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Abstract: This paper addresses the problem of approximating the future value distribution of a large
and heterogeneous life insurance portfolio which would play a relevant role, for instance, for solvency
capital requirement valuations. Based on a metamodel, we first select a subset of representative policies
in the portfolio. Then, by using Monte Carlo simulations, we obtain a rough estimate of the policies’
values at the chosen future date and finally we approximate the distribution of a single policy and of
the entire portfolio by means of two different approaches, the ordinary least-squares method and a
regression method based on the class of generalized beta distribution of the second kind. Extensive
numerical experiments are provided to assess the performance of the proposed models.

Keywords: GB2; LSMC; metamodel; regression models; Solvency II

JEL Classification: G22

1. Introduction

In many relevant situations, life insurers face the necessity to determine the distri-
bution of the value of their portfolio of policies at a certain future date. This happens,
for example, when regulators need to maintain solvency capital requirements in order to
continue to conduct business, as stated in the Solvency II directive or in the Swiss Solvency
Test. In particular, Article 101(3) of the European directive requires that the Solvency
Capital Requirement “shall correspond to the Value-at-Risk of the basic own funds of an
insurance or reinsurance undertaking subject to a confidence level of 99.5% over a one-year
period” (see European Parliament and European Council 2009). As a consequence, insur-
ers are obliged to assess the value of assets and liabilities at a future date, the so-called risk
horizon, in order to derive their full loss distributions. To achieve this, the relevant risk
factors must be projected at the risk horizon and then, conditional on the realized values,
a market consistent valuation of the insurer’s assets and liabilities is required. This has
led insurance and reinsurance companies to face a computationally intensive problem.
Indeed, due to the complex structure of the insurer’s liabilities, in general, closed form
formulas are not available and a straightforward approach, common among insurers, is to
obtain an estimate through nested Monte Carlo simulations. Unfortunately, this approach
is extremely time consuming and becomes readily unmanageable from a computational
point of view. In this regard, one possible alternative method proposed in the literature
to reduce the computational effort and to preserve the accuracy of the desired estimates
is the Least-Squares Monte Carlo (LSMC) method, firstly introduced by Carrière (1996),
Tilley (1993), and Longstaff and Schwartz (2001) in the context of American-type Option
Pricing. Application of the LSMC method for valuing solvency capital requirements in the
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insurance business was proposed in Cathcart and Morrison (2009) and Bauer et al. (2010).
Moreover, Floryszczak et al. (2016) and Krah et al. (2018) illustrate a practical implemen-
tation of the LSMC in this particular context. The above-mentioned papers, proposed in
the actuarial literature, share the common feature of evaluating capital requirements for a
single policy.

In the case of an entire portfolio of policies, the nested simulation approach is even
more difficult to implement due to the huge computational effort needed. For instance,
assuming 10,000 outer trajectories simulated from the current time to the risk horizon for
each one of the v risk factors, and then 2500 inner paths for each outer, with a monthly
discretization for 20 years, and considering an insurance portfolio composed of 10,000
contracts, the total number of cash-flow projections needed would be 10,000 × v × 2500 ×
12 × 20 × 10,000 = v × 6 × 1013, which is very hard to manage.

In order to keep the computational complexity of the evaluation problem at a reason-
able level, we propose a metamodeling approach. Metamodeling, introduced in system
engineering (see Barton 2015), can be defined as “the practice of using a model to describe
another model as an instance” (see Allemang and Hendler 2011). This approach has also
been widely used in the actuarial literature to estimate the price and Greeks of large portfo-
lios of life insurance policies. For instance, Gan (2013) developed a metamodel based on
data clustering and machine learning to price large portfolios of variable annuities, while
Gan and Lin (2015) tackled a similar problem by developing a functional data approach.
In addition, Gan (2015) compares the data clustering approach and Latin hypercube sam-
pling to select representative variable annuities. Finally, Gan and Valdez (2018) proposes a
metamodel to estimate partial Greeks of variable annuities with dependence.

In the present paper, the metamodel we propose to approximate the future value
distribution of a life insurance portfolio is constructed in different steps:

1. Select a subset of representative policies by means of conditional Latin hypercube
sampling;

2. Project the risk factors from the evaluation date to the risk horizon by means of outer
simulations;

3. Compute a rough estimate of each representative policy by means of a very limited
(say two) number of inner simulations;

4. Create a regression model to approximate the distribution of the value of representa-
tive policies;

5. Use the regression model to estimate the future value distribution of the entire portfolio.

We propose two different approaches to develop the regression model in steps 4
and 5. The first approach relies upon the well-established Ordinary Least Squares (OLS)
method for approximating the conditional distribution of each representative policy at
the risk horizon, and then a second OLS regression is applied to estimate the future value
distribution of the entire portfolio. Roughly speaking, we may say that the LSMC method
is applied to estimate the distribution of the value of each representative policy at the risk
horizon, and then this information is extended to the entire portfolio by means of a simple
OLS regression. We call this approach the LSMC method.

The second approach exploits the class of generalized beta of the second kind (GB2)
distributions to model the conditional distribution of each representative policy value at
the risk horizon and also to estimate the future value distribution of the entire portfolio.
We underline that the GB2 regression model has been used in Gan and Valdez (2018) for
modeling the fair current market values of guarantees embedded in a large variable annuity
portfolio starting from a set of representative policies. Extensive numerical experiments
have been conducted in order to assess the performance of the proposed models. The re-
mainder of the paper is structured as follows. Section 2 provides the evaluation framework
and Section 3 introduces the metamodeling approach. Section 4 illustrates some numerical
results, and finally, in Section 5, conclusions are drawn.
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2. The Evaluation Framework

We consider a life insurance portfolio with M contracts underwritten by different
policyholders (males and females) of different ages at the inception date t = 0. We take
into account different types of life insurance policies which differ from each other in terms
of maturity, policyholders’ ages, and sex. In particular, we consider unit-linked products,
term life insurance and immediate life annuities. We assume that the unit-linked product
pays, upon reaching maturity, and assuming the survival of the insured, the maximum
value between the minimum guaranteed benefit and the value of a specific reference asset.
The immediate life annuity is assumed to pay 10% of the level of a given reference asset
continuously whilst the insured is alive; finally, the term insurance contract pays the total
value of the asset upon the death of the policyholder before maturity. Regarding all the
possible policy configurations, see Table 1.

