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Abstract
The Test Laboratory Scheduling Problem (TLSP) is a real-world scheduling problem that extends the well-known Resource-
Constrained Project Scheduling Problem (RCPSP) by several new constraints.Most importantly, the jobs have to be assembled
out of several smaller tasks by the solver, before they can be scheduled. In this paper, we introduce different metaheuristic
solution approaches for this problem. We propose four new neighborhoods that modify the grouping of tasks. In combination
with neighborhoods for scheduling, they are used by our metaheuristics to produce high-quality solutions for both randomly
generated and real-world instances. In particular, Simulated Annealing managed to find solutions that are competitive with
the best known results and improve upon the state-of-the-art for larger instances. The algorithm is currently used for the daily
planning of a large real-world laboratory.

Keywords TLSP · RCPSP · Metaheuristics · Simulated annealing

1 Introduction

The task of testing of components and equipments is an
expensive and time-consuming activity for many industrial
companies. For this reason, it is extremely important that the
testing process is optimized so as to save on both physical
and human resources.

In this work, we consider a specific version of the test-
ing problem, called the Test Laboratory Scheduling Problem
(TLSP), which is an extension of the well-known Resource-
Constrained Project Scheduling Problem (RCPSP).

For this problem, analogously to many other scheduling
problems, we have to assign to each job a start time and a set
of resources. In addition, as customary in scheduling as well,
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we have to take into account deadlines, suitability restrictions
and precedences.

However, in the TLSP jobs are not atomic entities, but
composed of smaller activities called tasks. The main pecu-
liarity of the problem is that the procedure of aggregating
tasks into jobs, called grouping, is not fixed, but rather part
of the decision problem itself. As a consequence, the TLSP is
a structured problem, composed by a grouping subproblem
and a scheduling one. It is a general view in optimization
that structured problems are often very difficult to solve in
practice.

A restricted version of the problem, called TLSP-S, has
been tackled by Mischek and Musliu (2021) and Geibinger
et al. (2019).With the TLSP-S, the grouping of tasks into jobs
is fixed in advance, so that the problem becomes essentially
a scheduling one alone.

The general TLSP formulation has been investigated
recently by Danzinger et al. (2020), by using a very-large
neighborhood search (VLNS) and aConstraint Programming
(CP) approach, obtaining results that outperform the ones
obtained for the fixed grouping.

In this work, we investigate the possibility of using a local
search approach for the general problem. To this aim, we
develop four new complex neighborhoods that modify the
grouping and combine them with neighborhoods affecting
the schedule of the jobs. The general idea is that the two
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components of the problem are solved simultaneously in a
cooperative fashion.

As metaheuristics for guiding the search, we experiment
with the Min-Conflicts heuristic (MC) (Minton et al. 1992)
and Simulated Annealing (SA) (Kirkpatrick et al. 1983). On
top of both of them, we also design an iterated local search
(ILS) procedure that interleaves the underlyingmetaheuristic
with perturbation steps. As a result, we have four candidate
solution methods, namelyMC and SA both with and without
the ILS perturbations.

All four methods, properly tuned using a statistically prin-
cipled tuning procedure, are compared among each other and
with the results of Danzinger et al. (2020) and Mischek and
Musliu (2021) on a dataset composed of artificial and real-
world instances. All instances used for this evaluation are
publicly available for download.

The general outcome is that we find high-quality solutions
even without the benefit of a known good grouping as in the
TLSP-S, which are competitive with those of Mischek and
Musliu (2021). Comparing to the state-of-the-art solver for
the TLSP by Danzinger et al. (2020), we improve results on
several instances. We see that we are able to obtain better
results in particular on large instances, or under tight time
limits. The algorithms described in this paper are used suc-
cessfully in the daily scheduling of our industrial partner’s
laboratory.

2 Problem definition

In the TLSP, the solver has to find a schedule for a large
number of tasks, which are distributed into several projects.
However, the solver first has to find a partition of the tasks
into jobs, which then need to be assigned a mode, a discrete
start time slot and resources. The jobs derive their properties
from the tasks they contain, as described in Sect. 2.1. The
final schedule must satisfy a series of hard constraints. The
schedule’s quality is defined via several soft constraints or
objectives1, the final objective value is the weighted sum of
all individual objectives.

The problem input consists of three parts: The first part is
the environment, which defines the modes and the resources
in the problem.We differentiate between three different types
of resources: There areworkbenches, on which tasks are per-
formed, employees, andmultiple different equipment groups.
Each mode sets the number of employees required and a
speed factor that is applied to the duration of jobs executed
in that mode.

1 Previous works have only used the term “soft constraints” for the
objectives, since they can also be interpreted as constraintswhose degree
of violation should be minimized (in particular objectives S2 and S4).
For the purpose of this work, we use both terms interchangeably.

The second part consists of a list of projects and the tasks
they contain. Each task has a real-valued duration, which
must be scheduled within a time window defined by its
release date and deadline. There is also a due date, which
works similarly to the deadline, but violating it only results
in a penalty to the solution quality. The TLSP also contains
precedence constraints, but only between tasks of the same
project.

Next, each task defines required resources: Up to one
workbench and an arbitrary number of devices from each
equipment group. As mentioned above, the number of
required employees is set by the mode. The resource units
that are used to fulfill the requirements of a task must be
chosen from the set of available resources for the task. Sim-
ilarly, there is also a set of available modes for each task.
An additional restriction on the assigned employees is given
in the form of preferred employees for each task, which
should be assigned if possible. Further, tasks may be des-
ignated as linked. Linked tasks must be performed by the
same employee(s).

Each task also belongs to a certain family. Only tasks from
both the same project and family can be combined in a single
job. The family also defines a setup time, which is added to
the duration of each job containing tasks of that family.

Finally, each instance contains a base schedule, which can
be used as a baseline and restrict the possible assignments.
In particular, tasks in some jobs in the base schedule may
be marked as fixed, indicating that the solver must not split
up these tasks into different jobs. Some jobs may also be
assigned as started. This has the effect that their start timeslot
is restricted to the beginning of the schedule and the setup
time is not added to their duration (it is assumed to already
have been done). Usually, the available mode and resources
of the tasks in a started job are also set such that the currently
assigned units are the only possible assignments.

The full formal definitions of input data, job properties
and constraints can be found in the “Appendix” of this paper
and also the technical report by Mischek and Musliu (2018).

2.1 Job grouping

The solver has to find a partition of the tasks into jobs. The
jobs derive all their properties from the tasks they contain.
The general idea is that tasks within a job are not explicitly
scheduled, and could be performed in any order. For this rea-
son, a job has to fulfill all requirements of all contained tasks
for its whole durations. This is a deliberate choice intended
to retain a level of flexibility in the real-world execution of
the schedule. It was chosen over other formulations, such
as explicit scheduling of individual tasks, combined with
schedule-dependent setup times (see also Mika et al. 2006)
or batch scheduling approaches (e.g., Potts and Kovalyov
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2000), due to a combination of circumstances in the labora-
tory of our industrial partner:

– Many tasks have a duration shorter than a single time slot,
which is currently set at a granularity of half a (work-
ing) day per time slot. Due to flexible working hours
and contracts, a finer planning granularity is infeasible to
implement.As a consequence, roundingup task durations
would result in unacceptable overheads. The grouping
into few, longer jobs allows us to substantially decrease
the impact of this problem.

– Schedule dependent setup times dependon awell-defined
successor relation between tasks in a schedule, or on a
certain machine. Since the requirement for additional
setup times not only depends on the workbenches, but
also the assigned employees and equipment, this succes-
sor relation is difficult to define and complex to evaluate
for the TLSP.

– The current formulation allows tasks to be reordered
within a job and even interrupted and later resumed with-
out requiring any rescheduling. This adds a measure of
robustness to the schedule, in particular since tasks are
often delayed or their duration changes on short notice
(see also results by Wilson et al. 2012).

– The smaller number of jobs is also easier to manage,
both for the human planners in the laboratory and the
employees who actually perform the tasks.

– Finally, the impact of this restriction is quite small in
practice, as tasks within a family are usually very simi-
lar to each other and often share the same requirements
anyway.

Consequently, the properties of a job are defined as fol-
lows:

– Its duration is the sum of the durations of the contained
tasks, plus their family’s setup time (the setup time does
not apply to started jobs).

– The job’s release date is the maximum among all task
release dates; its target date and deadline are the mini-
mum target date and deadline, respectively.

– The demand for each resource (workbenches, employ-
ees and each equipment group) is the maximum of the
demands for each task.

– The available modes and resources of each type are the
intersections of the respective task properties.

– Precedences and linking between tasks translate directly
to the jobs that contain the tasks.

2.2 Constraints

Schedules are subject to a number of hard constraints. As
usual for the RCPSP, all resource requirements must be met,

no resource unit can be assigned to more than one job simul-
taneously, jobs must be scheduled between their release date
and deadline and can only start after all predecessors have
been completed. In addition, the TLSP also requires that the
assignedmode and resource units are available for the job and
linked jobs are assigned the same employees. Regarding the
grouping, all tasks in a job must come from the same project
and family, and fixed tasks of a job in the base schedule must
also appear together in the same job in the final schedule.
Finally, started jobs must start at time 0.

