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Visual indoor localization in known environments
Claudio Piciarelli Member, IEEE

Abstract—In this work, we propose a visual indoor localization
technique, which localizes a camera sensor by comparing the
acquired images to a reference model of location-tagged visual
features. The proposed method relies on an efficient way to search
for feature matches which can run in real-time. Experimental
results show good localization accuracy even in challenging
scenarios.

I. INTRODUCTION

Outdoor localization is nowadays a solved problem, thanks
to standard technologies such as GPS. However, the same
approach cannot be adopted in indoor scenarios, because of the
GPS signal attenuation in closed environments. Despite of this
limit, there is an increasing need for robust indoor localization
systems. A large number of practical applications could benefit
from such systems, e.g. guided tours in museums, helper apps
for students in large school campuses, finding the path to a
specific shop in a shopping mall, and in general any context
where the users can benefit from positional information inside
large buildings, such as hospitals, airports, factories, etc.

Many approaches to indoor localization exist, relying on
different sensing technologies such as triangulation based on
WiFi signals or proximity detection using RFID tags. All these
approaches, however, require a proper hardware infrastructure
to support the localization task. In contrast, visual-based
approaches try to estimate the position of a visual sensor
(such as a smartphone camera) by comparing the acquired
image with a known model of the world. However, the task is
challenging since the amount of reference data could be too
large to be processed in real-time.

In this paper, we propose an efficient scheme to perform
real-time visual indoor localization. The main idea is to exploit
the temporal coherence of video sequences to track visual
features, thus greatly reducing the amount of data to be
processed in the matching phase.

II. RELATED WORK

Several approaches have been proposed in literature to
address the problem of localization, either indoor or out-
door, however they can be grouped in four main classes:
triangulation/trilateration, proximity, scene analysis, and dead
reckoning techniques [1].

Triangulation/trilateration-based techniques rely on the
computation of angles and/or distances of the sensor with
respect to known points in space. The most popular approach
of this type is GPS, using signals from artificial satellites,
however it requires a clear view of the sky. For indoor
localization, this approach uses alternative signal sources such
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as WiFi [2], GSM [3], BlueTooth [4], etc. Proximity-based
approaches localize the sensor by detecting its presence near
specific devices, e.g. RFID tags [5], while the scene analysis
approach uses information from the surrounding environment
e.g. acquired by radar [6] or sonar [7]. Finally, dead reckoning
means to trace the position of the sensor by knowing its
starting location and using gyroscopes and accelerometers to
detect is direction and speed. Since this approach is prone
to cumulative errors, it is generally used in conjunction with
other techniques [8].

Image-based localization falls in the category of scene anal-
ysis techniques. Performing localization by image comparison
has some drawbacks, most notably it does not work in zones
not covered by the reference data, or observed from different
points of view. However, it still has possible applications in
environments with narrow paths and few sensible points of
view, such as building hallways, or systems where the imaging
sensor is forced to move on pre-defined paths such as in the
case of a patrolling robot. In other contexts, the problem could
be mitigated for example by using wide-baseline matching [9]
or omnidirectional sensors [10].

Kim and Jun [11] use indoor localization to propose a wear-
able Augmented-Reality navigation system. Their approach
is based on detection of black-and-white markers placed in
known positions, plus several image processing steps to im-
prove the detection performances both in terms of robustness
and speed. The main drawback of their system is the need of
specific visual markers in the observed environment. Werner
et al. [12] use visual features to select the best match from
a database of images taken at known locations. They use
coarse WLAN-based localization to reduce the search space.
In comparison, our approach adopts a technique to reduce the
search space based only on visual features. Remazeilles and
Chaumette [13] use image recognition for robot navigation,
where a set of images is used to define a path, and the
robot plans its movements by searching the given images in
the surrounding environment. Other works use a 2D-to-3D
approach, where the reference data is composed of 3D point
features, and the system searches for correspondences in the
2D view [14]–[16]. The main problems in these systems are
the need of a 3D reference model and the inherent visual
2D-to-3D ambiguity. To overcome this issue, Micusik and
Wildenauer [17] propose to use lines, rather than points, as
features that best describe typical indoor environments.

More generally, image-based localization can be seen as
an application of image retrieval techniques. One of the most
popular algorithms in this field is the Bag of Visual Words
(BoW) approach [18]. In BoW, visual features are extracted
from all the reference images and quantized to get a small
number of feature prototypes (visual words). Each image is
then represented as an histogram of visual words occurrences.
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Fig. 1. Main idea behind the proposed algorithm. Features detected in
each frame are matched with the ones stored during the off-line phase. The
intersection of their frame ranges identifies the matched reference frame (and
hence the current position).