Table 1. This table shows the parameters used to generate the life insurance portfolio.

Feature Value

Policyholder age {55, . . ., 65}
Sex {Male, Female}

Maturity {10, 15, 20, 25, 30}
Product type {Unit-linked, Term Insurance, Life Annuity}

Since our task is to approximate the portfolio value distribution at the risk horizon
starting from a set of representative policies, we use the Conditional Latin Hypercube
Sampling (CLHS) method (see Minasny and McBratney 2006). Indeed, this approach
has already been applied to select subsets of representative policies providing reliable
results, e.g., see Gan and Valdez (2018). Therefore, in order to select a set of s representative
contracts, we apply the CLHS method to the design matrix X, which contains all the features
characterizing each specific policy, i.e., types, maturity, sex and age of the policyholder.
Note that the categorical variables are treated as dummy variables.

In order to project the cash-flows generated by the contracts over time, we need to sim-
ulate the possible evolution of the risk factors. In this regard, we consider a computational
framework where mortality, interest rate and the reference asset are taken into account.
Despite insurance companies being exposed to systematic and non-systematic mortality
risks, in our setting we consider only the first component for computational purposes due
to the big dimension of the portfolio that will be considered.

Let (Ω,F,P) be a filtered probability space large enough to support a process X in
Rk, representing the evolution of financial variables, and a process Y in Rd, representing
the evolution of mortality. The filtration F = (Ft)t≥0 represents the flow of information
available as time passes by; this includes knowledge of the evolution of all state variables
up to each time t and of whether the policyholder has died by then. Specifically, we define
Ft as the σ-algebra generated by Gt ∪Ht, where

Gt = σ(Zs : 0 ≤ s ≤ t), Ht = σ
(
I{ς≤s} : 0 ≤ s ≤ t

)
,

and where Z = (X, Y) is the joint state variables process in Rk+d. Thus, we have F = G∨H,
with G = GX ∨GY and with H = (Ht)t≥0 being the smallest filtration with respect to
which ς is a stopping time and interpreted as the remaining lifetime of an insured. For more
detail of modeling mortality under the intensity-based framework, see Biffis (2005).
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Under the physical probability measure, P, we assume that the financial risk factors
(reference asset value S, and interest rate r) dynamics are described by the following
stochastic differential equations

dS(t) = S(t)(r(t) + λ)dt + S(t)σSdW1,P(t), (1)

S(0) = S0,

where λ is the risk premium, σS is a positive constant, W1,P(t) is a standard Wiener process,
and r(t) is the risk-free interest rate, which is assumed to follow the dynamics

dr(t) = α(θ − r(t))dt + σrdW2,P(t), (2)

r(0) = r0.

Here, W2,P(t) is a standard Wiener process, and the coefficients α, θ, σr are positive
constants representing the speed of mean reversion, the long-term interest rate, and the
interest rate volatility, respectively. Further, we assume that the two Wiener processes,
W1,P(t) and W2,P(t), are correlated with the correlation coefficient ρ.

In the absence of arbitrage opportunities, an equivalent martingale measure Q exists,
under which all financial security prices are martingales after deflation by the money
market account. We refer the readers to Biffis (2005) for more detail. Under the risk-neutral
probability measure, Q, the dynamics in Equations (1) and (2) can be re-written as

dS(t) = S(t)r(t)dt + S(t)σSdW1,Q(t),

and

dr(t) = α
(

θ − σr

α
γ− r(t)

)
dt + σrdW2,Q(t),

where γ is the market price of risk. Note that W1,Q(t) and W2,Q(t) are two correlated
standard Wiener processes with the coefficient of correlation ρ under Q.

Concerning mortality, following Fung et al. (2014), we assume that the force of mor-
tality, µx+t(t), under the physical probability measure P for an individual aged x at time
t = 0, evolves accordingly to the following one-factor, non-mean-reverting and time-
homogeneous affine process:

dµx+t(t) = [a + bµx+t(t)]dt + σµ

√
µx+t(t)dW3,P(t), (3)

µx(0) > 0,

where a 6= 0, b > 0, σµ > 0 represent the volatility of the mortality intensity and W3,P(t) is
a standard Wiener process which is assumed to be independent with respect to W1,P(t) and
W2,P(t). As pointed out by Fung et al. (2014), the important advantages of the mortality
model defined in Equation (3) are its tractability since analytical expressions are available
to evaluate survival probabilities, and also its simplicity since the model dynamics can
be easily simulated. Furthermore, this model guarantees that, under specific conditions,
the force of mortality is strictly positive (i.e., if a ≥ σ2

µ/2).
The dynamics in Equation (3) under Q can be defined as

dµx+t(t) =
[
a +

(
b− δσµ

)
µx+t(t)

]
dt + σµ

√
µx+t(t)dW3,Q(t),

µx(0) > 0,

where W3,Q(t) is a standard Wiener process under the risk-neutral measure and δ is the
market price of the systematic mortality risk.