Once these hard constraints are fulfilled, the quality of the
schedule is evaluated with respect to several objectives.

S1: Number of jobs. The number of jobs should
be minimized.

S2: Preferred employees. The employees assigned to a
job should be taken from the
set of preferred employees.

S3: Number of employees. The number of employees
assigned to eachproject should
be minimized.

S4: Due date. The tardiness of each job
after its internal due date
should be minimized.

S5: Project completion time. The total completion time
(start of the first job to end
of the last) of each project
should be minimized.

As discussed in the previous section, objective S1 reduces
overheads (fewer setup times and losses due to rounding) and
schedule fragmentation by favoring schedules with few, long
jobs.

Preferred employees (S2) enable the modeling of prefer-
ences between employees that are all qualified to perform
certain tasks. For example, an employee may be preferred
for a particular task because they have a lot of experience in
this type of work. Alternatively, employees may work only
part-time or have additional duties outside the laboratory, in
which case they can be marked as non-preferred for all tasks
so that other employees will be scheduled first.

In practice, it has proved beneficial to have as few employ-
ees as possible cover all the tasks of a single project (S3). This
enables easier communication between the client, project
supervisors and the employees, but also reduces the time
needed to get familiar with project-specific documentation
and procedures.

Objective S4 makes the schedule more robust by ensuring
that potential delays in the completion of the jobs do not
cause the project to miss any deadlines.

Finally, objective S5 also helps to reduce overheads, as
longer timespans between the tasks of a projectwould require
additional effort to become familiarwith project-specific pro-
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cedures, as well as storage space for the devices under test
between tasks. Frequent context switching due to very long
and fragmented projects also adds unnecessary mental over-
head to the employees.

The relative weights for these objectives depend on the
usage scenarios and are currently being developed together
with our industrial partner. As was done in previous work,
we have used uniform weights of 1 for all objectives in our
evaluations in this paper.

2.3 TLSP-S

It may happen that a suitable grouping of tasks into jobs is
already known and only the scheduling part of the TLSP is of
interest. This gives rise to a subproblemwhichwe call TLSP-
S, which has been tackled by Mischek and Musliu (2021);
Geibinger et al. (2019).

In the TLSP-S, the jobs are already predefined (the group-
ing is fixed) and the solver only has to find assignments of
mode, time slots and resources for each job such that all con-
straints are satisfied and the objective function is minimized.

As a result, job properties can be precomputed and several
constraints are trivially satisfied or can be simplified. In par-
ticular, objective S1 (Number of jobs) reduces to a constant
value. The results by Mischek and Musliu (2021) for the
TLSP-S already include this constant and we also include
it in all experiments dealing with the TLSP-S to maintain
comparability with the TLSP.

3 Related literature

As mentioned in the previous sections, the TLSP is a real-
life problem that has been introduced recently (Mischek and
Musliu 2018, 2021). It can be classified as a project schedul-
ing problem that includes several extensions compared to the
existing problems in the literature.

Related variants of project scheduling problems have been
studied extensively in the literature. The most studied vari-
ant of these problems is probably the Resource-Constrained
Project Scheduling Problem (RCPSP). For surveys on lit-
erature regarding this problem and its variants, we refer
to Mika et al. (2015), Hartmann and Briskorn (2010) and
Brucker et al. (1999). One of the variants of the RCPSP
is the Multi-Mode version (MRCPSP) (Elmaghraby 1977;
Wȩglarz et al. 2011; Hartmann and Briskorn 2010; Szeredi
and Schutt 2016), where each activity can be performed in
one of several modes, which can affect duration and resource
requirements. Of particular relevance for the TLSP(-S) is the
Multi-Skill RCPSP (MSPSP) (Bellenguez and Néron 2005;
Young et al. 2017), which features similar resource availabil-
ity constraints.

Multiple separate projects, with project-specific con-
straints and objectives, appear in the Resource-Constrained
Multi-Project Scheduling Problem (RCMPSP). Papers deal-
ing with this problem include for example Gonçalves
et al. (2008) and Villafáñez et al. (2019). The Multi-Mode
RCMPSP (MMRCMPSP), which combines both multiple
modes and multiple projects and was used for the MISTA
2013 challenge, was introduced by Wauters et al. (2016).

TheTLSPhas several features of previous project schedul-
ing problems in the literature, but also includes some specific
features imposed by the real-world situation, which have
rarely been studied before. These include heterogeneous
resources, with availability restrictions on the activities each
unit of a resource can perform. While work using similar
restrictions exists (Dauzère-Pérès et al. 1998; Young et al.
2017), most problem formulations either assume homoge-
neous, identical units of each resource or introduce additional
activity modes for each feasible assignment, which quickly
becomes impractical for higher resource requirements and
multiple resources. Another specific feature of the TLSP(-S)
is that of linked activities, which require identical assign-
ments on a subset of the resources. A similar concept appears
only in works by Salewski et al. (1997) and Drexl et al.
(2000), where several activities have to be scheduled using
the same mode.

Aspects similar to the grouping mechanism in the TLSP
appear in other works in the form of batching (e.g., Schwindt
and Trautmann 2000; Potts and Kovalyov 2000) or schedule-
dependent setup times (e.g., Mika et al. 2006, 2008),
although they are typically handled implicitly, i.e., the
batches arise from the finished schedule, instead of the other
way round.

There are few papers that deal with scheduling activities in
laboratories. Scheduling of tests of experimental vehicles is
considered byBartels andZimmermann (2009). The problem
is related to the TLSP, but it uses a different resource model
(in particular regarding destructive tests) and uses the number
of employed vehicles as the main optimization criterion. An
integer linear program for scheduling research activities for
a nuclear laboratory, using a problem formulation derived
from the MSPSP, but with (limited) preemption of activities
is proposed by Polo Mejia et al. (2017).

Various exact, heuristic and hybrid approaches have been
proposed to solve different variants of project scheduling
problems (see recent surveys by Pellerin et al. (2020) and
Mika et al. (2015)). A combination of memetic and hyper-
heuristicmethodswithMonte-Carlo tree search byAsta et al.
(2016) won the 2013MISTA challenge, which dealt with the
MMRCMPSP. The same problem is also treated by Ahmeti
and Musliu (2018), who provided several ideas that were
useful in our solver implementation for the TLSP. Examples
of exact approaches based on Constraint Programming (CP)
that have been used very successfully for solving specific
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project scheduling problems include papers by Szeredi and
Schutt (2016) and Young et al. (2017).

Previous approaches for solving the TLSP-S include
heuristic and exact methods (Mischek and Musliu 2021;
Geibinger et al. 2019). These approaches could be applied
successfully for solving realistic and practical instances. To
the best of our knowledge the only approach for the TLSP
has been introduced recently byDanzinger et al. (2020). That
paper proposes a Constraint Programming (CP) model and
a Very Large Neighborhood Search algorithm that applies
the CP model to solve sub-problems. The authors showed
that their solution methods can be used successfully to reach
solutions that are better than those obtained by solving the
TLSP-S.

4 Local search approaches

A local search framework for the TLSP-S has been described
in (Mischek and Musliu 2021). In that work, different neigh-
borhoods for the TLSP-S were implemented. One of the best
performing configurations was a combination of two neigh-
borhoods, called JobOpt and EquipmentChange. JobOpt
contains moves that modify the mode, time slot, workbench
and employee assignments of a single job, while Equip-
mentChange contains moves that replace a single assigned
equipment unit by a different one. This special handling for
equipment was required due to the large number of potential
equipment assignments for some jobs, which made a neigh-
borhood that simultaneously swapped all resources unwieldy
in practice.

We note that the local search approach proposed by Mis-
chek and Musliu (2021) cannot be used directly to solve the
TLSP, as it does not include options to change the grouping.
In this work, we propose several extensions to be able to deal
with the TLSP and also investigate local search strategies.
We propose four new neighborhoods that need to be added
to JobOpt and EquipmentChange to make the solver suit-
able for TLSP, by allowing regrouping of the tasks during
the search.

We also give a description of the different metaheuris-
tics we evaluated for the TLSP in this paper. In addition to
an investigation of Min-Conflicts and Simulated Annealing
with the new neighborhoods, we also present a new approach
based on Iterated Local Search.

4.1 New neighborhoods for variable grouping

In order to deal with the variable grouping in the TLSP,
we developed four new neighborhoods that modify the task
grouping.

The moves in these new neighborhoods assume that the
current task grouping is valid, all jobs are scheduled within

T1

T2

T3

J1

...

T2

...

J2

(a) Task T2 is both succes-
sor and predecessor of other
tasks (T1 and T3) in the
original job.

T1

T2

T3

J1

T4

T2

...

J2

(b) Moving task T2 turns an
existing one-directional de-
pendency between the jobs
into a cyclic dependency.

