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Abstract

This paper focuses on a specific strategy that developers of mobile applications may
use to stimulate demand: the release of updates. We develop a theoretical analysis that
shows that developers have incentives to release updates when experiencing a drop in
performance. The predictions of the model are then tested using an unbalanced panel
of top 1,000 apps in iTunes and Google Play for five European countries. We estimate
that while in iTunes the release of an update stimulates a 26% increase in download
growth, in Google Play updates play a less significant role. This difference is partly
due to systematic differences in apps and in developers operating in the two stores
(“selection effect”), and partly to a lack of quality control on apps and updates in
Google Play (“quality check effect”). These findings highlight the crucial importance
of an appropriate management of updates as well as the relevance of institutional char-
acteristics of the app stores.
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A lot of app developers will see a large spike in downloads right at
launch, and shortly after see these numbers slowly dwindle. The
question I get asked in this situation is, “How do I continue growth?”
The answer is [...] in order to continue growth you need to provide
constant value, which [...] also means updating your app! That said, I
always encourage my students to update their apps and keep iterating
to get feedback, which helps boost downloads. Letting your apps collect
dust is the same as letting them fail [...]

Chad Mureta

1 Introduction

On November 25th 2015, Wooga released version 6.3.0 of its well-known arcade game Di-
amond Dash. This version of the software followed the 6.2.0 update by one month and a
half which, itself, was released only two weeks after version 6.1.0. From November 2011 −
the time the app was launched in iTunes − to November 2015, Diamond Dash was updated
nearly 60 times, on average more than once per month. This is not an exception. The fre-
quent release of updates is a common feature among apps: in our sample, apps are updated
on average every 13 days in Google Play and every 58 days in iTunes.

With millions of apps available in various stores, developers face a tremendous challenge.
Not only do they struggle to catch the attention of prospective users (Bresnahan et al., 2014),
but they also fiercely compete for usage. Competition among developers is so harsh that
app markets are labelled as “hyper-competitive” (see, Datta and Sangaralingam, 2013). As
suggested by the quote from the distinguished entrepreneur and blogger Chad Mureta, the
frequent release of updates represents a natural strategy to maintain performance in such
competitive environment.

Developers update their apps not only to introduce new features or functionalities, thus
(potentially) increasing the quality of the software, but also to stimulate what is known as
“buzz” around the app. Typically, when an app is upgraded, its new features are likely
to be presented and discussed in dedicated blogs, in on-line magazines or among users of
social networks. Also, developers usually promote the new versions of their apps through
several channels or directly in the “What’s New” section of the app stores. Generating buzz
is essential to stay on top of the hyper-competitive app markets. Only those apps that are
able to get noticed and to attract users’ attention can survive and possibly thrive.

Besides the high degree of competition, another relevant feature characterising the app
market is the skewness of the distribution of downloads and usage. According to App-
brain.com, in Google Play more than 2 million apps out of 2.8 million have less than one
thousand downloads each while, by comparison, just fifty thousand apps have more than
one million downloads. Similarly, for app usage Google (2015) shows that, on average, only
one-out-of-four installed apps is actually used daily; a similar fraction of apps is installed but
never used. In a competitive environment where either you win big or you drastically fall
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down in ranking, it is even more compelling to adopt an effective management of updates to
attract customer attention.

In this article we study the effectiveness of releasing updates to improve app performance,
and for this purpose we employ data on apps distributed in the two most popular app stores:
iTunes and Google Play. Interestingly, the two stores follow different policies regarding the
release of apps and updates. The functionality section of the iTunes “App store review
guidelines” explicitly sets a strict screening of app quality. For example, apps that exhibit
bugs or that are in a beta/trial version are going to be rejected by the store. Similarly,
applications that are considered not very useful or that include undocumented or hidden
features inconsistent with the description of the app are rejected. By contrast, publication
in Google Play does not go through a similar quality check as developers with a “simple click
of the mouse” can publish apps and updates instantaneously.1 In this paper, we argue that
these institutional differences have important consequences on the characteristics of updates
and on how they affect the performance of apps.

We start our analysis by presenting a stylised theoretical framework that focuses on the
developers’ decisions about whether to update their mobile applications. We show that,
in an attempt to “revive” their app, developers are more likely to release an update when
they observe a worsening of the performance. Interestingly, our analysis highlights that the
incentives to update might be so strong that a developer could decide to also release an
update of low quality to counter a drop in performance; by stimulating the buzz surrounding
their app, developers might succeed in attracting users’ attention even with an update that
makes little improvement to the software code. This result suggests an interesting prediction
based on the institutional differences characterising the two stores. The strong incentives to
release new versions of the software induce developers in Google Play to release both high
and low quality updates, thus diluting the effects on downloads. This strategy cannot be
employed in iTunes provided that the strict control implemented by Apple limits the ability
of developers to release low quality updates. Hence, we expect that updates have a stronger
impact on downloads in iTunes than in Google Play.

Figure 1 provides preliminary support to our argument. The figure shows the kernel
density of the growth in downloads of the apps in our sample, distinguishing between apps
that have been updated during the period of observation and apps that have not been
updated. Interestingly, in Google Play the two density functions nearly perfectly overlap; this
suggests that updated and non-updated apps perform very similarly in terms of downloads.
On the contrary, in iTunes the density function of non-updated apps is more asymmetric
and concentrated on the negative values of download growth rate. According to this figure,
updates seem to have a different impact on app performance in the two stores.

1The absence of formal screening has led several commentators to criticise Google Play for the poor
quality of the apps available in the store. This issue is so critical that Google has stepped up its efforts
to improve app quality. For instance, in February 2013, it removed from its store 60,000 spammy and low
quality apps at once. Similarly, in October 2014 Google launched a new feature that allows users to filter
out all apps that are not rated at least 4 stars. The website Appbrain.com estimates that nearly 13% of
Google Play apps are of low quality.
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[Figure 1 about here.]

In order to investigate the impact of updates, we use an unbalanced panel of the top
1,000 apps distributed in iTunes and in Google Play, in five European countries. Our esti-
mates confirm that updates have a stronger impact on downloads in iTunes than in Google
Play. The analysis suggests that this result is partly related to a “selection effect” (sys-
tematic differences in the apps and developers operating in the two stores) and partly to
the “quality check effect”. In order to isolate the quality check effect, we also conduct a
series of estimations on the sample of multihomed apps − apps that developers distribute in
both stores. These estimations confirm that the quality check effect plays a key role, even
though differences across stores are reduced. We obtain these findings by means of classical
regression analyses, as well as through treatment effect estimations, where the treatment is
the release of an update.

Our findings indicate that an appropriate management of updates is of crucial importance
for developers committed to improving the performance of their apps. They also highlight
that the institutional characteristics of the stores play an important role and interact with
the strategies of developers in determining app success.

Consistent with the theoretical model, our estimates for iTunes apps also reveal that an
update is more likely to be released after a drop in downloads. The same does not occur in
Google Play where, instead, app past performance does not affect the decision to update.
We interpret this difference, again, on the basis of the policies governing the publication of
apps and updates for the two stores. The strict quality check implemented by Apple induces
developers to release updates of high quality and only when necessary, i.e. in order to counter
a decline in downloads. By contrast, in Google Play developers continuously update their
apps, thus minimising the role of past performance on the decision to release a new version
of the app.

The rest of the paper is organised as follows. In Section 2 we discuss the relevant liter-
ature. In Section 3, we present a stylised theoretical framework that we use to derive the
testable predictions. Our dataset is presented in Section 4 while the empirical analysis is
given in Section 5. More specifically, in Subsection 5.1 we analyse the impact of updates on
performance while in Subsection 5.2 we focus on the determinants of developers’ decision to
update. In Section 6 we provide two further extensions of our analysis and, finally, Section
7 concludes.

2 Literature review

The app market is certainly one of the most dynamic segments of the software industry.
Hundreds of thousands of registered developers regularly publish new apps and make them
available for download in different stores. According to the most recent estimates provided
by to Statista.com, the number of mobile applications published in Google Play has reached
3.5 million (December 2017), and it is more than 2.2 million in iTunes (April 2017). A
recent study published by the Progressive Policy Institute using information on online job
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posting estimated that, as of January 2016, the number of jobs related to the app market
in the European Union plus Switzerland and Norway was about 1.64 million. The figure
estimated for the United States was 1.66 million. Looking at the overall value generated by
this emerging market, AppAnnie.com estimates that in 2016 consumer spending on mobile
apps was valued at more than 50 billion while in-app advertising was nearly 80 billion.

In this paper, we investigate a specific aspect of the app market. We focus on the role
of asymmetric information in the relationship between software publishers and users. We
contribute to the literature on the effect of search costs in market transactions, which is
a topic that has attracted the attention of many researchers since the seminal article by
Diamond (1971). With the advent of digital marketplaces, several recent contributions have
focussed on eWOM (electronic-Word-Of-Mouth), such as customer reviews or users’ ratings,
both seen as important sources of information for consumers. Chevalier and Mayzlin (2006)
and Li and Hitt (2008) are among the first empirical papers in this field. The authors look
at the effects of consumer reviews on sales at Amazon.com and Barnesandnoble.com, and
find that positive reviews tend to stimulate subsequent sales. Liu (2006), Duan et al. (2008)
and Duan et al. (2009) reach different conclusions on the effectiveness of reviews and ratings.
For instance, Duan et al. (2009) do not find a statistically significant impact of user ratings
on the adoption rate of popular software. The role of ratings as an indicator of product
quality is also questioned by Lee et al. (2015), with their alternative explanations that prior
ratings affect subsequent user ratings through “herding” (users tend to follow previous rat-
ings) or “differentiation” (users tend to differentiate from previous ratings) behavior. The
presence of systematic trends in user ratings raises concerns about their ability to mitigate
the asymmetry of information between consumers and sellers.

Several recent articles study the role of bestseller charts in stimulating demand for mobile
applications (Carare, 2012; Ghose and Han, 2014; Ifrach and Johari, 2014; Garg and Telang,
2013). For example, Carare (2012) investigates the role of ranking charts in favouring the
matching between users and developers. The work is based on the top-100 paid apps available
in the US iTunes store. The author finds that the bestseller status of the top-ranked apps
is a very important determinant of consumer willingness to pay, and that the effect of rank
declines very steeply for the top 10 apps and becomes negligible for apps ranked in positions
higher than 50. Along similar lines, Ghose and Han (2014) find that cross-charting (namely,
an app appearing both in the top-free and top-paid charts) has a positive impact on app
demand. This suggests that being in the bestseller list may have a valuable effect in terms
of reducing the asymmetry of information thus stimulating downloads.

Our paper contributes to this literature by looking at a specific strategy that developers
can use to reduce the asymmetry of information affecting their customers. As mentioned
above, in order to survive in the hypercompetitive app market, developers need to increase
the visibility of their products. The frequent release of updates is a strategy developers can
use in order to attract the attention of users, keeping them engaged, thus stimulating app
downloads and usage. The underlying idea behind our analysis is that the release of an
update makes the app more visible thanks to the eWOM it generates and, via this channel,
it might increase demand.
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The paper that is closest to ours is Leyden (2018). The author estimates a discrete choice
logit model of demand for apps in iTunes. The model incorporates updates into consumers’
utility. Combining changes in version number and a textual analysis of updates descriptions,
the author classifies updates as either feature-adding or bug-fixing. Interestingly, updates
are found to spur demand with approximately the same effect for both types of update. In
our paper we extend this analysis in two directions: we evaluate the impact of updates also
in Google Play and we discuss the determinants of the developers’ decisions to update.

