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Abstract A search for R-parity-violating supersymmetry
in final states characterized by high jet multiplicity, at least
one isolated light lepton and either zero or at least three b-
tagged jets is presented. The search uses 139 fb~! of /s =
13 TeV proton—proton collision data collected by the ATLAS
experiment during Run 2 of the Large Hadron Collider. The
results are interpreted in the context of R-parity-violating
supersymmetry models that feature gluino production, top-
squark production, or electroweakino production. The domi-
nant sources of background are estimated using a data-driven
model, based on observables at medium jet multiplicity, to
predict the b-tagged jet multiplicity distribution at the higher
jet multiplicities used in the search. Machine-learning tech-
niques are used to reach sensitivity to electroweakino produc-
tion, extending the data-driven background estimation to the
shape of the machine-learning discriminant. No significant
excess over the Standard Model expectation is observed and
exclusion limits at the 95% confidence level are extracted,
reaching as high as 2.4 TeV in gluino mass, 1.35 TeV in top-
squark mass, and 320 (365) GeV in higgsino (wino) mass.

1 Introduction

Supersymmetry (SUSY) [1-6] is a theoretical extension
of the Standard Model (SM) which fundamentally relates
fermions and bosons. It is an alluring theoretical possibility
given its potential to solve the hierarchy problem [7-10]. An
ad hoc conserved quantity, R-parity [11], is often introduced
in SUSY models to avoid rapid proton decay, rendering the
lightest supersymmetric particle (LSP) stable and therefore
a potential dark-matter candidate [12,13]. There is no fun-
damental theoretical reason to impose strict R-parity conser-
vation, and R-parity-violating (RPV) SUSY models are well
motivated, with fewer experimental constraints than many R-
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parity-conserving (RPC) models [14, 15], and allow for more
natural supersymmetric mass spectra.

This article presents a search for pair production of super-
symmetric particles with subsequent RPV decays in a final
state with at least one isolated lepton (electron or muon),
at least eight to fifteen jets (depending on the jet trans-
verse momentum threshold), several of which may contain
b-flavoured hadrons (b-jets), and with no requirement on the
missing transverse momentum. Such a final state is com-
monly predicted in RPV models with either baryon-number-
violating [16, 17] or lepton-number-violating couplings [18].
Events are assigned to one of two categories according to
their lepton content. The first category contains events with
two leptons with the same electric charge (2¢5°), while the
second category contains all other events and is dominated
by single-lepton events (1£). Electrons and muons from t-
lepton decays are also considered. A multi-bin fit in each
lepton category to the two-dimensional space of jet multi-
plicity and b-jet multiplicity is used to constrain parame-
ters of benchmark RPV simplified signal models [19-21].
A third variable, based on a machine-learning discriminant,
is introduced to improve the sensitivity of the search when
only testing for the electroweak production of supersymmet-
ric particles. This search has potential sensitivity to a large
number of beyond the Standard Model (BSM) physics mod-
els, and model-independent limits on the possible contribu-
tion of BSM physics to several single-bin signal regions are
shown.

The dominant Standard Model background in the 1¢ cat-
egory arises from top-quark pair production and W/Z + jets
production, with at least one lepton produced in the vector-
boson decay. In the 2¢5¢ category, the production of a top-
quark pair in association with a W boson (17W), or with a
misidentified lepton, constitutes the main background. The
theoretical modelling of these backgrounds at high jet multi-
plicity suffers from large uncertainties, so they are estimated
from the data by extrapolating the b-jet multiplicity distri-
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bution extracted at moderate jet multiplicities to the high jet
multiplicities of the search region.

This analysis is an update to a previous ATLAS search
[22] for new phenomena in a final state with a lepton and
high jet multiplicity, which was performed with 36 fb~! of
/s = 13 TeV proton—proton collision data. It improves upon
the previous result owing to the larger luminosity, the ded-
icated categorization and analysis of events with two lep-
tons with the same electric charge, and the introduction of
multivariate discriminants. This search represents the first
LHC result to obtain sensitivity to electroweak production
of SUSY particles promptly decaying to quarks, as predicted
in baryon-number-violating RPV models. Previous searches
targeting similar RPV SUSY models have been carried out
by the ATLAS and CMS collaborations [23-33]. The result
is also sensitive to SM four-top-quark production, and a val-
idation of the background estimation methods is performed
by fitting the normalization of the four-top-quark process
relative to the Standard Model value. Previous searches for
four-top-quark production were carried out by the ATLAS
[34] and CMS [35] collaborations.

2 Signal models

Simulated signal events from five SUSY benchmark sim-
plified models (representative production diagrams shown
in Fig. 1) are used to guide the analysis selections and to
estimate the expected signal yields for different signal-mass
hypotheses used to interpret the analysis results. In all mod-
els considered, the RPV couplings and the SUSY particle
masses are chosen to ensure prompt decays of the SUSY par-
ticles. The supersymmetric particle content of the models is
the partner of the SM gluon (gluino), the partner of the right-
handed top quark (stop), and one or more electroweakinos.
The electroweakinos are massive fermions resulting from the
mixing between the partners of SM electroweak and Higgs
bosons.! Three different possibilities for the electroweakino
composition are tested: pure bino, pure wino or pure hig-
gsino. In all cases the lightest neutralino (X ?) is the LSP.
When considering a wino (higgsino) LSP, the correspond-
ing chargino )?1jE (and second neutralino 220 ) is assumed to
be effectively mass degenerate with the LSP, as predicted by
theory [36,37], and share the same composition as the LSP.
All the electroweakinos that are present under the hypoth-
esis of a given composition are considered in both the pro-
duction and decay processes. All other electroweakinos are
assumed to be decoupled and not considered in the model.
The gluino and stop branching ratios, as well as the elec-
troweakino production cross-section, are determined by the

! In SUSY, the Higgs sector is enriched by the presence of an additional
complex doublet.
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nature of the electroweakino. Table 1 summarizes the gluino
and stop branching ratios, and shows example cross-sections
for direct electroweakino production [38—42], for each elec-
troweakino type. In each case, the electroweakinos decay
through a non-zero RPV coupling large enough to ensure
prompt decays for the particle masses considered, and small
enough to avoid more complex decay patterns involving mix-
tures of both RPC and RPV decays that are not considered
here. Within this scenario the analysis results are independent
of the value of the coupling.

Four of the simplified models are inspired by a common
natural RPV SUSY model assuming the minimal flavour
violation hypothesis [16,17]. The coupling A%,; is chosen,
as it is predicted to be dominant.> With the chosen model
parameters, the electroweakinos decay as X?/z — tbs and

)Zli — bbs, with a branching ratio of 100%. At the lowest
order in perturbation theory, signal events in these models
contain four, six, or eight b-jets in the final state, depending
on the production mode. In the first model, gluino production
is considered, with decays to heavy-flavour quarks and the
electroweakino, which in turn decays via the RPV coupling.
The stop, with a mass assumed to be above the gluino mass, is
not considered in the model. A signal diagram for this model
is shown in Fig. 1a. The second model considers gluino pair
production, with each gluino decaying into a top quark and a
stop, as shown in Fig. 1b. In this model the RPV coupling is
assumed to be large, so that the stop decays via an RPV mode
into an s-quark and a b-quark. The absence of RPC decays
of the stop render the electroweakino mass irrelevant in this
model. The third scenario considered involves stop pair pro-
duction with the stop decaying into an electroweakino and a
top or bottom quark, while the gluino is set to a very high
mass and not considered in the model. An example signal
diagram is shown in Fig. 1c. In the fourth model, only elec-
troweakino production is considered, with the stop and gluino
assigned a very high mass and not considered in the model.
Figure 1d considers the production of )~(1ﬂE )~({) . In the case
of a higgsino LSP, a similar diagram produces )~(1jE )?S , and
a further diagram producing X ?)ES is enabled, as shown in
Fig. le. Production of X 1jE X ?,2 contributes only to the 1¢ cat-
egory, while the production of 7(?)?3 contributes to both the
1€ and 2£%¢ categories. Production of X 1i X 1jE is not consid-
ered because the decays produce a final state with no leptons.
Production of X ?f(? vanishes and is not considered. There-
fore electroweak production in the pure bino scenario is not
considered.

The fifth and last simplified RPV model considers gluino
pair production, where each gluino decays into two first-
or second-generation quarks (g = (u,d, s,c)) and a X? R

2 The results apply equally to the coupling M35 since it leads to the
same experimental final state.
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(d)

Fig. 1 Examples of signal diagrams for the simplified RPV models
considered in this article. Cases where both of the gluinos (or the stops)

. . sE0 . .
decay in the same way are also considered, and X1 Xz pair production

Table 1 Stop and gluino branching ratios, as well as cross-sections for
direct electroweakino production, as a function of the LSP type. For
a pure bino/wino/higgsino LSP, the electroweakino states considered

are )Z? / )Z? )Zli/ )E? )Eli )Zg , respectively. When relevant, decays to X ? and
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is also considered for the higgsino LSP type. For simplicity particles
and anti-particles are shown using the same symbols, omitting the anti-
particle notation

5(? are merged as they are assumed to be mass degenerate and both
decay in the same way. The production cross-sections are given for an

electroweakino mass of m()z ?, X li s )28 ) = 300 GeV

LSP type Branching ratios Cross-section [fb] for direct production
Stop Gluino X x X xR ey
1772 bii 1A bbXY b1

Bino 100% 0% 100% 0% 0% 0 0 0

Wino 33% 67% 17% 17% 66% 387 0 0

Higgsino 50% 50% 50% 0% 50% 91 91 52

which is the LSP. The )Z? decays into two additional first- or
second-generation quarks and a charged lepton or a neutrino
XY = qg'C or X — ggv, labelled as X — qgt/v).
The decay proceeds via a A’ RPV coupling, where each RPV
decay can produce any of the four first- or second-generation
leptons (e*, u*, v, v,,) with equal probability. An example
signal diagram is shown in Fig. 1f. Signal decays from this
model yield a final state with high jet multiplicity and zero
b-jets.