Note that the parameters in the stochastic mortality model are estimated by calibrating
the implied survival curve to the one obtained from the Italian population data of year
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2016 (assumed to be t = 0) collected from the Human Mortality Database (see Fung et
al. 2014). The calibration procedure was conducted for all policyholder ages and genders
reported in Table 1.

Finally, it is worth noting that, due to the flexibility of the methodology that will be
proposed, different and/or more complex dynamics to describe the evolution of the risk
factors may be assumed with respect to the ones assumed above.

3. Problem and Methodology

Under the framework defined in Section 2, we need to evaluate the streams of pay-
ments embedded in each policy inside the insurance portfolio. Before discussing the
methodology, let us recall some results provided by Biffis (2005) related to the time-τ
fair values of the most common payoffs embedded in typical life insurance products,
i.e., survival and death benefits.

Proposition 1. (Survival benefit.) Let C be a bounded G-adapted process. Then, the time-τ fair
value SBτ(CT ; T) of the time-T survival benefit of amount CT , with 0 ≤ τ ≤ T, is given by:

SBτ(CT ; T) = E
[
e−
∫ T

τ rsdsI{ς>T}CT | Fτ

]
= I{ς>τ}E

[
e−
∫ T

τ (rs+µs)dsCT | Gτ

]
.

In particular, if C is GX-adapted, the following holds:

SBτ(CT ; T) = I{ς>τ}E
[
e−
∫ T

τ rsdsCT | GX
τ

]
E
[
e−
∫ T

τ µsds | GY
τ

]
.

Proposition 2. (Death benefit.) Let C be a bounded G−predictable process. Then, the time-t fair
value DBτ(Cς; T) of the death benefit of amount Cς, payable in case the insured dies before time T,
with 0 ≤ τ ≤ T, is given by

DBτ(Cς; T) = E
[
e−
∫ ς

τ rsdsCςI{τ<ς≤T} | Fτ

]
= I{ς>τ}

∫ T

τ
E
[
e−
∫ u

τ (rs+µs)dsµuCu | Gτ

]
du.

In particular, if C is GX-predictable, the following holds

DBτ(Cς; T) = I{ς>τ}

∫ T

τ
E
[
e−
∫ u

τ rsdsCu | GX
τ

]
E
[
e−
∫ u

τ µsdsµu | GY
τ

]
du.

We refer the readers to Biffis (2005) for the corresponding proofs and further de-
tails. Therefore, as we can see from Propositions 1 and 2, evaluating life insurance poli-
cies at future times implies solving conditional expectations for which often analytical
formulas do not exist. Due to this, simulation-based approaches are extensively used
(see Boyer and Stentoft 2013), among which we mention the nested simulations method
where a high number of inner simulations branch out from another huge set of outer scenar-
ios. However, the simulations within simulations approach is computationally challenging,
especially when several policies are considered, as in our case. Therefore, in the following,
we are going to discuss two methodologies to evaluate the streams of payments embedded
in each policy inside the insurance portfolio. For this purpose, we project the relevant risk
factors affecting the policy (i.e., S, r, and µ) under the physical probability measure from
time t = 0 up to the risk horizon τ, and then for each outer scenario another set of inner
trajectories is simulated under the risk-neutral measure.

In order to avoid the huge computational cost of a pure nested model, as in the LSMC
approach, we simulate n possible outer trajectories of the risk factors and then for each of
them we further simulate n̄� n inner paths. Following this approach, let Zi be an n× v
matrix, where the row vector zi

k contains the kth outer scenario of the v risk factors affecting
the value of the ith representative policy. For each vector zi

k and for time τ < t ≤ T, we
simulate n̄ trajectories under the risk-neutral probability measure. To simplify the notation,
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we focus on the ith representative policy, and we denote zk
j,t the vector containing the

time-t values of the risk factors along the jth inner trajectory corresponding to the kth outer
scenario. Moreover, we label Y a n× s matrix where the element yik represents the value of
the ith policy corresponding to the kth outer scenario obtained by averaging across the few
inner simulations. Formally,

yik =
1
n̄

n̄

∑
j=1

∑
τ<t≤Ti

Φi
t

(
zk

j,t

)
i = 1, . . . , s, and k = 1, . . . , n, (4)

where Φi
t(·)s represent the discounted cash-flows at time t of the ith policy with maturity Ti.

In this way, we obtain a first (rough) estimate of each representative policy value
distribution at the future time τ. The next step is to obtain a more accurate estimate of
the distribution of the time-τ value of each representative policy and then to infer the
distribution of the time-τ value of the entire portfolio. We achieve this by applying two
different approaches, an OLS as in the least-squares Monte Carlo method and a GB2 model.

3.1. The LSMC Method

The least-squares Monte Carlo method applied to the problem of computing the
distribution of the insurer’s liabilities at a certain future date is based on the idea that
the bias deriving from the few inner simulations can be reduced by approximating the
involved conditional expectations with a linear combination of basis functions depending
on some covariates, whose coefficients are estimated through an ordinary least-squares
procedure (see Bauer et al. 2010 for further details).

A straightforward application of the LSMC approach would be to apply the method
on each policy inside the insurance portfolio. However, this kind of strategy would be
quite computationally expensive due to the big dimensions of an insurance portfolio. Due
to this, we propose applying the LSMC method first on just a set of representative policies
and then through an OLS regression extend it to the entire portfolio.

Hence, according to the LSMC method, we assume that the conditional ith representa-
tive policy value, ŷik, can be expressed as a linear combination of basis functions depending
on the covariate matrix zi

k as follows:

ŷik =
L

∑
j=1

β̂i
jej

(
zi

k

)
i = 1, . . . , s and k = 1, . . . , n, (5)

where ej(·) is the jth basis function in the regression, L is the number of basis functions,
and β̂i

js represent the coefficients estimated through

(
β̂i

1, . . . , β̂i
L

)
= argmin

β1,...,βL

 n

∑
k=1

(
yik −

L

∑
j=1

βi
jej

(
zi

k

))2
.