Two recent papers have tried to empirically estimate the main determinants of mobile
app demand and success. Ghose and Han (2014) use daily information on the top-400 free
apps and the top-400 paid apps in iTunes and Google Play to estimate the demand for
mobile applications. The authors find that demand is larger when the app has the in-
app purchase option, and lower when it has the in-app advertising option. In their analysis
Ghose and Han also control for user reviews and find that higher ratings stimulate downloads.
Interestingly, Lee and Raghu (2014) find that in both platforms demand is boosted by the
number of previous versions of the same app. The role of updates is also investigated in
Yin et al. (2014). Using data on iTunes apps during the period Sept 2010 - Aug 2011, the
authors study the determinants of the probability of being in the top-300 apps ranked by
gross sales. Differently from other findings in the literature, they show that the number of
updates increases the likelihood of entering the top-300 chart but only for non-game apps.
By contrast, they find that game apps are more likely to succeed when the developer does
not release updates.

The continuous release of updates is not specific to mobile applications but, with lower fre-
quency, is also commonly observed in “traditional” desktop computer software (see Greenbaum,
2005). Following Sankaranarayanan (2007), the release of a new version of software occurs
especially when the package has reached a high level of penetration so that little revenue
can be collected from new customers. Software firms are therefore induced to upgrade their
packages in the attempt to “re-sell” the software to their installed base of users. This expla-
nation for the release of frequent updates is unlikely to fit the case of mobile applications.
Most of the apps are available for free; on top of this, also for paid applications, a common
rule in app stores is that updates must be made available free of charge to anyone who has
previously downloaded the app. As a consequence, developers cannot exploit their installed
base of users by trying to re-sell upgrades of their software.2

3 The decision to update. A stylised dynamic model

In the hyper-competitive app environment performance is highly skewed, with a handful of
mobile applications obtaining the lion’s share of the market. Producing high quality software
is not enough to guarantee downloads and usage. Success depends heavily on the ability of
developers to stimulate consumer attention, and the release of new versions is a strategy

2The incentives to release an update to profit from the installed base of users can be partially restored
when the app comes with the in-app purchase option.
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they can use for this purpose.
Updates are likely to attract the interest of bloggers, members of social networks and

journalists of specialised magazines, stimulating what we call the “buzz” surrounding an
app. In this way developers can spur downloads. Similarly, updates may be useful for
reviving the interest in “dormant” apps, i.e. apps that consumers have already installed but
that they use very little. The availability of a new version and the buzz it generates might
stir up users’ curiosity and, in this way, induce them to start using the app.

In this section we present a stylised dynamic model aimed at describing the decision of a
developer to update an app. This model will drive our empirical analysis. The key features
of the model are: i) the performance of an app (either in terms of downloads or usage)
depends on its quality, its characteristics, the ranking it has reached in the store, as well
as the reputation of the developer, but also the buzz surrounding the app. We refer to the
combination of all these aspects as the “perceived quality” of the app; ii) the release of an
update affects app perceived quality and, in particular, it stimulates the buzz. The effect
of the increased buzz on perceived quality is ex-ante uncertain, as bloggers, journalists and
regular users might positively or negatively welcome the new version of the software. The
implication is that the augmented buzz may improve or worsen the app perceived quality,
making it more uncertain. Finally, iii) app performance is skewed and it can be either high
or low; formally we assume that if the perceived quality is above a certain threshold, returns
are high, while they are low in the opposite case.

3.1 The model

We model the developer’s decision to update the app in an infinite horizon setting. At each
period t, with t = 1, 2, ...,∞, the developer chooses whether to update the app at a cost
ϕ > 0. This decision is taken by looking at the perceived quality of the app during the
previous period, t − 1. As we detail below, we assume that at each t the developer can be
of two different types: type L if at t− 1 the perceived quality was lower than a threshold τ ,
and type H if, instead, the perceived quality was higher than τ .3 The release of an update
is assumed to impact app perceived quality in two ways: it increases its expected value
(e.g. when it introduces new functionalities or fixes several bugs) and it generates buzz
surrounding the app; this latter effect makes the realisation of the perceived quality more
uncertain.

More specifically, if at t the developer of type i =L,H does not release an update, the
perceived quality of the app is the realisation of a random variable Qi ∼ U (qi − η, qi + η),
with qL < qH . If, instead, the developer releases an update, both the expected value of
the perceived quality as well as its variance increase; formally, we assume that following
an update the perceived quality of the app is the realisation of a random variable Q̃i ∼
U (qi +∆− γη, qi +∆+ γη), where ∆ ≥ 0 is the increase in the app expected perceived

3It is worth noticing that, in our framework, perceived quality is a latent variable whose realisations
do not have any specific meaning and that can even take negative values. The only thing that matters is
whether the perceived quality is above or below the threshold τ .
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quality associated with an update and γ > 1 represents the increase in the variance due to
the larger buzz. App performance is highly skewed; hence, we assume that returns at time
t are R if the realisation of the perceived quality is larger than the threshold τ , while they
are R otherwise, with R > R ≥ 0.

Two observations are noteworthy. First of all, our set-up implies that the realisation of
the perceived quality at a given period − in particular whether it is above or below the
threshold τ − determines not only the current returns enjoyed by the developer, but also
the probability of obtaining R or R the following period; in our jargon, it determines the
type of the developer. Secondly, we assume that the effect of an update lasts for just one
period; this is equivalent to say that we are modeling a stationary environment, whereby the
perceived quality at any period is Qi if the developer does not update and Q̃i if an update is
released. Importantly, the stationarity of the environment we are working with implies that
a decision that is optimal at t for the developer of type i is optimal in any other period for
the same type of developer.

For simplicity, in the remainder of the section, we normalise qL and R to zero; hence qH
and R can be interpreted as the differentials in perceived quality and per-period returns.

In what follows, we determine under what conditions the developer chooses to release
an update with (exogenous) characteristics ∆ ≥ 0 and γ > 1 bearing a (exogenous) cost
ϕ > 0. As we will show, the developer has more incentives to release an update when, in the
previous period, the app perceived quality was below τ , i.e. when the developer is of type L.

3.1.1 The equilibrium

For the sake of brevity, in the discussion below we focus only on the case where the developer
of type L updates, and that of type H does not. The other relevant cases go along similar
lines and are discussed in the Appendix. Let us indicate with L the expected discounted
value of returns for the developer of type L when an update is released. Formally:

L =
γ η −∆+ τ

2γ η
(δ L) +

(
1− γ η −∆+ τ

2γ η

)(
R + δ H

)
− ϕ. (1)

With probability (γ η − ∆ + τ)/2γη perceived quality falls below the threshold τ .4 In
this case, returns at time t are zero, and at t + 1, the developer is still of type L earning
δL, where δ ∈ (0, 1) is the discount factor. With complementary probability the perceived
quality is above the threshold: returns at time t are R and, at t+1, the developer is of type
H, obtaining δH.

The expression of the expected discounted value of returns for the developer of type H
who does not update is similar to (1) and it is given by:

H =
η − qH + τ

2 η
(δ L) +

(
1− η − qH + τ

2 η

)(
R + δ H

)
, (2)

4All throughout the paper we assume that the probabilities take values in the (0, 1) interval. This
assumption imposes conditions on the parameters, as we discuss in the Appendix.
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where (η − qH + τ)/2η is the probability that the perceived quality of the app falls below τ
conditional on type H not releasing an update.

The solution of the system of expressions (1) and (2) with respect to L and H determines
the expected pay-offs of the low and high type, LU,N and HU,N respectively. Subscripts U,N
remind us that pay-offs are conditional on the L-type always updating and the H-type never
doing so:

LU,N =
(γ η +∆− τ)R + (δ η γ + δ γ qH − δ γ τ − 2 γ η)ϕ

(1− δ) (2 γ η − δ γ qH + δ γ τ +∆ δ − δ τ)
,

HU,N =
(γ η − δ γ qH + δ γ τ +∆ δ − δ τ + γ qH − γ τ)R− (δ η γ − δ γ qH + δ γ τ)ϕ

(1− δ) (2 γ η − δ γ qH + δ γ τ +∆ δ − δ τ)
.

The scenario (U,N) is an equilibrium provided that no type of developer has incentives
to unilaterally deviate. Formally, HU,N has to be larger than what type H would obtain by
choosing to update the app, conditional on type L updating too; LU,N must be greater than
what the developer of type L would get by not updating the app, given that type H does
not update. In the Appendix we calculate the pay-offs from unilateral deviations, as well as
the pay-offs in all other relevant cases. We can therefore prove the following:

Proposition 1. The developer’s optimal behavior depends on the cost of the update. When
ϕ ≤ ϕ, both types of developer choose to update; when ϕ ∈

(
ϕ, ϕ

]
, only type L updates, while

neither type L nor type H update for ϕ > ϕ.

Proposition 1 provides a very intuitive result: the lower the development cost the higher
the incentives to release updates. Interestingly for our scope, the developer of type L, that
is the one whose app perceived quality was low in the previous period, has greater incentive
to update. The developer of type H releases the update only when ϕ ≤ ϕ, while that of type

L updates for ϕ ≤ ϕ, with ϕ > ϕ. Therefore, according to this proposition, a developer is
more likely to release an update after experiencing a worsening in app perceived quality.

From Proposition 1 it also follows that:

Corollary 1. The developer: i) is more likely to release an update the larger the increase in
expected perceived quality, ∆. However, ii) updating the app can be profitable also when it
does not increase the expected perceived quality (∆ = 0).

The intuition for part i) of the corollary is rather obvious: the larger the increase in
the expected perceived quality (e.g. an update adding several new functionalities or fixing
several bugs), the stronger the incentives to update. This is true both for the developer
of type L and of type H, as they both benefit from an update with a larger ∆. A less
intuitive result is shown in part ii) of the corollary: the developer may find it optimal to
spend ϕ and release an update also in the case where it only increases the variance of the
perceived quality without augmenting its expected value (∆ = 0). The reason why this
latter result is true is the following. When qi, i = H,L, is low compared to the threshold
τ then, absent any update, it is very likely that the app will generate zero returns. In this
case, the developer has everything to gain from releasing an update that stimulates the buzz
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and increases uncertainty about the app perceived quality. The update may turn out to
generate either a very low or a very high perceived quality, depending on the realisation of
Q̃i. However, only high realisations matter provided that, without the update, app perceived
quality would have been, in any case, below τ with a large probability. As a consequence,
when qi is low compared to the threshold τ , even an update characterised by ∆ = 0 can
be profitable as it increases the probability of high returns. We read the decision to release
a low quality update as a sort of “bet for resurrection” strategy that the developer might
find profitable to pursue.5 Needless to say, it is the developer of type L who has stronger
incentives in betting for resurrection.

3.2 Empirical implications

The theoretical model suggests some interesting implications both for the conditions under
which a developer releases an update and for the likely impact of updates on app performance.
We start from the discussion of this latter implication.

In part ii) of Corollary 1, we have shown that developers may be tempted to also release
updates of low quality (formally, updates with ∆ equal or close to zero). Nonetheless, low
quality updates are more likely to be published in Google Play than in iTunes. This is
because, as observed in the introduction, in Google Play developers are free to publish apps
and updates at their will whereas in iTunes the quality check implemented by the store
prevents developers from publishing updates of very low quality − that is updates that do
not augment app functionalities significantly and/or come with an inconsistent description.
As a consequence, we expect the average quality of iTunes updates to be larger and, more
relevantly, generate a greater impact on app performance than in Google Play.

The second interesting implication derives directly from Proposition 1. All else equal, the
developer is more willing to release an update when experiencing a worsening in perceived
quality of the app (due to, for example, a drop in the ranking, in the number of downloads,
in the developer’s reputation, etc.). Therefore, our model suggests app perceived quality
and the decision to update to be negatively correlated. Accordingly, the update is used
strategically to revive interest in the app.

These implications will drive the empirical analysis that follows.