Fig. 1 Two example scenarios where moving a task (T2) from a job
J1 to another job J2 creates a cyclic dependency between the two jobs.
Arcs between tasks show the task dependencies. In both cases, job J2
would have to be scheduled both before the start and after the end of job
J1, which is impossible. Further scenarios, potentially involving more
than two jobs, exist

their time window, precedence constraints are satisfied, all
resource requirements are fulfilled, and the assigned mode
and resources are available for each job. They guarantee
that these conditions still hold after the move is applied. In
cases where altering the task grouping results in changing
resource requirements or available resources, the solver sup-
ports different strategies to restore the validity of the resource
assignments.

In the following, the time window of a job denotes the
interval in which it must be scheduled. This includes both
release date and deadlines, but also precedence relations to
other jobs.

All neighborhoods involve two jobs, one that we call the
source and the other is the target job.

4.1.1 Single task transfer

This neighborhood contains moves that transfer a single task
from the source job to a target job of the same family and
project. A number of restrictions apply to which tasks can be
moved:

– Fixed tasks or tasks that are the only task of their job
cannot be transferred (this case is handled by the Merge
neighborhood).

– The mode and all resources assigned to the target job
must be available for the transferred task.

– Moving the task must not introduce a cyclic dependency
between jobs (see Fig. 1 for examples).

– Finally, the increased duration of the target job must still
fit within its time window (including potentially updated
precedence constraints).
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The modes and start times of both involved jobs are
unchanged, except if it is required to move the target job
forward so that its new duration does not conflict with dead-
lines or successor jobs.

The resource requirements of the source job may decrease
due to the transferred task. In this case, two strategies are
supported to remove superfluous assigned units: They can be
either randomly chosen units or the worst units, i.e., those
that currently cause the largest number of conflicts or the
largest penalty.

Correspondingly, the resource requirements of the target
jobmay increase. Themissing resource units are chosen from
the set of unassigned available resources. As with the source
job, these can be either random choices or the best units for
the job.

4.1.2 Merge

This neighborhood containsmoves thatmerge two jobs of the
same family and project, i.e., transfer all tasks of the source
job to the target job and remove the source job from the
schedule. To be candidates for a merge, the two jobs must
fulfill the same requirements as for a task transfer above.
The scenarios of Fig. 1 cannot happen for merges, but cyclic
dependencies could still arise if there is a third job that is a
successor of the source job and a predecessor of the target
job, or vice versa. In this case, the two jobs cannot bemerged.

As for a transfer, mode and start time of the target job are
not changed, except where necessary for the job to fit into
its time window. Analogously, if the resource requirements
change, they need to be adjusted using either random or the
best available resource units.

4.1.3 Split

The Split neighborhood covers the need of creating new jobs.
A subset of the source job’s tasks are removed from it and
assigned to a newly created job. Also for split moves, care
must be taken to ensure that the resulting jobs do not create a
cyclic dependencywith each other. To ensure this, we require
that for each split off task, also all successors in the source
job will be split off to the new target job. It follows from this
criterion that the newly created target job can be a successor
of the source job, but never the other way around.

The start of the source job is adjusted tomake room for the
split job, if necessary (the combined duration of the reduced
source job and the newly created job may be longer than
the source job’s original duration due to the setup time and
rounding). Otherwise, it does not change.

The resources of the source job are adjusted if the require-
ments have changed, using either of the two strategies
described for the single task transfer neighborhood.

The target job has the samemode as the source job. Several
configuration options are available to determine its start time:
It can either start directly following the end of the source job,
start at a random position within its time window, or start at
the best possible time (with respect to the current schedule).

Regarding the resources assigned to the target job, one
option is to duplicate the resource assignment of the source
job and adjust it according to either of the two previously
described strategies. Two alternative strategies are also sup-
ported: The resources can be assigned completely randomly
from the available units or the best units from each resource
can be chosen to be assigned to the job.

4.1.4 LinearSplit

The Split neighborhood contains all possible partitions of a
job into two parts, except for some restrictions due to fixed
tasks or other constraints. The number of these partitions
rises exponentially with the number of tasks in a job, which
makes it inefficient for algorithms that traverse the whole
neighborhood.

To solve this problem, we developed an alternative variant
of the Split neighborhood, called LinearSplit. This neighbor-
hood randomly generates a topological ordering of the tasks
in the job for each move. It contains only moves that split
this ordering at a certain index, such that all tasks after this
index are moved to the newly created job.

This behavior guarantees that the time required to traverse
the neighborhood is linear with respect to the number of tasks
in the job. The drawback is that it is no longer deterministic,
in the sense that it does not always contain the same moves
if applied for the same schedule and job.

The topological ordering itself is created by repeatedly
choosing a random task that does not have any unchosen
predecessors in the job, until all tasks have been chosen.
If tasks are chosen randomly in a uniform way, the pro-
duced orderings are biased heavily toward orderings that
place unconnected tasks early in the ordering. To even out
the distribution, we weight tasks by the number of their suc-
cessors incremented by one.

This does not completely eliminate bias (it leads to dou-
ble counting of some paths), but drastically reduces it for
graphs with many dependencies. A small example of this is
shown in Fig. 2. The given dependency graph has 10 different
topological orderings (2 orderings for the left component, 5
positions for task T5 in each). Of these, 2 (20%) have node
T5 in the first position. With uniform weights, both node T1
and node T5 can be selected first with equal probability, lead-
ing to 50% of generated orderings starting with T5. With our
adapted weights, node T1 would get a weight of 4, and thus
would correctly be chosen first in 80% of all generated order-
ings. The remaining bias with adapted weights is seen with
nodes T2 and T3. Assuming T1 was selected first, T5 appears
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T1

T2

T3

T4 T5

J

Fig. 2 Example dependency graph for a job J with 5 tasks

before both T2 and T3 in 2 out of 8 possible orderings (25%).
However, both nodes get weight 2 due to their common suc-
cessor T4. As a result, T5 is chosen as the second node after
T1 only in 1/(2 + 2 + 1) = 20% of all generated orderings.
The discrepancy occurs due to the double-counting of node
T4 in the weights. In general, the remaining bias decreases
the more tree-like a dependency graph is.

Unfortunately, this bias cannot be completely eliminated,
as truly uniform samplingwould require counting the number
of all topological orderings, which is already #P-complete by
itself (Brightwell and Winkler 1991).

The remaining behavior and configuration options for this
neighborhood are the same as for the Split neighborhood.

4.2 Metaheuristics

The well-known metaheuristics Min-Conflicts (MC) and
Simulated Annealing (SA) have been used by Mischek and
Musliu (2021) to solve the TLSP-S. With the additional
neighborhoods proposed in the previous section, they can
also be useful for the TLSP. Below, we give a summary of
MC and SA, and we also describe a new solution approach
based on Iterated Local Search (ILS) (Lourenço et al. 2003),
using either of the two metaheuristics for its inner loop.

4.2.1 Min-Conflicts heuristic

MC has been used to solve various constraint satisfaction
problems. This is an iterative improvement method, where
during each iteration a conflicted variable is selected ran-
domly. The new value for the selected variable is then picked
such that the number of conflicts is minimized. The main dif-
ference with other local search techniques is thatMC focuses
in every iteration only on variables that are involved in the
violated constraints. This technique can also get stuck in a
local optimum and different mechanisms can be applied to
escape the local optimum. For example, noise strategies such
as RandomWalk (Wallace and Freuder 1996) can be used.
MC has been used successfully for the Hubble Space Tele-
scope scheduling problem (Minton et al. 1992) and other
problems including a project scheduling problem (Ahmeti
and Musliu 2018, 2021) and personnel scheduling (Musliu
2005).

Our implementation of MC picks a job at random at each
step and finds the best move involving the chosen job among
all neighborhoods.

Note that MC typically only selects among components
that violate at least one constraint. However, for the TLSP,
each job is always involved in at least one soft constraint
violation due to S1 (Number of jobs). Even when this con-
straint is ignored for this purpose, the objectives S3 (Number
of employees) and S5 (Project completion time) still register
penalties for most jobs. In Mischek and Musliu (2021) we
also experimented with a variant that only chooses among
jobs that are involved in hard constraint violations until the
schedule is feasible, but that did not result in any improve-
ments.

We also combine MC with a RandomWalk (RW) proce-
dure (MC + RW), which chooses a random move from all
neighborhoods, to enable the search to escape from local
minima. At each step, RW is called instead of MC with a
certain probability pRW.

Once MC(+RW) has performed a certain number of steps
without improvement, it restarts from a new initial solution.

4.2.2 Simulated Annealing

SA selects a random move from its neighborhoods. In our
implementation, each neighborhood has a certain weight,
which determines the likelihood of a move being selected
from this neighborhood.

Afterward, the effect of the chosen move is evaluated. If it
improves the schedule, it is accepted.Otherwise, it can still be
accepted with probability e−Δ/T , where Δ is the difference
in the objective function due to the move and T is a parame-
ter called temperature. Higher temperatures result in higher
probabilities of accepting worsening moves. In the course of
the search, the temperature is successively decreased from
an initial value T 0 to a minimum value Tmin.

