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Abstract: The bifurcation analysis of a film falling down an hybrid surface is conducted via the
numerical solution of the governing lubrication equation. Instability phenomena, that lead to film
breakage and growth of fingers, are induced by multiple contamination spots. Contact angles up
to 75◦ are investigated due to the full implementation of the free surface curvature, which replaces
the small slope approximation, accurate for film slope lower than 30◦. The dynamic contact angle is
first verified with the Hoffman–Voinov–Tanner law in case of a stable film down an inclined plate
with uniform surface wettability. Then, contamination spots, characterized by an increased value
of the static contact angle, are considered in order to induce film instability and several parametric
computations are run, with different film patterns observed. The effects of the flow characteristics
and of the hybrid pattern geometry are investigated and the corresponding bifurcation diagram with
the number of observed rivulets is built. The long term evolution of induced film instabilities shows
a complex behavior: different flow regimes can be observed at the same flow characteristics under
slightly different hybrid configurations. This suggest the possibility of controlling the rivulet/film
transition via a proper design of the surfaces, thus opening the way for relevant practical application.

Keywords: lubrication; bifurcation analysis; heterogeneous surfaces; disjoining pressure; capillary
pressure

1. Introduction

The evolution of a thin liquid film is involved in several engineering applications. For
example, in in-flight icing phenomenon, the ice accretion on the airplane wings during
the take-off and the landing stages is driven by the evolution of a liquid layer fed by
supercooled droplets from the clouds, and may severely affect flight safety [1]. The
prediction of the liquid behavior, which may evolve as a droplets population, an ensemble
of rivulets or a continuous film is crucial to estimate both the induced ice surface roughness
and the extent of the runback water flow. Liquid film coating is driven by the evolution
of a thin liquid layer [2], which is required to cover the solid surface as a continuous
film in order to form a uniform layer, while being kept as thin as possible to ensure a
proper coating efficiency. Even in chemical engineering, liquid film evolution is involved
in absorption and distillation processes. In CO2 absorption through structured packing,
a liquid solvent, that falls down a collection of corrugated sheets, captures the exhaust
CO2, which flows up through the same packed layers via chemical reaction. Since the
absorption process is enhanced at maximum interfacial area between liquid solvent and
gas solute, the continuous film regime is required. However, the liquid layer must be as
thin as possible in order to avoid flooding condition occurrence. Empirical models, which
correlates the interfacial area to the liquid hold-up inside structured packing, are available
in literature [3,4]. However, such models assume that a continuous film flows through
the packed layer and, thus, the effective liquid behavior, which may also arrange as a
collection of rivulets, seriously affecting the efficiency, is not considered. Furthermore,
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thin liquid layers are also involved in: fluid dynamics inside a lubricated bearing [5–7],
where the fluid is confined between two solid moving walls and different challenges arise,
such as complex regimes map function of velocity and surface topology and roughness,
which do not appear in free surface film problems; non-Newtonian fluid motion inside
micro-systems [8].