In this way, we obtain an n× s matrix Ŷ where each row vector ŷk contains the values
of each representative policy corresponding to the kth outer scenario.

Now, in order to approximate the distribution of the value of the entire portfolio, we
construct an OLS regression model for each outer scenario. In this regard, we denote with
X an M× (w + 1) matrix, where the row vector xi contains the w covariates (gender, product
type, age, and maturity) characterizing the ith contract in the portfolio plus an intercept
term (M is the total number of contracts inside the insurance portfolio). Moreover, let X̄ be
the s× (w + 1) matrix describing the structure of the representative insurance portfolio.
Hence, x̄i contains the w covariates characterizing the ith representative contract plus an
intercept term.

Therefore, we regress each row vector ŷk (k = 1, . . . , n) on the covariate matrix X̄,
and once the coefficients are estimated, we extend them to the remaining policies by
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exploiting the matrix X. In this way, we obtain the value of the ith contract corresponding
to the kth outer scenario, which is denoted by v̂ik. Formally,

v̂ik = xi β̂
′
k i = 1, . . . , M and k = 1, . . . , n, (6)

where

β̂′k =
(
X̄′X̄

)−1X̄′ŷ′k.

Finally, the entire portfolio value distribution is obtained by adding up all the policy
values in Equation (6) corresponding to each outer scenario.

3.2. The GB2 Model

A GB2 model appears to provide a flexible family of distributions as it nests a range of
standard distributions as special or limiting cases, such as the log-normal, the generalized-
gamma, the Burr type III, the Burr type XII and many other (see McDonald 1984). Moreover,
it has been used in several actuarial applications (e.g., see Gan and Valdez 2018) to model
the fair market value of a portfolio made up of life insurance policies. A GB2 random
variable can be constructed from a transformed ratio of two gamma random variables.
The density function of a GB2 random variable, Y, is given by

f (y) =
|a|

bB(p, q)

(y
b

)ap−1[
1 +

(y
b

)a]−p−q
, y > 0, (7)

where a 6= 0, p > 0, q > 0 are shape parameters, b > 0 is the scale parameter, B(·) is the
Beta function, and its expectation equals:

E[Y] = b ·
B
(

p + 1
a , q− 1

a

)
B(p, q)

, (8)

which exists if −p < 1
a < q.

In order to approximate the value of the portfolio, at first we approximate the time-τ
value of each representative policy, and then we use this information to approximate the
distribution of the value of the entire insurance portfolio at the risk horizon. To achieve this,
we construct two different GB2 regression models which exploit the generated information
at the risk horizon

(
i.e. S(τ), r(τ), and µ(τ)

)
, and then the features characterizing uniquely

each policy, respectively.
Specifically, since the policy values yik obtained from Equation (4) are not accurate

due to the few inner trajectories on which they are based on, we aim at reducing the bias
by estimating the involved conditional expectation through a GB2 regression model. In
this regard, we assume that the ith policy value at time τ conditioned on a specific outer
scenario is a GB2 random variable with parameters (ai, pi, qi, bi). In particular, we make
the b− parameter depend on some independent covariates (i.e., the value at time τ of the
risk factors which affect the policy of interest). Note that several approaches to incorpo-
rate covariates in the GB2 regression model exist as well as different re-parametrization
(see Beirlant et al. 2004; Frees and Valdez 2008). However, as noticed by Sun et al. (2008)
and Frees et al. (2016), incorporating them into the scale parameter, b, facilitates the inter-
pretability of the model; indeed, as can be seen in Equation (8), the expectation will change
proportionally with respect to b, allowing one to interpret the regression coefficients as
proportional changes.

Hence, b
(
Zi) = exp

(
Ziβ′i

)
, where βi = (βi;0, βi;1, . . . , βi;v) are the corresponding coef-

ficients attached to each risk-factor. Note that the matrix Zi now includes an intercept term.
We can use the maximum likelihood method to estimate the parameters. Since we

incorporate covariates through the scale parameter, we can write the log-likelihood function
of the model as
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l(ai, pi, qi, βi) =n ln
|ai|

B(pi, qi)
− ai pi

n

∑
k=1

zi
kβ′i + (ai pi − 1)

n

∑
k=1

ln(yik)− (pi + qi)
n

∑
k=1

ln

[
1 +

(
yik

exp
(
zi

kβ′i
))ai

]
, (9)

where i = 1,. . . s, n is the number of the generated outer scenarios and yik denotes the value
of the ith policy corresponding to the kth outer scenario.

Once we estimate the parameters for the GB2 model, we use the expectation for
predicting the value of the policy at time τ. Since we incorporate covariates through the
scale parameter, we can estimate it as

ŷik =
exp

(
zi

k β̂′i

)
B
(

p̂i +
1
âi

, q̂i − 1
âi

)
B( p̂i, q̂i)

, i = 1, 2, . . . , s and k = 1, . . . , n, (10)

where zi
k is the vector containing the kth outer scenario of the risk factors affecting the ith

representative policy.
Once we obtain an estimate of the distribution of each representative policy at time τ,

we extend this information to the remaining policies. As already carried out for the OLS
model, we are going to exploit both the matrices X̄ and X on which we now construct a
new GB2 regression model.

Therefore, let Ŷ be the n× s matrix whose elements ŷik denote the value of the ith
representative policy corresponding to the kth outer scenario obtained through Equation (10).