Our implementationuses a cooling scheme that is designed
to reach the minimum temperature right at the end of the
available time. Every i steps, the current temperature T is

multiplied by a cooling factor α = ( T
min

T )
i
um , where u is the

remaining time andm the moves applied per second. Sincem
depends on both the instance and the hardware, and can even
vary slightly during the search, we keep track of the elapsed
time and number of moves performed so far. We then peri-
odically update m to reflect the average speed measured so
far.

4.2.3 Iterated local search

One of the main challenges for metaheuristics is escaping
from local optima. Especially as the size of the instances
grows, the algorithms are likely to get stuck at or around
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basins of low objective values. Random restarts are one
way to deal with such situations and sample larger areas
of the search space, but each restart means throwing away
all information about the (hopefully good) solution achieved
previously.

ILS also repeatedly executes runs of a metaheuristic inter-
nally. In contrast to random restarts however, ILS aims to
keep asmuch information as possible from the previous solu-
tion between restarts to provide a good starting point for the
next iteration of the inner metaheuristic, while applying a
large enough perturbation to reach new areas of the search
space. In essence, ILS applies a local search procedure over
the search space of locally (near-)optimal solutions.

This often leads to significant improvements compared to
single-run metaheuristics or random restarts (Lourenço et al.
2003).

Algorithm 1 shows the pseudocode of our implementation
of ILS in the TLSP solver, which can use any other local
search procedure (LS) internally. In this paper, we use either
MC + RW or SA as internal heuristics. The best solution
found so far is stored and whenever a new solution is not
accepted after a run of LS, the current solution is reset back
to best known solution.

Input: a TLSP instance I
Sbest = S = create initial schedule(I );
while ¬ timeout reached do

S′ = LS(S);
if S′ < Sbest then

Sbest = S′;
end
if accept(S′, S) then

S = S′;
else

S = Sbest ;
end
S = perturb(S);

end
Algorithm 1: Pseudocode for Iterated Local Search

We use the same algorithm to create the initial solution as
in the single-run version of LS (greedy construction for MC
+ RW and random for SA).

The remaining components to determine are then the stop-
ping criteria for the internal metaheuristic, the acceptance
criterion to determine whether search should continue from
the current solution, and the perturbation to apply at each
restart.

Regarding the stopping criteria,MC+RWalready restarts
after a number of unsuccessful moves. This can be immedi-
ately reused to apply the next iteration of ILS. Since SA
does not have such an intuitive stopping criterion (in partic-
ular with the dynamic cooling scheme described above), we
instead provide each iteration of SA with a separate short

timeout, after which it should stop. Naturally, this results in
faster cooling cycles as the minimum temperature now has
to be reached within the shorter available time.

The most straightforward acceptance criterion is to accept
only improving or same cost solutions. However, it can be
beneficial to also accept solutions that are slightly worse, in
order to reachmore distant areas of the search space.We have
implemented two different approaches to the ILS acceptance
criterion:

Threshold.Accepts any solution that has at most δ conflicts
more than the best known solution.

Annealing.Works like the move acceptance criterion in SA,
except that the temperature T is fixed. Takes the
hard constraint weight wH as additional parame-
ter.

Finally, the perturbation can be performed either by exe-
cuting a fixed numbermRW of steps of RW (randomwalk), or
by choosing a subset of all jobs and replacing theirmode, time
slot and resource assignments by random values (disrupt),
respecting time windows, mode and resource availabilities.
The second option can be configured via the disruption
strength sd, i.e., the fraction of jobs that is chosen, and the
strategy to select jobs:

Job. Select randomly among all jobs.
Project. Select randomly among all projects and

all jobs of a selected project.
JobConflict. Select jobs involved in conflicts first, then

randomly among all jobs.
ProjectConflict. Select projects involved in conflicts first,

then randomly among all projects.

5 Experimental evaluation

We used a set of 33 instances for our experiments, the same
as were used by Danzinger et al. (2020). Thirty out of these
are randomly generated based on real-world data and contain
between 5 and 90 projects. The remaining three instances are
real-world instances taken directly from the laboratory of our
industrial partner in anonymized form.Adetailed description
of these instances can be found in the paper by Mischek
andMusliu (2021), or at https://www.dbai.tuwien.ac.at/staff/
fmischek/TLSP/, where these and additional instances are
also available for download.

To make the test instances also suitable for the TLSP-
S, their base schedule includes a job grouping for all tasks.
The base schedules of the generated instances are otherwise
empty except for some started jobs with fixed assignments.
The real-world instances have a base schedule that already
contains assignments for most jobs. Except where noted oth-
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erwise, we do not use the unfixed preexisting groupings or
assignments in the base schedules in any way for our exper-
iments.

The algorithms described in Sect. 4 were implemented in
Java 8, as part of the solver framework first described by
Mischek and Musliu (2021). Most experiments were per-
formed on a benchmark server with 224 GB RAM and two
AMD Opteron 6272 Processors each with a frequency of
2.1 GHz and 16 logical cores. This is the same machine
that was also used by Danzinger et al. (2020), to ensure
comparability of the results. All our solution approaches are
single-threaded and, as was done by Danzinger et al. (2020),
we executed two independent experiments in parallel. All
experiments had a timeout of 10 min. For time reasons, we
used a different machine for the automated parameter tun-
ing, a Lenovo ThinkPad University T480s with a single Intel
Core i7-8550U (1,8 GHz), containing 4 cores. In order to
get comparable results, we reduced the timeout to 370 s on
this machine, since this resulted in approximately the same
number of moves performed per run.

5.1 Parameter tuning and configuration

In order to tune the parameters of our solution approaches,
we used the automated parameter tuning framework SMAC
(Hutter et al. 2011). As training data, we used a set of 30 gen-
erated instances, separate from the evaluation instances. We
executed 4 instances of SMAC in parallel, in shared model
mode.

To the neighborhoods used in the TLSP-S (JopOpt and
EquipmentChange), we added the new neighborhoods for
the TLSP. Initially, we used the TaskTransfer, Merge and
Split neighborhoods for both MC + RW and SA. However, it
quickly became apparent that using the Split neighborhood
in MC + RW was computationally infeasible, as evaluating
all possible moves could take up to eight hours for some of
the larger jobs. For this reason, we replaced the Split neigh-
borhoodwith the LinearSplit neighborhood inMC+RW. SA
could use the Split neighborhood, as finding a random split
is fast regardless of the number of tasks in a job.

Regardless of the type of splitting neighborhood used,
we decided to combine it with the Merge neighborhood into
a combined neighborhood (Linear)SplitMerge where both
have equal weights internally. The motivation behind this
decision is that they contain basically complementarymoves,
one creating jobs and the other removing them again. An
imbalance in either direction would lead to either many frag-
mented jobs or few jobs with many wasted attempts to find
further merge candidates.

To configure the new neighborhoods for MC + RW, we
used the adjust_best strategy for resource assignments and
best for the time slot assignment of the new job created by
the Split neighborhood (see Sect. 4.1).

For the search parameters, we reused the best performing
parameters for MC+RW and SA by Mischek and Musliu
(2021) for the TLSP-S, which were also found with SMAC.
For RW (performed in 10% of moves), we assigned equal
weights to all neighborhoods.

5.1.1 Simulated Annealing

Since SA chooses random moves in each step, the neigh-
borhood weights have to be carefully tuned, also taking into
account the new regrouping neighborhoods.

Therefore, we need to determine the probability of choos-
ing a move from the EquipmentChange, TaskTransfer or
SplitMerge neighborhoods. The probability for the JobOpt
neighborhood is then naturally computed from the other
weights.

Regarding the configuration parameters, we need to deter-
mine the strategy that should be used to adjust resource
assignments of existing jobs when the requirements change
due to a regrouping. In addition, we need to decide how to
assign both a time slot and resources to the new job created
in the Split neighborhood.

Table 1 shows the list of all parameters passed to SMAC,
together with their domains.

5.1.2 Iterated local search

Parameters common to both heuristics used within ILS
are the acceptance criterion of the outer ILS loop and the
perturbation to apply before each call to the inner meta-
heuristic. In addition, we need to determine the cutoff for the
inner metaheuristic (the maximum number of moves without
improvement for MC+RW and the per-iteration timeout for
SA), as shown in Table 2.

In order to keep the number of parameters to amanageable
level, we decided to transfer the non-ILS-specific parameter
values for the single-run versions of MC + RW and SA over
to ILS.

Table 3 lists the final evaluation results for MC + RW, ILS
using MC + RW for the inner loop, and SA. It shows that
MC + RW was unable to find feasible solutions for many
of the large instances. The addition of ILS improves those
results quite a bit, and produces better results for every single
instance than MC+RW alone. However, it also had troubles
with the large instances, including the real-world instances.