On the other hand, film instability phenomena are of great interest from a mathe-
matical point of view and have been largely investigated in literature in a number of
numerical [9–13], analytical [14,15], and experimental [16,17] studies. The rupture of 1D
film driven by capillary forces and viscous dissipation over a heterogeneous surface was
numerically studied in [10], assuming lubrication approximation and modeling the surface
wettability via disjoining pressure, and the possible configurations were mapped as a
function of amplitude (multiplying disjoining pressure) and periodicity (pattern length)
of the imposed pattern defining the heterogeneous surface. The occurrence of 2D fin-
ger instability over a heterogeneous surface was numerically investigated by Zhao and
Marshall [12] assuming lubrication approximation. Dry patch generation and stability
were experimentally studied in [16,17], introducing a local perturbance in order to induce
the rupture of a continuous film pattern flowing down an inclined plate. Here, a film
model based on enhanced lubrication theory, capable of simulate relatively high contact
angles due to a full surface curvature formulation, is validated and used to numerically
analyze the stability of the front of a thin film flowing over an inclined plate, character-
ized by an heterogeneous surface (i.e., non-uniform surface wettability). According to
literature [12,13,18–21], the surface wettability is implemented assuming the existence of a
precursor film thickness and using the disjoining pressure model. The implementation of
the exact interface curvature to compute the capillary pressure allows to investigate contact
angles up to θs = 75◦ [20]. A in-house code, previously developed in FORTRAN language
and validated by the Authors [19,20], was updated and parallelized for a shared memory
machine using OpenMP library to speed up computations. First, the stability of a 1D film
down a vertical plate is investigated for different surface wettabilities and the dynamic con-
tact angle is verified with the well known Tanner–Hoffman–Voinov law. Then, parametric
computations are run to conduct the bifurcation analysis of a 2D film flowing down an
inclined plate, initially dry, characterized by an heterogeneous surface with non-uniform
surface wettability, that induce film instability. Two different solid surface morphology
are considered: a single, horizontal array of contamination spots with decreased surface
wettability, θs = 75◦, hit by a falling film, may lead to finger instability with generation of
stationary or shedding rivulets, depending on the contamination spot spacing and on the
flow characteristics; surface configurations occurring in practical problems are mimicked
via the imposition of a random wettability distribution, with θs up to 60◦, and the effect of
the solid surface morphology on the liquid layer evolution is investigated. The first test
case is aimed at testing the possibility of controlling the rivulet/film transition via a proper
design of the heterogeneous surface, while the second test case is aimed at verifying the
effect of solid surface unwanted heterogeneity due to roughness or fouling. Both the onset
of finger instabilities and their long term evolution are considered. The former confirms
literature linear stability analysis. The latter shows the actual practical implication of such
instabilities: controlling the solid surface wettability properties allows to achieve different
liquid layer regimes at the same flow characteristics.

2. Mathematical Model

Consider a thin liquid film flowing over an inclined plate, driven by gravity, surface
tension, and viscous dissipation forces. Let α be the plate slope, h0 and u0 the undisturbed
film thickness and the undisturbed film velocity, that can be expressed via Nusselt film
theory [22],

u0 =
ρ g sin α h0

2

3 µ
. (1)
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Lubrication theory allows to integrate continuity equation across the film thickness.
Further assuming low film Reynolds number,

Re =
ρ u0 h0

µ
= O(1), (2)

liquid inertia can be neglected and the momentum equation gives a parabolic velocity
profile, which can be averaged across the film thickness and substituted in the continuity
equation, giving the governing lubrication equation [18],

∂h
∂t

+∇ ·
(
−∇p

3 µ
h3
)
= 0, (3)

with h and p being the unknown film thickness and the local film pressure. The pressure
field is given by the hydrostatic, capillary, and disjoining contributions [18],

p = ρ g (h cos α− y sin α)− 2 σ κ − D, (4)

with y and 2 κ being the plate downhill direction and the liquid–gas free surface curvature.
The disjoining pressure, which models the intermolecular forces between solid and liquid
surfaces, was integrated with lubrication theory by Schwartz and Eley [18],

D = B
[(

d
h

)n
−
(

d
h

)m]
(5)

B = f
(n− 1)(m− 1)

n−m
σ

d
(1− cos θs), n > m > 1, (6)

with d�h0 and θs being the precursor film thickness and the static contact angle.
Since the disjoining coefficient B was derived by Schwartz and Eley [18] under the as-

sumption of infinitesimal value of the precursor film thickness, the correction coefficient f ,

f = 1 + 6.069 δ + 161.7 δ2 − 1547 δ3 + 5890 δ4, (7)

with δ = d/h0, was introduced by Zhao and Marshall [12] in order to extend disjoining
pressure to non-infinitesimal values of δ, as it happens in numerical simulations.