3 ATLAS detector

The ATLAS experiment [43] at the LHC is a multipurpose
particle detector with a forward—backward symmetric cylin-
drical geometry and nearly 47 coverage in solid angle.? It

3 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-
axis along the beam pipe. The x-axis points from the IP to the centre of
the LHC ring, and the y-axis points upwards. Cylindrical coordinates
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consists of an inner tracking detector (ID) surrounded by a
thin superconducting solenoid providing a 2 T axial mag-
netic field, electromagnetic (EM) and hadron calorimeters,
and a muon spectrometer (MS). The inner tracking detector
covers the pseudorapidity range || < 2.5. It consists of sili-
con pixel, silicon microstrip and transition radiation tracking
detectors; the innermost layer is 33 mm from the beamline
[44,45]. Lead/liquid-argon (LAr) sampling calorimeters pro-
vide electromagnetic energy measurements with high gran-
ularity. A steel/scintillator-tile hadron calorimeter covers the
central pseudorapidity range (|| < 1.7). The endcap and for-
ward regions are instrumented with LAr calorimeters for both
the EM and hadronic energy measurements up to |n| = 4.9.
The muon spectrometer surrounds the calorimeters and is
based on three large superconducting air-core toroidal mag-
nets with eight coils each. The field integral of the toroids
ranges between 2.0 and 6.0 T-m across most of the detec-
tor. The muon spectrometer includes a system of precision
tracking chambers and fast detectors for triggering. A two-
level trigger system is used to select events [46]. The first-
level trigger is implemented in hardware and uses a subset
of the detector information to keep the accepted rate below
approximately 100 kHz. This is followed by a software-based
trigger that reduces the accepted event rate to approximately
1kHz on average depending on the data-taking conditions.
An extensive software suite [47] is used for real and simu-
lated data reconstruction and analysis, for operation and in
the trigger and data acquisition systems of the experiment.

4 Monte Carlo event simulation

Signal and background events produced in proton—proton
collisions were simulated with various Monte Carlo (MC)
generators. The simulated events are used in the optimization
of event selection criteria, in the neural network training, to
estimate systematic uncertainties, to validate the background
estimation procedure employed for the dominant background
sources, and to predict yields for the subdominant back-
ground contributions and for possible signals. The signal and
background events were passed through the GEANT4 [48]
simulation of the ATLAS detector [49] and reconstructed
using the same algorithms as are used for the data.

The generation of the simulated event samples includes the
effect of multiple proton—proton interactions per bunch cross-
ing, as well as the impact on the detector response due to inter-
actions from bunch crossings before or after the one contain-

Footnote 3 continued

(r, ¢) are used in the transverse plane, ¢ being the azimuthal angle
around the z-axis. The pseudorapidity is defined in terms of the polar
angle 6 as n = — Intan(6/2). Angular distance is measured in units of
AR = /(Ay)? + (Ag)>.
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ing the hard interaction. The effect of multiple interactions in
the same and neighbouring bunch crossings (pile-up) is mod-
elled by overlaying the hard-scattering event with simulated
inelastic proton—proton events generated by PYTHIA 8.186
[50] using the NNPDF2 . 310 set of parton distribution func-
tions (PDF) [51] and the A3 set of tuned parameters [52].
The MC events are weighted to reproduce the distribution of
the average number of interactions per bunch crossing ({u))
observed in the data. The EVTGEN [53] program was used to
simulate properties of the b- and c- flavoured hadron decays.

The signal event samples were generated using the MAD-
GRAPHS_aMC@NLO [54] generator interfaced to PYTHIA 8
for the modelling of the parton showering, hadronization,
and underlying event. The matrix element (ME) calcula-
tion was performed at tree level and includes the emis-
sion of up to two additional partons. The signal samples
were processed through a fast simulation of the ATLAS
detector [49,55]. Gluino and stop signal cross-sections
are calculated to approximate next-to-next-to-leading order
in the strong coupling constant, adding the resummation
of soft gluon emission at next-to-next-to-leading-logarithm
accuracy (approximate NNLO+NNLL) [56-66]. The cross-
sections for electroweakino production are calculated to next-
to-leading order in the strong coupling constant, adding
the resummation of soft gluon emission at next-to-leading-
logarithm accuracy (NLO+NLL) [38—42].

The production of ¢7, tfH, and single-top events was
modelled at NLO using the POWHEGBOX [72-75,93] gen-
erator. Additional 77 samples were generated with MAD-
GRAPH5_aMC@NLO interfaced with PYTHIA 8, and with
POWHEGBOX interfaced with HERWIG 7 [83,84], for mod-
elling comparisons and evaluation of systematic uncertain-
ties.

The production of 7V (V = W, Z) events was mod-
elled using the SHERPA generator. The ME was calculated
for up to one additional parton at NLO and up to two par-
tons at LO using the COMIX [94] and OPENLOOPS libraries
[95,96], and merged with the SHERPA parton shower using
the MEPS@NLO prescription [97-101]. Alternative ¢V
samples produced with the MADGRAPHS_aMC@NLO gen-
erator at NLO were used to evaluate systematic uncertainties
associated with the modelling of additional QCD radiation.

The production of ¢itz, tit, tWZ,tZ, tt WW, and ttWZ
events was modelled using the MADGRAPHS5_aMC@NLO
generator at NLO, and interfaced with PYTHIA 8. An alterna-
tive z7¢f sample showered with HERWIG 7, was used to eval-
uate systematic uncertainties related to the choice of parton-
shower model.

The production of an electroweak gauge boson or virtual
photon in association with jets (V+jets) was simulated with
the SHERPA generator using NLO matrix elements for up
to two partons, and LO matrix elements for up to four par-
tons. Alternative V+jets samples used to validate the analy-
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Table2 Simulated background event samples: the corresponding event
generator, parton-shower modelling, cross-section normalization, PDF
set and underlying-event parameter tune are shown. The samples
marked with (*) are alternative samples used to validate the back-

ground estimation method or to assess systematic uncertainties in the
modelling. The abbreviation MG5_aMC is used to label the MAD-
GRAPH5_aMC@NLO generator. Samples produced with SHERPA use
the default set of tuned parameters of the generator

Physics process Event generator

Parton-shower modelling Cross-section normalization PDF set

Tune

W(— €v) + jets SHERPA 2.2.1 [67] SHERPA 2.2.1
W(— €v) +jets (*) MG5_aMC 2.2.2 [54] PYTHIA 8.186 [70]
Z/y*(— £f) +jets  SHERPA 2.2.1 SHERPA 2.2.1

I+ jets
I+ jets (*)

POWHEGBOX v2 [72-75]
POWHEGBOX v2

PYTHIA 8.230 [50]

tr + jets (*) MG5_aMC 2.6.0 PyYTHIA 8.230
Single-top POWHEGBOX v2 [86-88] PYTHIA 8.230
tr+W/zZ SHERPA 2.2.1 SHERPA 2.2.1
tt+tt/t/WW/WZ MG5_aMC 2.3.3 [54] PYTHIA 8.230

titr (%) MG5_aMC2.3.3 HERWIG 7.04

ttH POWHEGBOX v2 PYTHIA 8.230
tWZ,tZ MGS5_aMC 2.3.3 PYTHIA 8.212, 8.210
VVand VVV SHERPA 2.2.1,2.2.2,2.2.4 SHERPA

HERWIG 7.04 [83,84]

NNLO [68] NNPDF3.0nnlo [69] SHERPA
NNLO NNPDF3.0nlo [69] Al4[71]
NNLO [68] NNPDF3.0nnlo SHERPA
NNLO+NNLL [76-82] NNPDF3.0nlo Al4
NNLO+NNLL MMHT201410 [85] H7UE [84]
NNLO+NNLL NNPDF3.0nlo Al4
NNLO+NNLL [89-91] NNPDF3.0nlo Al4
NLO [92] NNPDF3.0nnlo SHERPA
NLO [92] (¢t LO) NNPDF2.31o0 [51] Al4
NLO [54] MMHT201410 H7UE
NLO NNPDF3.0nlo Al4
NLO NNPDF3.0nlo Al4
NLO NNPDF3.0nnlo SHERPA

sis methods were simulated with MADGRAPH5_aMC@NLO
using LO-accurate MEs with up to four final-state partons.

Event samples with diboson (V' V) and triboson (VV'V)
final states were simulated with the SHERPA generator,
including off-shell effects and Higgs boson contributions,
where appropriate. The V'V processes were simulated using
matrix elements at NLO accuracy in QCD for up to one addi-
tional parton and at LO accuracy for up to three additional
parton emissions. The production of triboson (V' V V) events
was simulated with the SHERPA generator using factorized
gauge-boson decays.

A summary of the background samples used, together with
the event generator configurations, can be found in Table 2.

