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Abstract

Touch screens have become the most popular computer interface in our daily life.
Although they respond to finger contact, most of them are able to provide only
a visual representation of standard physical controls such as buttons, sliders, and
knobs. Indeed, tactile and auditory feedback is neutralized by a touch screen into an
interaction with a flat surface. Among other issues that occur during this interaction,
the lack of multimodal sensory cues inevitably unbalances the cognitive load toward
vision.

This thesis targets the design, realization and validation of user interfaces for the
professional appliances domain. In such a specific working environment, populated
by multiple and cooperative human activities that frequently and sometimes unex-
pectedly trigger attendance by the operator, the use of touch screens is generally
problematic because often the visual attention must be switched from a machine in-
terface to an emerging task, without suspending any activity in between. In this
context, new designs and implementations providing rich auditory and tactile infor-
mation can contribute to more reliable and robust interactions capable of restoring,
partially or absolutely, the multisensory essence of physical controllers hence improv-
ing effectiveness and safety of the working environment.

To such an end, this thesis discusses three interface prototypes reproducing the
multimodal feedback of two fundamental physical controllers: buttons and knobs. The
proposed research starts from the peculiar interaction with professional appliances,
and aims at 1) designing and 2) prototyping audio-haptic interfaces that combine
innovative haptic and force actuators, as well as 3) evaluating such interfaces through
rigorous experiments involving human participants.

The first part of the thesis deals with surface haptics — a research field studying
the reproduction of tactile effects on touch surfaces. This part provides a series of
experiments on auditory and tactile surface perception, together with the develop-
ment of a mock up aimed at testing and improving the reliability and robustness of
interaction with professional appliances controlled by touch screen interfaces. The
second part of the thesis deals with rotary controllers with haptic feedback. As op-
posed to touch screens, knob controllers do not require visual attention, thus allowing
a user to perform multiple actions simultaneously. In this part, the design of two in-
novative knob controllers is presented, each providing specific haptic features: while
the first device essentially consists of a technology improvement in the form of a pro-
grammable haptic knob exposing a low-cost force resistance technology, the second
device, called “Non-a-knob”, affords a new interaction primitive in which rotation ges-
tures are operated over a motionless cylinder. Along with its machine learning-based
sensing algorithm, a validation experiment is presented aiming at studying objective
and subjective parameters of the user interaction. Finally, the third part of the thesis
shows some hardware and software tools that were developed in the context of this
research.



ii Abstract



Acknowledgments

It is difficult to find the right words to thank all the people who helped me to carry
out this research.

First of all, I want to thank my supervisor, Prof. Federico Fontana for guiding
and helping me on this long journey with enthusiasm and patience. I want to thank
Dr. Stefano Papetti and Dr. Hanna Järveläinen for their mentoring and fundamental
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Introduction

The human interaction with the world is multisensorial [30]. We are constantly pro-
vided with a wealth of information to support interaction with the external world
thanks to the simultaneous use of multiple sensing modalities. In the research field
of Human-Computer Interaction (HCI), the interactions involving multiple senses are
called multimodal [222, 210]. In spite of this, for decades the technologies in the
field of HCI have been mainly related just to visual and auditory interactions [168].
Comparably, the tactile information provided by digital devices was essentially ne-
glected. As a matter of fact, the devices we use everyday provide less and less tactile
information: touch screens, for instance, although operated by the fingers, are mostly
providing the same tactile response to any action, while vocal controlled interfaces
are touch-less at all. Nowadays, touch screens are the prevalent user interfaces used
in our daily life. The success of touch screens can be attributed to the directness
and intuitiveness of their interaction mechanism. Indeed, the modality of interacting
with digital objects by touching them follows exactly the human’s interaction prim-
itive of acquiring physical objects. In addition to this, touch screens are chosen by
the industry since their layout can be reconfigured without modifying any hardware
component indefinitely. These characteristics made touch screens an optimal replace-
ment for many physical layouts (e.g., button, sliders, knobs) [138, 8]: they have been
progressively applied to smartphones, tablet PCs, smart devices, automotive and,
eventually, to home and professional appliances; for instance, all the physical buttons
and knobs that were needed to control washing machines or ovens can now be substi-
tuted by a single flat touchscreen. Through these replacements, the display increases
its importance by embedding all the functions of buttons, sliders and knobs, thus be-
coming an input/output device. Consequently, the intrinsic tactile information given
by physical controllers disappeared. As a result, even if the controls are visually dis-
played on the screen, they can not be identified by touching the screen and, without
such tactile information, users must rely only on the visual feedback to operate the
device. This may cause, for instance, wrong or double selections if the visual refresh
rate is slower than expected. Thus, compared with their physical counterparts, touch
screen controls increase the visual load and are considerably more prone to selection
errors, especially when they do not provide a coherent multimodal (i.e. auditory or
tactile) feedback [29, 137]. To overcome such a problem, the current touch screen
implementations often provide additional auditory feedback: whereas these feedback
are mainly abstract and not very informative (except for alarms and warnings), in
specialized working conditions they can be overwhelmed by many sources of noise,
resulting unrecognizable.

Although multimodal interaction may be ancillary for the consumer market, where
the interactions happen in everyday conditions and the visual attention can be always
focused on the user interface, conversely it can be crucial in specialized work environ-
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ments characterized by safety risk, repeated tasks, unpredictable sources of distur-
bance and high stress levels. Despite these characteristics belong to many workplaces,
in this research the focus will be on the specific work environment of professional ap-
pliances.

Professional Appliances

Electrolux Professional, the funder of this research, is a multinational company in food
service equipment and laundry solutions. It fulfills the business-to-business 1(B2B)
HORECA 2 market by providing a comprehensive range of solutions. Regarding the
food service equipment, the company produces many tools to store, prepare, cook,
serve food together with dish-washing equipment; regarding the laundry sector, in-
stead, Electrolux Professional produces mainly washing machines, drying machines
and ironers. Electrolux food service equipment is tailored for different types of profes-
sional kitchens: restaurants, pubs, bars, Quick Service Restaurants, hospitals, schools
and military canteens. In the same fashion, laundry solutions cover industrial appli-
ances, coin operated washing and drying machines, and special machines designed for
sanitizing and sterilizing garments.

As a leader in market, Electrolux Professional is continuously innovating the prod-
ucts with advanced solutions to improve efficiency and productivity of professional
kitchens and laundries. Among others, one aspect of the innovation is the continuous
improvement of the user-machine interaction. On the one hand, multiple ergonomic
studies carried out during the design of the appliances result in safer machines: in
fact, all the appliances are designed to minimize injuries, excessive weight handling,
uncomfortable working pose and long term professional illnesses. On the other hand,
appliances are everyday more and more connected through Internet of Things (IoT)
technologies. Such connection allows for remote monitoring and management, and
predictive maintenance. However, on-board user interfaces still play a fundamental
role in the appliances’ control, being the principal communication channel between
the machine and the humans. As mentioned above, touchscreens are literally flooding
the user interface market, being, de facto, a must-have user interface element for all
new devices and appliances; however, the need for innovation can collide with practi-
cal and unexpected issues: for instance, anyone regularly experiences the frustration
caused by a wrong selection on the smartphone touchscreen while performing an im-
portant task (e.g., an emergency call). This simple dialing error can translate in a
long recovery time that is perceived as neverending during moments of anxiety. Thus,
as working environments can be dangerous and demanding from a physical and cog-
nitive point of view, humans and their safety could benefit from robust interactions,
nowadays not afforded by touchscreen interfaces.