Now, we construct a GB2 regression model in order to infer, starting from the set of
representative policies, the distribution of the entire portfolio. Hence, recalling the pdf
defined in Equation (7), we define the following log-likelihood function as:

l(ak, pk, qk, βk) =s ln
|ak|

B(pk, qk)
− ak pk

s

∑
i=1

x̄iβ
′
k + (ak pk − 1)

s

∑
i=1

ln(ŷik)− (pk + qk)
s

∑
i=1

ln

[
1 +

(
ŷik

exp
(
x̄iβ
′
k
))ak

]
, (11)

where s is the number of the representative policies and x̄i is the row vector containing the
information of the ith representative contract.

Once again, after we estimate the parameters through the maximum likelihood ap-
proach, we can then derive the distribution at the risk horizon for all the policies inside the
insurance portfolio as

v̂ik =
exp

(
xi β̂
′
k

)
B
(

p̂k +
1
âk

, q̂k − 1
âk

)
B( p̂k, q̂k)

, i = 1, 2, . . . , M and k = 1, . . . , n, (12)

where v̂ik is the value of the ith contract corresponding to the kth outer scenario.
Finally, the entire portfolio value distribution is again obtained by adding up all the

policy values corresponding to each outer scenario.
Note that the log-likelihood functions in Equations (9) and (11) may have multiple

local maxima and since an analytic solution does not exist, we need to rely on a numerical
procedure to estimate the involved parameters. We adopt the same multistage optimization
algorithm described in Gan and Valdez (2018).

4. Numerical Results

In this section, we present some numerical results obtained by exploiting the pre-
viously defined models. In particular, we consider a life insurance portfolio with M =
10,000 contracts, and we focus on approximating its value distribution at the future time
τ = 1 year. These policies can be of three different types: a unit-linked pure endowment
contract with a minimum maturity guarantee G = 100 payable upon the survival of the
policyholder at the maturity date T, term life insurance policy which pays the value of a
reference asset in case of death before maturity T, and an immediate life annuity contract
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with continuous survival benefits equal to the 10% of a reference asset value up to the entire
life of the insured person. We consider different policyholders, both males and females,
with different ages x at time t = 0, which is also assumed to be the inception time of each
policy. These characteristics are reported in Table 1. We assume that the insurance benefits
depend upon a reference asset with the initial value S0.

In Tables A1 and A2 given in Appendix A, we report the values of the involved
parameters in Equations (1)–(3). In particular, concerning mortality, we have calibrated the
survival curve implied by Equation (3) on the Italian males and females mortality data in
the year 2016 obtained from the Human Mortality Database for each age x ∈ {55, . . . , 65},
and we assumed a longevity risk premium δ = 0.

We conduct this numerical experiment by varying both the number of outer simula-
tions, n, and the number of representative policies, s. In particular, we adopt a monthly
Euler’s discretization setting in order to project n ∈ {1000, 5000, 10000} outer trajectories of
each risk factor under the P-measure, and then for each outer scenario we further simulate
n̄ = 2 inner trajectories under the risk-neutral probability measure. With this simulation
set, we are able to obtain a first rough estimate of Y on which we construct the LSMC and
GB2 models discussed in Sections 3.1 and 3.2, respectively. Note that, concerning the LSMC
method, we exploit as basis functions Hermite polynomials of orders 1 and 2, which are
denoted, respectively, as LSMC_1 and LSMC_2 hereafter.

To determine the number of representative contracts s, we start from the informal rule
proposed by Loeppky et al. (2009), which provide reasons and evidence supporting that the
sample size should be about 10 times the input dimension. In our case, the dimension of
covariates in the design matrix X is 5 (including the binary dummy variables converted from
the categorical variables), and so we choose s = 50 as the initial number of representative
contracts. However, we investigate the models’ performances by setting s = 75 and
s = 100.

Finally, the results are compared with a solid benchmark obtained through a nested
simulations approach based on 10,000 × 2500 simulations. This allows us to conclude on
the reliability of the proposed methodologies and to compare them in terms of computa-
tional demand.

Figure 1 shows the Quantile-Quantile (Q-Q) plots of the portfolio value at time τ = 1
obtained by the nested simulations algorithm (assumed to be the theoretical one) and
those predicted by the GB2 regression model and the LSMC models based on n = 10,000
outer simulations and by varying the number of representative contracts s ∈ {50, 75, 100}.
In this regard, we can see from Figure 1 that the proposed methodologies provide a good
approximation except for the right tail of the distribution. In particular, concerning the
GB2 regression model, we can see that the higher the number of representative contracts,
the better the approximation.

For a comprehensive analysis, we perform multiple runs of each proposed method; in
particular, the following analysis is based on 50 runs.

In Tables 2–4, we report the Mean Absolute Percentage Error (MAPE) relative to
different quantities obtained by performing 50 runs of the proposed methodologies with a
fixed number of outer scenarios (n = 10,000) and by varying the number of representative
contracts (s ∈ {50, 75, 100}).
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Figure 1. Q-Q plots relative to the future value distribution of the insurance portfolio. The theoretical
distribution is assumed to be the one obtained by nested simulations based on 10,000 × 2500
trajectories. The first row refers to the GB2 regression model based on 10,000 outer scenarios and by
varying the number of representative contracts, s ∈ {50, 75, 100}. The second and third rows refer to
the LSMC method with Hermite polynomials of orders 1 and 2 based on 10,000 outer scenarios and
by varying the number of representative contracts, s ∈ {50, 75, 100}.

Table 2. This table reports the MAPE of the estimates obtained by running 50 times the GB2 and LSMC methods with
n = 10,000 and s = 50. The benchmark values are based on a nested simulations algorithm with 10,000 ×2500 trajectories
applied to the entire portfolio.

5th Perc. 10th Perc. Median Mean 90th Perc. 95th Perc. 99th Perc. 99.5th Perc.