The histograms can be used for image classification, matching,
etc. In Section IV we will compare the proposed method with
BoW.

III. PROPOSED ALGORITHM

The problem of image-based localization is split in two
tasks: off-line building of a reference model and on-line
localization. In the off-line phase, a video sequence of the
indoor environment is acquired and processed to detect visual
features. The features are stored together with manually-
defined positional information. In the on-line phase, visual
features from each frame are compared with the stored data,
and the best-matching reference frame is identified. The cur-
rent position is defined as the localization data associated with
the matched frame.

In order to speed up the matching step, we propose to track
the features detected in the off-line phase, so that the same
feature needs to be stored only once, rather than several times
for each frame in which it appears. In the on-line phase, the
best reference frame is identified as the intersection of tracking
ranges of the matched features, as shown in Figure 1.

A. Off-line model building

In the off-line phase, a video sequence of the environment
is acquired. The sequence must cover all the areas in which
localization will be needed, and from all the sensible points
of view (e.g. the two possible directions of a hallway). Each
frame is manually labeled with positional information with a
time-consuming procedure that cannot be applied on-line. In
our experiments we annotated the current frame number each
time the camera was passing over a known reference point, and
the remaining positions have been obtained by interpolation.

During the off-line phase, a set F of SURF features [19]
are extracted from the first frame. Their positions P are
then tracked in the next frames using a standard KLT point
tracker [20], as implemented in the MATLAB vision tool-
box. To ensure a robust tracking, at each frame we use the
RANSAC algorithm to estimate the projective transformation
that best describes the feature displacement. It is thus possible
to detect and discard outliers, i.e. points where the distance
between their real position and the position predicted by the
projective model is larger than a threshold (4 pixels in our
experiments). We assume that the feature descriptor of the
tracked points will not significantly change during tracking

because of the SURF invariance to translations, rotations and
scale changes.

When the number t of tracked points drops below a given
threshold Th, new SURF features are extracted and their
positions are added to the set of tracked points. In particular,
only the (Th − t) features that maximize their minimum
distance from the tracked points are selected. This avoids
duplicates due to overlaps between the added points and the
previously tracked ones.

Whenever a tracked point is lost, its original SURF descrip-
tor (typically, a vector of 64 real numbers [19]) is stored in
the reference model M, as well as the first and last frame
numbers (f.F irst and f.Last in Algorithm 1) in which it has
been tracked.

After the entire sequence has been processed, we also build
a hierarchical k-means tree as described in [21]. The feature
descriptors are thus clustered using k-means, and the process is
recursively iterated on each detected cluster. The result is a tree
where each non-leaf node is labeled with the corresponding
cluster center and the original descriptors are stored in the tree
leaves. This data structure will be used to perform approximate
nearest neighbor matching in the on-line phase.

Algorithm 1 shows how the off-line model is built. At lines
2–5 the algorithm is initialized by detecting the SURF features
in the first frame and setting their first and last tracking frame
to 0. Their positions (2D coordinates) are stored in the set
of points P . The tracking loop starts at line 6: the selected
points are tracked (line 7) and, for each tracked point, the
corresponding last frame is updated with the current frame
number (line 9). Points that are no longer tracked have their
corresponding feature descriptor and frame ranges stored inM
at line 10–12. Lines 13–19 add new features if their amount is
below a given threshold, starting from the farthest ones from
the currently tracked points. Finally, once the entire sequence
has been analyzed, the hierarchical k-means tree is built at line
21 (see [21] for full details).

At the end of the off-line phase, the reference model M
contains:
• a set of descriptors of the tracked features;
• the first and last frame in which each feature has been

tracked;
• the hierarchical k-means tree.