The small slope approximation,

2 κ'∇2h, (8)

which is usually adopted to estimate the free surface curvature, is not accurate when the
film slope is higher than 30◦ [23]. However, it was proved in [20] that contact angles up to
θs = 60◦ can be investigated via full implementation of the free surface curvature [24],

2 κ =

∂2h
∂x2

[
1 +

(
∂h
∂y

)2
]
+ ∂2h

∂y2

[
1 +

(
∂h
∂x

)2
]
− 2 ∂h

∂x
∂h
∂y

∂2h
∂x∂y[

1 +
(

∂h
∂x

)2
+
(

∂h
∂y

)2
]3/2 . (9)

Defining the film Bond number as the ratio between gravity and surface tension forces,

Bo =
ρ g sin α h0

2

σ
, (10)

and introducing the following non-dimensional quantities,

H =
h
h0

, X =
x
L0

, Y =
y
L0

, T =
t

(L0/u0)
, Π =

D
(σ/h0)

, (11)
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with L0 being the characteristic length scale [12],

L0 =

(
σ h0

ρ g sin α

)1/3
=

h0

Bo1/3 , (12)

the governing lubrication equations, Equations (3), (4), and (9), are recast as

∂H
∂T

+∇ ·
(
−∇P H3

)
= 0 (13)

P =

(
Bo1/3

tan α
H −Y

)
− 2 K− Π

Bo2/3 (14)

2 K =

∂2 H
∂X2

[
1 + Bo2/3

(
∂H
∂Y

)2
]
+ ∂2 H

∂Y2

[
1 + Bo2/3

(
∂H
∂X

)2
]
− 2 Bo2/3 ∂H

∂X
∂H
∂Y

∂2 H
∂X∂Y[

1 + Bo2/3
(

∂H
∂X

)2
+ Bo2/3

(
∂H
∂Y

)2
]3/2 . (15)

Equations (13)–(15) are numerically solved on a orthogonal, structured grid of nx×ny
elements via Finite Volume Method. A in-house FORTRAN source code, previously devel-
oped and validated by the Authors [19,20], was updated. In particular, the first order
upwind scheme was replaced by the second order centered scheme suggested by Diez and
Kondic [9] for the discretization of film fluxes. The Alternating Direction Implicit (ADI)
approximate factorization presented by Witelski and Bowen [25] was implemented for
time marching. Thus, the film volumetric flux,

Q = −∇P H3 = −∇
(

Bo1/3

tan α
H −Y− 2 K− Π

Bo2/3

)
H3, (16)

is decomposed into two components, regrouping the higher derivatives in F,

Q = F + G (17)

F = H3



∂

∂X

(
∂2H
∂X2

) 1 + Bo2/3
(

∂H
∂Y

)2

[
1 + Bo2/3

(
∂H
∂X

)2
+ Bo2/3

(
∂H
∂Y

)2
]3/2

∂

∂Y

(
∂2H
∂Y2

) 1 + Bo2/3
(

∂H
∂X

)2

[
1 + Bo2/3

(
∂H
∂X

)2
+ Bo2/3

(
∂H
∂Y

)2
]3/2


. (18)

Linearizing the higher order derivatives terms in F,

F ' F0 +
∂F0

∂H
(H − H0) (19)

∂F
∂H

= H3



∂

∂H

[
∂

∂X

(
∂2H
∂X2

)] 1 + Bo2/3
(

∂H
∂Y

)2

[
1 + Bo2/3

(
∂H
∂X

)2
+ Bo2/3

(
∂H
∂Y

)2
]3/2

∂

∂H

[
∂

∂Y

(
∂2H
∂Y2

)] 1 + Bo2/3
(

∂H
∂X

)2

[
1 + Bo2/3

(
∂H
∂X

)2
+ Bo2/3

(
∂H
∂Y

)2
]3/2


, (20)

and applying the approximate factorization [18,25], the sparse, non-linear algebraic system
can be splitted into two pentadiagonal, linear systems to be solved at each time step.
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According to [18,25], the higher order cross derivatives arising in F are treated explicitly.
Since first order accuracy is only ensured from two-step schemes when approximate ADI
factorization is considered [25], the implicit Euler scheme was implemented in order
to promote convergence. The integration time step is dynamically adjusted limiting the
allowed increment in the film thickness at successive integration steps. The source code was
parallelized for shared memory machines using OpenMP in order to speed up computations.
In particular, the two pentadiagonal systems from ADI factorization are decomposed
into nx and ny independent sub-systems, which are assigned to different threads. The
visualization of the numerical results was performed using the open source graphing utility
gnuplot.