1Business-to-business marketing involves the commercial transaction of a company’s product or
service to another company.

2From international Union of National Associations of Hotel, Restaurant, and Cafe Keepers,
HORECA is an abbreviation used in Europe to designate the food service Industry Market (Restau-
rants, Hotels, Bars And Cafes, Supermarkets, Hospitals And Care Homes, Business, Transport &
Industry, Commercial Laundries, Self-Services Laundries).
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Research questions

The research reported in this thesis aims at restoring the multimodal interaction that
physical controllers inherently provide to the user by rendering physical characteris-
tics (e.g., material properties) over neutral surfaces or by programming mechanical
behaviors, thanks to the combination of virtual and tangible haptic displays. In par-
ticular, this research will investigate the simulation of two fundamental input controls
for professional appliances: the button and the knob.

Considering the limitations imposed by the existing technology, in particular con-
cerning the rendering of tactile properties, this work is guided by the following research
questions:

• How different is the interaction robustness and reliability between physical and
virtual controllers?

• Which key features of physical controllers are we able to reproduce on virtual
controllers holding today’s technology? And which are the expectations for
future technological advances?

• Can the usability level of specific physical controllers (i.e. buttons and knobs)
be approached by virtual controllers, or by hybrid combinations of virtual and
physical controllers?

Background and related work

The term multimodal interfaces belongs to interactive systems aiming to leverage nat-
ural communication; humans, on the one hand, produce speech, gestures, touch, gaze
or facial expression, while, on the other hand, simultaneously detect every feedback
through their perceptual channels: visual, auditory, tactile, kinesthetic, olfactory and
gustatory [30, 62]. Human–computer interaction historically focused on unimodal
interactions: since long in the interactive computing history, input and output were
respectively modeled on one single channel. The first demonstration of multimodal
computer-human interaction is widely considered to be “Put That There”, a system
controlled through voice and gesture inputs, developed by Richard Bolt in 1980 [24].
However, previous unimodal interactions were, often unintentionally, multimodal to
some extent (e.g., mouse movements and clicks, auditory feedback by-products from
hard-drives and printers). The interaction between humans and machines has been
always multimodal too, but less rigorously studied: whereas HCI has evolved mainly
driven by academic research, the development of the user interfaces of products, like
industrial machinery or professional appliances, was usually driven by technology out-
breaks or costs’ reduction. Indeed, until recently, such user interfaces displayed also
few configurable parameters, individually controlled by buttons, switches and knobs
and displayed through LEDs or 7-digits displays. However, the increasing number of
functions, nowadays provided by professional appliances, calls for more complex user
interfaces, result of tailored user interaction studies.
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Multimodal perception

As known from the literature, the human brain integrates a continuous flow of signals,
merging them to form a coherent and robust percept, using different combination
and integration strategies [67]. For this reason, studies on multimodal interaction
are not limited to methods and technologies encoding the human expressions and
providing multimodal feedback, but also investigating the processes behind the hu-
man perception and the integration of multimodal stimuli. As a general rule, when
multimodal stimuli are coherent, redundant and temporally synchronized, they have
an additive effect, resulting in stronger percepts [59, 77]; conversely, when stimuli
are not coherent or not synchronized, results can be unpredictable, generating weak
or no effects, or even perceptual illusions. Among others, the auditory and tactile
perceptual channels interact constructively when congruent stimuli are delivered si-
multaneously [240, 241, 205, 206]. However, their temporal resolution is greater than
audio-visual or visuo-tactile combinations [81], being both very sensitive to temporal
delays, detecting especially low latency values relative to each other. Thus, systems
providing multimodal audio-tactile feedback must be able to precisely control the tem-
poral synchronism of the feedback. Thanks to several experimental studies, it has been
discovered that hearing and touch have mutual influences: whereas Schurmann et al.
found that congruent tactile stimuli enhanced the hearing perception of low amplitude
sounds [196, 195], sounds synchronized with vibrations allow to lower tactile inten-
sity thresholds [190], as well as enhance the tactile intensity perception [220]; more
surprisingly, the manipulation of auditory feedback characteristics (e.g., spectral con-
tent) can significantly affect the tactile perception [245, 32, 91, 139], often resulting in
perceptual illusions: for instance, in the parchment-skin illusion [118], while rubbing
their-own palm, participants felt their skin drier or wetter depending on the spectral
content of the filtered rubbing sound provided through the headphones. Another in-
teresting perceptual illusion found in the literature is the marble-hand effect: human
subjects, whose hands were gently hammered, felt their own hand to become as much
harder and heavier as the provided contact sound did [198]. These studies suggest
that the integration between auditory and tactile feedback has promising potentials
to enhance the interaction robustness, however such integration effect needs to be
investigated within the specific applications.

Rendering and perception of material properties

Although human perception has been tested mainly with abstract stimuli (e.g., sine
bursts), the use of ecological stimuli can improve their potential applicability since
their features are easier to learn and retain compared to abstract stimuli [204]. An
interesting research topic making use of ecological stimuli is the material identification
from visual, auditory and tactile cues. However, most of the experiments found in
the literature consider only a single modality; for instance, the material classification
based on the auditory channel has been found to rely mainly on the frequency and
decay when sounds are originated from impacts [87]. The tactile channel, instead, can
identify multiple properties such as hardness [107], roughness [11], temperature [108],
as well as the vibrations originated from impacts [96]. However, differently from the
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auditory channel, the detection of tactile characteristics is related to specific motor ac-
tivity, like pressing or sliding. Regarding multisensory integration in material classifi-
cation task, only few experiments have been performed: for instance, in the evaluation
of wood naturalness, a visual-tactile integration was found by Overvliet et al. [174].
Conversely, the contribution of the auditory channel to visual feedback was found to
be not significant in the perception of material properties [151]. Eventually, in the
literature no specific experimental designs evaluating auditory and tactile contribu-
tion in material classification were found. In an effort to improve the robustness of
user interaction with professional appliances, this research aims at adopting such kind
of ecological audio-tactile stimuli to design virtual controllers, e.g., virtual buttons,
embedding characteristics of their physical counterparts (e.g., auditory and tactile
response to tap).

Virtual buttons

In the literature, several studies already investigated the characteristics of physical
buttons, building a database of force/displacement response functions [5, 225]. In ad-
dition, many user interaction studies compared the performance of physical buttons to
virtual buttons rendering different kinds of multimodal feedback: Lee et al. [137] found
comparable performances in terms of digitization speed and appreciation only when
auditory and/or tactile feedback was provided, whereas Brewster et al. [29] found
significant performance improvement when comparing virtual buttons providing tac-
tile feedback to virtual buttons displaying only visual feedback. Koskinen et al. [129]
found that tactile feedback improves the usability of virtual buttons, however the
satisfaction of the experience was subjective and included users who preferred sharp
and strong vibrations only when the auditory feedback was absent.