Interestingly, the best timeout for SA turned out to be
370 s, i.e., the whole time available to the solver. As a result,
only a single iteration of the ILS loop (see Algorithm 1) is
ever performed, which makes this configuration equivalent
to SA without any restarts at all. The remaining parameters
are therefore irrelevant. To rule out a mistake in the tuning
process, we repeated the validation with shorter per-iteration
timeouts, which all resulted in worse solutions overall. This
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Table 1 Parameters passed to
SMAC to tune the SA
neighborhood configuration

Parameter Domain Best

Weight-equipmentchange 0–0.4 0.353

Weight-tasktransfer 0–0.2 0.015

Weight-splitmerge 0–0.2 0.004

Adjust-resource adjust_random, adjust_best adjust_best

Split-resource adjust_random, adjust_best, random, best adjust_random

Split-timeslot follow, random, best random

The last column shows the best configuration found by SMAC

Table 2 Parameters passed to
SMAC to tune the ILS
configuration

Parameter Domain Condition Best configuration

MC+RW SA

Perturbation disrupt, randomwalk – randomwalk disrupt

Disrupt-select job[Conflict], project[Conflict] disrupt – job

Disrupt-strength 0.05, 0.1, 0.2, 0.5 disrupt – 0.5

Randomwalk-moves 5, 10, 20, 50, 100 randomwalk 10 –

Acceptance threshold, annealing – annealing threshold

Threshold-δ 0, 2, 5, 10 threshold – 2

Annealing-T 10, 20, 50, 100, 200, 500 annealing 100 –

Annealing-wH 10, 20, 50, 100 annealing 50 –

SA-timeout 5s, 10s, 100s, 200s, 370s SA – 370s

MC-moves 10, 50, 100, 200, 500, 1000 MC + RW 1000 –

Not all parameters are used for both configurations and some depend on other parameter values. The col-
umn Condition shows under which conditions each parameter is used. The last two columns show the best
configuration found by SMAC for ILS with SA and with RC+RW, respectively

shows that SA does not benefit from being included in an
ILS algorithm, at least for the TLSP.

The situation is different forMC+RW.Thebest configura-
tion contains a large number of moves without improvement
before a restart (e.g.,MC-moves = 1000,which is the extreme
value of the domain), but the results are significantly better
than MC + RW without ILS (see Sect. 5.2). The fact that
the selected value is the extreme suggests that it would be
worth extending the range. However, given that with 1000
moves there are already very few restarts and that without
restarts the results are significantly worse, we can be confi-
dent that no improvements can come from larger values of
MC-moves. Concerning the remaining parameters, it appears
that smaller disruptions are preferred, since theRandomWalk
disruption can affect atmost 20 jobs (10moves, atmost 2 jobs
affected per move). The annealing acceptance criterion with
the given parameters means in practice that worsening solu-
tions that contain at most one additional conflict are likely
to be accepted (the acceptance probability is 50% at a total
difference of about 69).

5.2 Evaluation results

The best results were achieved using SA, which could find
at least some feasible solutions for all instances and found
the best known solution for many of them, in particular large
instances.

Of particular interest are the real-world instances, which
proved quite difficult to solve for SA. We performed a sepa-
rate analysis for these three instances to determine the cause
of this discrepancy. While the generated instances closely
follow the real-world data, there is one aspect that was
not yet considered at the time the instances were created:
Employee absences were modeled only later as blocking
tasks over the period of absence, and thus appear only in the
real-world instances. Intuitively, absences (partially) split the
scheduling period into smaller intervals, which requiresmore
smaller jobs that neatly fit into the gaps between the absences.
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Table 3 Evaluation results for
the different solution approaches

# MC + RW ILS (MC + RW) SA

#Feas Avg Best #Feas Avg Best #Feas Avg Best

1 15/15 58.0 58 15/15 58.0 58 15/15 58.0 58

2 15/15 71.0 71 15/15 71.1 71 15/15 72.4 72

3 15/15 146.9 143 15/15 145.6 141 15/15 156.1 147

4 15/15 108.0 105 15/15 107.2 105 15/15 114.5 103

5 15/15 289.2 276 15/15 271.6 263 15/15 303.3 296

6 15/15 163.7 160 15/15 162.4 154 15/15 165.1 157

7 15/15 325.5 318 15/15 317.8 310 15/15 300.9 296

8 15/15 317.1 305 15/15 310.9 302 15/15 302.4 292

9 15/15 577.3 548 15/15 531.9 509 15/15 470.6 456

10 1/15 878.0 878 15/15 702.3 618 15/15 566.5 551

11 12/15 1130.3 1050 14/15 1014.4 984 15/15 938.4 912

12 15/15 782.9 766 15/15 745.5 694 15/15 675.8 666

13 15/15 336.5 329 15/15 326.7 321 15/15 338.2 327

14 15/15 463.0 453 15/15 452.3 443 14/15 420.4 418

15 0/15 9/15 1539.2 1459 15/15 1063.5 1014

16 4/15 1475.3 1381 10/15 1347.8 1306 13/15 1236.7 1216

17 15/15 1438.6 1358 15/15 1298.1 1233 15/15 1185.3 1140

18 2/15 1930.5 1891 12/15 1706.5 1638 15/15 1527.4 1500

19 0/15 0/15 14/15 2239.9 2133

20 0/15 1/15 3027.0 3027 15/15 2489.7 2391

21 15/15 903.1 853 15/15 790.9 733 15/15 673.9 632

22 15/15 952.5 911 15/15 968.1 884 15/15 784.6 755

23 0/15 0/15 12/15 2167.7 2070

24 0/15 11/15 2290.3 2212 15/15 1869.3 1807

25 0/15 0/15 10/15 2897.6 2601

26 0/15 1/15 3513.0 3513 13/15 2971.3 2809

27 0/15 4/15 3055.5 2883 15/15 2124.3 2017

28 15/15 2828.9 2707 15/15 2744.7 2663 15/15 2516.5 2468

29 0/15 0/15 10/15 4358.5 3965

30 0/15 0/15 14/15 5104.1 4989

Lab1 0/15 0/15 4/15 3558.0 3511

Lab2 0/15 0/15 1/15 2811.0 2811

Lab3 0/15 0/15 3/15 2616.7 2606

Columns #Feas contain the number of feasible solutions found, Best the best solution out of all runs and Avg
the average penalty over all feasible solutions

Thus, the presence of absences requires a heavier focus on
(re)groupingmoves, which the current configuration SAwith
its low weight for TaskTransfer, Split and Merge is lacking.
To test this hypothesis, we also performed experiments on
the real-world instances with increased weights (0.05) for
TaskTransfer and SplitMerge, scaling down the weights of
the other neighborhoods accordingly. In this configuration,
the solver could find feasible solutions for 11 out of 15 total
runs (5 runs per instance). Further, SA using the original
weights could find feasible solutions for 14 out of 15 runs
on modified versions of the real-world instances, where all
employee absences have been removed. These results indi-

cate that employee absences require special considerations
in order to find feasible schedules quickly in practice, due to
the fragmentation of the scheduling period they induce.

5.2.1 Comparison to other approaches

We also compare our results for SA to those by Danzinger
et al. (2020), which are currently the state of the art for
the TLSP. Since that paper used timeouts of two hours per
instance, we repeated our evaluations with this longer time-
out. The results can be seen in Table 4.
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Table 4 Comparison of results for SA with those of Danzinger et al.
(2020) (VLNS and CP), with a timeout of 2 h

# SA VLNS CP

#Feas Avg Best #Feas Avg Best

1 5/5 58.0 58 5/5 57.0 57 57

2 5/5 72.0 72 5/5 71.0 71 71

3 5/5 149.4 147 5/5 141.0 141 142

4 5/5 106.2 105 5/5 101.0 101 119

5 5/5 284.8 263 5/5 240.0 240 244

6 5/5 157.6 157 5/5 140.0 140 180

7 5/5 296.8 291 5/5 283.0 283 355

8 5/5 298.2 293 5/5 283.6 283 310

9 5/5 461.2 444 5/5 419.0 415/15 713

10 5/5 557.8 535 5/5 512.2 499 1010

11 5/5 915.2 905 5/5 822.8 816 1011

12 5/5 667.6 663 5/5 646.8 643 764

13 5/5 334.4 331 5/5 308.4 307 337

14 5/5 419.8 417 5/5 410.4 410 447

15 5/5 992.0 961 5/5 883.0 867 1819

16 1/5 1218.0 1218 5/5 1111.4 1109 1599

17 5/5 1159.2 1137 5/5 1075.8 1038 1416

18 5/5 1475.2 1450 5/5 1341.0 1328 1841

19 5/5 1956.8 1869 5/5 1860.0 1824 2751

20 3/5 2357.3 2304 5/5 2266.8 2193 3146

21 5/5 629.2 602 5/5 547.0 542 922

22 5/5 769.0 761 5/5 744.8 742 1062

23 5/5 1747.6 1613 0/5

24 5/5 1801.4 1780 0/5

25 5/5 2280.0 2213 5/5 2217.6 2135 4174

26 5/5 2713.0 2667 5/5 2589.6 2558 3861

27 5/5 1999.2 1965 5/5 1769.6 1723 3874

28 5/5 2470.4 2439 5/5 2258.4 2235 3180

29 5/5 3645.2 3562 0/5

30 4/5 4605.3 4532 5/5 4822.6 4714 6508

Lab1 4/5 3404.3 3389 5/5 3377.0 3296 4991

Lab2 5/5 2643.0 2539 5/5 2669.2 2595 3339

Lab3 5/5 2609.6 2592 5/5 2599.0 2590 2979

Columns #Feas contain the number of feasible solutions found (out of
5 runs), Best the best solution out of all 5 runs and Avg the average
penalty over all feasible solutions

With this longer timeout, SA could find feasible solutions
for nearly all of the runs, including the real-world instances.
Compared to the previous results, while SA clearly outper-
formsCP,VLNS still finds better solutions onmost instances.