4 The data

We test our empirical implications using monthly data on the top 1,000 most downloaded
apps in iTunes and Google Play. Data are provided by the consulting analytics Priori and
refer to five European countries (Germany, France, Italy, Spain, and the UK); they cover the
period September 2013-February 2014. According to Priori (2014), the top 1,000 apps cover

5This strategy is reminiscent of the effect of limited liability in firms’ investment decisions. As shown in
Gollier et al. (1997), limited liability induces firms to invest in risky projects. The authors show the existence
of a lower bound on the value of the firm below which managers will “bet for resurrection”, investing in risky
projects.
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about 60% of the market in each country (e.g. in October 2013 our dataset covers 55.3% of
total downloads in iTunes in the UK and 62.09% in Italy).

For each app, Priori dataset provides the following information: name of the app, name
of the publisher, the category to which the app belongs (e.g. games, utilities, ...), monthly
and overall number of country downloads of the app, the worldwide average customer rating
of the app (on a scale from 1 to 5), the number of user ratings, the date when the app was
published in the store, the overall number of updates released, the day when the last update
was published, the price of the app − when suitable −, and whether the app has the in-app
purchase option. Finally, Priori also provides information about whether an app is “local”
in a given country, i.e. whether at least 40% of its all-time downloads occur in that country.
It is worth pointing out that except for downloads, no information is country-specific. In
particular, relevant for our scope, it is important to stress that when a developer updates an
app the new version becomes available worldwide.

With the exception of number of downloads, all the information gathered by Priori is
taken directly from the app stores. Downloads, instead, are computed combining publicly
available information (financial statements and other reputable or verified press sources) with
Priori proprietary metrics establishing a relationship between downloads and user ratings,
ranking (i.e. position in the app stores top-ranked charts) and number of reviews. Priori
cross-checked these estimates for a sample of apps, by using real download data provided
by partner developers.6 Only first-time installations are counted as downloads in our data,
that is users’ upgrades of already installed applications are not counted as downloads.

4.1 Descriptive statistics

One of the purposes of our research is to estimate the determinants of developers’ decisions to
update an app. In particular, we look at how past performance affects the decision to release
a new version of the software. Given that updates apply to all countries worldwide, it seems
sensible to assume that this decision is based on the overall performance of the app. For this
reason, we aggregate the data from the five European countries. Following this aggregation,
monthly downloads are the sum of downloads in the five countries in a given month.7 Data
aggregation together with the non-balanced nature of the data, imply that from the original
30,000 observations per store (1,000 apps, during 6 months, in 5 countries) our sample drops
to 15,981 observations for Google Play, and 14,759 for iTunes. This reduction in the number
of observations is due to the fact that, in several cases, the same app appears in the top
1,000 ranking in more than one country in a given month.

[Table 1 about here.]

6According to Priori’s statement, this internal validation study, based on 2,000 Android apps, returned a
mean absolute error of +/- 24.6 per cent in the level of downloads. Notice that, in our regression analysis,
we employ the growth rate of downloads rather than their absolute levels; in this, way we smooth out the
underlying issue of nonrandom measurement error.

7All the other variables are not country-specific and are not affected by aggregation.
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The top part of Table 1 reports the summary statistics for this sample of apps. The table
also shows the same statistics for the two sub-samples that we employ in our estimations.
Subsample (A) includes both multihomed and non-multihomed apps, while subsample (B)
is restricted to multihomed apps only.

The main characteristics of our original sample are:

- In Google Play nearly all the apps are free. Only 17 observations represent paid apps.
Free apps are also prevalent in iTunes, although paid apps are more frequent than in
Google Play (8.3% of the observations have a positive price).

- There is a significant difference between the two stores in terms of the number of apps
with in-app purchases: 29.7% of the Google Play sample have in-app purchases, while
in iTunes this occurs in 56.1% of apps.

- iTunes apps are on average older than apps in Google Play, thus suggesting a higher
turnover rate in the top 1,000 apps in the latter store. In iTunes the average app age
is about 19 months while in Google Play it is about 15 months.

- In both stores, apps are updated frequently. On average in Google Play apps are
updated about 33 times since their original publication, while this figure reduces to
about 10 in iTunes (see variable Number of updates (all time)). This difference may
be due to the aforementioned divergent regulations on the publication of apps and
updates implemented by the two stores. In Google Play the absence of a strict quality
check may induce developers to update their apps more frequently than in iTunes. A
possible additional explanation of these figures is related to the fact that Google Play
apps run on the Android mobile operating system, which can be installed on several
different devices, and that may require a closer management of updates by developers.

- Downloads are much higher in Google Play than in iTunes, with Google Play apps on
average being downloaded nearly five times more than iTunes apps (249,803 compared
with 58,156).

- In both stores, roughly 35% of apps are local. As explained, an app is named as local
in a given country when at least 40% of its all time downloads occur in that country.

- On average, in Google Play, a given developer distributes about 3 top-ranked apps (see
variable # apps same developer). The figure for iTunes is about 3.5.

- On average, an app enters the top 1,000 ranking in about 2 out of 5 countries in both
stores, 1,876 in Google Play and 2,030 in iTunes (see variable Number of countries).

The number of observations in subsample (A) drops significantly compared to the original
sample; this is due to the fact that the instrumental variables that we employ require apps to
be observed in at least four consecutive periods. As a significant number of apps enters the
top 1,000 ranking for only a few months, subsample (A) is made of a fraction of the original
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sample (2,956 observations for Google Play and 3,700 for iTunes). Compared with those in
the original sample, the apps in subsample (A) are: older, more downloaded, distributed in
a larger number of countries, and their developers distribute a larger number of applications.
These apps also register a larger number of updates, which could be due to their older age.
Overall, this sample is made of apps that are generally better performing than those in the
original sample and that are owned by the most successful developers.

In the bottom part of the table we focus on multihomed apps (subsample (B)). We define
an app to be multihomed if it appears in both stores in at least one period.8 Subsample
(B) is made of all the multihomed apps included in our instrumental variables estimations,
that is the apps that we observe for at least four consecutive periods. The differences in
descriptive statistics with the original sample go along similar lines of those between the
original sample and subsample (A), although with a slightly larger magnitude.

On top of the evidence provided in Table 1, our data confirms a couple of features
that have already been found in the literature (see, among others, Bresnahan et al., 2014).
Downloads exhibit a very skewed distribution, with top apps accounting for a large fraction
of total downloads; for instance, in our sample, the average number of monthly downloads
for the top 10 ranked apps in Google Play in Germany is eight times larger than the average
number of monthly downloads for the apps ranked between the 90th and the 100th position
(436,674 vs 58,690).

The second feature commonly found in the literature is the large turnover/churn, with
only few applications succeeding in staying persistently in the top charts. Our data confirm
this feature; in iTunes, 44% of the apps enter the top 1,000 ranking for one month only, while
the share of apps that we observe all through the six-month period is 18.49%. Similarly, for
the Android store, the share of apps that appears only in one month in the top 1,000 list is
about 50%.

5 The empirical analysis

Our empirical analysis has two main objectives. The first one is to estimate the impact of
the release of an update on the rate of growth of downloads, a measure of app performance.
The second one is to study the determinants of the decision to release an update. Precisely,
following the conjecture of our theoretical model, we test whether or not developers update
their apps in response to downturns in performance.

We run our estimations on the dataset that we obtained by aggregating information over
the five European countries for which we have data on. The reason for this aggregation is
that, as mentioned earlier, when a new version is released it becomes available worldwide.
Hence, it is natural to represent the decision to update as being influenced by the aggregate
performance of the app.

We start the empirical analysis with the evaluation of the impact of updates on the

8We identified multihomed apps by looking at their names in the two stores. In case of similar but not
perfectly coincident names, further checks were based on the name of the developers.
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rate of growth of downloads. The determinants of the decision to update are discussed in
Subsection 5.2.

5.1 The impact of updates on download growth

We estimate the impact of updates on download growth by employing two alternative tech-
niques: a standard linear panel data regression and an average treatment effect estimation.

5.1.1 The growth equation

We devote this section to estimate what we refer to as the “growth equation” by means of a
classic regression analysis. In the econometric equation presented below we use subscript j to
indicate the app, and subscript t to label the period. We employ an unbalanced longitudinal
dataset that has a large cross-section of apps, and a limited number of periods. Asymptotics
rely on the largest dimension, which is the app dimension.

We model the growth equation as a linear autoregressive distributed lag model of order
1, made of observable and unobservable app characteristics. Formally, for each store, we
estimate the following equation:

gjt = ϕ1gjt−1 + ϕ2ujt + ht + xjtβ + εjt,

where gjt is the aggregate rate of growth of downloads of app j in the five countries between
time t − 1 and time t,9 and ujt is a binary variable which takes value 1 in the case where
the publisher releases an update of app j in period t, and value zero otherwise. The row
vector xjt includes a set of controls: a constant, a dummy for the category the app belongs
to, one-period lags of: in-app purchase option, the number of apps distributed by the same
developer in top 1,000 ranking positions, and whether an app is free or not.10 With the term
ht we control for time dummies. The term εjt incorporates a pure error term and the impact
of app unobserved heterogeneity that stems from not controlling for several determinants of
app performance (e.g. the intrinsic quality of the app, its ranking, the ability and reputation
of the developer, but also the buzz surrounding the app) that, in the theoretical model, we
refer to as the perceived quality. Many of these determinants are likely to change with time,
a fact that we try to account for in our estimations.

Importantly, our theoretical model suggests that these unobserved variables, via their
effect on app perceived quality, influence the decision to update. Consequently, ujt, the

9We treat the number of downloads as zero if the app does not appear in the top 1,000 ranking in a given
country, in the relevant period. As a robustness check, we re-run our analysis by assuming downloads as
random numbers drawn from a uniform distribution over the interval 0 to the number of downloads obtained
by the app in the 1, 000th rank position in the country of interest. The results of these regressions do not
differ in any significant respect from those presented in the paper.

10Regressions do not include user rating in the set of controls as, due to its cumulative nature, it varies
only marginally from month to month and therefore it is ill-suited for our IV estimations based on first
differences. We could have controlled for user rating in the OLS estimations; however, the variable becomes
statistically not significant once we include fixed effects. For reasons of comparability with our instrumental
variables estimations we have finally decided not to include user rating in the OLS regressions.
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dummy variable for the release of an update, is likely to be correlated with the error term
εjt. In order to account for this correlation, we first estimate the growth equation including
developer fixed effects.11 This allows us to cope with the time-invariant component of the
unobserved heterogeneity. Finally, to control also for time-variant unobserved heterogeneity
we conduct an instrumental variable estimation based on variables in first differences.

Before moving on to the presentation of the results, let us discuss the instruments we
employ in the estimations. Notice that, on top of the potentially endogenous variable ujt, in
the IV estimation we also instrument the lagged dependent variable gjt−1, as it is standard
in dynamic panel data models.12

5.1.2 Instruments

In our analysis, we employ three types of instruments based on different rationales. Esti-
mations are in first differences to account for unobserved app heterogeneity, but for ease of
exposition, we present each type of instrument in “levels”.

I. The first type of instrument is based on Anderson and Hsiao (1981) and is commonly
used in dynamic linear panel models with a large number of cross-section units observed
for a limited number of periods (Arellano and Bond, 1991; Arellano and Bover, 1995;
Bond, 2002). It relies on the assumption of “sequential exogeneity”, which means
that in an autoregressive model of order one we can use a two-period lag value of the
dependent variable to instrument its lagged value. In our case, we instrument gjt−1

with gjt−2, because the latter is correlated with the former – as gjt−2 is the lagged
value of gjt−1 – but not with the future error term εjt. To avoid correlation with εjt,
we instrument the endogenous variable ujt with ujt−2, and not with ujt−1.

13

II. In a second type of instrument we exploit information coming from other apps produced
by the same developer. The relevance of these instruments rests on the assumption
that multi-app developers share common underlying resources that, via either sub-
stitutability or complementarity, determine correlated growth/update trajectories for
their app portfolios. We instrument ujt with the share of apps of the same developer
that are updated. This instrument would have missing values for single-app develop-
ers. In order to avoid such missing values we replace them with the average share of
apps that are updated in the whole sample; we also include in the set of instruments
an indicator variable for the single-app developer status. Like so, gjt−1 is instrumented

11In a series of unreported OLS regressions, we include app rather than developer fixed effects. Results
remain largely unchanged compared to those presented in the paper.