Also the temporal synchronicity between audio-tactile feedback has been found
to affect the quality of virtual buttons; to this end, Kaaresoja et al. were able to
change the perceived quality of virtual buttons by varying the stimuli temporal delay
between 5 and 70 ms [119]. Considering handled game consoles, instead, multiple
studies found that users reached higher scores when playing on physical controllers
than playing through virtual controls rendered on touch screen, confirming the contri-
butions given by indentations and mechanics of physical controllers [244]. However,
video games specifically designed for touch devices reported comparable performance
concerning parameters like satisfaction and ease of control [98]. One of the greatest
issues concerning the perceived quality of virtual buttons is the absence of compli-
ance consequent to pressing actions: to resolve such an issue, Liao et al. designed a
hybrid solution consisting of a physical button capable of displaying programmable
force-displacement curves [140]; Park et al., instead, designed an augmented phys-
ical button able to reproduce the perceptual illusion of different mechanics thanks
to vibration actuators [178]; eventually, more sophisticated vibrotactile cues have
been successfully used for conveying illusory intra-modal effects of depth, compli-
ance, roughness or indentation on rigid surfaces [123, 170]. The absence of edges
(i.e. physical protrusions) during the exploration of surface displaying virtual but-
tons represents a great limitation in their use in eye-free contexts: in fact, even when
provided with vibrotactile feedback, touchscreens selections resulted not reliable un-
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der demanding conditions (e.g., when dialing a telephone number while driving a
car) [136]. However, complex technologies operating in dynamic conditions, such as
ultrasonic actuator arrays [113, 197, 231] or electrostatic displays [69, 202], can be
nowadays used to simulate edges. Taken together, these results confirm that the real-
istic rendering of all the characteristics belonging to physical buttons still represents
an open technological challenge, especially regarding the tactile feedback [9]. How-
ever, to some extent, even low-cost technologies can be profitably used to reproduce
relevant features: this research will try to maximize the potentials of voice coil and
piezoelectric actuators, given their ability to provide fast and powerful transients,
furthermore having affordable costs.

Knob controllers

The role of physical characteristics such as form factor and mechanical behaviour be-
comes fundamental when considering knob controllers: in fact, the knobs flattening,
i.e. the projection of the knob 3D form factor on a surface (2D), reduces signifi-
cantly the usability of such virtual widgets. Experiments comparing physical and
virtual knobs have highlighted that tangibility has significant positive effects on sev-
eral aspects of the interaction [233, 180, 236]. More specifically, it was proved that
tangible control allows for better performance in terms of error rate and interac-
tion speed: interaction with physical knobs was found to be 20% faster compared
to virtual counterparts and, additionally, subjective performance remained unaltered
in eyes-free contexts. Moreover, interactions with tangible knob controllers led to
more accurate selections. This suggests that, in the design of virtual knobs, their
form factor should be preserved in some way by creating touch surfaces embedding
physical protrusions. A hybrid solution between physical and virtual knobs consists
of haptic knob controllers with programmable features: such controllers embed the
inherent multimodal feedback of a physical knob while, on the other hand, properties
like force feedback, displacement or even form factor can be programmed [226]. In
the literature, there are many implementations of programmable haptic knobs usually
actuated by DC motors [16, 124, 111] or magneto-rehological fluids [232, 10]. Sim-
ilarly, the same technologies are profitably used to create programmable sliders [19]
and buttons [140]. Although the performance of programmable haptic knobs is re-
markable, so far their implementation on commercial products has been limited to
few exceptions, given their cost, size and complexity. For instance, they can be found
in safety-critical control panels [232] or in research laboratories [124].

Compared to their virtual counterparts, physical knobs have also limitations: for
instance, they generally need mechanical moving parts that can be damaged or re-
moved; moreover, physical knobs are usually not completely waterproof: this may
allow seepage of liquids or dirt intakes. Overall, these two drawbacks can compromise
the lifetime of professional appliance user interfaces.
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Goals and research hypotheses

The above-mentioned experiments confirm some basic research results about multi-
modal perception [139, 59, 28]: congruent multimodal stimuli have an additive effect,
improve identification and reduce the time of event detection, resulting in more ro-
bust and reliable perception-and-action loops. The acceptance of such technologies
yet needs to meet several requirements: safety, technology readiness, price, size, power
consumption and ergonomics. With these goals in mind, the thesis develops along
with the following project points:

1. The development of reliable virtual buttons for professional appliances operating
in specialized working environments. To guarantee this, since auditory cues can
be affected by environmental noise and visual attention may be not focused
on the interface, it is necessary to demonstrate that, even selections based on
unimodal tactile feedback, gather enough information to warn the user about
incorrect selections. If this statement is proved in ideal experimental conditions,
it will be possible to develop a technology demonstrator, equipped with a haptic
actuator, to validate the experimental results in real working conditions.

2. The development of low-cost programmable knob controllers able to reproduce
variable force feedback with a resistive technology. The hypothesis is that simple
resistive feedback patterns, even if originated using low-cost technologies, can
still improve accuracy and precision in the rotary selection, allowing to fine-tune
without focusing the visual attention on the user interface.

3. The development of a new type of user interface for professional appliances: a
haptic knob that, without having moving parts, preserves at least the form factor
of its physical counterpart. The hypothesis is that rotary gestures can substi-
tute rotations accomplished with physical knobs, resulting in a sealed interface
without mechanical moving parts. This hypothesis must be proved concerning
three aspects: user proprioception should not be affected by the gesture prim-
itive (i.e. grasping vs. sliding), having similar accuracy and precision during
rotations in non-visual conditions; the development of the sensing technology
for precisely detecting rotary gestures should be affordable and, finally, users
should welcome this new interaction primitive.

Thesis structure

This thesis is divided into three parts:
Part I covers some aspects related to surface haptics [9], with the specific goal

of rendering virtual buttons for professional appliances. In particular, experimental
studies on finger press and multimodal perception are used to support the creation
of a prototype providing rich tactile feedback. Chapter 1 presents two experiments
on multimodal perception: such experiments are designed to investigate the human
ability to classify different materials through auditory, tactile or bimodal ecological
feedback [46, 45]. Chapter 2 reports the technical description and the characterization
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of a prototype interface able to display virtual buttons. The chapter shows a user
validation experiment carried out using the same haptic feedback used in the previous
experiments (Chapter 1), as well as stimuli specifically designed for the device [53].
Finally, Chapter 3 presents an experiment aimed at investigating the effects of force
and direction in the vibration perception in order to improve the design of haptic
devices. In particular, the experiment evaluates whether the direction of the stimuli
(i.e. normal or tangential) or the finger pressing force influences the human sensitivity
to 250Hz vibrations [57].

Part II deals with rotary controllers with haptic feedback. In particular, this
part reports two innovative technological solutions aimed at replacing traditional me-
chanical knobs. Chapter 4 reports the design and the validation of a haptic knob
providing programmable resistive force feedback [48], whose low-cost hardware/soft-
ware architecture has been filed with the Italian Patent Office (IPO) [44]. The chapter
presents also specific implementations of the device concerning multimedia production
tools [51], digital effects control [49] and professional appliances control. Chapter 5
compares the performance of rotary and motionless knobs: the latter is a cylindri-
cal user interface without moving parts, able to encode rotation gestures applied to
its sides. In this chapter, several objective measurements and subjective evaluations
are used to compare the two interaction primitives [47]. Finally, Chapter 6 reports
the design of the Non-a-knob: a motionless knob that encodes rotation gestures by
processing capacitive signals with a Machine Learning (ML) algorithm. Besides its
technical description, the device is furthermore validated in an experiment that com-
pares its performance with the results reported in Chapter 5 [50]. In the final part
of the chapter, the Non-a-knob is further discussed as part of a new concept design
collecting multimodal input/output features within a single user interface.