SA still manages to find new best known solutions for the
three instances where CP and VLNS could not find solutions
at all, as well as for two additional instances (including one of
the real-world instances). In general, the relative performance
of SA is better on larger instances.

Table 5 Comparison of results for SA (see Table 3) with those of
Danzinger et al. (2020) (VLNS and CP), under a time limit of 10 min

# SA VLNS CP

#Feas Avg Best #Feas Avg Best

1 15/15 58.0 58 5/5 57.0 57 57

2 15/15 72.4 72 5/5 71.0 71 71

3 15/15 156.1 147 5/5 141.0 141 142

4 15/15 114.5 103 5/5 101.0 101 119

5 15/15 303.3 296 5/5 242.2 240 281

6 15/15 165.1 157 5/5 140.0 140 180

7 15/15 300.9 296 5/5 287.0 283 397

8 15/15 302.4 292 5/5 284.6 283 310

9 15/15 470.6 456 5/5 442.2 429 825

10 15/15 566.5 551 5/5 590.2 547 1038

11 15/15 938.4 912 5/5 860.8 840 1020

12 15/15 675.8 666 5/5 660.6 653 781

13 15/15 338.2 327 5/5 311.8 309 337

14 14/15 420.4 418 5/5 415.0 412 504

15 15/15 1063.5 1014 5/5 1106.2 1025 1830

16 13/15 1236.7 1216 5/5 1184.4 1175 1669

17 15/15 1185.3 1140 5/5 1166.6 1150 1445

18 15/15 1527.4 1500 5/5 1482.2 1436 1898

19 14/15 2239.9 2133 5/5 2419.2 2350 2772

20 15/15 2489.7 2391 5/5 2986.6 2955 3175

21 15/15 673.9 632 5/5 596.8 570 992

22 15/15 784.6 755 5/5 775.0 763 1113

23 12/15 2167.7 2070 0/5

24 15/15 1869.3 1807 0/5

25 10/15 2897.6 2601 0/5

26 13/15 2971.3 2809 5/5 3345.4 3109 3883

27 15/15 2124.3 2017 5/5 2750.6 2473 3984

28 15/15 2516.5 2468 5/5 2407.2 2372 3180

29 10/15 4358.5 3965 0/5

30 14/15 5104.1 4989 0/5

Lab1 4/15 3558.0 3511 5/5 4080.8 3923 5004

Lab2 1/15 2811.0 2811 5/5 2896.8 2779 3410

Lab3 3/15 2616.7 2606 5/5 2687.4 2646 3007

Columns #Feas contain the number of feasible solutions found (out of
5 runs), Best the best solution out of all 5 runs and Avg the average
penalty over all feasible solutions

The situation looks different when we compare the per-
formance of SA and VLNS using the original timeout of 10
min (Table 5). While VLNS still gives better results for the
smaller instances, SA finds better solutions for many of the
larger ones (see Fig. 3 for aggregate results).
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Fig. 3 Comparison of results for the approaches in Tables 3 and 5.
Results have been scaled by the best known solution for each instance.
The center and right groups contain only small (≤ 20 projects) and

large instances, respectively. Only feasible results were included, which
heavily influences the plots for MC + RW and ILS on large instances

5.2.2 Comparison with TLSP-S

In this section, we compare to results using SA for the TLSP-
S by Mischek and Musliu (2021). Since that work did not
include experiments on the three real-world instances, we
have rerun the experiments for those. Note also that the SA
described for the TLSP-S uses only the JobOpt and Equip-
mentChange neighborhoods, whoseweights are proportional
to the number of possible moves at each step.

When comparing results between theTLSP and theTLSP-
S, we need to take into account that for the latter, the solver
can (and must) use the grouping provided in the base sched-
ule of each instance. On the one hand, the knowledge that
the given grouping is already feasible makes it easier to find
a conflict-free schedule. The restriction to the fixed grouping
also allows the solver to simplify the search by precomputing
all job properties and ignore any regrouping neighborhoods.
On the other hand, while the grouping is guaranteed to be
feasible, it is likely not optimal. It is easy to see that any
optimal solution for the TLSP is at least as good as the opti-
mal solution of the corresponding TLSP-S instance with any
given grouping. Therefore, having a flexible grouping has the
potential of better solutions, in particular when a good ini-
tial grouping for TLSP-S is not known and cannot be easily
guessed.

Table 6 contains the results for SA for both theTLSP-S and
the TLSP, and also a variant of the TLSP where the known
grouping of the TLSP-Swas used to construct the initial solu-
tion (column TLSP*). An aggregate comparison of the three

approaches is shown in Fig. 4. SA for the TLSP manages to
produce solutions of the same quality as SA for the TLSP-S,
despite the drawback of the unknown grouping. The slight
overall advantage of the TLSP can mostly be credited to a
few outliers, in particular in the first instance, where a differ-
ent grouping admits solutions with nearly half the penalty of
the TLSP-S optimum. Providing the known grouping of the
TLSP-S instance to the initial solution construction in the
TLSP results in a slight improvement to several solutions,
but does not lead to additional feasible solutions. Notably, it
does not help with finding feasible solutions to the real-world
instances.

5.2.3 Neighborhood analysis

In order to determine the impact of each neighborhood on
the solution quality, we repeated the evaluations for SA, each
time with one of the neighborhoods removed. Table 7 shows
the results of these experiments.

It is immediately obvious that the JobOpt neighborhood
is absolutely essential to find feasible solutions at all. This
is not surprising, given that it is virtually the only neigh-
borhood that includes mode, time slot and resource changes
(the regrouping neighborhoods allow for somevery restricted
adjustments, but not enough to find non-trivial feasible solu-
tions).

A similar effect appears when removing the Equip-
mentChange neighborhood, though much less pronounced.
Since JobOpt does not modify equipment assignments, the
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Table 6 Results for the TLSP-S
Mischek and Musliu (2021) and
the TLSP (results from Table 3)
using SA

# TLSP-S TLSP TLSP*

#Feas Avg Best #Feas Avg Best #Feas Avg Best

1 10/10 98.0 98 15/15 58.0 58 5/5 58.0 58

2 10/10 73.0 73 15/15 72.4 72 5/5 72.0 72

3 10/10 156.4 152 15/15 156.1 147 5/5 151.4 149

4 10/10 105.0 105 15/15 114.5 103 5/5 107.8 103

5 10/10 300.1 287 15/15 303.3 296 5/5 301.0 296

6 10/10 192.2 177 15/15 165.1 157 5/5 158.0 157

7 10/10 307.4 307 15/15 300.9 296 5/5 300.6 297

8 10/10 312.0 310 15/15 302.4 292 5/5 301.4 297

9 10/10 502.7 501 15/15 470.6 456 5/5 475.8 467

10 10/10 565.3 564 15/15 566.5 551 5/5 568.0 555

11 10/10 879.0 874 15/15 938.4 912 5/5 938.8 930

12 10/10 668.0 663 15/15 675.8 666 5/5 683.4 671

13 10/10 352.1 352 15/15 338.2 327 5/5 337.6 330

14 10/10 425.7 422 14/15 420.4 418 5/5 423.0 417

15 10/10 1090.6 1087 15/15 1063.5 1014 5/5 1038.4 1010

16 10/10 1155.2 1143 13/15 1236.7 1216 4/5 1234.5 1231

17 10/10 1234.0 1195 15/15 1185.3 1140 5/5 1175.6 1153

18 10/10 1375.3 1364 15/15 1527.4 1500 5/5 1522.2 1497

19 10/10 2337.0 2277 14/15 2239.9 2133 5/5 2247.2 2224

20 10/10 2360.6 2312 15/15 2489.7 2391 4/5 2493.8 2426

21 10/10 686.6 683 15/15 673.9 632 5/5 697.0 677

22 10/10 771.9 767 15/15 784.6 755 5/5 795.2 787

23 6/10 2476.3 2393 12/15 2167.7 2070 5/5 2100.8 2044

24 10/10 1852.5 1808 15/15 1869.3 1807 5/5 1856.2 1803

25 8/10 3050.9 2908 10/15 2897.6 2601 4/5 2779.3 2634

26 10/10 2805.0 2724 13/15 2971.3 2809 5/5 2926.4 2897

27 10/10 2191.3 2176 15/15 2124.3 2017 5/5 2082.6 2034

28 10/10 2375.8 2367 15/15 2516.5 2468 5/5 2520.6 2469

29 9/10 4428.4 4208 10/15 4358.5 3965 3/5 4150.0 3697

30 9/10 4896.8 4828 14/15 5104.1 4989 3/5 5233.0 5125

Lab1 0/10 4/15 3558.0 3511 0/5

Lab2 5/10 2689.4 2658 1/15 2811.0 2811 1/5 2673.0 2673

Lab3 9/10 2718.2 2646 3/15 2616.7 2606 1/5 2641.0 2641

The third part, TLSP*, lists results for SA where the initial solution was created using the known grouping of
TLSP-S. Columns #Feas contain the number of feasible solutions found (out of 5 runs for TLSP and 10 runs
for TLSP-S), Best the best solution out of all runs and Avg the average penalty over all feasible solutions

solver basically has to try to find feasible solutions using the
equipment assigned in the initial (random) construction. An
interesting observation is that for those instances where a
feasible solution could be found, the solution quality is not
much worse than the baseline performance. This might be
related to the fact that equipment assignments don’t appear
in the objective function.