B. On-line localization

During the on-line localization, the aim is to match each
acquired frame to a frame in the reference video sequence. The
current position is defined as the localization data associated
to the matched frame. At each frame, we detect the set F
of SURF features and match them with the features stored in
the reference model M. For each feature, a match is found
by minimizing the Euclidean distance among descriptors: if
fi ∈ F , its best match is fMj ∈M where

j = argminl ‖fi.Descriptor − fMl .Descriptor‖ (1)

Equation (1) implies a linear scan of all the descriptors
in M and thus could violate the real-time requirements in
case of long reference sequences. In this case an approximate
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Algorithm 1 Off-line model building
1: procedure BUILD-MODEL
2: M = P = ∅
3: F = detect-SURF-features(I0) . I0 is the first frame
4: ∀f ∈ F : P ← f.Position
5: ∀f ∈ F : f.F irst = f.Last = 0
6: for each frame number n do
7: P ′ = KLT-track(P , In)
8: for each tracked feature f do
9: f.Last = n

10: for each lost feature f do
11: M.Descriptors← f.Descriptor
12: M.Ranges← [f.F irst, f.Last]

13: if |P ′| < Th then
14: F = detect-SURF-features(In)
15: ∀f ∈ F : compute the min distance from P ′

16: F = sort F by decreasing distance
17: F = f1 . . . fTh−|P ′|
18: ∀f ∈ F : f.First = f.Last = n
19: ∀f ∈ F : P ′ ← f.Position
20: P = P ′

21: M.tree = HKM-Tree(M.Descriptors)
22: return M

nearest-neighbor match can be found by using the hierarchical
k-means tree as proposed in [21]. In this case, the search
for the best match is done by visiting the entire tree rather
than performing a linear search. However, the visiting order
is defined by a priority queue, which forces the nodes with
cluster centers closest to the processed descriptor to be visited
first. This way, there is an high probability that the best match
is found in the early stages of scan, and approximation is
obtained by stopping the tree visit after a given amount of leaf
nodes have been visited. With this approach, the matching time
can be drastically improved, at the price of a loss in accuracy
due to approximation.

Let now assume that k features in M have been matched.
They are associated to k sets of frame ranges {ri}ki=1, where
ri contains the first and last frame number in which feature i
has been tracked. Ideally, the best matching reference frame
is the one that contains all the matched features, and thus can
be defined as b =

⋂k
i=1 ri, as shown in Figure 1. In practice

however the intersection is often empty due to tracking errors,
thus we use an accumulator to achieve more robust results.
The accumulator a is an initially empty N × 1 vector, where
N is the number of frames in the reference sequence. For each
matched feature descriptor fMi and its corresponding range ri,
the accumulator is properly incremented:

a[ri.F irst . . . ri.Last] = a[ri.F irst . . . ri.Last] + 1 (2)

Once all the matched ranges have been added in the accu-
mulator, the best matching reference frame b is the one that
maximizes a:

b = argmaxj a[j] (3)

If several matches are found, they are considered equivalent
and the first one is arbitrarily selected. The entire procedure

is shown in Algorithm 2.

Algorithm 2 On-line localization
1: procedure LOCALIZE
2: for each frame number n do
3: F =detect-SURF-features(In)
4: FM = match(F,M)
5: for each matched feature fMj ∈ FM do
6: a[rj .F irst . . . rj .Last]+ = 1

7: b = argmaxi a[i]
8: return position of reference frame #b

IV. EXPERIMENTAL RESULTS

Fig. 2. Path of the camera while acquiring the reference video sequence for
environment 1. The depicted area is approximately 125×110 meters. The two
frames are acquired at points A and B respectively.

In order to test the proposed system, we considered three
indoor environments consisting in the hallways of different
buildings. In the first environment the reference sequence is
8144 frames long, acquired at 640 × 480 with the integrated
webcam of a laptop placed on a cart. The second and third se-
quences respectively are 2636 and 2900 frames long, acquired
at full-HD with a Motorola Moto G smartphone and then
rescaled by a factor 0.5. The smartphone was held by hand,
thus the sequences are not stabilized. In some cases the envi-
ronments are particularly challenging because of many similar-
looking areas (e.g. see Figure 2). The reference sequences
have been manually labeled with positional information by
taking note of the frame number when the camera was passing
over known reference points roughly placed every 6 meters,
with all the remaining positions being extrapolated by cubic
interpolation. We tried to keep a constant direction and speed
between the reference points in order to minimize the errors
introduced by interpolation.