Part III describes the hardware and software tools developed in the context of
in this research. Chapter 7 reports the design of the Bogus Finger: an open-source
robotic tool for the simulation of quasi-static finger pressing on stationary and vi-
brating surfaces. Besides the technical description and the end-to-end validation [55],
this chapter shows the mechanical model of the device, the experimental estimation
of its parameters, and the model validation [58]. This open-source project has been
presented and discussed within the haptics community at different stages of the devel-
opment [54, 56]. Finally, Chapter 8 shows the versatility of the programming language
Python in several research activities. Indeed, almost all the software presented in this
research has been developed in Python: experimental procedures, control algorithms,
machine learning algorithms, statistical analysis and chart plots. In particular, this
chapter shows an in-depth study to investigate the limits of this programming ap-
proach concerning the real-time data processing [52, 43].

Figure 1 summarizes the proof-of-concept prototypes developed and validated
along this research. On the left, four physical buttons, providing different compli-
ance and mechanics, are rendered as enhanced virtual buttons through the display
presented in Chapter 2: the display, besides showing the buttons, is able to provide
a rich haptic feedback dependent on the finger pressing force. On the right, the hap-
tic characteristics of regular mechanical knobs are reproduced and improved through
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different prototypes: the first device is the low-cost programmable haptic knob de-
scribed in Chapter 4, whereas the second device is the innovative motionless knob
”Non-a-knob”, conceptualized and validated in Chapter 5.

Figure 1: Reconstruction of the physical controllers’ cross-modal feedback (top part)
through the design and validation of three low-cost technology demonstrators (bottom
part): a haptic display rendering virtual buttons, a resistive programmable knob and
a motionless knob.

A note on the ethical issues

All the experiments and data collections were performed in the context of the collab-
oration with Institute for Computer Music and Sound Technologies (ICST) of ZHDK
(Zurich), particularly concerning the treatment and processing of the data. Experi-
ments and data collections which involved human participants were not harmful nor
dangerous for the subjects, which participated on a voluntary basis. No health-related
personal data were collected during the experiments, and furthermore, data were al-
ways anonymized. For all these reasons, the experiments did not fall within the
scope of the Swiss Human Research Act https://www.admin.ch/opc/en/classified-
compilation/20061313/index.html and, therefore, they did not require the approval
of the ethics committee.
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1
Material identification from

bouncing events

As Humans, when we approach an object, we initially identify everyday materials from
their visual aspect. Visual identification can be later refined through touch [40], by
analyzing tactile surface properties such as roughness [11] and temperature [108]. This
analysis postulates a material to be fully characterized by its superficial appearance.

Further material properties can be actively explored using touch and hearing, as
when an indentation or a tap unveil the hardness of an object. Point-wise tapping,
in particular, generates impulsive audio-tactile feedback whose role goes beyond aes-
thetics [151], giving rise to cross-modal cues which are difficult to disambiguate [82].

In the literature, the classification of material, size and shape from impulsive audi-
tory feedback has been successfully performed by listeners identifying synthetic stimuli
reproducing strikes on suspended plates [134, 87, 221] and clamped bars [128, 147]—
see also Giordano and Avanzini [86] for a comprehensive review of related work. In
fact, the simulation of objects vibrating in mechanical isolation enables fine control
of their oscillatory modes through the amplitude, frequency and decay parameters
of each mode. Depending on their setting, these parameters link the physical prop-
erties of an object to its auditory perception by means of fundamental cues such as
decay, pitch and timbre. Experiments aiming at applying materials’ sound synthesis
to auditory displays and interfaces [84] have suggested that everyday materials are
first roughly classified into distinct groups (e.g., metals) depending on decay. Once
grouped, further categorization may be based on characteristic (“material”) frequen-
cies [87]. The latter association was shown to become especially important when the
stimuli are short (i.e. less than about 400 ms), as decay cues in this case become
difficult to perceive [146].

Classification of materials by impulsive tactile feedback has been researched too,
albeit less systematically. Most of the works deal with direct or mediated finger tap-
ping, especially in view of applications to robotic sensing and material augmentation.
Kim and Kesavadas [126] parameterized a contact model to reproduce different ma-
terials, by acquiring temporal patterns of force from participants tapping on steel,
aluminum, wood, and rubber surfaces during an identification task. Hachisu et al.
designed a stick that, when tapped, cancels its own body’s response and then renders
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haptic sensations of aluminum, wood and rubber by synthesizing a damped sinusoid
with characteristic amplitude, decay and frequency parameters [96]. Both works re-
ported successful recognition of the proposed materials, with possible support from
sound in the former. The latter was later applied to touchscreen augmentation on a
tablet displaying playable percussion instrument boards made of wood and metal [95].
An exception comes from Higashi’s systematic research on tactile perception of hard-
ness [107], resulting in intensity curves [104] and mechanical parameter ranges [105]
of equal hardness perception, as well as in a psycho-physical map linking materials to
perceived stiffness in response to a tap [106].

This chapter presents two experiments that consider both the auditory and tactile
sensory channels, in an effort to assess their individual contribution while forming
a multi-sensory material category. In fact, only a minority of the literature about
the influence of hearing on touch [205, 206, 245, 32] during material classification
considers impulsive feedback.

In the following experiments the auditory and tactile responses to an impulsive ex-
citation were recorded from three flat objects made of different materials, first taken
in mechanical isolation and then resting on a table. Then, such recorded sounds
and vibrations were reproduced, either separately or together, respectively through
headphones and on a hard glass plate actuated by a vibrotactile transducer. The
tactile display used in the experiments avoided surface texture rendering technolo-
gies [64, 246]. Instead, for its simplicity and low cost [60], the proposed setup is ideal
for testing the audio-tactile feedback of virtual buttons on touchscreens specifically
designed for professional appliances, goal of this research. Coherently with this goal,
temperature cues, that could further characterize the materials, were removed from
the experiments.

In the literature only the study accomplished by Smith et al. indirectly linked
material classification to virtual buttons by proving that abstract auditory feedback
can be more difficult to learn and retain than environmental sounds [204].

Hence, the experiments presented in the following minimized the abstraction of
the audio-tactile feedback using audio recordings rather than synthetic stimuli.

1.1 Experiments

The two experiments used stimuli recorded from single impacts on three flat objects
made respectively of wood, plastic, and metal. The experiments differed in the main
resonance decay times, as a consequence of recording sounds and vibrations either
with suspended objects (Experiment 1), or more realistically with the same objects
resting on a table (Experiment 2). Furthermore, a control test was set up using real
impact events on the same materials when they were in mechanical isolation, i.e. in
the same condition as when sounds and vibrations for Experiment 1 were recorded.
The purpose of the control test was to set a reference baseline on the human ability
to classify materials based on the original objects’ audio-tactile feedback.

Provided, as confirmed by a control test, that humans are able to classify wood,
plastic and metal by impulsive auditory, tactile, and finally audio-tactile feedback,
then the hypothesis is that the bounce of an unfamiliar light object (e.g. a ping-pong
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ball) on flat objects made of those materials enables the same process across both the
auditory and tactile channels.

