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Estimation of Dirichlet Distribution Parameters
with Modified Score Functions

Funzioni di Punteggio Modificate per la Stima dei
Parametri della Distribuzione Dirichlet

Vincenzo Gioia and Euloge Clovis Kenne Pagui

Abstract The Dirichlet distribution, also known as multivariate beta, is the most
used to analyse frequencies or proportions data. Maximum likelihood is widespread
for estimation of Dirichlet’s parameters. However, for small sample sizes, the max-
imum likelihood estimator may shows a significant bias. In this paper, Dirchlet’s
parameters estimation is obtained through modified score functions aiming at mean
and median bias reduction of the maximum likelihood estimator, respectively. A
simulation study and an application compare the adjusted score approaches with
maximum likelihood.

Abstract Abstract in Italian La distribuzione di Dirichlet, anche nota come beta
multivariata, ¢ la distribuzione piu usata per analizzare dati nella forma di pro-
porzioni o frequenze relative. I parametri della distribuzione di Dirichlet sono co-
munemente stimati in massima verosimiglianza. Tuttavia, per piccoli campioni,
lo stimatore di massima verosimiglianza pud esibire una notevole distorsione. In
questo articolo, la stima dei parametri della Dirichlet ¢ ottenuta mediante funzioni
di punteggio modificate in grado di ridurre, rispettivamente, la distorsione in me-
dia e in mediana dello stimatore di massima verosimiglianza. Gli approcci basati
sulle funzioni di punteggio modificate vengono confrontati con quello della mas-
sima verosimiglianza attraverso uno studio di simulazione e una applicazione.

Key words: compositional data, likelihood, bias reduction.

Vincenzo Gioia
University of  Udine, Department of Economics and  Statistics, e-mail:
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1 Introduction

Proportions data, also referred as compositional data, are very pervasive in many dis-
ciplines, ranging from natural sciences to economics. Dirichlet distribution, that is
a multivariate generalization of the beta distribution and belongs to the exponential
family, is the simplest choice to handle with proportions. Inference on parameters
is easily carried out with maximum likelihood (ML). However, for small sample
size and large number of parameters, the ML estimator exhibits a relevant bias, as
is apparent in simulation results of Narayanan (1992).

In Bayesian framework, the Dirichlet distribution is commonly used as a prior,
leading to a conjugate prior of the categorical and multinomial distributions. More-
over, as exponential family the Dirichlet distribution has a conjugate prior. Unfor-
tunately, direct Bayesian inference is not analytically tractable. To our knowledge,
there are no works in that direction, apart the following conference (Ma, 2012) and
working (Andreoli, 2018) papers.

This paper aims to improve the ML estimates by using modified score functions.
Following Firth (1993), the mean bias reduced (mean BR) estimator is obtained as
solution of a suitable modified score equation. An alternative modified score func-
tion, proposed by Kenne Pagui et al. (2017), aims at median bias reduction (median
BR). Mean BR estimator has smaller mean bias than ML and equivariant under
linear transformations of the parameters, whereas median BR estimator is compo-
nentwise third-order median unbiased in the continuous case and equivariant un-
der componentwise monotone reperameterizations. We study the proposed adjusted
score methods through a simulation study and an application, comparing their per-
formance with respect to ML.

2 Dirichlet Distribution

Lety; = (yi,-- -, y,-m)T, i=1,...,n, be independent realizations of the m-dimensional
Dirichlet random vectors parameterized by a = (ai,..., Ocm)T, with o > 0, k =
1,...,m. The probability density function of ¥; ~ Dir(a) is

B ”{1_ o;) m o
fy,»(yi;a)—fnzj—}l(aj_))ny,f :
J

j=1 j=1
withyy >0,k=1,...,m, and ZT:Q’U = 1. The log-likelihood is
m m
la)= n{logf(s) - Zlogf(aj) + Z Ocjzj},

j=1 j=1

where z; = (¥, logyij)/n. The log-likelihood is globally concave and the ML es-
timate needs to be obtained numerically. Parameter estimation is usually carried out
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through a Fisher scoring-type algorithm with a sensible choice of the starting value.
Wicker et al. (2008)’s proposal seems to be a stable initialisation.

3 Modified Score Functions

For a general parametric model with m-dimensional parameter o and log-likelihood
¢(a), based on a sample of size n, let U, = U,(at) = d¢( ) /d , be the r-th compo-
nent of the score function U(a), r = 1,...,m. Let j(a) = —d*¢(a) /dada’ be the
observed information and i(a) = Eq{j(ct)} the expected information.