Removing the task transfer neighborhood has the least
effect on the solutions found, probably because its effect can
mostly be replicated by a corresponding split, followed by a
merge. Still, this neighborhood provides a way of fine-tuning

the grouping that is helpful in eliminating the last remaining
conflicts.

Without the option to split and merge jobs, the number of
jobs for each project (and for each family) cannot be changed
from those in the initial, greedy grouping. Since this grouping
often leads to infeasible schedules, it is not surprising that the
task transfer neighborhood alone cannot repair the conflicts
inmany cases. Despite the small weight of this neighborhood
(only 0.4% of moves), it has a marked impact on the ability
of the solver to find feasible solutions.
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Fig. 4 Comparison between results for TLSP-S, TLSP and TLSP*
using SA. The penalties for each instance were scaled by the best found
solution among those three approaches

Table 7 The performance of SA, using the same configuration as in
Table 3, but missing one of the neighborhoods

Neighborhoods % feasible Average quality

All 90.3% 1

No JobOpt 2.4% 1.86

No EquipmentChange 60.0% 1.03

No TaskTransfer 78.8% 1.03

No SplitMerge 74.5% 1.04

Shown are the percentage of feasible solutions found (out of 5 runs
for each of the 33 test instances), and the average quality of the feasi-
ble solutions found, scaled to the average performance of SA with all
neighborhoods (“All”)

6 Conclusions

In this paper, we considered the real-world scheduling prob-
lem TLSP and we proposed metaheuristic approaches for
this problem. We introduced four new neighborhoods which
alter the task grouping of a schedule. Combined with exist-
ing neighborhoods for the TLSP-S, which deal with mode,
time slot and resource assignments, they can be used in dif-
ferent metaheuristics to produce high-quality solutions, for
both randomly generated and real-world instances.

While a combination of Min-Conflicts and RandomWalk
was unable to find feasible solutions in reasonable time for
larger instances, Simulated Annealing produces results that
are competitive with VLNS, the current state-of-the-art for
the TLSP. For larger instances and under strict time limits, it
even outperforms VLNS.

Our experiments also show that MC+RW profits from
being included in an Iterated Local Search, while this was
not the case for SA.We conjecture that longer cooling cycles
are more useful than the added diversification due to the per-

turbation phases of ILS, in particular given the randommove
selection of SA.

Previously, all work on the TLSP(-S) has worked with
an empty base schedule (save for fixed assignments). An
interesting direction for future research would be to apply
ourmethods also to rescheduling scenarios,where an existing
schedule should be repaired or optimized.

We also aim to adapt and generalize our approaches for
other laboratories, which may feature different constraints
and objectives.

Finally, we plan to work on the possibility of adapting
dynamically the weights of the neighborhoods during the
search, by using some learning mechanisms, on the spirit of
the local search hyper-heuristic methodology of Bai et al.
(2012) applied for example by Pour et al. (2018) in another
structured problem.
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Appendices

A Formal problem definition of TLSP

The following provides the formal problem definition of the
TLSP, taken directly from the technical report (Mischek and
Musliu 2018):

In the TLSP, a list of projects is given, such that each
project contains several tasks. For each project, the tasksmust
be partitioned into a set of jobs, with some restrictions on the
feasible partitions. Then, those jobs must each be assigned
a mode, time slots and resources. The properties and feasi-
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ble assignments for each job are calculated from the tasks
contained within.

A solution of TLSP is a schedule consisting of the follow-
ing parts:

– A list of jobs, composed of one or multiple similar tasks
within the same project.

– For each job, an assigned mode, start and end time slots,
the employees scheduled to work on the job, and an
assignment to a workbench and equipment.

The quality of a schedule is judged according to an
objective function that is the weighted sum of several soft
constraints and should be minimized. Among others, these
include the number of jobs and the total completion time
(start of the first job until end of the last) of each project.

A.1 Input parameters

A TLSP instance can be split into three parts: The laboratory
environment, including a list of resources, a list of projects
containing the tasks that should be scheduled together with
their properties and the current state of the existing schedule,
which might be partially or completely empty.

A.1.1 Environment

In the laboratory, resources of different kinds are available
that are required to perform tasks:

– Employees e ∈ E = {1, . . . , |E |} who are qualified for
different types of tasks.

– A number of workbenches b ∈ B = {1, . . . , |B|} with
different facilities. (These are comparable to machines in
shop scheduling problems.)

– Various auxiliary laboratory equipment groups Gg =
{1, . . . , |Gg|}, where g is the group index. These rep-
resent sets of similar devices. The set of all equipment
groups is called G∗.

The scheduling period is composed of time slots t ∈ T =
{0, . . . , |T |−1}. Each time slot represents half a day of work.

Tasks are performed in one of several modes labeled
m ∈ M = {1, . . . , |M |}. The chosen mode influences the
following properties of tasks performed under it:

– The speed factor vm , which will be applied to the task’s
original duration.

– The number of required employees em .

A.1.2 Projects and tasks

Given is a set P of projects labeled p ∈ {1, . . . , |P|}. Each
project contains tasks pa ∈ Ap, with a ∈ {1, . . . , |Ap|}. The
set of all tasks (over all projects) is A∗ = ⋃

p∈P Ap.
Each task pa has several properties:

– It has a release date αpa and both a due date ω̄pa and a
deadline ωpa . The difference between the latter is that a
due date violation only results in a penalty to the solution
quality, while deadlines must be observed.

– Mpa ⊆ M is the set of available modes for the task.
– The task’s duration dpa (in time slots, real-valued).
Under any given mode m ∈ Mpa , this duration becomes
dpam := dpa ∗ vm .

– Most tasks must be performed on a workbench. This
is indicated by the Boolean parameter bpa ∈ {0, 1}. If
required, this workbench must be chosen from the set of
available workbenches Bpa ⊆ B.

– Similarly, it requires qualified employees chosen from
Epa ⊆ E . The required number depends on the mode. A
further subset EPr

pa ⊆ Epa is the set of preferred employ-
ees.

– Of each equipment group g ∈ G∗, the task requires rpag
devices, which must be taken from the set of available
devices G pag ⊆ Gg .

– A list of direct predecessors Ppa ⊆ Ap, which must
be completed before the task can start. Note that prece-
dence constraints can only exist between tasks in the same
project.

Each project’s tasks are partitioned into families Fp f ⊆
Ap, where f is the family’s index. For a given task pa, f pa
gives the task’s family. Only tasks from the same family can
be grouped into a single job.

Additionally, each family f is associated with a certain
setup time sp f , which is added to the duration of each job
containing tasks of that family.

Finally, it may be required that certain tasks are performed
by the same employee(s)2. For this reason, each project p
may define linked tasks, which must be assigned the same
employee(s). Linked tasks are given by the equivalence rela-
tion Lp ⊆ Ap × Ap, where two tasks pa and pb are linked
if and only if (pa, pb) ∈ L p.

A.1.3 Initial schedule

All problem instances include an initial (or base) schedule,
which may be completely or partially empty. This schedule

2 This is used most notably to ensure that documentation is prepared
by those employees who also did the tests.
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can act both as an initial solution and as a baseline, placing
limits on the schedules of employees and tasks, in particular
by defining fixed assignments that must not be changed.

Provided is a set of jobs J 0, where each job j ∈ J 0 con-
tains the following assignments:

– The tasks in the job: Ȧ j

– A fixed subset of these tasks ȦF
j ⊆ Ȧ j . All fixed

tasks of a job in the base schedule must also appear
together in a single job in the solution.

– The mode assigned to the job: ṁ j

– The start and completion times of the job: ṫ sj resp. ṫ
c
j

– The resources assigned to the job:

– Workbench: ḃ j

– Employees: Ė j

– Equipment: Ġg j for equipment group g

Except for the tasks, each individual assignment may or
may not be present in any given job. Fixed tasks are assumed
to be empty, if not given. In all other cases, missing assign-
ments will be referred to using the value ε. Time slots and
employees can only be assigned if also a mode assignment
is given.