5 Event reconstruction and object identification

Proton—proton collision data recorded by the ATLAS detec-
tor between 2015 and 2018 are used to perform the analysis.
In this period, the LHC delivered colliding beams with a peak
instantaneous luminosity up to L = 2.1 x 10** cm™2s~!,
achieved in 2018, and an average number of pp interactions
per bunch crossing of 33.7. After applying beam, detector,
and data-quality criteria the total integrated luminosity of the
dataset is 139 fb~! [102]. The uncertainty in the combined
2015-2018 integrated luminosity is 1.7% [103], obtained
using the LUCID-2 detector [ 104] for the primary luminosity
measurements.

Proton—proton interaction vertices are reconstructed from
charged-particle tracks with p7 > 500 MeV [105,106] in the
ID. The presence of at least one such vertex with a minimum
of two associated tracks is required, and the vertex with the

largest sum of p% of associated tracks is chosen as the primary
vertex.

Jet candidates are reconstructed up to |n| = 4.9 using the
anti-k; algorithm [107,108] with radius parameter R = 0.4.
Ituses particle-flow objects as inputs, combining tracking and
calorimetric information as detailed in Ref. [109]. The jets
are calibrated using the methodology described in Ref. [110].
Any event that contains jets induced by calorimeter noise
or non-collision background, according to criteria similar to
those described in Ref. [111], is removed. Jets up to pr =
60 GeV containing a large energy contribution from pile-up
interactions are suppressed with the jet-vertex tagging (JVT)
algorithm that uses tracking and primary vertex information
to determine if a given jet originates from the primary vertex
[112]. Jets with pr > 20 GeV and |n| < 2.5 are defined as
signal jets, and used further in the analysis.

Signal jets containing b-flavoured hadrons are identified
with the DL1r b-tagging algorithm [113,114] with an average
identification efficiency of 70% in simulated ¢7 events. The
rejection factor is measured to be approximately 300 for jets
initiated by light quarks and gluons and approximately 9 for
jets initiated by charm quarks [113].

Electron candidates are reconstructed as tracks in the ID
matched to energy clusters in the EM calorimeter, within
n| < 2.47 [115]. The analysis considers only candidate
electrons with pt > 10 GeV and not in the transition region
between the barrel and endcap calorimeters (1.37 < |n| <
1.52). The electron identification is based on a multivariate
likelihood-based discriminant that uses the shower shapes
in the EM calorimeter and the associated track properties
measured in the ID. The electron candidates must satisfy
the ‘Medium’ identification criteria described in Ref. [115],

@ Springer
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while the signal electrons must satisfy the ‘Tight’ identi-
fication for better rejection of non-prompt or misidentified
electrons. The electron identification efficiency varies with
increasing ptin Z — ee events, from 65% at pr = 10 GeV
to 88% at 100 GeV for the Tight operating point, and from
75% at 20 GeV to 94% at 100 GeV for the Medium operating
point.

For candidate and signal electrons, the longitudinal impact
parameter of the electron track, zp, is required to satisfy
|zp sin 0| < 0.5 mm, where 6 is the polar angle of the track.
For signal electrons, the transverse impact parameter divided
by its uncertainty, |dg|/o (dp), is required to be at most five.

For all signal electrons there must be no association with
a vertex from a reconstructed photon conversion [115] in the
detector material. To further reduce the photon conversion
background, additional requirements are applied to the signal
electrons [34]: (i) the candidate must not have a reconstructed
displaced vertex with a conversion radius » > 20 mm whose
reconstruction uses the track associated with the electron, (ii)
the invariant mass of the system formed by the track asso-
ciated with the electron and the closest track (in AR) at the
primary vertex or a conversion vertex is required to be larger
than 100 MeV. This photon conversion veto has an average
efficiency of 99% for prompt electrons while providing a
rejection factor of 4 for electrons from photon conversion.

In the 2£5¢ category, signal electrons with wrongly recon-
structed charge (charge-flip) are suppressed using a boosted
decision tree (BDT) discriminant exploiting additional tracks
in the vicinity of the electron and track-to-cluster matching
variables [115]. A rejection factor of around 9 for electrons
with a wrong charge assignment is achieved, while selecting
properly measured electrons with an efficiency of 98%, in
simulated Z — ee events selected with the Tight identifica-
tion and isolation operating points [115].

Muon candidates are reconstructed in the region |n| <
2.5 from MS tracks matching ID tracks. Only muons with
pr > 10GeV satisfying the ‘Medium’ quality requirements
defined in Ref. [116] are considered. The muon reconstruc-
tion efficiency is approximately 98% in simulated Z —
e events. The same longitudinal impact parameter selec-
tion as for candidate and signal electrons is applied, while
|do|/o (dp) is required to be at most three.

For signal electrons and muons the identification crite-
ria are complemented by an isolation requirement, which
is based on the energy in a cone around the lepton candi-
date calculated using either reconstructed tracks or energy
clusters. Non-prompt electrons and muons from the decays
of b- and c-flavoured hadrons are further rejected using a
BDT discriminant based on isolation and secondary vertex
information, referred to as the non-prompt-lepton veto [117].
The efficiency of the combined isolation and non-prompt-
lepton veto is on average above 80% for prompt leptons with
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pr > 30GeV in simulated diboson events. Finally, all signal
leptons are required to have pr > 15GeV.

A sequential overlap removal procedure to resolve ambi-
guities between candidate jets and candidate leptons is car-
ried out before the signal selection as follows. First, candi-
date electrons sharing their track with a muon candidate are
removed. Furthermore, any non-b-jet candidate lying within
an angular distance AR = 0.2 of a candidate electron is dis-
carded; non-b-jets within AR = 0.4 of candidate muons are
removed if the number of tracks associated with the jet is less
than three. Finally, any lepton candidate remaining within a
distance AR = min{0.4, 0.04 + 10 GeV/pr(£)} of any sur-
viving jet candidate is discarded since they likely arise from
decays of b- or c-flavoured hadrons.

Similar to the electron candidates, the photon candidates
are reconstructed from calorimeter energy clusters and iden-
tified using the ‘Tight’ criteria [115]. They are required to
be in the region || < 2.37 and have pr > 145 GeV. Signal
photons must satisfy the ‘Tight’ calorimeter-based isolation
requirements [115], and are used to validate the background
estimation technique detailed in Sect. 7.1.

The missing transverse momentum, with magnitude E‘T“iss,
is defined as the negative vector sum of the transverse
momenta of all identified objects (muon, electron and jet
candidates) and an additional soft term [118,119]. The soft
term is added to recover the contributions from other low- pt
objects, and is constructed from all tracks that are matched
to the primary vertex but are not associated with any other
object. A dedicated overlap removal procedure, based on
removing duplicated energy contributions, is applied. The
EMisS variable is used to define control regions enriched in
certain types of background, as discussed in Sect. 7.4, and as
input for the multivariate discriminant.

6 Event selection and analysis strategy

Two complementary analysis strategies are defined, namely
the ‘jet counting analysis’ and the electroweak analysis,
labelled ‘EWK analysis’. While the first approach is designed
to be very generic and offers a large variety of signal interpre-
tations for strong production models, the second approach is
specifically tailored to reach sensitivity for electroweakino
production. In both analyses, events are assigned to one of
two categories according to their lepton content, and further
categorized into regions based on jet multiplicity and b-jet
multiplicity. This categorization provides a set of regions that
are sensitive to decays from all the possible signal models
considered in this search, amplifying the ability of the search
to discriminate signal from background. The EWK analysis
is an extension of the jet counting analysis, where a third
variable, a neural network (NN) discriminant, is introduced
in some of the jet and b-jet multiplicity regions in order to
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improve the separation of signal from background. Addi-
tional kinematic selections are also applied at the preselec-
tion level, tailored to the electroweakino signals.

Events were selected for read-out using single-lepton trig-
gers that require the electron or muon to satisfy identification
criteria similar to those used in the offline reconstruction and
isolation requirements [ 120, 121]. For the analysis selection,
at least four jets and at least one signal electron or muon,
matched to the trigger lepton, are required in the event. The
highest- pr lepton in the event has to pass the signal require-
ments and satisfy pt > 27GeV, in order to be above the
trigger threshold. Two disjoint event categories are defined
according to the lepton content: a same-charge dilepton selec-
tion (2¢£5°), and all other events with at least one lepton (1£).
Events are placed in the 2£5¢ category if they contain exactly
two signal leptons with same electric charge, and no addi-
tional candidate leptons. In order to reduce backgrounds con-
taining a Z boson decaying into electrons, where one electron
has its charge misidentified, events with two electrons have
to satisfy a |me, — mz| > 10 GeV requirement. Events with
at least three signal leptons, with one same-flavour pair sat-
isfying |mg; — mz| < 10GeV and exactly zero b-jets, are
included as a separate subregion of the 2£5¢ category, in order
to be used for background estimation. All events passing fur-
ther selections, but which do not enter the 2¢° category, are
assigned to the 1€ category, including events containing more
than one candidate lepton. The regions with seven or fewer
jets and zero b-jets in the 1£ category are further divided into
three subregions. The first subregion is defined by select-
ing events with two same-flavour candidate leptons fulfilling
an invariant-mass requirement, |mgy — mz| < 10 GeV. The
remaining events are divided into two subregions according
to the electric charge of the highest- pt lepton. This division
in subregions provides additional information that allows
more accurate constraints to be placed on the W+jets and
Z+jets backgrounds.