In order to reduce the bias of the ML estimator, Firth (1993) proposes a suitable
modified score aiming at mean BR, of the form

Ula)=U(a)+A"(a),

where the vector A*(a) has components A} = %tr{i((x)’l[P, + 0,]}, with P, =
Eq{U(a)U(a)"U,} and Q, = Eq{—j(a)U,}, r = 1,...,m. The resulting estima-
tor, &, has a mean bias of order O(n2), less than O(n~!) of the ML estimator.
Since o is the canonical parameter of the full exponential family, &* corresponds to
the mode of the posterior distribution obtained using Jeffreys invariant prior (Firth,
1993).

A competitor estimator, &, with accurate median centering property is obtained
as solution of the estimating equation based on the modified score (Kenne Pagui et
al., 2020)

U(o) =U(a)+A(a),

with A(a) =A*(a) —i(t) F (). The vector F () has components F, = [i(at) '] F;,
where F; has elements F,; = tr{h,[(1/3)P; + (1/2)Q/]}, r,t = 1,...,m, with the ma-
trix 4, obtained as h, = {[i(c)~!],[i(e) ']} }/i" (&), r = 1,...,m. Above, we de-
noted by [i(ct) "], the r-th column of i(a)~' and by i () the (r,r) element of
i(o)~L.

In the continuous case, each component of &, &,, r = 1,...,m, is median unbi-
ased with error of order O(n=3/2), i.e. Pro (&, < o) = I+ O(n=3/?), compared with
O(n~'/?) of ML estimator. Both &* and @& have the same asymptotic distribution as
that of the ML estimator, that is & ~ A, (o, i) 7).

4 Simulation Study

Through a simulation study, with small sample size settings, we compared the per-
formance of the ML, mean and median BR estimators, &, &* and &, respectively.
The estimators are compared in terms of empirical probability of underestimation
(PU), estimated relative mean bias (RB), and empirical coverage of the 95% Wald-
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Table 1 Estimation of parameter oc = (01, 0%, &3 ). Simulation results for ML (&), mean BR (&*)
and median BR (&) estimators.

| n=10 | n =20 | n =40

o |PU RB WALD |PU RB WALD |PU RB WALD

0 40.89 20.89 96.34 43.19 9.23 95.69 44.40 4.39 95.63
oy 60.87 -0.17 90.25 56.75 0.01 92.75 54.30 0.05 94.09
o 50.26 10.39 94.31 49.54 4.69 94.75 49.11 2.27 95.04

0 40.77 21.08 96.12 43.21 9.39 95.79 45.16 4.48 95.48

S1
05 60.32 -0.03 89.67 57.29 0.16 92.92 55.09 0.13 94.11
0 50.04 10.56 94.07 49.84 4.84 94.76 49.96 2.35 95.03
03 39.93 21.13 96.54 43.40 9.24 95.82 4532 4.50 95.19
a5 60.55 0.02 90.35 57.71 0.02 92.97 54.87 0.15 93.84
o 49.50 10.61 94.36 50.19 4.70 94.67 49.97 2.37 94.64
0 3822 33.48 96.57 40.27 14.68 96.11 44.13 6.70 95.84
oy 6391 -0.61 86.97 58.66 0.40 91.61 56.60 0.15 93.70
o 49.94 16.12 93.30 49.16 7.51 94.53 50.24 3.43 95.11
0p 4040 23.22 96.23 42.71 10.15 95.88 44.03 4.92 95.23

S2
05 6135 -0.08 89.16 57.35 0.13 92.94 54.38 0.22 93.90
0 5020 11.27 93.73 50.24 5.04 95.08 49.34 2.54 94.717
03 42.84 15.08 96.01 45.15 6.84 95.46 46.63 3.23 95.51
a5 59.75 -0.04 91.10 56.75 0.02 93.12 54.26 -0.02 94.26
o 49.77 8.26 94.54 50.02 3.80 94.81 49.99 1.79 95.23
& 33.06 26.14 96.03 38.48 11.28 95.47 42.29 5.37 95.40
oy 59.07 0.25 89.37 56.72 -0.14 92.14 54.32 -0.03 93.67
oy 49.75 9.06 92.88 50.12 3.73 93.95 50.01 1.80 94.61
0p 33.88 25.49 95.79 38.46 11.05 95.62 42.69 5.26 95.29