12See Bond (2002) on this point. In principle, also the set of covariates xjt might be endogenous. Since
they represent only controls in our estimates, rather than instrumenting them as our key variables, gjt−1,
ujt−1, we have decided to account for their potential endogeneity by using lagged values.

13Recall that our regressions are in first differences, hence the error term is εjt − εjt−1, and clearly εjt−1

is correlated with ujt−1.
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by the average growth rate of downloads of the other apps distributed by the same
developer. For single app developers, missing vales are replaced as for ujt.

14

III. The last type of instruments includes exclusion restrictions, i.e. variables that are
determinants of the decision to update, but are not expected to affect download growth
once the update decision, along with lagged growth and app dummies, is controlled
for. Specifically, the instruments we employ are the age of the version of the app, and
the number of times the app has been updated.

5.1.3 Results

Table 2 shows the results of the regressions of the growth equation. Columns (1) and (2)
for iTunes and (4) and (5) for Google Play display the OLS estimates, where in (2) and
(5) we control for developer dummy variables. The results of the IV estimations, based on
variables in first difference, are in columns (3) and (6).15 The main variable of interest in
the growth equation is Update, the dummy variable taking value 1 in the case the app is
updated. Overall, these regressions confirm the preliminary evidence shown in Figure 1: in
iTunes updates have a strong and significant impact on download growth, while in Google
Play their effect is weaker, if not absent, both in magnitude and statistical significance.
The coefficient of Update is smallest in the OLS estimations without developer dummies, it
increases when we include developer dummies, and it is largest in the GMM-IV estimations.
This trend is in line with our theoretical model which suggests that, not controlling for
unobserved heterogeneity, the variable ujt turns out to be correlated with εjt. Specifically,
in Section 3 we have shown that developers tend to release updates in response to a drop
in perceived quality, thus implying a negative correlation between this variable and the
decision to update. When estimating the effect of updates on growth without controlling for
app perceived quality, the coefficient of ujt captures both the (positive) effect of the update
on growth, as well as the (negative) effect induced by the drop in app perceived quality. This
second effect counterbalances the former one, thus reducing the coefficient of Update. This is
what occurs in the OLS estimations without fixed effects. By adding fixed effects we control

14Berry et al. (1995) and Hausman (1996) inspire this set of instruments, though there are fundamental
differences from the original ones. These instruments are commonly used to tackle price endogeneity in
discrete choice models of demand with differentiated goods. Secondly, prices are typically instrumented not
only using own product characteristics but also the characteristics of the products of the competitors. The
fact that our instruments are built only looking at the characteristics/performance of the apps produced
by each developer, and not at those produced by the rivals rests on the observation that in app markets,
competition among developers goes along lines different than those of oligopolistic producers on which classic
Berry et al. (1995) and Hausman (1996) instruments are based; as a matter of fact, developers compete for
users’ attention and, therefore, competition occurs not only among developers producing close substitute
products.

15For comparability, in Table 2 we present the OLS estimations based on the sample of apps used for the
GMM-IV regressions where the computation of instruments requires apps to be observed for at least four
consecutive periods (e.g. the instrument for lagged growth of downloads is the two-period lagged growth).
We have also conducted OLS estimations based on the larger original sample, and results are analogous to
those in the table.
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for the time-invariant component of the app unobserved perceived quality. With GMM-IV
estimations we also correct for the time-variant component of the unobserved heterogeneity.

The estimates in Table 2 confirm that the impact of an update on download growth is
stronger in iTunes than in Google Play. Using the estimated coefficients of column (6), the
autoregressive component of the model allows us to determine the dynamic impact of an
update in iTunes. The estimated coefficient of the lagged dependent variable is negative;
this suggests an oscillating dynamic behaviour of the impact of an update. We note that
the release of a new version of the software immediately increases the rate of growth of
downloads by 29.6%. This is then followed by a decrease of 3.9%, ensued by a further
increase estimated at 0.5% two months later. The effect of updates on download growth
then fades away, indicating that the overall increment is of about 26%.

The tests of hypotheses documented at the bottom of the table give evidence of the va-
lidity and strength of the instruments. We present the F-stats of the first-stage regressions,
which show that the coefficients of the instruments are all highly significant, meaning that
the instruments are strong. We complement the analysis on the strength and validity of the
instruments with the χ2 tests for underidentification – based on the Kleibergen-Paap statis-
tic – and overidentification – based on the Hansen J statistic. The statistics provided in the
table suggest that each equation is not underidentified (i.e. the null hypothesis of underiden-
tification is rejected), and that instruments are valid (the null hypothesis of overidentification
of instruments is not rejected).16

[Table 2 about here.]

In order to highlight the contribution of each type of instrument described in Section
5.1.2 and to convince the reader about the validity of our IV strategy, in the Appendix we
re-run the GMM-IV estimations omitting one type of instrument at a time (see Table 9).
Overall, these additional regressions pass the relevant tests for strength and validity of the
instruments; on top of this, the coefficient of Update is stable all through the different
regressions and this reassures us on the appropriateness of the empirical analysis.

The heterogeneous impact of the release of new versions of the software in the two stores
that we have just documented in Table 2 may have different explanations. On the one hand,
there may be a selection effect leading to systematic differences in apps and developers. For
example, one may think that, on average, developers in iTunes are more skilled than those
operating in Google Play and this would contribute to explaining why iTunes updates have
a stronger impact on downloads. On the other hand, developers may behave differently
in responding to institutional differences characterising the two stores. In line with our
theoretical framework, the lower significance of the variable Update in Google Play can be
interpreted as evidence that, absent any quality check, developers release both high and low
quality updates which, on average, have a weaker impact on downloads. We refer to this as
the store “quality check” effect.

In order to disentangle the selection from the quality check effect, we re-estimate the
growth equation restricting the analysis to the apps that are distributed in both stores.

16First stage regressions of the estimated equations are reported in Table 10 in the Appendix.
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For multihomed apps, developers and applications are the same in the two stores, and this
allows us neutralise the selection effect, and to isolate the role of institutional differences
characterising iTunes and Google Play.17

[Table 3 about here.]

The sample of multihomed apps is made of all the apps that we observe in both stores
in at least one period.18 Columns (1) and (5) of Table 3 show the OLS estimations for
iTunes and Google Play, respectively; these estimations include developer dummies. GMM-
IV estimations are presented in columns (3) and (7). Overall these regressions reveal that
when estimations are restricted to multihomed apps, updates positively affect the growth of
downloads in both stores. More specifically, for multihomed apps differences across stores
are largely reduced, with the coefficient of Update in iTunes being only slightly greater than
in Google Play. This evidence reveals that the selection effect contributes to explaining the
different impact of updates in the two stores.

Nevertheless, in order to convince the reader that the quality check effect does play a
role, we conduct additional estimations by exploiting an interesting feature of multihomed
apps, that is, the fact that, for these apps, we observe whether a given update distributed in
one store is also released in the other. In an attempt to identify the quality check effect, we
classify updates for multihomed apps into two categories depending on whether they take
place in one (Update own) or both (Update both) stores in the same period. The reasonable
assumption behind this exercise is that when developers simultaneously release a new version
of their software in both stores, the two upgrades are alike, i.e. of similar quality. As the
release of updates in iTunes goes through a strict screening, this is like to say that an update
in Google Play, which occurs also in iTunes, is quality checked. By contrast, an update of a
multihomed app which occurs in Google Play only, is not quality checked. Columns (2) and
(6) – OLS regressions with developer fixed effects – and (4) and (8) – GMM-IV regressions
– of Table 3 show the estimations for the two stores when updates are classified in this
way. Interestingly, and in line with our argument that the quality check plays a relevant
role, in Google Play the coefficient of Update both (quality checked updates) has a positive
and significant effect on downloads, whereas by contrast, Update own (not quality checked
updates) does not impact on app performance. The results for iTunes (columns (2) and
(4)) provide further evidence on the role of updates on app performance. Since in this store
all updates are quality checked, the distinction between Update own and Update both has

17The focus on multihomed apps allows us to neutralise the selection that takes place in the supply-side of
the market. Nonetheless, we believe that it also goes some way in neutralising differences in the demand-side,
as apps that are distributed in both stores should be of interest to similar types of users.

18Note that in the estimations the number of observations may differ across the two stores. As a matter
of fact, in order to be included in the estimates, an app not only needs to be multihomed but also to be
observed in a number of consecutive periods in the store. Multihomed apps may not appear in both stores
in the same period and this explains why the number of observations in columns (1) and (5) as well as in
(3) and (7) do not coincide. On the contrary, observations in columns (2) and (6) as well as in (4) and (8)
coincide as the definition of the variable Update own and Update both requires apps to be observed in both
stores in the same periods.
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no bearing on the quality of updates. Consistent with this observation, we find that both
Update own and Update both have a positive and significant impact on the rate of growth of
downloads in iTunes.19

5.1.4 Treatment effects estimation

In the previous section we employed standard regression techniques to estimate the growth
equation. Alternatively, the impact of updates on app downloads can be evaluated using
a propensity score method. This approach has become popular in the inference of causal
analysis, and has been applied to extremely diverse fields of study. Considering updated
apps as the treatment and those that are not updated as the control group, it is possible to
estimate the effect of the treatment – the release of an update – on download growth, our
outcome variable.

We use nearest-neighbor matching (NNM) as the matching estimator. According to this
method, an observation in the treatment group is matched to an observation in the control
group (or to more than one in the case of oversampling), based on some distance measure
of the probability of being treated, which is calculated with the propensity score procedure.
In our estimations, we employ the Mahalanobis distance, which is the default metric when
employing the Stata add-on package nnmatch.

Critical for the efficiency of NNM is the selection of the control group of observations,
which must be as similar as possible to the treated ones. To this end, we identify the
control group of apps using a set of observable characteristics that includes: i) all controls
we employed in the estimation of the growth equation (namely, lagged growth of downloads,
age of the app, whether the app is free, whether the app has an in-app purchase option,
number of other apps distributed by the same developer, period and category dummies),
and ii) a set of dummy variables to control for the number of countries the app is in, an
indicator variable for developers with more than five apps in the platform and the rating of
the app. In relation to this latter control, notice that despite not being well suited as a control
in the growth equation due to its negligible variability in time, app rating may represent a
valid characteristic for the identification of the control group of apps. Actually, it is quite
natural to believe that two apps with a similar rating are more likely to be comparable.20

Results of these estimations are reported in the top part of Table 4. In columns (1) and
(5) estimations are conducted with only one nearest-neighbor observation for matching. In
order to check for the robustness of our analysis, in columns (2)-(4) and (6)-(8) we allow for
oversampling (we use 25, 50 and 100 nearest neighbors for matching). Results largely confirm
our previous findings; when estimations are run on the whole sample of apps, updates do
not impact the rate of growth of downloads in Google Play, while they have a positive and

19Notice that while the coefficients in the OLS estimations are in line with previous regressions, the
estimated coefficient of Update own in the GMM-IV regression is of a much larger magnitude; unfortunately,
we do not have a clear explanation for this latter finding.

20Because we are matching on several continuous variables (lagged growth of downloads, age of the app,
the number of other apps distributed by the same developer, rating) we include a bias-correction term based
on these covariates.
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significant impact in iTunes. This occurs both without and with oversampling. Specifically,
in iTunes the average treatment effect varies between 0.146 and 0.166 meaning that, all else
equal, apps that are updated produce a growth in downloads which is about 15% higher
than that of apps that are not updated.

[Table 4 about here.]