1.1.1 Setup

Wood, metal, and plastic materials were selected as they respond rigidly to impacts
(i.e. with spectral energy concentrating in the high frequency range), thus enabling
realistic tactile reproduction on a glass surface, offering just vibratory feedback, rather
than kinesthetic cues that are linked to soft materials [96].

Control test

Three flat objects were built out of fir wood, hard plastic, and steel. They were
U-shaped by bending or carving, allowing for a hand or an accelerometer to find
sufficient room in the resulting cavity underneath (see Fig. 1.1). All objects were
sized 160×160×45 mm. Two circular patches having a diameter of about 4 cm,
made of thin adhesive film, were attached at the same location on both sides of the
surfaces. Both (i.e. the patch on the reverse side for Experiment 1 and the patch
on the top side for Experiment 2) offered a uniform surface spot where participants
put their fingers. In this way, subjects could not use surface properties to identify
materials. On the opposite side, these spots marked the impact point. Thanks to
their low mass, thinness, and firm adhesion to the objects, they introduced almost
imperceptible changes in the impact sounds and vibrations.

Figure 1.1: Wood, plastic and metal objects used to record stimuli and perform the
control test.

Experiments 1 and 2

A flat object was built by mounting a 3 mm-thick borosilicate glass plate on a metal
frame suspended by means of rubber strips, and then coupling the frame with a
wooden structure, as shown in Fig. 1.2.
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Figure 1.2: Suspended glass plate with attached exciter, used in Experiment 1 and 2.

1.1.2 Stimuli

A ping-pong ball was used to excite the materials, as it has a light yet rigid structure,
giving rise to neat impact events characterized by small energy in the low frequency
range. Tests were also made with metal, rubber, and wooden balls of different size and
weight, however they produced impacts whose energy at low frequency fell outside
the range of the small, low-power actuator that is required for vibration reproduction
in Experiment 1 and 2.

Control test

The ball was dropped on the three objects. The intensities of the stimuli were equal-
ized across materials by dropping the ball from varying heights: 30 cm for wood,
80 cm for plastic, and 40 cm for metal. A marked rod was placed near the cardboard
support, helping the experimenter to release the ball correctly during the experiment.

Mechanical decoupling was realized by putting the objects upside-down on a sup-
port made of foam and cardboard sized 200×240×60 mm, shown in Fig. 1.3 (center).
The support also forced participants to touch the surface only in correspondence of
the adhesive tape, as in Fig. 1.3 (right).

The temperature of the objects was stabilized at approximately 30◦C, by keeping
them under a halogen lamp starting ten minutes before and throughout the experi-
ment when not in use.

An inspection of the temporal signals immediately after the bounce showed the
presence of a low-frequency component identical in all cases, evident consequence
of the response of the support. On top of this component, fading transients with
a peak occurring within the first 100 ms were clearly visible. After removing the
component in low frequency, such peaks showed a relative amplitude of approximately
0.30 mm for wood, 0.14 mm for plastic and 0.08 mm for metal. Decreasing peak values
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Figure 1.3: Cardboard support: without (left) or with (center) plastic object turned
upside-down, and in use during the control test or familiarization with Experiment 1
(right).

are compatible with the implemented intensity equalization, as the corresponding
materials produced different decays as explained below.

Experiments 1 and 2

These experiments made use of reproduced audio and tactile stimuli: sound and
vibration samples were recorded from a single ball hit on each surface. The objects
were either turned upside-down and suspended as in Fig. 1.3 (center), producing
samples for use in Experiment 1, or resting on a table (see Fig. 1.6) for Experiment 2.

Sounds were recorded with an Audio-Technica AT4050 condenser microphone
placed 40 cm away from the bouncing point. Vibrations were recorded by attaching
a Wilcoxon 736 accelerometer in correspondence of the adhesive film. Both devices
were connected to a RME Babyface Pro audio interface—the accelerometer through
its companion pre-amplifier.

Auditory stimuli were played back through a pair of Beyerdynamic DT 770 PRO
closed-back headphones. Tactile stimuli were reproduced by a Dayton Audio 32-mm
balanced vibrotactile transducer, attached at the top side of the glass plate. Bimodal
stimuli were provided by playing back auditory and tactile stimuli at the same time.
In this case, the auditory signal was delayed by 1.14 ms, corresponding to the time
needed for airborne sound to travel from the impact to the listening point.

Spectrograms of the audio recordings made for both experiments are shown in
Fig. 1.4. In order to highlight the frequency content of the stimuli, the reported
spectrograms were generated using a 16384 samples windowing; this inevitably put
in the background the temporal information on the same spectrograms. On the
other hand, the same attacks were deliberately chosen to be as short as possible;
for this reason, their spectral content was inherently difficult to disambiguate in a
spectrogram. They show differences below 30 Hz, consequence of the different support
employed, which were however inaudible. A closer look to the audible band reveals
that the stimuli in Experiment 1 were about 0.1 s longer, with a strong resonance in
metal at about 3 kHz, lasting about 0.9 s.

Figure 1.5 shows spectrograms of the recorded vibrations in the top and middle
rows, unveiling differences similar to what found for audio. Furthermore, metal in low
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Figure 1.4: Sound spectrograms in Experiment 1 (above) and 2 (below).

coupling conditions generates long-lasting vibrations at about 20 and 250 Hz, that
were not efficiently radiated across the air.

Spectrograms of the vibrations after reproduction on the glass plate during Ex-
periment 2 are also shown, in the bottom row of Fig. 1.5. They were acquired by
placing the accelerometer in correspondence of the presentation point of the plate—
see Fig. 1.2. A comparison between these and the original vibrations in Experiment 2
(middle row) discloses some unavoidable differences affecting the tactile stimuli dur-
ing reproduction. In fact, the limited admittance of glass at low frequencies and the
frequency cutoff of the actuator progressively attenuate frequencies below 200 Hz.
Moreover, the denser modal distribution of the glass causes the resonances at higher
frequencies to fragment into subgroups gathering two or three original vibration modes
together.

Table 1.1 summarizes the characteristics of the stimuli used in Experiments 1
and 2, and in the control test.

1.1.3 Participants

Participants were recruited among students at the University of Udine and employees
of Electrolux Professional SpA. They participated on a voluntary basis and were not
paid. Their auditory and tactile acuity was informally tested by asking participants to
close their eyes, then localize a sound source nearby, and finally identify the materials
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Figure 1.5: Vibration spectrograms in Experiment 1 (top row) and 2 (middle row).
Vibrations reproduced on the glass plate in Experiment 2 (bottom row).

used in the experiment by touching the respective object outside the adhesive tape.

Control test

Sixty participants, aged between 19 and 52 (M=24.3; SD=6.7), took the control
experiment.

Experiments 1 and 2

Twenty-five subjects between 23 and 61 years old (M=32.1; SD=10.1) participated in
Experiment 1, and twenty-seven (21-54 years old; M=29.0; SD=6.8) in Experiment 2.
Eight subjects participated in both experiments. Roughly one third of the participants
were females.