As a test set, four sequences have been acquired in En-
vironment 1, and two sequences in each one of the other
environments. Test sequences have been manually labeled with
positional information for error measuring purposes only. For
each sequence frame, we estimated its localization with the
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Env. Outliers Mean inliers
error

Processing
time

1 0.05% (4/8730) 0.58 224
2 0.13% (3/2326) 0.74 150
3 0.13% (3/2335) 0.68 119

(a) Proposed method

Env. Outliers Mean inliers
error

Processing
time

1 0.09% (8/8730) 0.60 52
2 0.13% (3/2326) 0.73 74
3 0.17% (4/2335) 0.68 69

(b) Proposed method with approximate match

Env. Outliers Mean inliers
error

Processing
time

1 0.26% (23/8730) 0.67 78
2 0.47% (11/2326) 0.78 88
3 0.56% (13/2335) 0.66 88

(c) Bag of visual words

Env. Outliers Mean inliers
error

Processing
time

1 0.31% (27/8730) 0.67 52
2 0.21% (5/2326) 0.78 76
3 0.38% (9/2335) 0.65 73

(d) Bag of visual words with approximate match
TABLE I

EXPERIMENTAL RESULTS IN THREE ENVIRONMENTS. MEAN ERRORS ARE
EXPRESSED IN METERS, TIMINGS IN MILLISECONDS.

algorithms proposed in Section III and measured its Euclidean
distance from the manual label. The mean error, however, is
not a good quality metric: when the system fails, the falsely-
matched frame could be located anywhere on the path, thus
leading to unpredictable, and possibly high, error values. We
thus propose to count the number of outliers as a more robust
error metric. In our tests, a localization result is considered
an outlier if the error is above 4 meters. The average error
is then computed on inlier data only. It is worth noting that
the results could be improved by imposing some form of
spatial coherence (e.g. with a Kalman filter). However, we
chose not to use any kind of filtering and classify each frame
independently, in order to give more generic results that are
meaningful also for other types of applications (e.g. single-
shot localization). The testing platform is a linux PC running
Matlab, with a Xeon E5-2660 CPU and 128 GB RAM1.

Algorithm 1 was run on the reference sequences. The
threshold on the minimum number of features to track in each
frame was set to 100, as the system does not seem to improve
its performances with higher values. The hierarchical k-means
tree was built with k = 32, although the parameter does not
seem to significantly influence the error rates. If compared
with the naive approach of storing each extracted feature, the

1Video sequences and source code available at
http://avires.dimi.uniud.it/papers/il16/

proposed method reduced the feature database size to 7.7%,
4.7% and 2.6% of the original sizes in the three sequences.

Table Ia shows the localization results of the proposed
method with linear scan (eq. (1)). We report the number of
outliers and the mean error computed on inliers only. The
total processing time for each frame is also shown. For each
environment, we show the average values obtained on the test
sequences. In all the environments the algorithm performed
well, by limiting the number of outliers to a very small fraction
of the processed frames. In all the remaining frames, we have
a localization error ranging from 0.58 to 0.74 meters. Timings
are relatively high, from a minimum of 119 ms up to 224 ms
to process a single frame. Timings include the SURF feature
extraction step (approximately 43 ms in the first environment
and 65 ms in the other ones).

The running time can be improved by using approximate
search in the hierarchical k-means tree. In this case we fixed
the number of leaves to be visited to 32. The search running
time is thus constant, at the price of an approximation in the
results. However, the technique performed extremely well in
all the test sequences as it can be seen in Table Ib. Both
the number of outliers and the average localization errors
are comparable with the linear scan results. On the other
side, processing time is significantly reduced, especially if we
consider that it is mostly due to the SURF feature extraction.

Finally, we compared our method with the popular Bag-of-
visual-words (BoW) approach. It reduces the search space by
vector quantization, while we exploit temporal coherence of
video sequences through feature tracking. For the comparison
to be fair, we used the same model size in both approaches.
For example in Environment 1 we considered 63,071 features
over 8144 frames. Since each SURF descriptor consists of 64
real numbers, we use roughly 496 values per frame. The BoW
approach stores a histogram for each frame, which represents
the occurrence rates of all the visual words in each image.
We thus fixed the vocabulary size to 496. As it can be seen in
Table Ic, the BoW approach performs worse than the proposed
method in terms of outliers. Changing the vocabulary size to
100, 250, 1000, 2000 and 5000 did not lead to better results.
The source of errors mainly lies in many different physical
locations which are visually similar.

Regarding the computational time, the BoW approach per-
forms faster than our linear scan method, but slower than the
hierarchical k-means tree matching. However, the approximate
search can be used to speed up the BoW histogram matching
too, and the results are shown in Table Id. As it can be
seen, also in this case the approximation does not have
significant impact on the system accuracy. The running times
are comparable with the proposed approach.

V. CONCLUSIONS

We proposed a visual indoor localization system that can run
in real-time even in presence of a large amount of reference
data. Experimental results show that the system can achieve
a good localization accuracy, given that proper reference data
are available. The system outperformed the popular Bag-of-
Visual-Words algorithm in terms of detected outliers, while
keeping comparable running times.
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