GB2 2.812% 2.180% 1.798% 2.594% 3.832% 4.016% 6.154% 4.375%

LSMC_1 3.238% 3.000% 2.399% 2.557% 2.398% 2.174% 2.436% 2.722%

LSMC_2 2.762% 2.754% 2.567% 2.557% 2.436% 2.114% 2.356% 2.841%

Table 3. This table reports the MAPE of the estimates obtained by running 50 times the GB2 and LSMC methods with
n = 10,000 and s = 75. The benchmark values are based on a nested simulations algorithm with 10,000 × 2500 trajectories
applied to the entire portfolio.

5th Perc. 10th Perc. Median Mean 90th Perc. 95th Perc. 99th Perc. 99.5th Perc.

GB2 1.971% 1.782% 0.806% 0.542% 3.605% 3.949% 6.094% 3.867%

LSMC_1 2.500% 1.338% 1.530% 1.392% 1.251% 1.657% 0.941% 1.678%

LSMC_2 1.828% 1.047% 1.756% 1.392% 1.307% 1.485% 1.842% 2.142%
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Table 4. This table reports the MAPE of the estimates obtained by running 50 times the GB2 and LSMC methods with
n = 10,000 and s = 100. The benchmark values are based on a nested simulations algorithm with 10,000 × 2500 trajectories
applied to the entire portfolio.

5th Perc. 10th Perc. Median Mean 90th Perc. 95th Perc. 99th Perc. 99.5th Perc.

GB2 1.986% 1.745% 0.519% 0.347% 1.129% 1.313% 2.856% 1.944%

LSMC_1 1.629% 1.504% 0.440% 0.627% 0.764% 0.824% 0.958% 2.561%

LSMC_2 1.148% 1.145% 0.578% 0.627% 0.762% 0.986% 2.101% 2.334%

If we compare Tables 2–4, it is evident that increasing the number of representative
contracts s leads to a better approximation of the mean and of the other considered mea-
sures of position. Moreover, it seems that the GB2 model, at least for a low number of
representative contracts, is not able to adequately model the right tail of the distribution.

In Table 5, we report the Mean Percentage Error (MPE) and MAPE relative to the
mean estimates obtained by running the GB2 and LSMC methods 50 times with different
numbers of outer simulations, n, and representative contracts, s.

Table 5. This table reports the MPE and MAPE of the mean estimates obtained by running 50 times the GB2 and LSMC
methods and varying the number of outer simulations (Outer) and that of representative contracts s. The benchmark value
is based on a nested simulations algorithm with 10,000 × 2500 trajectories applied to the entire portfolio.

s = 50 s = 75 s = 100

Outer Method MPE MAPE MPE MAPE MPE MAPE

GB2 3.612% 3.612% 0.163% 0.983% −0.240% 0.923%
1000 LSMC_1 −3.475% 3.475% −2.104% 2.221% −1.017% 1.364%

LSMC_2 −3.475% 3.475% −2.104% 2.221% −1.017% 1.364%

GB2 2.981% 2.981% 0.715% 0.747% −0.301% 0.474%
5000 LSMC_1 −2.840% 2.840% −1.533% 1.533% −1.029% 1.092%

LSMC_2 −2.840% 2.840% −1.533% 1.533% −1.029% 1.092%

GB2 2.594% 2.594% 0.491% 0.542% 0.179% 0.347%
10,000 LSMC_1 −2.557% 2.557% −1.392% 1.392% −0.490% 0.627%

LSMC_2 −2.557% 2.557% −1.392% 1.392% −0.490% 0.627%

Looking at Table 5, we can see that for a fixed number of outer scenarios and for
each applied method, the accuracy of the mean estimates increases with the number of
representative contracts s. Moreover, it is evident that in most of the considered config-
urations, the GB2 model outperforms the LSMC methods. Furthermore, if we look at
the last column of Table 5 (s = 100), for instance, we can see that the higher the number
of outer scenarios, the better the approximation. Finally, we can see that increasing the
number of basis functions up to degree two in the LSMC method does not improve the
accuracy of the mean estimates. This is probably due to the few outer simulated trajectories
(at most 10,000 paths), which is not sufficient to appreciate the improvement which is
usually expected. In the left-hand side of Figure A1 given in Appendix B, we report the
corresponding box-plots from which it is possible to see that, in each of the considered
configurations, the LSMC method systematically underestimates the quantity of interest.

Concerning the estimate of the 99.5th percentile of the distribution, which would
be of interest for valuing solvency capital requirements, Table 6 reports the MPE and
MAPE relative to 50 estimates obtained by varying both the number of simulations and the
number of representative contracts.
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Table 6. This table reports the MPE and MAPE of the 99.5th percentile estimates obtained by running the GB2 and LSMC
methods 50 times and varying the number of outer simulations (Outer) and that of representative contracts s. The benchmark
value is based on a nested simulations algorithm with 10,000 × 2500 trajectories applied to the entire portfolio.