1.1.4 Design and Procedure

In all experiments, the design consisted of two within-subjects factors: Material and
Modality. Material was either Wood, Plastic, or Metal. Modality was either unimodal
Auditory, unimodal Tactile, or Bimodal audio-tactile. The factors were crossed and
each factor combination was repeated six times, resulting in 6 × 3 Materials × 3
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Table 1.1: Characteristics of the stimuli used in the experiments.

Experiment Stimuli Setup Coupling Resonance decays

control live cardboard support low slow
1 recorded cardboard support low slow
2 recorded on the table normal normal

Modalities = 54 trials. Trials were organized in blocks according to Modality. Both
unimodal conditions were presented before the Bimodal condition, and the order of
Auditory and Tactile conditions was balanced among participants. Within each block,
six repetitions of each Material were presented in random order. The experiment
lasted about 10 minutes.

The task was to classify and report the material by saying its name. Responses
were noted by the experimenter and audio-recorded for later reference. Participants
were blindfolded during the control test. In all experiments, during unimodal Tac-
tile trials, they received pink noise through headphones to mask unwanted auditory
feedback.

Prior to each experiment, participants familiarized with the real audio-tactile
events by listening to the impact sounds while keeping one or two fingers of the dom-
inant hand on the adhesive spot (see Fig. 1.6) until they felt they could confidently
recognize the respective materials through those cues.

Figure 1.6: Familiarization in Experiment 2.

Control test

A trial consisted in the experimenter dropping a ball on one of the objects from the
prescribed height. In Tactile and Audio-Tactile trials, participants placed one or two
fingers below the object through the cardboard support, as during familiarization
(Fig. 1.3 (right)). The other two objects were in turn kept under the halogen lamp
to avoid changes of their temperature during the session.
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Experiments 1 and 2

A trial consisted in playing back a recorded impact event, presented through head-
phones and/or the actuated glass plate, as shown in Fig. 1.2.

1.2 Results

1.2.1 Control test

Table 1.2 reports the confusion matrix for the Auditory, Tactile and Bimodal modali-
ties. Each diagonal contains the total proportion of correct responses in bold symbols,
while the other cells report false responses. Columns labeled ‘None’ report missing re-
sponses. Figure 1.7 presents a boxplot of individual proportions correct for Modality
(Auditory, Tactile, Bimodal) and Material (Wood, Plastic, Metal).

Table 1.2: Control test: confusion matrix for each condition.

Condition Auditory Tactile Bimodal

Response →

Stimulus ↓
Wood Plastic Metal None Wood Plastic Metal None Wood Plastic Metal

Wood 90.0% 9.4% .6% 0% 66.9% 26.7% 6.4% 0% 99.7% .3% 0%

Plastic 6.4% 90.3% 2.8% .5% 21.7% 74.7% 3.6% 0% 0% 96.7% 3.3%

Metal .3% 2.8% 96.4% .5% 2.5% 6.4% 90.8% .3% 0% 2% 98.0%

Concerning unimodal conditions, Wood and Plastic were classified much better
in the Auditory than Tactile condition, whereas Metal was classified well in both
conditions. In the Bimodal condition, performance was nearly perfect across materi-
als. Hence differences in performance were analysed only between the two unimodal
conditions as follows. A non-parametric analysis was performed due to consider-
able ceiling effects in the data. In particular, a Friedman test [79] was conducted,
revealing significant differences in Material (Q = 92.25, p < .001). Three pairwise
comparisons using the Wilcoxon Rank-sum test [103] highlighted that Metal differed
significantly from Plastic and Wood in the Tactile condition (Wood-Metal: Z = 5.5,
Bonferroni-corrected p < .01; Plastic-Metal: Z = 3.6, p < .01). Concerning Modal-
ity, the pairwise comparisons highlighted significant differences between Auditory and
Tactile for all materials (Z = 5.2, p < .01). Finally, a Wilcoxon Rank-sum test con-
firmed that presentation order (Auditory then Tactile or Tactile then Auditory) did
not result in significant differences for either Auditory (Z = .43, p > .05) or Tactile
(Z = .7, p > .05) identification scores.

1.2.2 Experiment 1

Table 1.3 reports the confusion matrices in the same fashion as Table 1.2. Figure 1.8
shows a boxplot of individual proportions correct. Compared to both unimodal con-
ditions, the results suggest that performance was better in the Bimodal condition.
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Figure 1.7: Control test: Boxplot of proportions correct for all condition combinations.

Table 1.3: Experiment 1: confusion matrix for each condition.

Condition Auditory Tactile Bimodal

Response →

Stimulus ↓
Wood Plastic Metal None Wood Plastic Metal None Wood Plastic Metal

Wood 79.3% 20.0% 0% .7% 62.7% 20.0% 16.6% .7% 90.0% 9.3% .7%

Plastic 24.0% 72.7% 3.3% 0% 23.3% 63.4% 13.3% 0% 11.3% 87.4% 1.3%

Metal 1.3% 2.0% 96.7% 0% 22.7% 11.3% 66.0% 0% .7% 2.7% 96.6%

Again, the score distributions deviate from normal due to a ceiling effect, hence
a Friedman test was used. A significant main effect of Modality was detected (Q =
37.8, p < .01). Three pairwise comparisons were performed between modalities using
the Wilcoxon Rank-sum test. Significant differences were detected between Auditory-
Bimodal (Z = −2.7, Bonferroni-corrected p < .01) and Tactile-Bimodal (Z = −5.4, p <
.01).

A more detailed inspection of the two unimodal conditions shows higher median
scores for Auditory than Tactile. In the Auditory condition, Metal was classified
especially well. A Friedman test, considering each factor combination as one of six
conditions of a combination factor, revealed significant differences (Q = 21.8, p <
.01). Six pairwise comparisons were performed. Three comparisons between materi-
als in the Auditory modality revealed that Metal significantly differed from Plastic
and Wood (AuditoryWood-AuditoryMetal: Z = 4.3, Bonferroni-corrected p < .01;
AuditoryPlastic-AuditoryMetal: Z = 3.4, p < .01). Further three comparisons were
performed for each Material between the Auditory and Tactile modalities. A sig-
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Figure 1.8: Experiment 1: Boxplot of proportions correct for all condition combina-
tions.

Table 1.4: Experiment 2: confusion matrix for each condition.

Condition Auditory Tactile Bimodal

Response →

Stimulus ↓
Wood Plastic Metal None Wood Plastic Metal None Wood Plastic Metal

Wood 75.9% 16.1% 6.8% 1.2% 67.9% 13.0% 17.9% 1.2% 87.0% 7.4% 8.3%

Plastic 11.7% 62.4% 24.7% 1.2% 17.9% 53.1% 27.8% 1.2% 7.4% 67.6% 29.6%

Metal 20.4% 29.0% 50.0% .6% 13.0% 36.8% 49.4% 1.8% 5.5% 25.0% 62.1%

nificant difference was detected only for Metal (MetalAuditory-MetalTactile: Z =
3.5, p < .01).

1.2.3 Experiment 2

Table 1.4 reports the confusion matrices in the same fashion as Table 1.3. Perfor-
mance is now generally lower and in some cases close to chance performance. Most
participants performed above chance; however, two participants failed in both uni-
modal conditions and additional two in one unimodal condition. Metal was frequently
misclassified: 36.8% of Metal trials were classified as Plastic in the Tactile condition
and 29.0% in the Auditory condition. Wood and Plastic were classified better than
Metal, especially from Auditory cues.