The jet counting analysis is carried out with five jet-pr
thresholds to provide sensitivity to a broad range of possible
signals. These thresholds are applied to all jets in the event
and are at pt = 20, 40, 60, 80, and 100 GeV. The optimal
jet pr threshold depends on the model and particle masses
being tested. The jet multiplicity is binned from a minimum
of four jets to a maximum number (Nj,y) that depends on
the pr threshold and the lepton category. In the 1€ category
the last bin corresponds to 15 or more jets for the 20 GeV
threshold, and 12, 11, 10, and 8 or more jets for the other
thresholds in increasing order. In the 2£5¢ category it corre-
sponds to 10, 8, 7, 7, and 6 or more jets respectively. The
highest jet-multiplicity bin for each pr threshold is inclu-
sive of larger jet multiplicities. For each jet multiplicity bin,
there are five exclusive bins in the b-jet multiplicity (four
exclusive bins from zero to three b-jets, with an additional
inclusive four-or-more bin). The regions defined in the jet

Table 3 Summary of regions considered in the jet counting analysis.
The notation Nb is used to indicate a requirement on the b-jet multiplic-
ity. The highest jet multiplicity considered (N,g) depends on the jet p
threshold and the lepton category. In the 1¢ category it corresponds to
15, 12, 11, 10, and 8 jets for the different jet pr thresholds in increas-
ing order. In the 2¢£5¢ category it corresponds to 10, 8, 7, 7, and 6 jets
respectively

Lepton category Jet multiplicity Analysis regions

14 category 4...7 jets 0b £=,0b €T, 0b myy,
1b,2b,3b, > 4b
8...> NIE jets 0b, 1b,2b, 3b, > 4b
20 category 4> N2 jets 0b 3¢, 0b, 1b, 2b, 3b,

> 4b

counting analysis are summarised in Table 3. For a given
jet pt threshold all regions are orthogonal and are analysed
simultaneously. However, regions defined for different jet pt
thresholds can overlap. The number of bins used in the search
ranges from 110 when considering the 20 GeV jet threshold,
including the different subregions with zero b-jets, to 51 bins
when considering the 100 GeV jet threshold. In this article,
the notation Nf’r,;) “*** is used to denote the number of events
predicted by the background fit model, with j jets and b b-
jets for a given process, e.g. N;f;jets
quantity mecess, referred to as a jet slice, is the number of
events with j jets for the considered physics process, and it
is inclusive in the number of b-jets.

In order to improve the sensitivity of the search to the
model with electroweakino production, the EWK analysis is
introduced, which extends the jet counting analysis at the 20
GeV jet-pr threshold. In the 1£ category only, a separate NN
discriminant is trained in each jet slice with eight or fewer
jets, to discriminate the higgsino signal from the 77 back-
ground. The full distribution of the NN output, binned in four
even-width bins with approximately equal signal fraction, is
fitted in each of the regions with at least one b-jet. The NN
training is performed with the constraint that the NN output
distribution of the 7 background be invariant with respect
to the b-jet multiplicity. This property is later exploited in
order to estimate the background from data, as described in
Sect. 7. The invariance of the NN output with respect to the
b-jet multiplicity is achieved with distance-correlation train-
ing [122,123]. The NNs are trained on a mixture of higgsino
samples as the signal, and 7 as the only background.

The NN discriminant is constructed from a combination of
low-level and high-level inputs. The low-level variables con-
sidered are the jet and leading-lepton momenta, the individual
pseudo-continuous b-jet score [113] of all jets, and the E%‘iss
magnitude and direction. The high-level inputs correspond to
the jet and b-jet multiplicity of the event, minimum distance
between the leading lepton and any jet, scalar pt sum of all
jets (Hr), scalar p sum of all b-jets, mi®® (defined below),

for t7+jets events. The

@ Springer



1023 Page 8 of 39

Eur. Phys. J. C (2021) 81:1023

invariant mass of the three-jet system with highest system pr,
and invariant mass of the 3j + £ + p™** system with highest
system pr (assuming that the z-component of the missing
momentum p™3* is zero). The two invariant mass variables
attempt to reconstruct X 1i — bbs and )??,2 — tbs decays
respectively. The mi® variable is defined as follows. All the
jets in the event are split into two groups, where both groups
have to contain at least one jet. All possible combinations
are tested, including those where the number of jets in each
group is very different. For each grouping, the higher of the
masses of the two groups is selected, and then the minimum
across all possible groupings is taken. The mi® distribution
has an endpoint for signal events at m(X?) that is reached in
events where all partons were reconstructed. For most events,
the value is lower, since the lepton and E%‘iss components are
ignored. Backgrounds, however, do not show such an end-
point. In addition, the shape of this variable has only a weak
dependence on the number of b-jets, which helps the NN to
achieve separation while not introducing sensitivity to the
b-jet multiplicity.

The inputs are connected to a single output node via two
fully connected hidden layers of 100 neurons. The NNs are
trained using PyTorch [124] and the Adam optimizer [125].
Events in the training dataset are sampled according to the
inverse of the b-jet fraction (defined as the fraction of events
in a given b-jet bin with respect to the total number of events
inthe jetslice) in order to flatten the b-jet spectrum. In order to
achieve invariance of the NN output with respect to the b-jet
multiplicity, the loss function of the training contains a term
that penalizes a high distance correlation between the output
and the b-jet multiplicity [123]. A hyperparameter A controls
the weight of this penalty term, with a value . = 15 which
was optimized to achieve the highest sensitivity to the signal,
accounting for both the separation and the systematic uncer-
tainties derived from non-invariance of the NN, as described
in Sect. 8. The invariance and separation achieved is shown in
Fig. 2. After training, the variables ranked highest in impor-
tance (using the integrated gradients method described in
Ref. [126]) are Hr, the individual pseudo-continuous b-jet
score of all jets, number of b-jets, invariant mass of the 3j +
£ + p™iss gystem with highest system pr, and mi®®. The b-
jet multiplicity is highly ranked despite the NN output being
independent of it since it can be used to offset the effect from
variables that are correlated with the number of b-jets such
as Hr.

In the 2£%¢ category, signal events are produced via the
leptonic decays of two top quarks. However, the dominant
backgrounds contain only one leptonic top decay, while the
second lepton is a misidentified or non-prompt lepton, or
originates from a W boson that is not produced in a top decay
(¢t W). This property is exploited by introducing an additional
requirement of m% < 155GeV, where the observable m‘/
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Fig. 2 Output distribution of the NN discriminant in the six-jet slice,
evaluated over a signal sample and ¢7 background split into the differ-
ent b-jet regions. The bottom panel shows the ratio of the NN output
distribution for 77 background in each b-jet region to the distribution in
an inclusive region with at least one b-jet. The NN output distribution
is invariant with respect to the number of b-jets in the selection, with
differences per bin below 4%

is defined as m“/ = min, 5 {max (m(£o. jet,), m(£, jet))},
with jet, # jet,, for all possible permutations of jet, and
jet,, taken from the four leading jets. No b-tag information is
used in the selection of the jets, to avoid differences in the
variable across the different b-tag regions. The signal has an

[mi,, —my, ~ 152GeV,
while background events tend to have larger values.

In order to probe a specific BSM model, all the regions in
both lepton categories are simultaneously fit to data to con-
strain the model, in what is called a model-dependent fit. Sep-
arate fits are performed for each analysis and jet pt threshold,
and the configuration providing the best expected sensitiv-
ity is used to probe the model. In the search for a generic
BSM signal, dedicated discovery signal regions (SRs) are
defined which could be populated by a signal, and where the
SM contribution is expected to be small. The background
in these SRs is estimated from a fit excluding the SR being
tested, in what is called a model-independent fit. The discov-
ery SR definitions used in the jet counting analysis are shown
in Table 4.

Two additional discovery SRs are defined targeting a pos-
sible electroweakino signal making use of the EWK analysis.
The first SR is defined in the 1¢ category, with exactly six
jets with pt > 20GeV, at least four b-jets, and a selec-
tion on the NN discriminant. The NN selection corresponds
to a signal efficiency of 25% on the higgsino model with a
mass of 300 GeV and a background rejection of 40 for the
tf background, which corresponds to bin four in Fig. 2. The

endpoint in this variable at m% =
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Table4 The discovery signal regions used in jet counting and NN anal-
yses, in the search for a generic BSM signal. For every jet pr threshold,
four signal regions are defined in the jet counting analysis, leading to

a total of 20 discovery signal regions in the jet counting analysis. Two
additional discovery signal regions are defined in the EWK analysis

Jet counting analysis discovery SRs

Jet pr threshold Number of jets 1£ category

Number of jets 2¢°¢ category Number of b-jets

20 GeV > 15
40 GeV > 12
60 GeV > 11
80 GeV > 10
100 GeV >8

> 10 =0,>3
> 8 =0,>3
>17 =0,>3
>7 =0,>3

6 =0,>3

EWK analysis discovery SRs

Jet pr threshold Lepton category and selection

Number of jets Number of b-jets

20 GeV
20 GeV

1¢, NN bin 4
205, mY < 155 GeV

=6 >4

=6 >3

second SR is defined in the 2£%¢ category, with exactly six
jets with pt > 20 GeV, and at least three b-jets. The discov-
ery SR definitions used in the EWK analysis are also shown
in Table 4.