We have then conducted NNM estimations restricting the sample to multihomed apps, in
an attempt to isolate the effect of institutional differences across the two stores. The middle
panel of Table 4 reports the results of these estimations. Similarly to what we have found with
the classic regression analysis, multihomed app updates positively affect download growth
in both stores, but this time the average treatment effect of Update in iTunes is much larger
than that in Google Play. NNM estimations suggest, therefore, that the release of a new
version of the software has greater impact in iTunes even when we restrict to multihomed
apps.

Again, in order to isolate the role of the quality check effect, for the sample of apps that
are present in both stores simultaneously we estimate the impact of updates by distinguishing
between updates that occur in both stores and updates released in one store only. For this
selected sample it is possible to study the effect of: (i) not updating the app, (ii) updating
the app in one store only (Update own), and (iii) updating the app in both stores (Update
both). In this case, the treatment variable is multivalued, and takes values 0, 1, and 2. For
this reason we employ the inverse probability weighted estimator to estimate the average
treatment effect of treatment 1 vs 0 and of treatment 2 vs 0, and then calculate the weights
using a multinomial logit model.21 Results are in line with our previous findings. With
respect to apps that are not updated, those that are updated in both stores experience a
significant increase in download growth. This occurs both in iTunes and in Google Play. By
contrast updates that occur in only one store generate a different impact. Consistent with
the fact that such updates are quality checked only in iTunes, we find that they stimulate
downloads only in this store (with almost the same effect as the Update both type), while
they have no impact in Google Play. We interpret these findings as a further confirmation
of the role played by the quality check in iTunes.

5.2 The decision to update

Let us now turn to the second objective of our empirical analysis: the determination of
the decision to release an update. Our theoretical model suggests that developers take this
decision by looking at the perceived quality of the app. As explained, perceived quality
depends on several factors such as: the intrinsic quality of the app, its ranking in the store,
the developer’s ability, and the buzz surrounding the app. Unfortunately, we do not observe

21Following the logic of propensity-score matching, this procedure includes only observations that share the
common support in all treatments. For this reason the number of apps on which estimations are calculated
do not coincide in the two stores.
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these factors but relying on the natural assumption that perceived quality affects downloads,
we use downloads growth as a proxy for app perceived quality.

Specifically, in what follows, we estimate the impact of past download growth on the
decision to update. This approach has limitations that we discuss below (see Section 5.2.1).
In the same section, we also deal with another potential shortcoming of our analysis, which
relates to the fact that we have information only on five European countries. Clearly, this
may represent a problem if developers take their decisions looking at the worldwide number
of downloads of their apps or at the downloads in a set of countries different from ours.

We represent the “update equation” as a linear autoregressive distributed lag model of
order 1;22 formally, for each store, we estimate the following equation:

ujt = γ1gjt−1 + γ2ujt−1 + ht +wjtβ + ϵjt.

As before, ujt is the update variable in period t, gjt−1 is the lagged aggregate rate of
growth of downloads of app j, and the row vector wjt includes a set of controls: a constant,
a dummy for the category the app belongs to, the age of the app, the age of the last version
of the app, a variable capturing the presence of an in-app purchase option, the number of
apps distributed by the same developer in top 1,000 ranking positions, and whether an app
is free or not, where the last three variables are lagged one period to avoid endogeneity due
to simultaneity. With the term ht we control for the time fixed effect.

The term ϵjt incorporates a pure error term and the impact of the unobserved hetero-
geneity, i.e. factors that we do not observe but that are likely to influence the decision to
update, such as the ability or the propensity of the developer to release updates. In the esti-
mates we account for the unobserved heterogeneity by controlling for developer fixed effects
and using GMM-IV estimations. In the latter set of regressions, we instrument the variable
gjt−1 to control for possible correlation between past growth and potential omitted variables
affecting the decision to update; we also instrument the lagged update variable, ujt−1, as it
is standard in dynamic panel data models. The types of instruments used in the estimation
follow the same logic as for the growth equation. Specifically, we instrument ujt−1 with its
lagged value, ujt−2 (Type I instruments). We then exploit the information coming from the
other apps of the same developer to instrument gjt−1 with the average growth rate of down-
loads of the other apps distributed by the same developer;23 as with the growth equation,
we include among the instruments an indicator variable for the single-app developer status
(Type II instruments). Finally, we use as instrument the lagged number of countries the app
is present in the top 1000 apps (Type III instruments).

Table 5 shows the estimates of the update equation. As with the growth equation, we
present OLS and GMM-IV regressions. OLS estimates, with and without developer fixed

22We have chosen to estimate the decision to update as a linear probability model, facing the limitations of
the methodology, but aware that the issues related to linear probability models are less severe than imposing
a parametric assumption that may not hold, and lead to a misspecified model.

23Again, for single app developers missing values are replaced by the average growth rate of downloads of
multi-app developers.
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effects,24 are in columns (1)-(2), for iTunes, and (5)-(6), for Google Play. The GMM-IV
estimations, based on variables in first differences, are provided in columns (3) and (7), for
the whole sample, and in columns (4) and (8), for the subsample of multihomed apps.

[Table 5 about here.]

The main variable of interest is the lagged growth of downloads. In all the estimations
for both stores, the coefficient of gjt−1 is negative. However, it is never significant for Google
Play, while it is significant in the OLS estimations without developer fixed effects and in
both of the GMM-IV estimations for iTunes. These findings seem to confirm that developers
behave differently in the two stores. In line with our theoretical predictions, we find some
evidence that developers of iTunes apps use updates in reaction to a decline in perceived
quality, here approximated by download growth. The same does not occur in Google Play,
where, no matter the chosen specification, past performance does not have an impact on
the decision to release a new version of an app. We interpret this evidence based on the
different institutional features characterising iTunes and Google Play. As mentioned, the
quality control implemented by Apple limits the freedom of developers to publish updates.
As a consequence, developers who have written an update, and are ready to publish it in the
store, may decide to delay publication until it is really necessary, i.e. when the perceived
quality worsens and triggers a response to counter the drop in downloads. By contrast, in
Google Play, developers can publish apps any time they want without any quality screening.
At the very moment an update is ready, they can make it available for download with a
simple click of the mouse; in the case they later need to counter a drop in perceived quality,
they can further distribute another update of any quality. In this environment, updates
are continuously published, thus diluting the impact of perceived quality on the decision to
release a new version of the app.

5.2.1 On the robustness of the update equation

As mentioned above, our estimations of the update equation have a couple of important
limitations. The first one concerns our approximation of the previous period app perceived
quality based on the lagged growth rate of downloads. In reality, perceived quality is in-
fluenced also by factors other than downloads such as the ranking of the app in the store,
the reputation of the developer, the amount of revenues the developer is able to collect, etc.
Another dimension which developers may look at is certainly app usage. Which dimension
is the most relevant one for the decision to update depends on the developer and on the type
and the characteristics of the app.

One may wonder whether our results are still valid if developers perceive the quality of
their apps along other dimensions than downloads. An attempt to verify the robustness
of our findings is in columns (1)-(6) of Table 6, where we re-estimate the update equation

24For comparability, in Table 5 we present the OLS estimations based on the sample of apps used for the
GMM-IV regressions. We have also conducted OLS estimations based on the larger original sample, and
results are analogous to those in the table.
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considering sub-samples of apps that differ in terms of the likely importance of usage. We run
separate regressions distinguishing between apps with/without the in-app purchase option
and between free/paid apps (this latter distinction is for iTunes apps only as in Google Play
nearly all applications are free). Apps with in-app purchases, as well as free apps, are likely
to be those for which developers care more about usage. For example, for the apps with
the in-app purchase option a more intense use increases the chances of generating revenues
by activating in-app purchases. Similarly, free apps are most likely to generate revenues
through advertising and, therefore, usage. Columns (1) and (3) of Table 6 confirm that
in iTunes past performance negatively and significantly impacts the developer’s decision to
update both apps in the sample with and without the in-app purchase option. As expected,
the magnitude of the coefficient is lower when the option is present as for these apps usage
is likely to be more relevant. The fact that for these apps the lagged growth of downloads
is still significant reassures us on the validity of our previous estimates. The same holds
true when distinguishing between free/paid apps. For free apps, the coefficient of the lagged
download growth is smaller, but still negative and significant. As far as Google Play apps are
concerned, independently from the presence of the in-app purchase option, past download
growth does not impact on the decision to release an update. This result is in line with our
previous findings shown in Table 5.

The second potential limitation of the estimation of the update equation relates to the
fact that we have information only on five European countries. Hence, in estimating the
impact of lagged download growth on the decisions to update we implicitly assume that
those five are the reference countries for developers’ decision. However, since updates be-
come available worldwide as soon as they are released, it might be the case that developers
base their strategies by looking at the performance in a wider set of countries or at the
performance in countries other than those we consider (e.g. US-based developers might take
their decisions by looking at the performance in the US). In both situations, by considering
France, Germany, Italy, Spain and the UK we would not control for the right set of countries
used in determining whether to make an update.

In order to tackle this concern, we employ useful information provided in the Priori
dataset, namely whether or not an app is local. An app is defined as local in a given
country when at least 40% of its all-time downloads occurs in that country. For local apps
the performance in the countries composing our sample more likely represents the reference
developers use in order to take their decisions. Therefore, we re-estimate the update equation
by restricting the sample to local apps only.

The results of these estimations are given in columns (7) and (8) of Table 6 and largely
confirm that the lagged growth rate of downloads of the app does not affect the decision to
release an update in Google Play, while it does in iTunes.

[Table 6 about here.]
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6 Extensions

We devote this section to presenting a couple of extensions of our analysis. In Section 6.1,
we re-estimate the growth and the update equations for iTunes distinguishing between two
different types of updates. In Section 6.2, we focus on the growth equation and we conduct
a country-level analysis.

6.1 Focusing on iTunes: Major vs minor updates

Our analysis has revealed that in iTunes updates play a prominent role: they have stronger
impact on downloads than in Google Play and they are more likely to be released in reaction
to a decline in performance. For iTunes apps it is therefore reasonable to look at the role
of updates at a greater details. We have done so by collecting additional information about
the type of iTunes updates; we obtained this information from the App Annie website.
Conventionally, software developers keep track of the different versions of their products by
means of a three-digit sequence, where the first digit identifies major updates and the second
and third digits minor updates of decreasing significance. The distinction between the two
types of updates rests on the extent to which they augment the functionalities of the app.
Typically, developers consider a minor update as an upgraded version of an app aimed at
fixing bugs (e.g. crashing) or at including minor additional features. Major updates are,
instead, aimed at distributing software with significant jumps in functionalities. In principle,
major updates are, on average, of higher quality – because of the more substantial changes
in app functionalities that they introduce. However, it does not follow that minor updates
are of low quality.25 Provided that iTunes checks quality before publication, all updates,
both major and minor, are above a minimum level of quality.

In Table 7 we present the results of the GMM-IV estimations for iTunes when we distin-
guish between two types of updates. Column (1) shows the growth equation, while columns
(2) and (3) present the two update equations – one for minor and one for major updates. Es-
timates of the growth equation confirm to a large extent the findings of Section 5.1: updates
(both major and minor) positively impact the growth rate of downloads. Even though the
impact is mildly significant (the p-value is 0.068), the coefficient of the variable Major update
is larger than that of Minor update, which suggests that major updates stimulate downloads
more than minor ones. This result partially confirms that obtained in Leyden (2018). The
author also finds evidence of a positive impact of both types of updates on the demand for
applications, though no evidence is found in support of the fact that major updates impact
downloads more than minor ones.

The main result obtained in Section 5.2 for the update equation is confirmed for minor
but not for major updates: only for bug fixing and minor changes in the software code, does
lagged download growth of the app impact the decision to update (columns (2) and (3)).