3. Results and Discussion
3.1. Numerical Setup

Three different configurations were considered for numerical computations:

• First, the stability and dynamics of a 1D falling film down an inclined plate was
investigated. A uniform substrate wettability was considered. Symmetry condition,
Q · n̂ = 0 and ∇H · n̂ = 0, was applied through the lateral boundaries, X = 0 and
X = LX, meaning that an infinitely wide plate is simulated. Q · n̂ = 1 and H = 1
were imposed through the inlet section, located at Y = 0, while fully developed flow,
∇H · n̂ = 0 and ∇P · n̂ = 0, was assumed through Y = LY. LX = 1 was set far all the
1D computations.

• Second, a 2D film flowing down an inclined plate, characterized by a single array of
equally spaced contamination spots with decreased surface wettability, was simulated,
Figure 1a. Defining LX as the distance between adjacent contamination spots, only a
portion of width LX/2 was considered, due to the problem symmetry. Thus, symmetry
condition was imposed through X = 0 and X = LX/2, while inlet condition and fully
developed flow were applied at Y = 0 (top-most section) and Y = LY (bottomest
section) respectively. The low-wettable square patch of dimension L0 defining the
contamination spot was located at Y = 4, far enough from the inlet section (Y = 0) to
avoid boundary effects.

• Finally, the hybrid surface shown in Figure 1b, characterized by the following periodic,
isotropic smooth random wettability distribution from [26], was investigated,

θ(x, y) = θ0 +
+n0

∑
k=−n0

+mk

∑
j=−mk

aj,k cos
(

2 π j x
Lx

+
2 π k y

Ly
+ ψj,k

)
(21)

mk =

m0

√
1−

(
k

n0

)2
, (22)

with ajk being random coefficients falling inside a given range, ψj,k ∈ [−π, +π] being
the random phase of cosine function, m0 and n0 being the number of harmonics over
x and y. In order to ensure physical consistency, periodic conditions were applied
through X = 0 and X = LX. Inlet condition and fully developed flow were again
applied through Y = 0 and Y = LY.
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Ly
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u0, h0

(a)

x

y

Ly

Lx

u0, h0

(b)

x

y

Figure 1. Investigated hybrid configurations: single array of equally spaced contamination spots (a);
draft of the hybrid surface characterized by randomly distributed contamination spots (b).

The solution was always initialized imposing a dry domain, i.e., assuming a uniform
film thickness, equal to the characteristic precursor film over the whole computational
domain at the initial stage of the computation, H(X, Y)|T0

= δ.

3.2. Dynamic Contact Angle

The stability of a 1D film falling down an inclined plate was investigated, running
parametric computations at decreasing film Bond number, until film rupture was observed.
Different surface wettabilities were investigated, with the imposed contact angle varying
in the wider range allowed by the full free surface curvature formulation, θs ∈ [30◦, 60◦].
The plate slope was set to α = 60◦ for all the simulations. The dynamic (advancing) contact
angle θ, computed as the maximum free surface slope at the apparent contact line, was
also traced, in case of a stable film, for each computation, considering the self-similar free
surface profile of the advancing film. According to literature [12,13,18,20], the precursor
film thickness and the disjoining exponents were set to δ = 5 × 10−2 and n = 3, m = 2,
which represents a good compromise between computational costs and accuracy of the
numerical solution. A preliminar grid independency analysis was conducted in the most
critical configuration. Thus, setting θs = 60◦, Bo = 5 × 10−2, which represents one of
the most critical investigated configurations, and progressively decreasing the spatial
discretization step ∆X, it was found that ∆X = 1.5× 10−2 ensures grid independency,
since further decreasing ∆X to 7.5× 10−3 leads to a less than 1% deviation on the computed
dynamic contact angle. Thus, a spatial discretization step of ∆X ≤ 1.5 × 10−2 was imposed
for all the computations.