The dominant background processes are ri+jets and
W/ Z+jets in the 1£ category, and W, tz with a misidenti-
fied lepton, and diboson production in the 2¢%¢ category. The
estimation of the dominant backgrounds is carried out using
a combined fit to the jet and b-jet multiplicity bins described
above. For these backgrounds, the normalization per jet slice
is derived using parameterized extrapolations from lower jet
multiplicities. The b-jet multiplicity shape per jet slice is
taken from MC simulation for the W/Z+jets and diboson
backgrounds, whereas for background processes involving
top quarks it is predicted from the data using a parameterized
extrapolation based on observables at medium jet multiplic-
ities. A separate likelihood fit is carried out for each jet pt
threshold, with the fit parameters of the background model
determined separately in each fit. The assumptions used in
the parameterization are validated using data and MC simu-
lation.

7 Background estimation

The dominant background in the 1£¢ category arises from
W/ Z+jets production in the zero b-jet regions, and top-quark
pair production in the regions with at least one b-jet. In the
2¢% category the dominant background in the zero b-jet
regions originates from diboson production with fully lep-
tonic decays, in particular W Z where one lepton from the
Z boson decay is lost. In the regions with at least one b-
jet the main backgrounds are the associated production of a
top-quark pair and a W boson, dileptonic ¢z where an elec-
tron has its charge misidentified, and semileptonic ¢f with

a jet misidentified as a lepton, or with a non-prompt lepton.
These three background components are merged and labelled
as 11 X%°, and estimated simultaneously.

The theoretical modelling of all these backgrounds at high
jet multiplicity suffers from large uncertainties, so they are
estimated from the data by extrapolating the jet and b-jet mul-
tiplicity distributions extracted at moderate jet multiplicities
to the high jet multiplicities of the search regions.

7.1 Jet multiplicity prediction

A data-driven approach is used to estimate the contribution
of the main backgrounds in each jet multiplicity slice. The
estimate of the normalization relies on assuming a functional
form to describe the evolution of the number of background
events for process X as a function of the jet multiplicity,
rX(jy= N} /INK.

Above a certain number of jets, 7 () is assumed to be con-
stant, implying a fixed probability of additional jet radiation,
referred to as ‘staircase scaling’ [127-130]. This behaviour
has been observed in W/Z+jets by the ATLAS [131,132]
and CMS [133] collaborations. For lower jet multiplicities,
a different scaling is expected with r(j) = k/(j + 1) where
k is a constant, referred to as ‘Poisson scaling’ [130]. The
transition point between these scaling behaviours depends
on the jet kinematic selections.

For the kinematic phase space relevant for this search, a
combination of the two scalings is found to describe the data
in dedicated validation regions (described later in this sec-
tion), as well as in simulated MC samples with an integrated
luminosity much larger than that of the data. This combined
scaling is parameterized as

Xy = + /G + e,
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where ¢, ¢{f and ¢5 are process-dependent constants that
are extracted from the data. The cé( parameter is introduced
to take into account the ambiguity in the counting of jets
originating from the decay products of the process X and the
additional jets. The parameter is fixed to c§ = 1 in the esti-
mation of W+jets, Z+jets, and fully leptonic diboson events,
as there is no ambiguity in the counting of jets for these pro-
cesses. However, c§ is a free parameter in the estimation of
backgrounds containing top quarks, where the jet counting
ambiguity remains.

Studies using simulated event samples, both at genera-
tor level and after event reconstruction, demonstrate that
the flexibility of this parameterization is also able to absorb
reconstruction effects related to the decrease in event recon-
struction efficiency with increasing jet multiplicity, which
are mainly due to the lepton—jet overlap and lepton isolation
requirements.

The number of background events from process X in the
J jets slice is then parameterized as follows:

j'=i=1
NF =N T 00,
j'=4

where N, f is a free parameter for the absolute normalization
in four-jet events. Since the last jet-multiplicity bin used in
the analysis is inclusive in the number of jets, the model is
used to predict this by iterating to higher jet multiplicities and
summing the contribution for each jet multiplicity above the
maximum used in the analysis. The four parameters per pro-
cess, 1.€. Nf, c())(, cf(, and c§ (if not fixed to one), are allowed
to float in the fit, and are therefore extracted from the data
along with the other background contributions. Studies in
data and MC simulation indicate that the ¢ and ¢f param-
eters for W+jets and Z+jets are statistically compatible, and

. . W/Z+jets
are therefore combined into common parameters ¢ /24
W/ Z+jet L Wjet:
and ¢, /Z+S The normalization parameters N, 5 and

N, 4Z I are kept independent. The cl.X parameters are inde-

pendent among the rest of the backgrounds, including ¢7 in
the 1¢ category and 7 X*¢ in the 2£5¢ category.

The jet-scaling assumption is validated in data, using
y+jets and dileptonic 7 events. The y+jets events are
selected using a high-pt photon trigger, and a high-pr sig-
nal photon is required in the event selection. The dileptonic
tt data sample is selected by requiring an electron candidate
and a muon candidate in the event, with at least two jets of
which at least one is a b-jet, and the small background pre-
dicted by MC simulation is subtracted. The possible signal
contamination in this sample is negligible as the selection is
inclusive over the number of b-jets. In this sample, the scaling
behaviour can be tested for up to 13 jets, which corresponds to
15 jets for a semileptonic ¢7+jets sample. Simulated W +jets,
Z+jets, semileptonic ¢7 (both the nominal sample and the

@ Springer

alternative samples described in Sect. 4), and 17 X% samples
are also found to be consistent with the jets-scaling assump-
tion.

Figure 3 shows the r () ratio for various processes used to
validate the jet-scaling parameterization. Each panel shows
the 7 (j) ratio for data or MC simulation with the fitted param-
eterization overlaid as a line.

7.2 Prediction of b-jet multiplicity

The number of background events from process X in a given
jet and b-jet multiplicity region can be expressed as follows:

X — fX  NX
Nip=1TjpN;
where f ].Xb is the fraction of events from process X with b

number of b-jets in the j jet slice, and satisfies 22:0 ij =

1. A data-driven model is used to estimate the b-jet fraction
in background processes containing top quarks. The basic
concept of this model is based on the extraction of an initial
template of the b-jet fraction distribution in events with four
jets and the parameterization of the evolution of this template
to higher jet multiplicities. Each jet slice is constrained in the
fit as discussed later in this section. The b-jet fractions for
W+jets, Z+jets and diboson backgrounds are taken from MC
simulation.

The extrapolation of the b-jet multiplicity distribution
to higher jet multiplicities starts from the assumption that
the difference between the b-jet multiplicity distribution in
events with j and j + 1 jets arises mainly from the production
of additional jets, and can be described by a fixed probability
that the additional jet is a b-jet. Given the small mis-tag rate,
this probability is dominated by the probability that the addi-
tional jet is a heavy-flavour jet which is b-tagged. In order
to account for acceptance effects due to the different kine-
matics in events with high jet multiplicity, the probability of
further b-tagged jets entering the acceptance is also taken
into account. The extrapolation to one additional jet can be
parameterized as:

S+ = fib-x0+ fio-1 - x1 + fjp-2) - X2, (D

where the parameters x; describe the probability of one addi-
tional jet to be either not b-tagged (x¢), b-tagged (x1), or
b-tagged and causing a second jet to be b-tagged (x2). The
latter is dominated by cases where the extra jet influences the
event kinematics such that a second b-jet, previously not b-
tagged, becomes b-tagged. This parameter aims to model the
increase in b-tagging efficiency with jet pt. Given that the x;
parameters describe probabilities, the sum ), x; is normal-
ized to unity. Terms with a negative number of b-tagged jets
(f}j,b<0) are set to zero. Subsequent application of this param-
eterization produces a b-jet template for arbitrarily high jet
multiplicities.
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Fig. 3 The ratio of the number of events with (j + 1) jets to the
number with j jets in various event samples (details in the legend),
used to validate the jet-scaling parameterization. In the MC samples
of W/Z/W Z+jets the vector bosons are forced to decay to leptons.

Studies based on MC simulated events with sample sizes
corresponding to equivalent luminosities much larger than
the collected dataset, as well as studies using fully efficient
generator-level b-tagging, indicate the necessity to add a fit
parameter that allows for correlated production of two b-
jets as may be expected with b-jet production from gluon
splitting. This is implemented by changing the evolution
described in Eq. (1) such that any term with x; - x| is replaced
by x1 - x1 - p11, Where p11 describes the correlated produc-
tion of two b-jets. The value of p1 is a free parameter and is
determined in the fit.

The initial b-jet multiplicity template is extracted from
data events with four jets after subtracting all non-¢7 back-
ground processes, and is denoted by f4 , and scaled by the
absolute normalization N} 7
in the four-jet bin:

in order to obtain the model

ti+jets o ti+ets
Ny =Ny - f.

)
s

where the sum of f4 j, over the four b-jet bins is normalized
to unity. The zero b-jet component of the initial ¢7 template,
exhibits an anti-correlation with the absolute W+jets normal-
ization, which is extracted in the same region. The division
into subregions separated in leading-lepton charge, detailed
in Sect. 6, provides a handle to extract the absolute W+jets
normalization, due to the charge asymmetry in W produc-
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Each panel shows the ratio for data or MC simulation with the fitted
parameterization overlaid as a dashed line. The uncertainties shown are
statistical

tion. The remaining anti-correlation does not affect the total
background estimate. For these regions, the r7+jets process
is assumed to be charge symmetric and the model is simply
split into two halves for these bins.