25Software bugs may create serious inconveniences to users and, in these cases, minor updates fixing the
problem greatly improve the functioning of the app, and therefore can be considered of extremely high
quality.
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This evidence is consistent with what we find in part i) of Corollary 1: developers have
stronger incentives to release updates that have a greater impact on the expected perceived
quality of the app (updates with a larger ∆). Therefore, major updates – whose impact is
expected to be larger on average – are released as soon as they are ready and no matter the
perceived quality of the app, while minor updates are published strategically to counter a
drop in perceived quality.

[Table 7 about here.]

6.2 The growth equation: country-level estimations

All our estimations have been conducted on the sample obtained by aggregating the amount
of downloads apps received in the five countries we have information on. Aggregation is quite
natural in our analysis. One of our aims is in fact to estimate the determinants of the release
of a new version of the software which is a decision that developers take by looking at the
overall performance of their apps. Nonetheless, the impact of updates on downloads can be
also estimated at country level. In this section we check the robustness of our main findings
by conducting a country-level estimation of the growth equation. This exercise is also useful
as it enlarges the number of observations. With pooled data, an app that is present in, let
us say, two countries in the same period is treated as two different observations, and this
allows country-level estimations to be run on a significantly larger sample.

[Table 8 about here.]

In Table 8 we replicate Table 2 using country-level data: columns (1)-(2) and (4)-(5)
show the OLS estimations for the two stores without and with developer dummies. Columns
(3) and (6) report the results of the GMM-IV estimations. The results shown in the table
reinforce our main finding: updates never – in no specification – affect downloads growth in
Google Play while they always do so in iTunes. Table 8 reassures us on the validity of our
empirical strategy. When estimations are conducted at country level, the magnitude of the
Update coefficient is smallest in the OLS estimations without fixed effects, it increases when
we control for developer fixed effects, and it is largest in the GMM-IV estimations, thus
confirming the direction of the adjustment when we better control for the app unobserved
heterogeneity.

7 Conclusions

App developers release new versions of their mobile applications with an extremely high
frequency. In this paper, we have focused on app updates and we have presented a stylised
model describing the determinants of the decision to release a new version of the software.
Our analysis suggests that updates might be published strategically in order to revive apps
and stimulate the buzz surrounding them. An interesting insight of our theoretical framework
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is that when an app experiences a very poor performance, a developer might be tempted to
release even a low-quality update, in the hope of reversing the trend.

Our empirical analysis − based both on classic regression techniques as well as on treat-
ment effect estimations − has shown that updates have a stronger impact on downloads
in iTunes than in Google Play. We argue that this result is partly related to a “selection
effect” (systematic differences in the apps and developers operating in the two stores) and
partly to a “quality check effect”. This latter effect is consistent with the prediction of our
theoretical analysis, which suggests that the lack of a quality control in Google Play can
cause too frequent updating: developers release both high and low-quality updates, which,
on average, have a smaller impact on downloads.

Overall, these findings indicate that an appropriate management of updates is of crucial
importance for developers committed to improve the performance of their apps. They also
highlight the relevance of the publication policies adopted by platforms. A well-designed
quality check screens low-quality updates out and reduces the asymmetry of information
between developers and users. An appropriate control of the quality of mobile applications
by the store induces developers to release “better updates” helping them in stimulating
positive buzz and improve app performance.

In addition, and still in line with the predictions of our theoretical analysis, we have found
that in iTunes developers are more likely to release an update when their apps experience a
decline in downloads. On the contrary, in Google Play, the past performance of the app has
no impact on the developer’s decision to release a new version of the software. Again, we
argue that the difference between the two stores is related to the different way of regulating
the release of updates.

Our paper suggests a couple of promising lines for future research. We have focused
on the management of app updates, but nonetheless, the release of updates can be seen as
part of a developer’s overall app strategy which also includes the launch of new apps or the
withdrawn of existing ones. Unfortunately, we cannot analyse such a strategy in full as, in
our data, we do not observe the whole portfolio of apps of each developer. Possibly more
importantly, we cannot tell how the different apps distributed by the same developer interact
with each other (e.g., one app can be the evolution of a previous app, or it can represent a
tool to promote another application of the same developer, etc.). Should more precise and
complete data be available, one may investigate in greater details the determinants and the
characteristics of developers’ strategies.

Our paper has highlighted how the absence of a quality control system in Google Play may
have perverse effects on app performance. Taking a broader perspective, these arguments
point to the potential role of platform policies in generating value in app markets. On the one
side, the absence of a strict quality screening in Google Play reduces the average performance
of the apps − and, in fact, Google has recently taken actions against low-quality apps in
order to limit their distribution. On the other hand, though, a looser quality control reduces
the cost of development and the barriers to entry in the store − and the exponential growth
in the number of applications available in Google Play stands as a clear signal of this. Hence,
a worthwhile area of future investigation refers to the analysis of the optimal policy in terms
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of value generation towards the distribution of applications.
Finally, we should mention that in our data the only indicator of app performance is

related to first-time downloads. It could be interesting to extend our analysis in order to
check whether updates impact also other dimensions of app performance such as, for instance,
the degree of app usage.
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Appendices

A Mathematical appendix

Proof of Proposition 1. On top of the scenario (U,N) discussed in the text, in order to char-
acterise the equilibrium we need to determine the pay-offs of the two types of developers in
the other scenarios, namely when they both update (U,U), when none of them update (N,N)
and when only the developer of type H updates, (N,U). Following a procedure similar to the
one used for the definition of LU,N and HU,N , the discounted values of returns of developer
of type L and H are, respectively:

L =
γ η −∆+ τ

2γ η
(δ L) +

(
1− γ η −∆+ τ

2γ η

)(
R + δ H

)
− ϕ,

H =
γ η −∆− qH + τ

2γ η
(δ L) +

(
1− γ η −∆− qH + τ

2γ η

)(
R + δ H

)
− ϕ.

Solving the system of these two expressions it is easy to derive the pay-offs for the two
types of developers when they always update, LU,U and HU,U :

LU,U =
(∆ + γ η − τ)R + (δ qH − 2 γ η)ϕ

(1− δ) (2 γ η − δ qH )
,

HU,U =
(∆− δ qH + γ η + qH − τ)R + (δ qH − 2 γ η)ϕ

(1− δ) (2 γ η − δ qH )
.

Similarly, the discounted values of returns of developer of type L and H when they never
update are, respectively:

L =
η + τ

2η
(δ L) +

(
1− η + τ

2η

)(
R + δ H

)
,

H =
η + τ − qH

2η
(δ L) +

(
1− η + τ − qH

2η

)(
R + δ H

)
,

and the pay-offs LN,N and HN,N are, therefore:

LN,N =
(τ − η)R

(δ − 1) (δ qH − 2 η)
, and HN,N =

(δ qH − η − qH + τ)R

(1− δ) (δ qH − 2 η)
.

Finally, the discounted values of returns of the two developers when only the type H
updates are:

L =
η + τ

2η
(δ L) +

(
1− η + τ

2η

)(
R + δ H

)
,
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H =
γ η −∆− qH + τ

2γ η
(δ L) +

(
1− γ η −∆− qH + τ

2γ η

)(
R + δ H

)
− ϕ,

and the solution to the system is:

LN,U =
(τ − η) γ

(
R− δ ϕ

)
(1− δ) (δ τ (γ − 1) + δ (∆ + qH )− 2 γ η)

HN,U =
(γ (δ τ − η) + (δ − 1) (∆ + qH − τ))R− γ ϕ (δ (η + τ)− 2 η)

(1− δ) (δ τ (γ − 1) + δ (∆ + qH )− 2 γ η)
.

Note that in order for the probabilities characterising the various scenarios to take values
in the (0, 1) interval, the following conditions on the parameters need to hold: |τ | < η,
|τ − qH | < η, |τ −∆| < γη and |τ −∆− qH | < γη.

Let us start with the equilibrium where type L always updates while type H does never; in
order for (U,N) to be the an equilibrium it must be that LU,N−LN,N > 0 andHU,N−HU,U > 0.
Using the above expressions:

LU,N − LN,N =
(δ (τ − qH )− η − (1− δ)η)

(
γ (δ qH − 2 η)ϕ+ (∆ + (γ − 1)τ)R

)
(1− δ) (γ (η + δ (τ − qH )) + δ (∆− τ) + γ η) (δ qH − 2 η)

.

This difference is positive for ϕ < ϕ, where ϕ = (γ−1)τ+∆
(2 η−δ qH )γ

R; note, in fact, that δ (τ −
qH ) − η − (1 − δ)η < 0 as |τ − qH | < η, that γ (η + δ (τ − qH )) + δ (∆− τ) + η γ > 0 as
|τ − qH | < η and |τ −∆| < ηγ and that δ qH − 2 η < 0 as qH < 2η.26

As the difference HU,N−HU,U is concerned, using the expressions of HU,N and HU,U found
above, it follows that:

HU,N −HU,U =
(γ η (1− δ) + ∆ δ + γ η − δ τ)

(
(δ qH − 2 γ η)ϕ+ (∆ + (γ − 1)(τ − qH))R

)
(1− δ) (γ (η + δ (τ − qH )) + δ (∆− τ) + γ η) (δ qH − 2 γ η)

.

This difference is positive for ϕ > ϕ, where ϕ = (γ−1)(τ−qH)+∆
2 η γ−δ qH

R; note, in fact, that

γ η (1− δ) +∆ δ + γ η − δ τ > 0 as |τ | < η, that γ (η + δ (τ − qH )) + δ (∆− τ) + γ η > 0 as
|τ − qH | < η and |τ −∆| < ηγ and that δ qH − 2γη < 0 as qH < 2η.

Therefore for ϕ ∈ (ϕ, ϕ], the developer of type L updates while that of type H does not.

Simple algebra reveals that the equilibrium (U,N) exists, formally that ϕ− ϕ > 0; note that

ϕ > 0 and ϕ that can be either positive or negative.
Let us now consider the equilibrium (U,U) where both types of developers update. This

equilibrium exists if LU,U − LN,U > 0 and HU,U − HU,N > 0. As seen above, the latter
condition holds for ϕ < ϕ; using the expressions of LU,U and LN,U , the former condition

holds for ϕ < (γ−1) τ+∆
2 γ η−δ qH

R. Note that ϕ < (γ−1) τ+∆
2 γ η−δ qH

R, therefore (U,U) is an equilibrium for
ϕ < ϕ.

The last equilibrium we are left with is (N,N), where no one updates. This equilibrium
exists if LN,N − LU,N > 0 and HN,N − HN,U >. According to what already seen when

26The conditions τ > qH − η and τ < η imply that qH < 2η.
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discussing the equilibrium (U,N), the latter condition olds for ϕ > ϕ; using the expressions

of HN,N and HN,U presented above, the former condition holds for ϕ > (γ−1) (τ−qH )+∆
(2 η−δ qH )γ

R. Note

that ϕ > (γ−1) (τ−qH )+∆
(2 η−δ qH )γ

R, therefore (U,U) is an equilibrium for ϕ > ϕ.

In order to conclude the proof, we need to show that (N,U) - the L type does not update,
while the H type does - cannot be an equilibrium. Looking at the previous analyses, the
developer of type L prefers not to update if ϕ > (γ−1) τ+∆

2 γ η−δ qH
R, while that of type H prefers to

update if ϕ < (γ−1) (τ−qH )+∆
(2 η−δ qH )γ

R. Therefore the equilibrium exists if and only if (γ−1) (τ−qH )+∆
(2 η−δ qH )γ

−
(γ−1) τ+∆
2 γ η−δ qH

> 0 or, after some algebraic manipulation, if δτ (γ − 1)+∆δ+ δqH − δτ − 2γη > 0.
It is possible to prove by contradiction that this latter condition never holds; the lhs of the
inequality is increasing in δ, and for δ = 1, it reduces to

qH > 2γη −∆− τ (γ − 1) . (3)

We know that the model exists for |τ −∆− qH | < γη and for |τ | < η; the first condition
implies that qH < τ − ∆ − γη. One can check that when this latter condition holds and
provided that τ < η, condition (3) is never satisfied. If it does not hold for δ = 1, it never
holds for any δ ∈ (0, 1), and the scenario (N,U) can never be an equilibrium.