S3

05 5898 0.16 89.29 56.15 -0.13 92.31 54.24 -0.02 93.52
0 5028 8.91 93.13 49.98 3.73 94.15 50.21 1.80 94.49

03 35.06 23.68 96.05 39.47 10.19 95.58 42.96 4.79 95.32
o5 58.61 0.26 89.79 56.26 -0.13 92.39 54.55 -0.10 93.90
03 49.31 8.81 93.52 49.96 3.66 94.38 50.02 1.70 94.50

0 3322 25.32 96.32 38.12 10.92 95.54 41.66 5.19 95.69
o 58.13 0.32 89.37 56.70 -0.12 92.27 53.96 -0.04 94.04
o0 49.43 8.78 93.34 50.34 3.61 94.06 49.75 1.73 94.70

0p 33.26 25.32 96.34 38.43 10.98 95.34 41.50 5.18 95.17

S4
6 5825 032 8946 5633  -0.07 9235 5477 005 9381

0 49.16 8.78 93.31 50.15 3.67 94.08 50.21 1.72 94.59

03 33.25 25.45 96.31 38.62 10.98 95.64 41.91 5.18 95.36
a5 58.65 0.43 89.55 56.35 -0.07 92.65 54.85 -0.05 94.01
03 49.00 8.90 93.21 50.14 3.67 94.27 50.09 1.71 94.71
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type confidence interval (WALD). The three performance measures are expressed
in percentages.

We consider the sample sizes n = 10,20,40, and, for each of 10000 replications,
we draw samples of independent observations from 3-dimensional Dirichlet random
vector, with true parameter value . Combination of small and large true parameter
values with equal and different values are considered. In particular, we perform
the study under the settings o = (0.25,0.25,0.25) (S1), ap = (0.6,0.3,0.1) (S2),
op = (12,6,2) (S3), and op = (40/3,40/3,40/3) (S4).

Table 1 shows the numerical results of the simulations. For all settings, mean
and median BR estimators proved to be remarkably accurate in achieving their
own goals, respectively, and are preferable to ML estimators. The poor coverage
of the mean BR estimator is implied by the strong shrinkage effect of the estimator,
whereas median BR shows empirical coverage closer to nominal values. The good
performances of the ML estimator in terms of empirical coverages, especially when
compared with mean BR, are overwhelmed by very large estimated relative mean
bias and a noteworthy overestimation of the true parameter.

5 Application

We consider the serum-protein data of Pekin-ducklings analysed in Ng et al. (2011),
coming from Mosimann (1962). Data concerns blood serum proportions of n = 23
sets of Pekin-ducklings, characterized by having the same diet in each set. For the
i-thset, i =1,...,23, the proportion of pre-albumin (y;; ), albumin (y;») and globulin
(vi3), are reported. Ternary plot, in Figure 1, shows in two-dimensions the distibution

pre.albumin

albumin A 2 3 4 5 6 7 8 9 globulin

Fig. 1 Serum-protein data of Pekin-ducklings. Ternary plot.

650



Gioia and Kenne Pagui

of y; = (y,'l,y,-z,y,g)T on the simplex. Data shows that for a small amount of pre-
albumina there is about a 50/50 composition of albumin and globulin.

Table 2 Serum-protein data of Pekin-ducklings. Estimates of parameter o = (o, 0, 03), esti-
mated standard errors and 95% Wald-type confidence intervals (95% Wald CI) using ML, mean
and median BR.

a Estimate Standard error  95% Wald CI
o 3.22 0.68 1.89 - 4.54

o 2.95 0.62 1.73-4.17

a, 3.04 0.64 1.79 - 4.30

0 20.38 4.32 11.91 - 28.86
o 18.59 3.95 10.84 - 26.33
(053 19.19 4.08 11.20-27.18
[07) 21.69 4.60 12.67 - 30.70
o 19.77 4.20 11.54 - 28.01
a3 20.41 4.34 11.92 -28.91

Table 2 reports point and interval estimates of the parameters, by using ML, mean
and median BR. It is noteworthy the shrinkage effect of the mean BR estimator. Me-
dian BR estimates are intermediate between those of mean BR and ML estimates,
as well as for the estimated standard errors. As a result of the shrinkage effect of the
mean and median BR estimators, the 95% Wald-type confidence intervals for mean
BR and median BR are narrower than those of ML.
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