In Figure 2a, both the stable film solution and the self-similar droplet deriving from
film rupture are presented for a given surface wettability, θs = 60◦, and slightly different
Bond numbers. A bifurcation of the solution is, thus, observed as the stable film con-
figuration is replaced, below the critical Bond number, by the droplet regime, induced
by film rupture occurrence. Figure 2b shows the stable film solution at Bo = 5.01, but
different surface wettabilities, qualitatively demonstrating that higher free surface slope,
are obtained by imposing higher static contact angle in the disjoining pressure.
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θs = 45◦

θs = 30◦

Figure 2. Stable film solution (continuous line) and self-similar droplet (dashed line) generated by
film rupture at slightly different Bond numbers , θs = 60◦ (a); Stable film solution at different surface
wettabilities, Bo = 5.01 (b). α = 60◦.

The dynamic contact angle, traced as a function of both the surface wettability and
the Bond number in case of a stable advancing 1D film, is presented in Figure 3. It is
worth pointing out that the critical Bond number, which defines the transition between
film instability occurrence and stable film (leftmost markers in Figure 3), depends on the
imposed surface wettability, with a higher contact angle leading to higher critical Bond
number (thus, the film is likely to be subject to instability phenomena at lower surface
wettability). As widely reported in literature [12,27,28], the cube of the dynamic contact
angle depends on the film velocity according to Tanner–Hoffman–Voinov law,(

θ

θs

)3
= 1 + C

µ uc

σ
, uc = u0

1− δ3

1− δ
, (23)

with u0 being the undisturbed film velocity and C being a constant parameter. Expressing
u0 via Nusselt film theory, Equation (1), and retaining the usually neglected logarithmic
term [28], Equation (23) can be recast as(

θ

θs

)3
= C0 + Bo

[
C1 + C2 log

(
Bo1/3

)]
. (24)

Following [19,20], the computed dynamic contact angle is compared to Equation (24),
with C0,1,2 being the fitting parameters, in order to verify the effectiveness of disjoining pres-
sure model in the wider range of contact angles allowed by the full curvature formulation.
Almost a perfect agreement for θs up to 60◦ can be observed in Figure 3.
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θs = 55◦
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Figure 3. Dynamic contact angle for a stable film as a function of the film Bond number and of
the static contact angle: numerical points (markers) vs. Equation (24) (continuous lines). Left-most
markers depicts the critical Bond number at different surface wettability, below witch film instability
occurs. 1D falling film, α = 60◦.

3.3. Single Array of Contamination Spots

A single array of lower wettability contamination spots, characterized by an increased
value of the imposed static contact angle, was investigated, as pointed out in Section 3.1.
A somewhat similar setup was investigated by Zhao and Marshall [12], who imposed a
sequence of vertical strips, with different contact angle inducing fingering instability. Here,
the eventual film instability is induced by localized spots. Furthermore, higher contact an-
gles are here investigated, as allowed by the full modelization of the free surface curvature.
The influence of both the dimensionless distance LX between successive contamination
spots and the film Bond number, Equation (10), on the resulting liquid layer distribution
were analysed, in terms of number of observed rivulets. Parametric computations were run,
in the range LX ∈ [5, 30] and Bo ∈ [0.11, 0.16]. The static contact angle was set to θs = 60◦

over the whole computational domain, except inside the contamination spot, where the
contact angle was set to an increased value of 75◦, while the plate slope was set to α = 60◦.
According to literature [12,13,18,20], the precursor film thickness was set to δ = 5 × 10−2,
while the disjoining exponents were set to n = 3, m = 2. Spatial discretization steps of
∆X, ∆Y ≤ 1.5 × 10−2 were imposed in order to ensure grid independency, while LY = 20
was chosen as the plate length along the downhill direction, in order to let the liquid film
develop and, thus, avoid boundary effects.

All the observed configurations, defined by the number of rivulets flowing within a
periodic length LX , are summarized in the bifurcation diagram, Figure 4, as a function of
the distance between neighbor contamination spots and of the Bond number. Figure 4a
shows the number of rivulets at T = 10 (thus, right after the undisturbed film gets over the
contamination spots). Since the liquid bulk has not reached the outlet section at T = 10,
the number of rivulets was computed as the number of streamwise peaks of the evolving
contact line, which is defined by the position of the local maximum of the free surface slope.
It is important to point out that the number of observed rivulets mainly depends on the
dimensionless distance between neighbor contamination spots, which in turn depends on
the imposed film Bond number,

LX =
Lx

L0
=

Lx

h0
Bo1/3. (25)
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In fact, critical lengths defining the transition between different configurations can
be identified: L01∼6 corresponds to the appearance of a single rivulet; L12∼16 defines
the transition from 1 to 2 rivulets; L23∼25 defines the transition between 2 to 3 rivulets.
Additionally, defining ∆L1 = L12 − L01 and ∆L2 = L23 − L12, it comes that new rivulets
forms at ∆Li close to the characteristic perturbation wavelength, λ = 9.4, deriving from
linear stability analysis of the governing lubrication equation [12].