The model described above is based on the assumption
that any change in the b-jet multiplicity distribution is due to
additional jet radiation with a certain probability to lead to
b-jets. There is, however, also a small increase in the accep-
tance for b-jets produced in the decay of the 77 system, when
increasing the jet multiplicity, due to the higher jet momen-
tum on average. The effect amounts to up to 5% in the one-
and two-b-jet bins for high jet multiplicities, and is taken into
account using a correction to the initial template extracted
from simulated ¢ events.

The parameters that model the production of additional b-
jets (x;, p11) are correlated in the 1€ and 2¢%¢ categories. The
initial b-jet multiplicity parameters ( fa 5), and the acceptance
correction to the initial template are independent in each lep-
ton category.

7.3 Neural network template prediction
The NN is only introduced in regions with at least one b-

jet, where the dominant background is ¢7 production. The
NN output distribution is obtained from MC simulation for

@ Springer



1023 Page 12 of 39

Eur. Phys. J. C (2021) 81:1023

3] 10°E I I ]
c E 3
s . F ATLAS -@- Data ]
o 107 _ E
[ Vs=13TeV, 139 10" 7+ jets E
10°E qu+ 4 jets (pr> 20 GeV) Other E
10°F 4
10°k, E
10* —
10° E
10° E
10 =
TJ 14 I I I =
° 1 .
o 12
% 1 WJ/
8 08 % b
‘D“ 0.6 i t 1
1 2 3 >4
| | | I Nb-tagsl
1 23 41223 4123412 3 4
NN, bin

Fig. 4 Observed data and the corresponding background estimation
in regions with one electron, one muon, and four jets (left) or five jets
(right). All uncertainties, which may be correlated across the bins, are
included in the error bands (shaded regions). The shape of the NN tem-

all the subdominant backgrounds. A data-driven method is
developed in order to predict the NN output distribution for
tf background events, making use of the invariance of the NN
output with respect to the number of b-jets in the event. The 17
background in a given bin of the NN output is parameterized
as:

g =ngi N

where nj ; is the fraction of 77 events in bin i of the NN output
in the j jet slice, and is independent of the b-jet region. The
fractions in each jet slice are free parameters and are fitted
simultaneously to all b-jet regions, constrained by the sum
> n’J being normalized to unity. Given the large statistical
power of the one- and two-b-jet regions, the fitted NN tem-
plates are determined in these regions and not biased by a
possible signal entering the high b-jet regions.

This method relies on the invariance of the NN output
with respect to the number of b-jets. This property is vali-
dated in large samples of MC simulated ¢ events, including
the alternative samples described in Sect. 4. The invariance
is also confirmed in data by using a pure sample of dilep-
tonic ¢f events, with a selection requiring one electron, one
muon, and at least one b-jet. The signal contamination in this
dataset is at most 2% in the last NN bin of the 4 b-tag region.
The only process that is not negligible given this selection is
X ? )ZS production, which has a lower cross-section than the
X 1 X ? 2 process, that contributes most to the 1-lepton selec-
tion. Figure 4 shows that good agreement between data and
estimated background is observed in this region, confirming
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plate for the 7 background is required to be identical in all b-jet regions.
Good agreement between the data and estimated background confirms
the invariance of the NN output with respect to the b-jet region

in data the invariance of the NN output with respect to the
b-jet region.

7.4 Fake and non-prompt lepton background

The contribution from events with a fake or non-prompt
(FNP) lepton (such as hadrons misidentified as leptons, lep-
tons originating from the decay of heavy-flavour hadrons,
and electrons from photon conversions), constitutes a minor
but non-negligible background.

The multi-jet background in the 1¢ category is estimated
from the data with a matrix method similar to that described
in Ref. [134]. In this method, two types of lepton identifica-
tion criteria are defined: ‘tight’, corresponding to the default
signal lepton criteria described in Sect. 5, and ‘loose’, cor-
responding to candidate leptons after overlap removal. The
matrix method relates the numbers of observed events in
which a loose lepton candidate does or does not satisfy the
tight selection criteria. The probability for loose prompt lep-
tons to satisfy the tight selection criteria is obtained using a
Z — {f data sample and is modelled as a function of the
lepton pt. The probability for loose FNP leptons to satisfy
the tight selection criteria is determined from a data control
region enriched in non-prompt leptons that requires a loose
lepton, multiple jets, low E%‘iss [135,136], and low transverse
mass.* This data sample is recorded with prescaled lepton
triggers without an isolation requirement. The efficiencies

4 The transverse mass of the lepton—E%1iSS system is defined as: mt =

V2PEERS (1 — cos(Ag (€. EF™)).
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are measured as a function of lepton candidate pr after sub-
tracting the contribution from prompt-lepton processes, and
are assumed to be independent of the jet multiplicity.’

In the 2£5¢ category, the background from FNP leptons
in association with a top-quark pair is estimated as part of
the 7 X*¢ background as described above. Other contribu-
tions from FNP leptons constitute less than 10% of the total
background in the zero-b-jet bin, with a negligible contri-
bution in the b-jet regions, and are taken from MC simu-
lation. The estimation is validated in a dedicated validation
region requiring zero b-jets, two same-flavour leptons satis-
fying |me; — mz| < 10GeV, and an additional candidate
lepton failing the signal requirement. This region is domi-
nated by Z boson events containing a FNP lepton, and is
used to verify the modelling of FNP leptons in the MC sim-
ulation.

7.5 Minor backgrounds

The minor background contributions from single-top produc-
tion, 17 H, and SM four-top-quark production are estimated
using MC simulation. In the 1£ category the diboson and 77V
backgrounds are also estimated from MC simulation, while
the estimates are both data-driven (¢7V as part of the 17 X%
background) in the 2¢5¢ category. In all but the highest jet
slices considered, the sum of these backgrounds contributes
no more than 10% of the SM expectation in any of the b-jet
bins; for the highest jet slices this can rise to 35%.

7.6 Fit configuration and validation

Two different fit configurations are used in the search. When
testing a specific BSM model the model-dependent fit set-up
is used, where for each jet pt threshold all the regions in
both lepton categories are simultaneously fit to data to con-
strain the model. The expected signal contribution in all bins
is taken into account, including bins with low jet or b-jet
multiplicity. The jet counting analysis is used to constrain
the models with strong production and the EWK analysis
for the models with electroweakino production. Separate fits
are performed for each jet pr threshold, and the threshold
with best expected sensitivity for the given signal mass point
is used to set limits. In the search for a generic BSM sig-
nal in a particular SR the model-independent fit set-up is
used, where for each jet pt threshold the simultaneous fit
includes all regions except the SR being tested. Possible sig-
nal leakage to the control regions can produce a bias in the
background estimation, leading to conservative limits. Such

5 To minimize the dependence on the number of jets, the event selec-
tion considers only the highest- pt candidate lepton when checking the
more stringent identification and isolation criteria of the signal lepton
definitions.

limits have hence been obtained assuming negligible signal
contributions in regions outside of the SR. Signal processes
with final states that the search is targeting generally have
negligible leakage into these regions, as is the case for the
benchmark models considered.

The number of freely floating parameters in the back-
ground model is 26 in the jet counting analysis, and 41 in the
EWK analysis. The different parameters for each background
are summarized in Table 5. The number of fitted bins varies
between 51 and 110 in the jet counting analysis, depending
on the jet prt threshold used, and is 170 in the EWK analysis,
leading to an over-constrained system in all cases.

The fit set-up was extensively tested using MC simulated
events, and was demonstrated to give excellent agreement on
a background-only dataset, and a negligible bias in the fitted
signal yields. This level of agreement is seen both in the cases
where the background-only distributions are fit, and when a
signal is injected into the fitted data.

8 Systematic uncertainties

The dominant backgrounds are estimated from the data with-
out the use of MC simulation, and therefore the main sys-
tematic uncertainties related to the estimation of these back-
grounds arise from the assumptions made in the construction
of the parameterized model. Uncertainties related to the the-
oretical modelling of the specific processes and due to the
modelling of the detector response in simulated events are
only relevant for the minor backgrounds, which are taken
from MC simulation, and for the estimates of the signal yields
after selections.

For the W/ Z+jets background estimation, the uncertainty
related to the assumed jet scaling is taken from studies of this
behaviour in W+jets and Z+jets MC simulation, as well as in
y +jets data control regions chosen to be kinematically similar
to the search selection. Deviations from the assumed scaling
behaviour are assigned as a systematic uncertainty, uncorre-
lated in each jet slice. In the case of no deviation the statistical
precision of the validation is assigned. The uncertainty in the
lower jet multiplicities is at the percent level for all jet pr
thresholds, and up to 50% in the highest jet multiplicities,
driven by the statistical precision of the method. The uncer-
tainty related to the parameterization of the jet multiplicity
of the #¢ background is determined with the same strategy,
and is derived from MC simulation closure tests (including
alternative MC generators), as well as dileptonic 77 control
regions in data. No evidence of a deviation from the assumed
scaling behaviour is seen, and the statistical precision of the
closure in data is used as an uncertainty.

