{align*}
$$

eq:tesi

The relation (3) readily follows by comparing (15) and (16).
3. For $s>1, s \notin \mathbb{N}$, the conclusion follows from cases 1 and 2 just as in the proof of Theorem 1

R:new Remark 5 Assume that $0 \in \Omega$ and put $\alpha \Omega=\{\alpha x: x \in \Omega\}$. Thanks to (15), the proof above shows indeed that

$$
Q_{s, \Omega}^{D}[u]=\lim _{\alpha \rightarrow \infty} Q_{s, \alpha \Omega}^{N}[u] \quad \text { for any } \quad u \in \tilde{H}^{s}(\Omega)
$$

Now put $u_{\alpha}(x)=\alpha^{\frac{n-2 s}{2}} u(\alpha x)$. Then the scaling shows that

$$
Q_{s, \Omega}^{D}\left[u_{\alpha}\right] \equiv Q_{s, \Omega}^{D}[u]=\lim _{\alpha \rightarrow \infty} Q_{s, \Omega}^{N}\left[u_{\alpha}\right] \quad \text { for any } \quad u \in \widetilde{H}^{s}(\Omega)
$$

Proof of Theorem 3. First, let $f \in \mathcal{C}_{0}^{\infty}(\Omega)$. We define $\sigma=-s \in(0,1)$ and construct extensions $w_{-\sigma}^{D}$ and $w_{-\sigma}^{N}$ described in Section2. Making the change of the variable $t=y^{2 \sigma}$, we rewrite the BVP (13) for $w_{-\sigma}^{D}(x, t)$ as follows:

$$
\begin{equation*}
\Delta_{x} w_{-\sigma}^{D}+4 \sigma^{2} t^{\frac{2 \sigma-1}{\sigma}} \partial_{t t}^{2} w_{-\sigma}^{D}=0 \quad \text { in } \quad \mathbb{R}^{n} \times \mathbb{R}_{+} ;\left.\quad \partial_{t} w_{-\sigma}^{D}\right|_{t=0}=-\frac{f}{2 \sigma} \tag{17}
\end{equation*}
$$

Since $w_{-\sigma}^{D}$ vanishes at infinity, $w_{-\sigma}^{D}(x, t)>0$ for $t>0$ by the maximum principle. Moreover, by [1, Theorem 1.4] (the boundary point lemma) we have $w_{-\sigma}^{D}(x, 0)>0$.

Further, the function $w_{-\sigma}^{N}$ satisfies the equalities (17) in $\Omega \times \mathbb{R}_{+}$. Since $\left.w_{-\sigma}^{N}\right|_{x \notin \Omega}=0$, we infer that the function

$$
W(x, t):=w_{-\sigma}^{D}(x, t)-w_{-\sigma}^{N}(x, t)
$$

meets the following relations:

$$
\Delta_{x} W+4 \sigma^{2} t^{\frac{2 \sigma-1}{\sigma}} \partial_{t t}^{2} W=0 \quad \text { in } \quad \Omega \times \mathbb{R}_{+} ;\left.\quad \partial_{t} W\right|_{t=0}=0 ;\left.\quad W\right|_{x \in \partial \Omega}>0
$$

Again, [1, Theorem 1.4] gives $W(x, 0)>0$, which gives (5) in view of (12) and (14).
For $f \in \widetilde{H}^{s}(\Omega)$ the statement holds by approximation argument.

References

[1] R. Alvarado, D. Brigham, V. Maz'ya, M. Mitrea and E. Ziadé, On the regularity of domains satisfying a uniform hour-glass condition and a sharp version of the Hopf-Oleinik boundary point principle, Probl. Mat. Anal., 57 (2011), 3-68 (Russian); English transl.: J. Math. Sci., 176 (2011), 281-360.
[2] X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians. I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré. Anal. Non Linéaire 31 (2014), no. 1, 23-53.
[3] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), no. 5, 2052-2093.
[4] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Part. Diff. Eqs. 32 (2007), no. 7-9, 1245-1260.
[5] A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Part. Diff. Eqs. 36 (2011), no. 8, 1353-1384.
[6] R. Musina and A. I. Nazarov, On fractional Laplacians, Comm. Part. Diff. Eqs. 39 (2014), no. 9, 1780-1790.
[7] P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Part. Diff. Eqs. 35 (2010), no. 11, 20922122.
[8] H. Triebel, Interpolation theory, function spaces, differential operators, Deutscher Verlag Wissensch., Berlin, 1978.

[^0]: *Dipartimento di Matematica ed Informatica, Università di Udine, via delle Scienze, 206 - 33100 Udine, Italy. Email: roberta.musina@uniud.it. Partially supported by MiurPRIN 2009WRJ3W7-001 "Fenomeni di concentrazione e problemi di analisi geometrica".
 ${ }^{\dagger}$ St.Petersburg Department of Steklov Institute, Fontanka, 27, St.Petersburg, 191023, Russia and St.Petersburg State University, Universitetskii pr. 28, St.Petersburg, 198504, Russia. E-mail: al.il.nazarov@gmail.com. Supported by RFBR grant 14-01-00534 and by St.Petersburg University grant 6.38.670.2013.