Figure 1.9 reports a boxplot and means with Standard Error (SE) of proportions
correct for the same conditions as in Fig. 1.8. Again, performance was better in
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the Bimodal condition than in the unimodal conditions. A non-parametric Friedman
test detected a significant main effect of Modality (Q = 25.0, p < .01). Pairwise
comparisons were performed using the Wilcoxon Rank-sum test, revealing significant
differences between Auditory-Bimodal (Z = −2.5, p = .03 Bonferroni-corrected) and
Tactile-Bimodal (Z = −3.7, p < .01).

Figure 1.9: Experiment 2: Mean proportions correct with SE bars (Unimodal) and
boxplots (Bimodal) for all condition combinations.

Particularly for the unimodal conditions, scores were lower than in Experiment 1.
Tests on the unimodal distributions with the D’Agostino method confirmed no signif-
icant deviation from normality for all factors [42], concluding that ceiling effects were
not present. Even though some skewness was found in the combination (Auditory,
Wood), a parametric analysis could be undertaken.

A two-way repeated-measures ANOVA was performed using Greenhouse-Geisser
correction for insphericity. A significant effect of Material was detected (F (1.61, 41.9) =
16.3, p ≤ .001), whereas neither the main effect of Modality (p = .09) nor the inter-
action of Modality and Material (p = .563) was significant.

The mean results for Materials were: Wood (M = .72, SD = .033), Plastic (M =
.58, SD = .033) and Metal (M = .50, SD = .04). Their respective 95% confidence
intervals result in a partial overlap between Plastic (.51−−.64) and Metal (.42−−.57),
while Wood is outside their combined range (.65−−.78).
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1.3 Discussion

Figs. 1.7, 1.8 and 1.9 show that in all tests auditory cues were more effective than
tactile cues for material classification. This is not surprising, since hearing discrimi-
nates cues of frequency better than touch [230]. In the control test, however, Metal
was classified almost equally well in both modalities. The most plausible explanation
for this exception is that participants efficiently discriminated the longer decay of the
metallic object vibrations from both sensory channels. This conclusion is consistent
with previous findings, concluding that cues of damping/decay times are fundamental
during material identification by hearing [87] and also by touch [107].

Further support to the above conclusion comes from Experiment 1 where partici-
pants, compared to the control test, were less precise in the Auditory modality when
listening to Wood and Plastic, but once again almost infallible when listening to
Metal. In fact, the auditory confusion matrix in Table 1.3 disperses the data around
the diagonal limited to the sub-matrix reporting for Wood and Plastic. Headphone
listening introduces spectral (hence timbral) changes, and internalizes sound sources
especially if using closed-back headsets [234]. The use of such devices in our experi-
ments hence altered the auditory recognition process, and disrupted the localization
process [150]. The consequent distortion of the ecology that listeners had previ-
ously experienced during familiarization with the bouncing event may have caused
larger error rates in the Auditory modality. Notably, such artifacts are less relevant
for sounds made of few oscillatory components, where pitch instead of timbre cues
prevail [215]. Hence, after the onset listeners might have been able to isolate the
long-lasting resonance at about 3 kHz (above in Fig. 1.4) equally well for both real
and reproduced metal sounds.

A similar motivation may explain the performance drop while recognizing Metal
through the Tactile modality in Experiment 1. In fact, an inspection of the bottom
row in Fig. 1.5 shows that the reproduction over glass progressively attenuates the
resonances from 200 Hz down, and alters those above this frequency. For this reason,
participants might have lost both high- [18] and low-frequency tactile pitch cues [17]
visible in the top row in Fig. 1.5, which had been acquired during familiarization.
Losing the former could have had consequences in identifying the metallic object. In
parallel, the generally disappearing spectral energy below 200 Hz might have been
responsible for a proportional performance decay of participants in identifying all
materials through touch from reproduced vibrations during Experiment 1.

In Experiment 2, participants still performed above chance in both the Auditory
and Tactile modalities; however, performance was generally lower than in Experi-
ment 1. Wood essentially confirmed the scores of Experiment 1, while Plastic and
especially Metal did not. This performance decay finds an explanation in the spec-
trograms of Fig. 1.4 and 1.5 relative to this experiment (bottom rows). According
to them, both channels ceased to provide the characteristic resonances acquired by
subjects during familiarization, and suggest that during the task sounds and vibra-
tions were perceived to have different timbre and no that distinct pitch that was still
present in Experiment 1. The Auditory classification of Metal suffered particularly
from this situation, scoring down until about 50%. This caused in its turn a gen-
eral increase of the auditory confusion, as the expected resonant timbre of Metal and
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Plastic disappeared in favor of a muffled, unpitched sound inducing participants to
occasionally swap the two materials, or classify them indistinctly as Wood.

The above considerations find even more solid ground with the Tactile modal-
ity. Indeed, a comparison between the mid and bottom rows of Fig. 1.5 respectively
suggests that, during familiarization, these participants received characteristic low-
frequency content and resonance modes; yet later, during the experimental tasks with
reproduced stimuli, most of the energy below 200 Hz was not present, nor could the
original resonances be retrieved from the spectral clusters in the tactile band [230]
of the reproduced vibrations. Analogously to Experiment 1, the spectral distortion
progressively got worse while moving from Wood to Plastic and finally Metal, with
potentially proportional effects in the material identification.

The first general conclusion hence is that participants identified Metal from res-
onances with longer decays, when available. Then, they relied on less robust timbre
and pitch cues which were present in the onset of all stimuli. This conclusion echoes
the results obtained by Giordano et al. using auditory feedback [87]; additionally, it
suggests that participants made proficient use of longer resonances also in the tac-
tile modality, as Higashi found while investigating tactile hardness perception [107].
Wood and plastic in any case had to be classified based on spectral cues, with little
or no support from temporal information: in this respect, these results are aligned
with existing research on tactile recognition of musical timbre [192].

In both experiments the classification based on Bimodal stimuli was better. Espe-
cially in Experiment 1, it seems that the synergistic reproduction of audio and tactile
cues was able to restore the information existing in the unimodal cues when they
were experienced directly from the objects. More surprisingly, the same synergy was
present also in Experiment 2 in which the sensory channels were further distorted.
The logical conclusion is that participants were supported in their classification in the
Bimodal condition by some form of cross-modal summation of tactile and auditory
cues of material.

Sensory integration is known to optimize perceptual acuity [66]. In particular,
interactions between such two channels have been reported by several authors [78],
with effects depending on the spectral characteristics and temporal relationships be-
tween auditory and tactile stimuli. Even if such interactions do not necessarily lead
to constructive effects [243], synchronous audio-tactile presentations of matching fre-
quencies have been shown to improve event detection also in presence of broadband
auditory noise [240].

Constructive audio-tactile summation of particular interest to our experiment was
reported by Shurmann [196]. Participants performed a loudness-matching task with
and without touching a bar vibrating coherently with sound. Vibrations were discov-
ered to amplify the perception of auditory stimuli especially when their loudness was
low. Further results have highlighted that the frequencies responsible for this effect
range between 200 and 400 Hz [2]. In line with that and some previously cited exper-
iments, our participants in the Bimodal condition might have detected audio-tactile
cues reporting of resonance modes (be they equal in frequency or consonant [171, 74])
that conversely had disappeared or were perceptually masked in the unimodal stimuli.
Their detection, hence, could have improved the classification performance. In this
respect, literature from the musical haptics field provides intriguing, but not always
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Table 1.5: Material classification from incongruent stimuli.