A subset of these jobs are the started jobs J 0S . A started
job j s ∈ J 0S must fulfill the following conditions:

– It must contain at least one fixed task. It is assumed that
the fixed tasks of a started job are currently being worked
on.

– Its start time must be 0.
– Itmust contain resource assignments fulfilling all require-
ments.

A started job’s duration does not include a setup time. In the
solution, the job containing the fixed tasks of a started job
must also start at time 0. Usually, the resources available to
the fixed tasks of a started job are additionally restricted to
those assigned to the job, to avoid interruptions of ongoing
work in case of a rescheduling.

A.2 Jobs and grouping

For various operational reasons, tasks are not scheduled
directly. Instead, they are first grouped into larger units called
jobs.

A single job can only contain tasks from the same project
and family.

Jobs have many of the same properties as tasks, which
are computed from the tasks that make up a job. The general
principle is that within a job, tasks are not explicitly ordered

or scheduled; therefore the job must fulfill all requirements
of each associated task during its whole duration3.

Let J = {1, . . . , |J |} be the set of all jobs in a solution
and Jp ⊆ J be the set of jobs of a given project p. Then for
a job j ∈ J , the set of tasks contained in j is Ȧ j . j has the
following properties:

p̃ j and f̃ j

are the project and family of j .

α̃ j := max
pa∈ Ȧ j

αpa , ˜̄ω j := min
pa∈ Ȧ j

ω̄pa , ω̃ j := min
pa∈ Ȧ j

ωpa

are the release date, due date and deadline of j , respectively.

M̃ j :=
⋂

pa∈ Ȧ j

Mpa

is the set of available modes.

d̃ jm :=
⌈
(sp j f j +

∑

pa∈ Ȧ j

dpa) ∗ vm

⌉

is the (integer) duration of the job under mode m. The addi-
tional setup time is added to the total duration of the contained
tasks.

b̃ j := max
pa∈ Ȧ j

bpa

is the required number of workbenches (b̃ j ∈ {0, 1}).

B̃ j :=
⋂

pa∈ Ȧ j

Bpa

are the available workbenches for j .

Ẽ j :=
⋂

pa∈ Ȧ j

E pa

are the employees qualified for j .

Ẽ Pr
j :=

⋂

pa∈ Ȧ j

E Pr
pa

are the preferred employees of j .

r̃ jg := max
pa∈ Ȧ j

r pag

3 while this might seem overly restrictive, tasks of the same family
usually have equivalent or very similar requirements in practice
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are the required units of equipment group g.

G̃ jg :=
⋂

pa∈ Ȧ j

G pag

are the available devices for equipment group g.

P̃ j := {k ∈ J\{ j} : ∃pa ∈ Ȧ j , pb ∈ Ȧk s.t. pb ∈ Ppa}

is the set of predecessor jobs of j . Finally,

L̃ p := {( j, k) ∈ J × J : j �= k ∧ ∃pa ∈ Ȧ j , pb ∈ Ȧk s.t. (pa, pb) ∈ Lp}

defines the linked jobs in project p.
In addition, a solution contains the following assignments

for each job:

– ṫ sj ∈ T the scheduled start time slot
– ṫ cj ∈ T the scheduled completion time
– ṁ j ∈ M the mode in which the job should be performed
– ḃ j ∈ B the workbench assigned to the job (ε if no work-

bench is required)
– Ė j ⊆ E the set of employees assigned to the job
– Ġ jg ⊆ Gg the set of assigned devices from equipment

group g

A.3 Constraints

A solution is evaluated in terms of constraints that it should
fulfill. Hard constraints must all be satisfied in any feasible
schedule, while the number and degree of violations of soft
constraints in a solution give a measure for its quality.

For the purpose of modeling, we introduce additional
notation: The set of active jobs at time t is defined as
Jt := { j ∈ J : ṫ sj ≤ t ∧ ṫ cj > t}.

A.3.1 Hard constraints

H1: Job assignment. Each task must be assigned to exactly
one job.

∀p ∈ P, pa ∈ Ap :
∃! j ∈ J s.t. pa ∈ Ȧ j

H2: Job grouping. All tasks contained in a job must be from
the same project and family.

∀ j ∈ J , pa ∈ Ȧ j :
p = p̃ j

fpa = f̃ j

H3: Fixed tasks. Each group of tasks assigned to a fixed job
in the base schedule must also be assigned to a single job
in the solution.

∀ j0 ∈ J 0 :
∃ j ∈ J s.t. ȦF

j0 ⊆ Ȧ j

H4: Job duration. The interval between start and completion
of a job must match the job’s duration.

∀ j ∈ J :
ṫ cj − ṫ sj = d̃ jṁ j

H5: Time Window. Each job must lie completely within the
time window from the release date to the deadline.

∀ j ∈ J :
ṫ sj ≥ α̃ j

ṫ cj ≤ ω̃ j

H6: Task precedence. A job can start only after all prereq-
uisite jobs have been completed.

∀ j ∈ J , k ∈ P̃ j :
ṫ ck ≤ ṫ sj

H7: Started jobs. A job containing fixed tasks of a started
job in the base schedule must start at time 0.

∀ j ∈ J , j s ∈ J 0S :
t Fjs = 1 ∧ ȦF

js ⊆ Ȧ j �⇒ ṫ sj = 0

H8: Single assignment. At any one time, each workbench,
employee and device can be assigned to at most one job.

∀b ∈ B, t ∈ T :
|{ j ∈ Jt : ḃ j = b}| ≤ 1

∀e ∈ E, t ∈ T :
|{ j ∈ Jt : e ∈ Ė j }| ≤ 1

∀g ∈ G∗, d ∈ Gg, t ∈ T :
|{ j ∈ Jt : d ∈ Ġ jg}| ≤ 1

H9a: Workbench requirements. Each job requiring a work-
bench must have a workbench assigned.

∀ j ∈ J :
ḃ j = ε ⇐⇒ b̃ j = 0
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H9b: Employee requirements. Each job must have enough
employees assigned to cover the demand given by the
selected mode.

∀ j ∈ J :
|Ė j | = eṁ j

H9c: Equipment requirements. Each job must have enough
devices of each equipment group assigned to cover the
demand for that group.

∀ j ∈ J , g ∈ G∗ :
|Ġ jg| = r̃ jg

H10a: Workbench suitability. The workbench assigned to a
job must be suitable for all tasks contained in it.

∀ j ∈ J :
ḃ j = ε ∨ ḃ j ∈ B̃ j

H10b: Employee qualification. All employees assigned to a
job must be qualified for all tasks contained in it.

∀ j ∈ J :
Ė j ⊆ Ẽ j

H10c: Equipment availability. The devices assigned to a job
must be taken from the set of available devices for each
group.

∀ j ∈ J , g ∈ G∗ :
Ġ jg ⊆ G̃ jg

H11: Linked jobs. Linked jobs must be assigned exactly the
same employees.

∀p ∈ P, ( j, k) ∈ L̃p :
Ė j = Ėk

A.3.2 Soft constraints

The following constraints can be used to evaluate the quality
of a feasible solution. They arise from the business require-
ments of our industrial partner.

Each soft constraint violation induces a penalty on the
solution quality, denoted as Ci , where i is the soft constraint
violated.

S1: Number of jobs. The number of jobs should be mini-
mized.

CS1 := |J |

S2: Employee project preferences. The employees assigned
to a job should be taken from the set of preferred employ-
ees.

∀ j ∈ J :
CS2

j := |{e ∈ Ė j : e /∈ ẼPr
j }|

S3: Number of employees. The number of employees
assigned to each project should be minimized.

∀p ∈ P :
CS3
p := |

⋃

j∈Jp

Ė j |

S4: Due date. The internal due date for each job should be
observed.

∀ j ∈ J :
CS4

j := max(ṫ cj − ˜̄ω j , 0)

S5: Project completion time. The total completion time (start
of the first job to end of the last) of each project should
be minimized.

∀p ∈ P :
CS5

p := max
j∈Jp

ṫ cj − min
j∈Jp

ṫ sj

Constraint S1 favors fewer, longer jobs over more frag-
mented solutions. This helps reducing overhead (fewer setup
periods necessary, rounding of fractional durations), but even
more important, it reduces the complexity of the final sched-
ule, both for the employees performing the actual tasks and
any human planners in those cases where manual corrections
or additions become necessary.

Constraint S2 allows defining “auxiliary” employees,
which should only be used if necessary. Typically, these
employees usually have other duties, but also possess the
required qualifications to perform (some) tasks in the labo-
ratory.

Constraints S3 and S5 reduce overheads by reducing
the need for communication (both internal and external),
(re-)familiarization with project-specific test procedures and
storage space.

Constraint S4 makes the schedule more robust by encour-
aging tasks to be completed earlier than absolutely required,
so they can still be finished on time in case of delays or other
disturbances.

The overall solution quality will be determined as the
weighted sum over all soft constraint violations.
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