5

10

15

20

25

30

0.1 0.12 0.14 0.16

L
X

Bo

(a)

N = 0

N = 1

N = 2

N = 3

0.1 0.12 0.14 0.16
Bo

(b)

N = 0

N = 1

N = 2

N = 3

N = 4

Figure 4. Bifurcation diagram with number of observed rivulets: number of rivulets at T = 10 (a);
number of stationary rivulets (b). α = 60◦, θs = 60◦ (75◦ inside contamination spot).

The above defined instabilities may evolve into stable dry patches or may be shed
away, leaving a continuous film upstream of an advancing unstable front. These regimes are
mapped in Figure 4b, which depicts the steady state solution. The figure offers a complex
behavior, since it includes long term evolution and effective growth of the local perturbance,
and the effect of the imposed restrictions (such as periodicity) which are not accounted
for in the linear stability analysis. Figure 4b shows that five different configurations can
be observed: fully wetted domain (N = 0), usually observed at low distance between
neighbor low-wettable spots and at high Bond number; a single rivulet (N = 1), which
flows between neighbor contamination spots; 2 rivulets (N = 2), one flowing between
neighbor contamination spots and one wetting the contamination spot, as shown by
Figure 5b; 3 rivulets (N = 3), 2 of them forming between neighbor contamination spots
and one wetting the spot, Figure 6b; 4 rivulets (N = 4), 3 between neighbor contamination
spots and, again, one more rivulet, which wets the spot, Figure 7b.

Figure 5. Film thickness solution at T = 11 (a); 2 rivulet configuration, steady state film distribution
(b). Bo = 0.11, LX = 15, α = 60◦, θs = 60◦ (75◦ inside contamination spot, denoted by a green cross).
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Figure 6. Film thickness solution at T = 11 (a); 3 rivulet configuration, steady state film distribution
(b). Bo = 0.11, LX = 22, α = 60◦, θs = 60◦ (75◦ inside contamination spot, denoted by a green cross).

Figure 7. Film thickness solution at T = 11 (a); 4 rivulet configuration, steady state film distribution
(b). Bo = 0.11, LX = 30, α = 60◦, θs = 60◦ (75◦ inside contamination spot, denoted by a green cross).

Figures 5–7, which show some of the observed configurations at Bo = 0.11 and
increasing distance LX between contamination spots, apparently suggest a correlation
between the dimensionless length LX (which is, in turn, correlated to the number of
transient rivulets, observed right after the liquid front hits the contamination spot) and the
number of steady rivulets. However, looking at Figure 4b, both the 3 rivulets and the fully
wetted configurations may occur at an unexpected high value of LX .

For a better understanding of the contact line dynamics, different screenshots of the
moving contact line are taken from two different computations at Bo = 0.11 and slightly
different LX . In Figure 8, which refers to the same test case as Figure 7, LX = 30, the contact
line position is traced at successive instants: 3 rivulets have already formed at T = 10,
Figure 8a; after the rivulets develop and become narrow, there is enough space for one
more rivulet front to form below to the contamination spot and drain, Figure 8b,c; as long
as the generated dry patches are stable, all the rivulets just settle down and remain as
stationary rivulets, Figure 8d.