The expected uncertainty of the charge asymmetry in
W +jets production is 3%—5% from PDF variations [137], but
in the seven-jet region the uncertainty is dominated by the
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Table 5 Summary of all the free floating parameters in the background model. There are a total of 26 such parameters in the jet counting analysis

and 41 in the EWK analysis

Parameters tr +ets trxse W +jets Z+jets V'V +jets Constraints

P i Fxse w z 4%
Normalization N} N} Ny Ny Ny -
Jet scaling, i € {0, 1, 2} ! clrx” ciW/z v c;V/Z =)V =1
Initial b-jet fractions, i € {0...4} o e - - - Y fai=1
Extra heavy-flavour jets, i € {0, 1, 2} Xi, P11 - - - Yuxi=1
NN shape, i € {1...4}, j € {4...8} nji - - - - Yonji=1

limited number of MC events (up to 10% for the 80 GeV
jet-prt threshold). The uncertainty in the shape of the b-
jet multiplicity distribution in W+jets, Z+jets, and diboson
events is derived by comparing different MC generator con-
figurations (e.g. varying the renormalization and factoriza-
tion scale and the parton-shower model parameters). It is
seen to grow as a function of jet multiplicity and is about
50% for events with five jets, after which the MC statistical
uncertainty becomes very large. A conservative uncertainty
of 50% per additional heavy-flavour quark that is generated
is assigned to the fractional contribution from V (V)+b and
V (V)+c events, uncorrelated among the three backgrounds.
This uncertainty has a negligible impact on the final result
as the background from W/Z boson or diboson production
with additional heavy-flavour jets is small compared to that
from top-quark pair production. In addition, the uncertain-
ties related to the b-tagging efficiency and mis-tag rate are
taken into account in the uncertainty in the W/Z+jets b-jet
template.

The b-jet fraction estimation method exhibits good closure
in studies based on MC simulated events with sample sizes
corresponding to integrated luminosities much larger than
that of the collected dataset, as well as studies using fully
efficient generator-level b-tagging, so no systematic uncer-
tainty related to these studies is assigned. A small uncertainty
related to the acceptance correction for the initial b-jet mul-
tiplicity template is derived by varying the MC generator
configuration for the 77 sample used to estimate the correc-
tion. This leads to a 3% uncertainty in the correction, and has
no significant effect on the final uncertainty.

The prediction of the NN template in ¢7 events relies on
the invariance of the NN output with respect to the number
of b-jets in the event. This assumption is tested in MC simu-
lation (both the nominal sample and the alternative samples
described in Sect. 4), and seen to hold within 5% in the five-jet
and six-jet slices, where the best signal-to-background ratio
is expected, and within 10% in the rest. The largest deviation
from the b-jet-inclusive template that is seen per bin across
b-jet regions is assigned as an uncorrelated uncertainty in
each bin and ranges from 1% to 10%.

@ Springer

The dominant uncertainty in the multi-jet background esti-
mate arises from the number of data events in the control
regions. An uncertainty in the subtraction of electroweak
backgrounds from these control regions is estimated at 20%
of the expected yield of these background processes. Addi-
tional uncertainties are assessed to cover the possible depen-
dencies of the prompt and FNP lepton efficiencies [134] on
variables other than lepton pt (for example the dependence
on the number of jets in the event). The total uncertainty in
the multi-jet background yields is about 50%.

The uncertainty in the expected yields of the minor
backgrounds includes theoretical uncertainties in the cross-
sections and in the modelling of the kinematics by the MC
generator, as well as experimental uncertainties related to
the modelling of the detector response in the simulation.
The uncertainties assigned to cover the theoretical estimate
of these backgrounds in the relevant regions are 50% for
diboson in the 1¢ category and single top-quark production,
and 30% for 17V / H production. An additional uncertainty of
50% is assigned to the contribution from t£V +b and 7V + ¢
events. These uncertainties are conservative estimates based
on the impact seen from renormalization and factorization
scale variations, PDF variations, and comparisons with sam-
ples with an alternative parton-shower model.

Uncertainties in the modelling of ¢717 are assigned from
renormalization and factorization scale variations, as well
as from a comparison with simulated samples with an
alternative parton-shower model. An uncertainty of 100%
is assigned to the cross-section to cover the difference
between the predicted and measured cross-sections [34].
Using instead the central value and uncertainty from the
ATLAS measurement leads to a 1% decrease in expected
sensitivity.

The final uncertainty in the background estimate in the SRs
is dominated by the uncertainty in the fitted model parame-
ter values, which stems from the statistical uncertainty of the
data events in the different jet slices. Systematic uncertain-
ties do not contribute significantly in the jet counting analysis,
and cause only a 1% loss in sensitivity. The leading system-
atic uncertainty in the EWK analysis is related to the NN
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Fig. 5 The observed data event yields and the corresponding estimates
for the backgrounds in the different b-jet multiplicity bins for the 20
GeV jet- pr threshold regions defined for the EWK analysis in the 1¢
category. The background shown is estimated by including all bins in

the fit. All uncertainties, which may be correlated across the bins, are
included in the error bands (shaded regions). The expected signal distri-

bution for the higgsino LSP m()??) =300 GeV hypothesis normalized
to 20 times its expected cross-section is also overlaid
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Fig. 6 The observed data event yields and the corresponding estimates
for the backgrounds in the different b-jet multiplicity bins for the 20 GeV
jet-pr threshold regions defined for the EWK analysis in the 2¢°¢ cate-
gory. The background shown is estimated by including all bins in the fit.

invariance assumption and causes a 30% loss in sensitivity,
while other systematic uncertainties are subdominant.

The uncertainties assigned to the expected signal yields
for the SUSY benchmark processes considered include the
experimental uncertainties related to the detector modelling,
which are dominated by the modelling of the jet energy scale,
and the b-tagging efficiencies and mis-tagging rates. For
example, for a signal model with four b-quarks, the b-tagging
uncertainties are &~ 10%, and the jet-related uncertainties are
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All uncertainties, which may be correlated across the bins, are included
in the error bands (shaded regions). The expected signal distribution for

the higgsino LSP m(X ? ) =300 GeV hypothesis normalized to 20 times
its expected cross-section is also overlaid

typically ~ 5%. The uncertainty in the signal cross-sections
used is discussed in Sect. 4. The uncertainty in the signal
yields related to the modelling of additional jet radiation is
studied by varying the factorization, renormalization, and
jet-matching scales as well as the parton-shower tune in the
simulation. The corresponding uncertainty is small for most
of the signal parameter space, but is as large as 30% for very
light or very heavy LSPs, where the contribution from addi-
tional jet radiation is relevant. The difference between fast
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Fig. 7 The observed pulls in all the regions considered in the EWK
analysis, in the 1£ category (left) and the 2¢5¢ category (right). The pull
is defined as the difference between the observed number of events and
the total expected number of events determined by the fit divided by the

and full simulation is evaluated for selected signal points. The
jet multiplicity, b-jet multiplicity, and NN output distribu-
tions are found to be statistically compatible, so no additional
uncertainty is considered due to the usage of fast simulation.

9 Results

Results are provided both as model-independent limits on the
contribution from BSM physics to the dedicated SRs, and in
the context of the five SUSY benchmark models discussed
in Sect. 2. As described in Sect. 7.6, two different fit config-
urations are used for the two sets of results. In both cases, the
profile likelihood-ratio test [138] is used to establish 95%
confidence intervals using the CLg prescription [139]. The
parameter of interest is the signal strength, defined as the
cross-section of the hypothetical contribution from physics
beyond the SM in units of the cross-section of the benchmark
model.

The b-jet multiplicity distributions are shown in Figs. 5
and 6 for the EWK analysis defined with a 20 GeV jet-pr
threshold, for the 1¢ and 2£%¢ categories respectively. Fig-
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total uncertainty. The total uncertainty is the sum in quadrature of the
statistical error of the observed data and the uncertainty in the predicted
background

ure 7 summarizes the observed pulls in all analysis regions,
defined as the difference between the observed number of
events and the total expected number of events determined
by the fit divided by the total uncertainty. The total uncer-
tainty is the sum in quadrature of the statistical error of
the observed data and the uncertainty in the predicted back-
ground. The pulls follow a gaussian distribution centered at
zero. Figure 8 shows the b-jet multiplicity distribution for the
last jet-multiplicity bin defined for each of the jet pr thresh-
olds, in both the 1¢ and 2¢%¢ categories, which contains the
discovery SRs at zero b-jet and high b-jet multiplicity. The
likelihood fit is configured using the model-dependent con-
figuration where all bins are input to the fit, and fixing the
signal-strength parameter to zero.