s = 50 s = 75 s = 100

Outer Method MPE MAPE MPE MAPE MPE MAPE

GB2 3.936% 6.570% −1.512% 5.453% 1.410% 4.494%
1000 LSMC_1 −2.664% 3.715% −6.308% 6.478% −2.961% 4.253%

LSMC_2 −0.252% 6.487% −4.211% 7.150% −1.438% 5.517%

GB2 4.110% 4.723% 3.813% 4.018% 0.081% 2.653%
5000 LSMC −2.908% 3.001% −4.708% 4.722% −1.659% 2.006%

LSMC_2 −1.787% 3.484% −3.118% 4.017% −0.462% 3.110%

GB2 4.157% 4.375% 3.737% 3.867% 0.421% 1.944%
10,000 LSMC_1 −2.643% 2.722% −1.560% 1.678% −2.522% 2.561%

LSMC_2 −2.259% 2.841% −0.131% 2.142% −1.007% 2.334%

From Table 6, we can detect a similar behaviour as the one previously discussed.
Specifically, we can see that, concerning the GB2 model, an increase in the number of
representative contracts (for fixed n) leads to an improvement of the resulting estimates.
On the contrary, for the LSMC method, there is no clear pattern. Indeed, as we can see,
increasing the number of representative contracts (for a fixed n) does not lead to a clear
improvement in the results. Moreover, increasing the number of basis functions as well as
the number of outer simulations does not increase the accuracy of the estimates (see also
the right side of Figure A1 in Appendix B). As in the case of the mean estimate, this could
be due to the small number of outer simulations, and so we may conclude that passing
from 1000 to 10000 trajectories is still not sufficient to exploit more basis functions. Once
again, if we look at the case of n = 10,000 and s = 100, the GB2 model outperforms the
LSMC approach.

Now, let us examine the speed of the proposed algorithms with respect to the bench-
mark. Table 7 shows the runtime of GB2 and LSMC expressed as a percentage of the
time required by the nested simulation method based on 10,000 outers and 2500 inners.
Note that we conducted all experiments using R on a computer equipped with an Intel®

Core(TM) i7-1065G7 CPU 1.50 GHz processor with 12 GB of RAM and Windows 10 Home
operating system.

Table 7. Percentage of the runtime required by the GB2 and LSMC methods with respect to the nested simulations approach.
Note that the computational demand to construct the benchmark with a nested simulations approach based on 10,000 ×
2500 scenarios applied to the entire portfolio is about 187,200 s.

Method
n = 1000 n = 5000 n = 10,000

s = 50 s = 75 s = 100 s = 50 s = 75 s = 100 s = 50 s = 75 s = 100

GB2 0.069% 0.078% 0.098% 0.337% 0.380% 0.501% 0.660% 0.832% 1.021%

LSMC_1 0.005% 0.006% 0.007% 0.012% 0.018% 0.019% 0.036% 0.045% 0.047%

LSMC_2 0.005% 0.006% 0.007% 0.013% 0.019% 0.020% 0.037% 0.046% 0.047%

As we can see from Table 7, by applying the proposed methodologies, we have
drastically reduced the computational time required instead by a nested simulations
approach. Moreover, as expected, the LSMC method presented in Section 3.1 outperforms
the GB2 model in terms of time in each of the proposed configurations. However, this is
due to the existence of a closed form formula for the estimation of the involved parameters.
Indeed, as stated in Section 3.2, the estimation procedure for the GB2 model is based on a
multistage optimization algorithm due to the complexity of the likelihood functions, which
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may have multiple local maxima. Regardless, if compared with the simulations within
simulations method, the GB2 model proved to be an accurate and efficient alternative.

Full LSMC

To provide an exhaustive analysis, we consider a straightforward application of the
LSMC method. Hence, we apply the LSMC method on each contract composing the
insurance portfolio without considering any set of representative policies. The results
are then compared with those already shown in the previous section both in terms of
accuracy and computational demand. Just as an example, we construct the LSMC model
by exploiting as set of basis functions Hermite polynomials with order 1 based on 10,000
× 2 simulations (LSMC_Full). Table 8 reports the MPE and MAPE relative to the 5th-
percentile, the mean, and the 99.5th percentile estimates obtained by performing 50 runs
of the proposed methods. Further, we report the results relative to the GB2 model (GB2)
and LSMC method with Hermite polynomials of order 1 (LSMC_1) and order 2 (LSMC_2)
based on 10,000 × 2 simulations and s = 100 representative policies.

Table 8. This table reports the MPE and MAPE relative to the 5th percentile, the mean, and the 99.5th percentile estimates
obtained by applying different methodologies. GB2 stands for the GB2 regression model based on n = 10,000 outer scenarios
and s = 100 representative policies; LSMC_1 refers to the LSMC method based on n = 10,000 outer scenarios and s = 100
representative policies with Hermite polynomials of order 1; LSMC_2 refers to the LSMC method based on n = 10,000
outer scenarios and s = 100 representative policies with Hermite polynomials of order 2; LSMC_Full refers to the LSMC
method based on n = 10,000 outer scenarios and constructed on each contract in the insurance portfolio. The results are
compared with the corresponding benchmark value based on nested simulations with 10000× 2500 trajectories applied to
the entire portfolio.

Method
5th Perc. Mean 99.5th Perc.

MPE MAPE MPE MAPE MPE MAPE

GB2 −1.986% 1.986% 0.179% 0.347% 0.421% 1.944%

LSMC_1 −1.472% 1.629% −0.490% 0.627% −2.522% 2.561%

LSMC_2 −0.742% 1.148% −0.490% 0.627% −1.007% 2.334%

LSMC_Full −0.501% 1.032% −0.084% 0.461% −0.420% 1.070%

As is shown in Table 8, the errors relative to the LSMC_Full approach are lower than
those of the other proposed methods since the estimates are based on the entire insurance
portfolio, i.e., this approach does not suffer of any uncertainty related to the missingness of
policies in its estimation procedure. Figure A2 given in Appendix B reports the box-plots
on which the quantities in Table 8 are based on.

Finally, we compare these methods in terms of time. In Table 9, we report the com-
putational time required by the algorithms. We can see that the naive application of the
LSMC approach is more computationally expensive with respect to the GB2 and LSMC
models based on a set of representative policies.