Proof of Corollary 1. Part i) can be easily proved by verifying that dϕ/d∆ > 0 and dϕ/d∆ > 0;
therefore for both types of the developer the incentives to update increase with ∆. To prove
part ii) of the corollary we need to show that ϕ and ϕ are greater than zero for ∆ = 0.
Given the parameter restrictions discussed in Proposition 1, it is possible to check that this
is always the case for ϕ, while the sign of ϕ is ambiguous. This implies that when ∆ = 0 the
set of parameters such that it is optimal to update is always non empty for the developer of
type L, while it may be empty or not for type H.
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B Instrumental variable estimations

B.1 The contribution of each set of instruments

In order to highlight the contribution of each set of instruments in the identification of the
growth equation, it is useful to compare the IV regressions shown in the paper with those
obtained when omitting one set of instruments at a time. For the sake of brevity, in this
appendix we focus on the regressions obtained employing the original dataset, but things do
not change when estimations are conducted using the sample of multihomed apps.

Comparing the results shown in Table 2, with the results obtained when omitting one
set of instruments at a time reported in Table 9, it follows that:

- Type I instruments are useful in order to improve the identification of lagged growth
of downloads. When omitting these instruments, the F-stat for lagged growth and the
Under-identification χ2-stat drop substantially.

- Type II instruments appear to be (mildly) useful in order to ensure the exogeneity of
the instruments. Omitting them we fail to reject the Over-identification test for the
case of Google Play (see column (4)). These instruments do not appear to play a major
role in the other regressions.

- Type III instruments: comparing the estimates of the paper with those shown in
columns (3) and (6), it follows that the these instruments are useful in order to improve
the identification of the variable Update. When omitting them, the F-stat for Update
and the Under-identification χ2-stat drop substantially.

It deserves also to be noticed that the main coefficient of interest in these estimates (the
coefficient of Update) is fairly stable all through the regressions obtained when omitting Type
I and Type II instruments. The only noticeable change occurs when we omit the last set of
instruments; nonetheless, provided that these instruments are useful for the identification of
the variable Update itself, this should not be too worrying.

We are aware of the fact that the test for over-identifying restrictions rests on the crucial
(and untestable) assumption of having enough exogenous instruments. However, as observed
by Murray (2006), in case the instrumental variables are grounded in different rationales,
a failure to reject the over-identifying restrictions provides more comfort about the exo-
geneity of the instruments. As we argue in the paper, our set of instrumental variables
is based on different rationales and in Murray’s spirit this should alleviate concerns about
their exogeneity. On similar lines, also the fact that the coefficient of the variable of interest
(Update) remains stable in all the regressions in the table provides further evidence about
the appropriateness of our IV strategy.

[Table 9 about here.]
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B.2 First stage regressions

[Table 10 about here.]
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Figure 1: Downloads growth density function
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Table 1: Summary statistics
iTunes Google Play

N mean std. dev. N mean std. dev.

Free 14,759 0.917 0.276 15,981 0.999 0.033
Price (if free=0) 1,229 2.759 2.907 17 2.447 1.148
In-app 14,759 0.561 0.496 15,981 0.297 0.457
Local 14,759 0.349 0.477 15,981 0.374 0.484
Age (in months) 14,759 19.350 15.997 15,981 15.038 13.993
Number of updates (all time) 14,759 10.082 9.891 15,981 33.434 78.495
Update (sampling period)* 8,534 0.453 0.498 7,990 0.542 0.498
# apps same developer 14,759 3.585 5.163 15,981 2.983 4.583
Number countries 14,759 2.030 1.491 15,981 1.877 1.395
Monthly downloads 14,759 58,142 166,451 15,981 249,840 1,244,288
Download growth** 8,657 -0.160 0.646 8,224 -0.026 0.763

Subsample (A)
Free 3,700 0.958 0.202 2,956 0.999 0.032
Price (if free=0) 157 3.160 2.603 3 3.873 0.203
In-app 3,700 0.609 0.488 2,956 0.349 0.477
Local 3,700 0.335 0.472 2,956 0.365 0.481
Age (in months) 3,700 23.848 15.529 2,956 20.664 13.849
Number of updates (all time) 3,700 13.403 10.837 2,956 54.908 91.956
Update (sampling period)* 3,700 0.411 0.492 2,956 0.507 0.500
# apps same developer 3,700 4.140 5.896 2,956 3.982 6.072
Number countries 3,700 2.379 1.632 2,956 2.398 1.667
Monthly downloads 3,700 69,533 157,134 2,956 476,337 2,189,596
Download growth** 3,700 -0.170 0.527 2,956 -0.070 0.688

Subsample (B)
Free 1,466 0.977 0.151 1,120 1.000 0
Price (if free=0) 34 2.325 1.885 0 - -
In-app 1,466 0.622 0.485 1,120 0.472 0.499
Local 1,466 0.335 0.472 1,120 0.405 0.491
Age (in months) 1,466 25.960 16.883 1,120 22.758 14.559
Number of updates (all time) 1,466 15.700 11.643 1,120 65.546 100.517
Update (sampling period)* 1,466 0.503 0.500 1,120 0.609 0.488
# apps same developer 1,466 4.611 6.895 1,120 4.693 6.675
Number countries 1,466 2.760 1.757 1,120 2.556 1.753
Monthly downloads 1,466 103,761 213,553 1,120 556,097 1,345,918
Download growth** 1,466 -0.168 0.517 1,120 -0.026 0.689

*Updates and download growth are in first differences and hence have less observations. **Growth
rates are expressed as log changes.
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Table 2: Download growth estimates by store (growth equation)

iTunes GP
———————————— ————————————

OLS GMM OLS GMM
(1) (2) (3) (4) (5) (6)

——————— ———– ——————— ———–
Update 0.188a 0.245a 0.296a 0.061c 0.103c 0.130

(0.017) (0.028) (0.045) (0.025) (0.046) (0.080)

Lag growth -0.278a -0.379a -0.131a -0.194a -0.323a -0.165a

of downloads (0.023) (0.028) (0.022) (0.021) (0.031) (0.026)

Age -0.000 0.000 † 0.008a 0.009 †

(0.001) (0.001) † (0.001) (0.005) †

Lag in-app 0.009 0.045 0.235 -0.006 -0.092 0.243
(0.020) (0.074) (0.318) (0.029) (0.115) (0.218)

Lag free -0.088c -0.122 -0.095 0.104b -0.070 ‡

(0.045) (0.083) (0.468) (0.033) (0.045) ‡

Lag # apps 0.000 -0.039 -0.052a 0.001 -0.037c -0.026c

same developer (0.002) (0.021) (0.015) (0.002) (0.018) (0.012)

Tests of hypotheses

F-stat lagged growth 603.11a 428.89a

F-stat update 106.40a 49.59a

Underidentif. χ2-stat 298.00a 182.69a

Overidentif. J-test 4.88 9.76
Dev FE NO YES YES⋆ NO YES YES⋆

N 3,700 3,700 3,700 2,956 2,956 2,956
R2 0.129 0.158 0.181 0.195 0.448 0.281

Significance level: ap < 0.001, bp < 0.01, cp < 0.05. Clustered (by developer) stan-
dard error in parenthesis. Time and category dummies are included. ⋆Variables in
first difference. †Cancels out in first differences. ‡No observations, as almost all top
1,000 apps are free. Instruments: Type I: L2.(growth, update), Type II: D2.(own-
update, L1.own-growth, dummy for single-app developer), Type III: D1.L1.(age up-
date, number of updates); the term “own” stands for average value of the variable
for the other apps distributed by the same developer.
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Table 3: Download growth estimates by store for multihomed apps (growth equation)

iTunes GP
———————————————— ————————————————

OLS GMM OLS GMM
(1) (2) (3) (4) (5) (6) (7) (8)

———————– ———————– ———————– ———————–
Update 0.214a 0.287a 0.150b 0.266b

(0.033) (0.059) (0.043) (0.097)

Update both 0.313a 0.317c 0.240a 0.329b

(0.052) (0.130) (0.062) (0.104)

Update own 0.172c 0.881c 0.123 0.044
(0.079) (0.382) (0.072) (0.145)

Lag growth -0.291a -0.379a -0.124b -0.195a -0.309a -0.286a -0.177a -0.180a

of downloads (0.038) (0.049) (0.037) (0.052) (0.037) (0.051) (0.038) (0.043)

Tests of hypotheses

F-stat lagged growth 214.20a 63.82a 155.09a 67.25a

F-stat update 62.86a 14.87a

F-stat update both 15.90a 18.12a

F-stat update own 2.57b 9.02a

Underidentif. χ2-stat 161.08a 33.37b 88.15a 69.70a

Overidentif. J-test 2.52 5.30 0.68 6.34
Dev FE NO YES YES

⋆
YES

⋆
NO YES YES

⋆
YES

⋆

N 2,143 1,074† 1,466 676† 1,714 1,074† 1,120 676†

R2 0.304 0.354 0.173 0.165 0.351 0.388 0.284 0.304

Significance level: ap < 0.001, bp < 0.01, cp < 0.05. Clustered (by developer) standard error in paren-
thesis. Time and category dummies are included. ⋆Variables in first difference. †Sample of apps observed
in both stores in the same period. Instruments (columns 3 and 7): Type I: L2.(growth, update), Type
II: D2.(own-update, L1.own-growth, dummy for single-app developer), Type III: D1.L1.(age update,
number of updates). Instruments (columns 4 and 8): Type I: L2.(growth, update own, update both),
Type II: D2.(own-update own, own-update both, L1.own-growth, dummy for single-app developer),
Type III: D1.L1.(age update, age update both, number of updates, number of updates both). In the
instruments, the term “own” stands for average value of the variable for the other apps distributed by
the same developer. Controls: L1.(download growth, in-app, dummy if free, number other apps by the
developer), and dummies for time and category.
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Table 4: Download growth treatment-effect estimates by store

iTunes GP
————————————————— ——————————————————

# of nearest neighbours used for matching
1 25 50 100 1 25 50 100
(1) (2) (3) (4) (5) (6) (7) (8)

————————————————— ——————————————————
Whole sample

Update 0.166a 0.146a 0.152a 0.158a 0.033 0.015 0.009 0.012
(0.025) (0.031) (0.031) (0.030) (0.027) (0.027) (0.027) (0.027)

N 5,695 5,695 5,695 5,695 4,856 4,856 4,856 4,856

Sample of multihomed apps
Update 0.215a 0.296a 0.363a 0.316a 0.102c 0.169b 0.174b 0.155b

(0.028) (0.034) (0.041) (0.040) (0.060) (0.063) (0.053) (0.045)
N 2,143 2,143 2,143 2,143 1,714 1,714 1,714 1,714

Sample of multihomed apps: multinomial logit inverse-probab. weighting model
Update both 0.238a 0.175a

(0.042) (0.046)
Update own 0.203c 0.086

0.081 0.057
N 693 846

Dependent variable: download growth. Treatment: update dummy. Controls: L1.(download
growth, in-app, dummy if free, number other apps by the developer), age of the
app, dummies for 5 categories, dummies for developer (developers with less that 6
apps –10 apps for the multinomial estimation– are treated as a single fringe developer).
Significance level: ap < 0.001, bp < 0.01, cp < 0.05. Abadie-Imbens robust standard error in paren-
thesis.
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Table 5: Update estimates by store (update equation)

iTunes GP
————————————————— —————————————————

OLS GMM OLS GMM
(1) (2) (3) (4) (5) (6) (7) (8)

(mh) (mh)
———————— ———————– ———————— ———————–

Lag update 0.183a -0.151a 0.026 0.072 0.285a -0.092c 0.248a 0.350a

(0.022) (0.027) (0.030) (0.053) (0.023) (0.036) (0.038) (0.070)