The moving contact line was traced, at the same instants, during a computation
at slightly different distance between contamination spots, LX = 27: similarly to the
previous case (LX = 30), 3 rivulets forms after the liquid front meets the contamination
spot, Figure 9a; again, after the rivulets settle down, a new rivulet front forms below the
contamination spot, Figure 9b; however, the dry patches, induced by the formation of
the new, central rivulet, slowly moves downstream, generating a bottle-neck shape that
evolves in a single rivulet, Figure 9c; thus, only 2 stationary rivulets are observed, Figure 9d.
Furthermore, one of the stable rivulets is larger then the other one, since it collects the
liquid flux of the three original rivulets that moved downstream, out of the computational
domain. A similar behavior was observed, at Bo = 0.11, when LX = 21, with dry patch
closure phenomenon that leads to only 2 stable rivulets, while 3 rivulets can be observed,
when LX = 22, in Figure 6b. When fully wetted condition is detected, as it happens for
Bo = 0.11 and LX = 20, the liquid front simply overtakes the contamination spot.
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(a) (b)

(c) (d)

Figure 8. Moving contact line at T = 10 (a), T = 20 (b), T = 30 (c), and T = 75 (d). LX = 30, θs = 60◦

(75◦ inside contamination spot, denoted by a green cross).

(a) (b)

(c) (d)

Figure 9. Moving contact line at T = 10 (a), T = 20 (b), T = 30 (c), and T = 150 (d). LX = 27,
θs = 60◦ (75◦ inside contamination spot, denoted by a green cross).

Fully wetted condition is progressively incentivated at higher Bond number, see
Figure 4b, as the gravitational force dominates the surface tension, ensuring stability of
the liquid film. However, it is quite interesting for practical applications, which often
requires the existence of stable and thin films at dominating surface tension forces, that the
fully wetted condition can be obtained even at the lower Bond numbers, under restricted
geometrical characteristics of the solid surface.

In order to test the consistency of the applied boundary conditions (i.e., half of the
periodic length investigated, contamination spot located at X = 0 and symmetry conditions
applied to X = 0 and X = LX), a larger domain of width 2 LX (thus, including 2 contamina-
tion spots, located at X = 14.3, 34.3) with periodic conditions, applied through X = 0 and
X = 2 LX , was also simulated. In fact, the latter test case allows the film to evolve in a larger
domain (4 times the characteristic perturbation length λcr from linear theory), mitigating
the artificial constraints deriving from forcing the film to follow the geometrical symmetry.
A configuration characterized by low Bond number, Bo = 0.10, giving a film subject to
instability phenomena even when weak perturbations are introduced, was considered. As
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demonstrated by Figure 10, which shows the liquid layer distribution resulting from the
two different computations at the same instant T = 125, the same number of rivulets per
unit length is predicted, meaning that the results proposed in the bifurcation diagram,
Figure 4b, are statistically consistent, although the solution is less regular and may also
have some oscillations in time.

Figure 10. Numerical film thickness solution at T = 125: half periodic length with symmetry
boundary conditions through X = 0 and X = LX/2 (a); larger computational domain, including 2
contamination spots, with periodic boundary condition through X = 0 and X = 2 LX (b). Bo = 0.1,
LX = 20, θs = 60◦ (75◦ inside the contamination spot), α = 60◦.

3.4. Randomly Generated Heterogeneous Surface

A general heterogeneous surface, characterized by a random, periodic distribution of
the static contact angle, implemented through Equation (21), was also investigated. Such a
test case is aimed to mimic the typical surfaces occurring in practical application. A large
computational domain, characterized by LX = 40 and LY = 50, was considered in order
to let the induced perturbance grow without any numerical constraint. The plate slope
and the Bond number were set to α = 60◦ and Bo = 0.1, while the static contact angle
was ranged in θs ∈ [45◦, 60◦] over the heterogeneous surface. The characteristics of the
heterogeneous surface are imposed through the number of harmonics (m0, n0) considered
in Equation (21), which defines the wavelength parameters, ΛX = LX/m0, ΛY = LY/n0:
in order to ensure isotropy, Λ = ΛX = ΛY was always imposed. The precursor film
thickness and the disjoining exponents were again set to δ = 5 × 10−2 and n = 3, m = 2.
A spatial discretization step of ∆X, ∆Y ≤ 2.5 × 10−2 was imposed in order to ensure grid
independency. Parametric computations were run at different values of the characteristic
length Λ, defining the random surface heterogeneity. The number of rivulets, generated
due to finger instability induced by the random contact angle distribution, was then traced
at T = 25, in order to statistically investigate the effect of the heterogeneous surface
characteristics on the liquid film evolution.