9.1 Model-independent results

The observed data event yields and the corresponding esti-
mates for the backgrounds in the discovery SRs defined for
the 1¢ and 2¢5¢ categories are shown in Tables 6 and 7.
For each SR a fit is performed to predict the background
using the model-independent set-up, which excludes the SR

@ Springer



1023 Page 18 of 39

Eur. Phys. J. C (2021) 81:1023

Fig. 8 The observed data event
yields and the corresponding
estimates for the backgrounds in
the different last jet-multiplicity
bins defined for the 1¢ (left) and
205 (right) categories. The
background shown is estimated
by including all bins in the fit.
All uncertainties, which may be
correlated across the bins, are
included in the error bands
(shaded regions). Hypothetical
contributions from
representative RPV SUSY
scenarios are displayed as
dashed and dotted lines
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Table 6 Data event yields compared with the expected contributions
from relevant background sources, in the discovery signal regions
defined for the 1¢ category. The po-value, and corresponding signif-
icance (Z), as well as the observed and expected 95% CL model-
independent upper limits on the product of cross-section, acceptance

and efficiency (in ab) are also shown (o<*). In SRs with a deficit of
data compared to the background prediction the po-value is capped at
0.5. The parameters of the background model are determined in a fit
to a reduced set of bins, corresponding to the model-independent fit
discussed in the text

Jet pr threshold Selection 7=NN bin 4 Total background Data Po Z o obs. [ab] g exel exp. [ab]
20 GeV =6/, > 4b,T 145+ 6 126 0.5 0 130 200480
> 15/, =0b 163+5.2 16 0.5 0 100 10049
>15j,>3b 1704+ 1.9 20 0.26 0.7 92 7442
40 GeV > 12j,=0b 78+15 8 0.47 0.1 55 53121
> 12j,=3b 8.6+ 1.1 12 0.17 0.9 76 55+21
60 GeV > 11j,=0b 27408 3 0.44 0.2 38 35114
>11j,>3b 23+0.6 5 0.1 1.3 56 33403
80 GeV > 10, =0b 21411 0.38 0.3 0 34t
> 10/, > 3b 1L7+15 2 0.47 0.1 35 3343
100 GeV >8j,=0b 227419 25 0.38 0.3 96 85+33
>8j,>3b 75+1.0 8 0.41 0.2 55 51129

Table 7 Data event yields compared with the expected contributions
from relevant background sources, in the discovery signal regions
defined for the 2¢%¢ category. The pg-value, and corresponding sig-
nificance (Z), as well as the observed and expected 95% CL model-
independent upper limits on the product of cross-section, acceptance

and efficiency (in ab) are also shown. In SRs with a deficit of data com-
pared to the background prediction the pg-value is capped at 0.5. The
parameters of the background model are determined in a fit to a reduced
set of bins, corresponding to the model-independent fit discussed in the
text

Jet pr threshold Selection T=m < 155 GeV Total background Data Po Z % obs. [ab] ol exp. [ab]
20 GeV =6j.>3bt 16.1 £ 1.2 20 021 08 92 6911
> 10/, =0b 58+0.8 6 046 01 48 45118
> 10/, > 3b 82+£15 6 0.5 0 41 54104
40 GeV >8j,=0b 2.8+0.7 2 0.5 0 31 35700
>8j,>3b 3.6£12 7 013 L1 67 3971
60 GeV >7j,=0b 1.71£0.35 3 0.2 08 41 29132
>7j,>3b 20£0.7 5 0.09 13 58 3213
80 GeV >7j,=0b 0.34£0.13 0 0.5 0 22 27
>7j,>3b 0.54 +0.20 1 034 04 27 22149
100 GeV > 6j,=0b 0.5+0.4 0 0.5 0 22 213
>6j,>3b 0.52+0.22 1 028 06 28 213

under consideration. In addition, the discovery po-values and
corresponding gaussian significance (Z) are shown, which
measure the compatibility of the observed data with the
background-only (zero signal strength) hypothesis relative to
fluctuations of the background. Larger values indicate greater
relative compatibility. No significant excess of data over the
expected event yields is observed in any of the SRs. The two
largest excesses are observed in the 60 GeV, > 11 jets, > 3
b-jets SR defined for the 1€ category and in the 60 GeV,
> 7 jets, > 3 b-jets SR defined for the 2¢%¢ category, and
both correspond to a significance of 1.3 standard deviations.
Upper limits on the product of cross-section, acceptance, and

efficiency are set at 95% CL, ranging from 22 to 200 ab,
depending on the SR.

9.2 Model-dependent results

For each signal model probed, the fit is configured using
the model-dependent configuration. No significant excess is
observed in any of the model-dependent fits. Figure 9 shows
the observed and expected exclusion limits for the strong
production signal models featuring gluino and stop pair pro-
duction, as a function of the gluino mass or stop mass. Gluino
masses up to 2.4 TeV are excluded for high LSP masses, and
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Fig. 9 Observed and expected exclusion contours for the RPV models
with strong production. The results are shown for a g — ¢¢g )Z? —
q9G3qdl/v,b § — if — ihs, c g — tf)??_z — titbs and d stop pair
production. The contours of the band around the expected limit are the
=+ 1o variations, including all uncertainties. The dotted lines around the
observed limit illustrate the change in the observed limit as the nominal
signal cross-section is scaled up and down by the theoretical uncer-

up to 2 TeV for low LSP masses. Stop masses are excluded
up to 1-1.3 TeV, depending on the LSP mass. The sensitivity
decreases for low LSP masses due to the high boost of the
LSP, resulting in close-by decay products that lead to recon-
struction and isolation inefficiencies. The best sensitivity is
achieved for a bino LSP, while the wino LSP exhibits the
worst sensitivity due to the lower number of top quarks in
the final state. The exclusion limits for the models with gluino
or stop production are stronger than in the previous version

@ Springer
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tainty. All limits are computed at 95% CL. The diagonal line indicates
the kinematic limit for the decays in each specified scenario. The limits
on direct electroweakino production obtained with the EWK analysis
are displayed as horizontal hatched bands in ¢ and d. When relevant,
the limit on the stop mass from Refs. [23,27] is also shown. A small
range in stop mass between 460 and 470 GeV is not excluded by the
search for f — bs [27]

of the analysis documented in Ref. [22], thanks to the larger
dataset and the inclusion of the same-sign lepton category.
Figure 10 shows exclusion limits in the electroweakino
pair-production model, versus the LSP mass. The limits for
pure higgsino and wino LSPs are shown separately, taking
into account the processes discussed in Sect. 2. The wino sig-
nal can only contribute to the 1£ category, via X 1jE X ? produc-
tion, while the higgsino signal is also present in the 2% cat-
egory through )23 X ? production. This leads to differences in
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Fig. 10 Observed and expected exclusion contours for the RPV mod-
els with electroweakino production models with a higgsino and b wino
LSP hypotheses. The yellow and green contours of the band around
the expected limit are the £10 and +2¢ variations including all uncer-

the observed limits between the two models. Depending on
the LSP hypothesis, LSP masses between 200 (197) GeV and
320 (365) GeV are excluded for a higgsino (wino) LSP.
The analysis is also sensitive to SM ¢7¢7 production, which
produces a final state similar to the targeted signals. An addi-
tional model-dependent fit is performed where the 77¢f nor-
malization is a free parameter. The fitted normalization of
the four-top process relative to the Standard Model value is
Wit = 2.0J_r8:3. Modelling uncertainties due to scale varia-
tions and parton-shower variation are taken into account, as
is a 20% cross-section uncertainty for the reference SM pre-
diction of o;7;7 [92]. This is in agreement with the measured
value in Ref. [34] of ;77 = 2.0J_r8:§. Both analyses are based
on the same dataset and have overlapping selections, but have
completely different background estimation methods. The
best sensitivity is obtained with the 40 GeV jet-pr thresh-
old. Compatible results, albeit with larger uncertainties, are
obtained with the 20 GeV and 60 GeV jet-pr thresholds.
A fit with two independent signal strengths in each lepton
category yields consistent values in both categories.

10 Conclusion

A search for RPV supersymmetry events with at least one
isolated lepton (electron or muon) and high jet multiplicity
is presented. In order to improve the sensitivity of the search,
events with two leptons with the same electric charge, and
events with at least one lepton are analysed separately. The
selection also relies on the number of b-jets in the event. In
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tainties, respectively. The theoretical prediction is also shown, with the
uncertainties in the prediction shown as a coloured band. The produc-

. ~+-~+ . . . .
tion of X| Xi is not considered as it decays to a final state with no
leptons

order to ensure the highest sensitivity to the electroweak pro-
duction models, a neural-network-based analysis was intro-
duced. Data-based techniques are used to estimate the domi-
nant backgrounds from ¢7+jets, W/ Z+jets, diboson, and 17 W
production. The analysis is performed with proton—proton
collision data at /s = 13 TeV collected from 2015 to 2018
with the ATLAS detector at the LHC, corresponding to an
integrated luminosity of 139 fb~!.

With no significant excess over the Standard Model expec-
tation observed, results are interpreted in the framework of
simplified models featuring gluino, stop, or electroweakino
pair production in RPV supersymmetry scenarios. In a bench-
mark model with g — tf)?? — 11tbs, gluino masses up to
2.38 TeV are excluded at 95% confidence level. Top squarks
with masses up to 1.36 TeV are excluded in a model with
direct stop production and RPV decays of the LSP. In both
models, three hypotheses for the LSP are tested: pure bino,
pure wino, and pure higgsino. In a model with § — 77 and
i — b3, gluino masses up to 1.83 TeV are excluded, whereas
in a model with g — ch)?? — qqqql/v, gluino masses up
to 2.25 TeV are excluded. Direct electroweak production of
electroweakinos is also tested, and higgsino (wino) masses
between 200 (197) GeV and 320 (365) GeV are excluded.

These results improve upon the previously existing LHC
limits for the gluino and stop production models considered,
owing to the larger luminosity, the dedicated categorization
and analysis of events with two leptons with the same elec-
tric charge, and the introduction of multivariate discrimi-
nants. The results for the electroweak production model also
improve upon the limits on hadronic RPV decays of elec-
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troweakinos from LEP [140-142]. Model-independent lim-
its are also set on the contribution of new phenomena to the
signal-region yields.
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