Lag growth -0.038c -0.009 -0.084a -0.092c -0.013 -0.011 -0.017 -0.012
of downloads (0.015) (0.017) (0.024) (0.044) (0.014) (0.018) (0.023) (0.041)

Age 0.001 -0.001 † † 0.002c -0.001 † †

(0.001) (0.002) † † (0.001) (0.002) † †

Lag agever -0.021a -0.010 0.148a 0.204a -0.022a -0.021a 0.247a 0.296a

(0.002) (0.005) (0.014) (0.025) (0.003) (0.005) (0.017) (0.040)

Lag in-app 0.020 0.133 -0.550b -0.405 0.136a 0.167c -0.174 -0.117
(0.021) (0.089) (0.130) (0.239) (0.024) (0.076) (0.099) (0.124)

Lag free 0.044 0.039 0.334c ‡ -0.329a 0.004 ‡ ‡

(0.040) (0.077) (0.131) ‡ (0.027) (0.017) ‡ ‡

Lag # apps -0.004a -0.019 -0.009 -0.021 -0.002 0.010 -0.006 -0.012
same developer (0.001) (0.014) (0.010) (0.017) (0.002) (0.014) (0.011) (0.016)

Tests of hypotheses

F-stat lagged growth 152.82a 40.16a 105.79a 53.10a

F-stat update 425.15a 187.65a 475.13a 202.19a

Underidentif. χ2-stat 111.41a 38.28a 82.70a 37.88a

Overidentif. J-test 3.53 2.50 3.12 0.85
Dev FE NO YES YES⋆ YES⋆ NO YES YES⋆ YES⋆

N 3700 3700 3700 1466 2956 2956 2956 1120
R2 0.092 0.450 0.135 0.135 0.197 0.565 0.053 -0.010

Significance level: ap < 0.001, bp < 0.01, cp < 0.05. Clustered (by developer) standard error in parenthe-
sis.Time and category dummies are included. ⋆Variables in first differences. †Cancels out in first differ-
ences. ‡No observations, as almost all top 1,000 apps are free. Instruments: Type I: L2.(update), Type II:
D2.(L1.own-growth, dummy for single-app developer), Type III: D1.L1.(number of countries app is avail-
able in top 1,000 position); the term “own” stands for average value of the variable for the other apps
distributed by the same developer.
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Table 6: Robustness check for update estimates by store (update equation)

In-app purchases Free apps Local
Yes No (iTunes only) apps

———————– ———————– ——————– ————————
iTunes GP iTunes GP Yes No iTunes GP
(1) (2) (3) (4) (5) (6) (7) (8)

Lag growth -0.062c -0.015 -0.129b -0.021 -0.076b -0.112b -0.358b -0.054
of downloads (0.028) (0.027) (0.045) (0.036) (0.026) (0.042) (0.106) (0.143)

Lag update -0.022 0.298a 0.100c 0.227a 0.037 -0.137 0.154c 0.268b

(0.037) (0.081) (0.050) (0.044) (0.032) (0.113) (0.062) (0.077)

Tests of hypotheses

F-stat lagged growth 127.21a 67.06a 88.01a 77.07a 179.35a 31.35a 26.70a 10.84a

F-stat update 343.88a 212.43a 270.01a 414.44a 541.80a 28.29a 265.81a 265.78a

Under identif. χ2-stat 78.60a 43.87a 40.24a 52.24a 106.46a 16.31a 7.10c 12.22b

Over identif. J-test 0.16 0.15 1.57 0.04 0.38 0.37 0.37 0.23
N 2,255 1,032 1,445 1,924 3,543 157 1,239 1,078
R2 0.195 0.011 0.054 0.056 0.131 0.165 -0.062 0.029

Significance level: ap < 0.001, bp < 0.01, cp < 0.05. Clustered (by developer) standard error in
parenthesis. Control variables: L1.(in-app, dummy if free, # apps same developer, age version); time
and category dummies are included. All regressions are in first difference. Instruments: Type I:
L2.(update), Type II: D2.(L1.own-growth, dummy for single-app developer), Type III: D1.L1.(number
of countries app is available in top 1,000 position); the term “own” stands for average value of the
variable for the other apps distributed by the same developer.
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Table 7: Download growth and major and minor update estimates (iTunes)

Growth Major update Minor update
(1) (2) (3)

Major update† 0.338 0.049c -0.373a

(0.185) (0.022) (0.075)

Minor update† 0.275a -0.004 0.106b

(0.047) (0.010) (0.032)

Lag growth -0.129a -0.010 -0.081b

of downloads (0.022) (0.007) (0.025)

Tests of hypotheses

F-stat lagged growth 466.04a 103.81a 103.81a

F-stat major update 16.58a 452.92a 452.92a

F-stat minor update 81.68a 293.30a 293.30a

Under identif. χ2-stat 263.63a 109.86a 109.86a

Over identif. J-test 7.43 2.45 4.31
N 3,568 3,568 3,568
R2 0.185 0.261 0.103

Significance level: ap < 0.001, bp < 0.01, cp < 0.05. Clus-
tered (by developer) standard error in parenthesis. †Lagged in
columns (2) and (3). All regressions are in first difference. Con-
trol variables: L1.(in-app, dummy if free, # apps same devel-
oper, age version –age minor and major version in columns 2
and 3–), and time dummies. Instruments (column 1): Type
I: L2.(download growth, update minor, update major), Type
II: D2.(L1.own-growth, own-update minor, own-update major),
Type III: D1.L1.(age minor version, age major version, number
of updates). Instruments (columns 2 and 3): Type I: L2.(update
minor, update major), Type II: D2.L1.(own-growth, own-update
minor, own-update major), Type III: D1.L1.(number of countries
app is available in top 1,000 position); the term “own” stands
for average value of the variable for the other apps distributed
by the same developer.
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Table 8: Country-level download growth estimates

iTunes GP
———————————— ————————————

OLS GMM OLS GMM
(1) (2) (3) (4) (5) (6)

——————— ———– ——————— ———–
Update 0.135a 0.215a 0.218a 0.024 0.042 0.071

(0.016) (0.028) (0.040) (0.021) (0.040) (0.063)

Lag growth of -0.266a -0.413a -0.130a -0.286a -0.379a -0.217a

downloads (0.031) (0.028) (0.020) (0.015) (0.017) (0.020)

Tests of hypotheses

F-stat lagged growth 784.99a 865.54a

F-stat update 84.89a 53.62a

Under identif. χ2-stat 182.32a 129.42a

Over identif. J-test 5.05 9.09
N 7,602 7,602 7,602 5,842 5,842 5,842
R2 0.143 0.432 0.192 0.290 0.476 0.361
Dev FE NO YES YES⋆ NO YES YES⋆

Significance level: ap < 0.001, bp < 0.01, cp < 0.05. Clustered (by developer) standard
error in parenthesis. ⋆Variables in first difference. Control variables: age, L1.(in-app,
dummy if free, # apps same developer), time and category dummies. Instruments:
Type I: L2.(growth, update), Type II: D2.(own-update, L1.own-growth, dummy for
single-app developer), Type III: D1.L1.(age update, number of updates); the term
“own” stands for average value of the variable for the other apps distributed by the
same developer.
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Table 9: Download growth estimates excluding a type of instruments

iTunes GP
————————————————– ————————————————–
no Type I no Type II no Type III no Type I no Type II no Type III

(1) (2) (3) (4) (5) (6)

Lag growth -0.421b -0.133a -0.130a -0.155 -0.163a -0.165a

of downloads (0.143) (0.022) (0.023) (0.204) (0.026) (0.027)

Update 0.242a 0.304a 0.240 0.206 0.152 -0.176
(0.047) (0.046) (0.136) (0.118) (0.082) (0.198)

Lag in-app 0.064 0.241 0.211 0.254 0.236 0.161
(0.289) (0.318) (0.327) (0.242) (0.219) (0.228)

Lag free 0.007 -0.091 -0.065 † † †

(0.555) (0.469) (0.472) † † †

Lag # apps -0.032 -0.051b -0.055b -0.028 -0.025 -0.022
same developer (0.017) (0.015) (0.016) (0.016) (0.013) (0.013)

F-Stat lagged growth 4.5a 1030.4a 807.1a 5.8a 726.7a 581.6a

F-stat Update 137.9a 168.5a 12.2a 53.0a 73.5a 10.1a

Under identif. χ2-stat 8.2 296.6a 32.1a 15.8b 178.5a 37.5a

Over identif. J-test 1.6 3.1 4.2 5.4 7.6c 4.8
N 3716 3700 3700 2965 2956 2968
R2 0.333 0.181 0.181 0.271 0.280 0.258

Significance level: ap < 0.001, bp < 0.01, cp < 0.05. Clustered (by developer) standard error in paren-
thesis. Regressions are in first differences. †No observations, as almost all top 1,000 apps are free.
Control variables: L1.(download growth, in-app, dummy if free, number apps by the developer), time
and category dummies. Instruments: Type I: L2.(growth, update), Type II: D2.(own-update, L1.own-
growth, dummy for single-app developer), Type III: D1.L1.(age update, number of updates); the term
“own” stands for average value of the variable for the other apps distributed by the same developer.
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Table 10: First-stage estimates

Growth equation Update equation
iTunes GP iTunes GP

————————— ————————— ——————————– —————————–
L1.growth update L1.growth update L1.growth L1.update L1.growth L1.update

(1) (2) (3) (4) (5) (6) (7) (8)

Type I instruments:

L2.growth -1.207a -0.008 -1.259a -0.003
(0.019) (0.015) (0.024) (0.015)

L2.update -0.034 0.124a -0.032 -0.133a -0.201a -0.731a -0.184a -0.524a

(0.021) (0.021) (0.023) (0.020) (0.027) (0.018) (0.030) (0.012)

Type II instruments:

D2.(own-update) 0.006 0.124a 0.038 0.127a

(0.017) (0.022) (0.025) (0.027)

D2.L1.(own-growth) 0.024 0.002 0.016 0.003 0.102b 0.012 0.099b 0.001
(0.015) (0.010) (0.015) (0.011) (0.034) (0.010) (0.029) (0.008)

D2.(dummy single -0.005 -0.039 -0.015 -0.043 0.051 0.033c -0.070 0.034c

app developer) (0.020) (0.021) (0.028) (0.024) (0.035) (0.016) (0.042) (0.016)

Type III instruments:

D1.L1(age update) -0.022c 0.078a -0.044a 0.179a -0.000 -0.157a -0.036b -0.252a

(0.009) (0.008) (0.011) (0.012) (0.014) (0.016) (0.014) (0.015)

D1.L1.(number 0.089a -0.291a -0.001 0.000
updates) (0.016) (0.020) (0.001) (0.001)

D1.L1.(number 0.580a 0.034b 0.557a 0.001
countries) (0.024) (0.010) (0.031) (0.008)

Controls:
D1.L1.(in-app) -0.214 -0.250 -0.082 -0.127 -0.061 0.432a -0.218 0.170a

(0.159) (0.156) (0.141) (0.097) (0.226) (0.050) (0.207) (0.040)

D1.L1.(free) 0.093 0.176 1.371 0.015
(0.292) (0.137) (0.826) (0.113)

D1.L1.(# apps 0.042a -0.002 0.012 -0.002 0.032 0.004 0.026c -0.005
same developer) (0.011) (0.007) (0.016) (0.010) (0.017) (0.009) (0.013) (0.008)

N 3700 3700 2956 2956 3700 3700 2956 2956
R2 0.698 0.297 0.664 0.188 0.260 0.558 0.321 0.632

Significance level: ap < 0.001, bp < 0.01, cp < 0.05. Clustered (by developer) standard error in parenthesis. Regressions include
time and category dummies. The term “own” stands for average value of the variable for the other apps distributed by the
same developer.
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