The hybrid surface wettability distributions at different magnitudes of Λ are shown
in Figure 11a,b, referred to Λ = 2 × 10−2 and Λ = 2, respectively. The corresponding film
thickness distributions at T = 25 are reported in Figure 12a,b. Fully wetted condition was
observed at the end of both the computations. However, different behaviors were observed,
with 4 rivulets obtained when Λ = 2 × 10−2 and 3 rivulets obtained when Λ = 2. Table 1,
which reports the number of observed rivulets at T = 25, reveals that a transition from 4
rivulets configuration to 3 rivulets occurs at Λ ≥ 5 × 10−2. Fully wetted domain (Nriv = 0
at T → ∞ in Table 1) was obtained for all the investigated values of Λ. Thus, the dry
patches induced by finger instability are shed away, leaving a continuous film upstream
from the unstable advancing liquid front.
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Figure 11. Zoom of the static contact angle distribution over the randomly generated heterogeneous
surfaces, Equation (21): Λ = 2 × 10−1 (a); Λ = 2 (b).

Figure 12. Film thickness solution at T = 25: Λ = 2×10−1 (a); Λ = 2 (b). Bo = 10−1, θs ∈ [45◦, 60◦],
α = 60◦.

Table 1. Number of rivulets observed after T = 25 and at steady state solution (T → ∞) as a function
of the characteristic length Λ of the heterogeneous surface. Bo = 0.1, θs ∈ [45◦, 60◦], α = 60◦,
LX = 40, LY = 50.

Λ m0 n0
Nriv

T = 25 T → ∞

2 × 10−1 200 250 4 0
5 × 10−1 80 100 3 0

1 40 50 3 0
2 20 25 3 0
5 8 10 3 0

Thus, the linear theory, which gives a characteristic perturbation wavelength of
λcr = 9.4 (i.e., 4 rivulets in the investigated test cases), as expected does not provide
the effective evolution of film instability induced by local perturbance (in turns given by
surface heterogeneity) when the magnitude of the surface parameter Λ is comparable to λcr,
i.e., when the actual geometrical details of the perturbation affect contact line movement.

4. Conclusions

The enhanced lubrication equations were numerically solved. Contact angles up to
60◦ (locally increased at 75◦ inside localized, lower-wettable contamination spots) were
investigated thanks to the full curvature formulation, which substitutes the usually adopted
small slope approximation, leading to accurate results for θs < 30◦ [23]. Film rupture
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occurrence was analyzed for a 1D falling film. The computed, dynamic contact angle
was successfully verified with the Hoffman–Voinov–Tanner law for θs up to 60◦. Then,
parametric computations were run for a 2D film over a heterogeneous surface. It was
verified that the onset of finger instability, induced by an horizontal array of localized,
lower wettable contamination spots with θs = 75◦, follows the literature linear stability
analysis. The long term evolution of the induced instability, affected by the imposed
restrictions, was traced under different flow conditions and contamination spot spacing. A
complex behavior, including multiple configurations (continuous film and 1 to 4 rivulet
regimes), was observed due to the bifurcation occurrence. However, artificially controlling
the solid surface morphology (i.e., the contamination spot spacing) allows to achieve the
continuous film regime at given flow characteristics (i.e., required film thickness). This is
crucial in practical applications, since the whole coverage of a solid surface can be ideally
obtained at the lower film thickness (usually more subject to instability phenomena):
in absorption/distillation through structured packing, a proper design of the packing
geometry may lead to high liquid–gas interface area even at low film thickness, enhancing
mass transfer and avoiding flooding condition inside structured packing. The flow down
an inclined plate with random surface distribution, which mimics practical configurations,
was also investigated: the liquid film behavior can no longer be predicted via linear
stability analysis when the magnitude of the characteristic surface length is comparable
to the perturbation length from linear theory. Finally, it is worth pointing out that the
parallelization of the solver code allowed to speed up computations, while the implemented
ADI factorization allowed to reach time integration step up to 108 times the step size from
Von Neumann stability analysis on the explicit numerical scheme.
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