Table 9. Runtime, in seconds, of GB2 model and LSMC methods based on 10,000× 2 simulations and
s = 100 representative contracts (GB2, LSMC_1, LSMC_2). LSMC_Full refers to the LSMC method
applied to each contract in the insurance portfolio.

Method Time

GB2 1911.445

LSMC_1 87.824

LSMC_2 88.290

LSMC_Full 7847.960
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5. Conclusions

In this paper, we addressed the problem of approximating the value of a life insurance
portfolio at a future time by proposing two different methodologies able to avoid the
time-consuming nested simulations approach. The first approach can be thought of as
extension of the well-known LSMC method, while the second is based on the GB2 distri-
bution, which is widely used to approximate the fair value of portfolios of life insurance
policies. To validate the proposal, we have considered a solid benchmark obtained by
nested simulations, and we compared the two proposed methodologies both in terms of
accuracy and efficiency. The analysis has been carried out by considering an ever increasing
number of simulations and representative policies, from which it turned out that, generally,
both the methodologies are able to provide increasingly accurate results. Moreover, the
LSMC method proved to be faster in computational terms but also less accurate than
the GB2 model. Furthermore, the proposed methodologies have been compared with a
straightforward application of the LSMC method (i.e., without considering any subset of
representative policies), which turned out to be more accurate but computationally more
expensive.

Extensive numerical results have shown that the proposed methods represent viable
alternatives to the full nested Monte Carlo model. Therefore, the proposed metamodeling
approach may help insurance and reinsurance undertakings to reduce the computational
budget needed, for instance, in the context of evaluating solvency capital requirements.
In this regard, it can be used to evaluate the future cash-flows (inflows and outflows)
generated by the entire portfolio by considering at first only a subset of policies, and then
extend to the remaining ones. Indeed, this represents the main issue for deriving the full
loss distribution on which the Value-at-Risk measure should be obtained, as prescribed by
the European Solvency II directive.

Author Contributions: Both authors contributed equally to this manuscript. Both authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Parameter Values

Table A1 shows the parameter values assumed for the dynamics of the reference asset
and interest rates defined in Equations (1) and (2).

Table A1. Parameters of the reference asset value process, S, and interest rate stochastic process, r.

S0 σS λ r0 α θ σr γ ρ

100 0.20 0.00 0.04 0.10 0.02 0.02 0.00 0.00

Table A2 shows the estimated parameters of the mortality model defined in Equation (3)
obtained by fitting the corresponding survival curve on that implied by the Italian males
and females mortality data in year 2016 obtained from the Human Mortality Database for
each age x ∈ {55, . . . , 65}.
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Table A2. Estimated parameters of the stochastic mortality model for Italian male (left) and female
(right) aged x ∈ {55, . . . , 65} in 2016.

Age
Male Female

â b̂ σ̂µ â b̂ σ̂µ

55 0.00040 0.0881 0.00157 0.00010 0.10017 0.00100

56 0.00700 0.0705 0.00262 0.00001 0.11110 0.00100

57 0.00001 0.1051 0.00100 0.00001 0.11060 0.00100

58 0.00001 0.1045 0.00390 0.00009 0.10740 0.00850

59 0.00040 0.0832 0.00100 0.00001 0.11570 0.00100

60 0.00060 0.0743 0.00100 0.00042 0.08362 0.00669

61 0.00030 0.0907 0.00100 0.00044 0.08505 0.00100

62 0.00010 0.1033 0.00710 0.00001 0.11990 0.00100

63 0.00012 0.1063 0.00750 0.00040 0.09704 0.00182

64 0.00008 0.1112 0.00810 0.00039 0.09860 0.00376

65 0.00020 0.1075 0.00123 0.00049 0.09558 0.00720

Appendix B. Further Results

Figure A1 reports the boxplot relative to the mean (left) and the 99.5th percentile
(right) estimates obtained by running 50 times the GB2 and LSMC methods varying both
the number of outer scenarios, n, and that of the representative policies, s. In this regard,
we can see that the variability of the estimates decreases as the number of outer scenarios
and the number of representative contracts increases.
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Figure A1. Boxplots relative to the mean (left) and the 99.5th percentile (right) estimates obtained
by running the GB2 and LSMC methods 50 times and varying the number of outer simulations n
and that of representative contracts s. The red line refers to the benchmark value based on a nested
simulations algorithm with 10,000 × 2500 trajectories applied to the entire portfolio.

Figure A2 compares the straightforward application of the LSMC approach with
respect to the proposed methodologies providing the boxplots relative to the mean and the
99.5th percentile estimates.



Risks 2021, 9, 177 16 of 17

Mean

GB2 LSMC_1 LSMC_2 LSMC_Full

1,
17

0,
00

0
1,

18
0,

00
0

1,
19

0,
00

0
1,

20
0,

00
0

1,
21

0,
00

0
Perc. 99.5%

GB2 LSMC_1 LSMC_2 LSMC_Full

1,
76

0,
00

0
1,

83
3,

75
0

1,
90

7,
50

0
1,

98
1,

25
0

2,
05

5,
00

0

Figure A2. Boxplots relative to the mean and the 99.5th percentile estimates obtained by running the proposed methodolo-
gies 50 times. GB2 stands for the GB2 regression model based on 10,000 outer scenarios and s = 100 representative policies;
LSMC_1 refers to the LSMC method based on 10,000 outer scenarios and s = 100 representative policies with Hermite
polynomials of order 1; LSMC_2 refers to the LSMC method based on 10,000 outer scenarios and s = 100 representative
policies with Hermite polynomials of order 2; LSMC_Full refers to the LSMC method based on 10,000 outer scenarios
and constructed on each contract in the insurance portfolio. The red line refers to the benchmark value based on a nested
simulations algorithm with 10,000 × 2500 trajectories applied to the entire portfolio.
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