Stimulus Response

Auditory Tactile Wood Plastic Metal

Wood
Plastic 63.0% 32.4% 4.6%

Metal 58.3% 22.2% 19.5%

Plastic
Wood 30.6% 48.1% 21.3%

Metal 6.5% 37.0% 57.5%

Metal
Wood 46.3% 25.9% 27.8%

Plastic 13.0% 45.3% 41.7%

robust evidences of multisensory perception of frequency cues [191, 112, 76].

1.3.1 Incongruent stimuli

The above considerations on audio-tactile synergy during material classification are
even more interesting if considering responses to six incongruent bimodal stimuli, ob-
tained by combining sounds and vibrations generated from different materials. Such
stimuli were prepared with the recorded short-decay responses, as in Experiment 2.
Immediately after the completion of a session in Experiment 2, the participant were
asked to classify the same three Materials from four randomized repetitions of incon-
gruent stimuli, for a total of 4 × 6 = 24 additional trials.

Table 1.5 reports how Materials were classified. The histogram in Fig. 1.10 illus-
trates the distribution of consistent classifications across Bimodal stimuli resulting
from the 3 congruent and 6 incongruent audio-tactile combinations. For each com-
bination, classifications were considered as consistent if reiterated in more than two
(that is, half of the) repetitions irrespective of the identified material. Only the so de-
fined consistent responses are represented in the histogram of Fig. 1.10. Consequently,
shorter bars reflect lower consistency and thus greater confusion during classification.

As the incongruent results can not be compared to the congruent cases, the his-
togram can be interpreted only qualitatively. In spite of this, Fig. 1.10 suggests some
interesting considerations. Congruent stimuli supported the Auditory classification
of the unique Material they represented, and furthermore such classifications were
mostly reliable. As reliability gradually decreases while moving to the right of the
figure, consistent classifications started to occur for incongruent stimuli too, again led
by the auditory channel. However, the tactile channel prevailed in the last three (on
average least reliable) consistent classifications.

To this end it is possible to speculate that tactile feedback, in the limits of its abil-
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Figure 1.10: Distribution of consistent classifications from congruent and incongruent
Bimodal stimuli.

ity to convey timbre, became progressively more important as the auditory channel,
in front of incongruent materials, left its leading role while remaining supportive to
cross-modal perception. This conclusion finds partial confirmation from experiments
demonstrating that simultaneous presentation of sound and vibrations can lower tac-
tile intensity thresholds [190] as well as enhance tactile intensity perception [220].
Concerning material classification, holding the conditions of Experiment 2 in which
Metal could not be identified anymore by longer resonances, Wood established the
most robust classification also when incongruent stimuli were presented: Wood was
generally identified whenever it was present in at least one channel, whereas it was
not identified when it was not present in either channel.

1.4 Lesson learnt

The described experiments investigated the relationships and interactions existing
between the auditory and tactile channels when humans are engaged in a material
classification task, based on impulsive feedback from flat objects built with those
materials. These findings suggest that, while both channels are able to perform this
task correctly based on real feedback, the reproduction of recorded sounds and vi-
brations on a touchscreen-like display deteriorates the performance especially if the
material’s distinctive resonances are damped (e.g., because the display rests on a ta-
ble). Anyway, even in the worst conditions, unimodal tactile and unimodal auditory
modalities scored greater than chance level. On the other hand, the bimodal modal-
ity always gave rise to greater classification scores, suggesting an integration effect
between modalities. These experiments hence provide a baseline for the design of vir-
tual buttons taking natural interaction with ecological feedback into consideration.
The experimental outcomes here reported are in accordance with previously accepted
results, showing that few decaying resonance modes are sufficient to characterize the
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sounds and vibrations of a button: they indeed suggest that simple audio-tactile feed-
back can be contextualized to reflect material properties, through proper resonance
tuning and the design of suitable broad-band onsets. In fact, the design of feedback
containing subtle cues of materials would be effective only if relying on technologies
able to reproduce them with great accuracy.
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2
A haptic display to render

virtual buttons

Multimodal feedback is fundamental in realistic conditions where several noise sources
can potentially affect more than one perceptual channel. As work environments often
present acoustic disturbances as well as possible visual occlusions of the user interface,
the professional appliances displaying virtual buttons on their touchscreen should pro-
vide at least well differentiated tactile feedback to support a reliable human-machine
interaction [83]. This chapter reports the design of a touchscreen device implement-
ing several virtual buttons having different tactile feedback triggered by finger press.
Supported by the experimental results of Chapter 1, the prototype is tested on the
rendering of virtual buttons having tactile properties related to ecological materials.
The chapter presents the subjective evaluations of the virtual buttons accomplished
by two user panels in separate case studies. In the first case study, the vibrotactile
stimuli recorded from impacts on different materials are manipulated and reproduced
by the touchscreen device, whereas, in the second case study, virtual buttons are
carefully designed from the ground up, targeting the hardware frequency response.

2.1 The prototype

Thanks to the collaboration with Electrolux Professional, I designed and built a pro-
totype user interface able to generate vibrotactile feedback in response to touch in-
teractions. The device implements virtual buttons triggered by the screen position
(x,y axes) and the pressing force (z axis) in the soft-touch range (0-5 N). The main
goal of the device is the rendering of virtual buttons that are easy to discriminate
based mainly on tactile cues, thus enabling the users of professional appliances to rec-
ognize any correct or wrong touch selection in eyes-free conditions, therefore relying
on tactile feedback. As active touch enhances the sensitivity to vibrations [176, 169],
even better discrimination performance was expected compared to the experiments
presented in Chapter 1, which were conducted in passive conditions.

Figure 2.1 shows the layout of the prototype, built using off-the-shelf components.
The device displays virtual buttons on a 2.8 inches TFT touchscreen (see Fig. 2.3)
whose capacitive layer locates finger contact positions, while the exerted pressing
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Figure 2.1: Schematic of the prototype device: A piezo-electric actuator (ii) is glued to
the back of a 2.8 inches capacitive touchscreen (i) suspended on foam strips (iii); The
touchscreen is connected to a microcontroller board (iv) that lays on a load-cell (v);
A separate board hosts a driver for the piezo-electric actuator (vi). All the elements
are fixed to a metal base simulating the internal panel of industrial appliances.

force is measured using a BND-611N load-cell (0-1 kg) placed at the bottom of the
structure. The load-cell is driven by a 24 bit HX711 AD converter with a sampling
rate of 80 Hz. Although techniques exist for the estimation of finger force during
tapping actions [193], a more direct and accurate measure via a low-cost load-cell
was preferred. Indeed, the use of a force sensor allows tracking also the release
phase of pressing gestures before a finger loses contact with the touchscreen surface,
which would not be reliable based only on capacitive or resistive sensing. Luckily,
professional appliances usually have large empty volumes behind the user interface,
allowing the interposition of a load-cell between the front and the rear panel of the
user interface.

In this prototype vibrotactile feedback is generated by a Samsung Electro Mechan-
ics (SEMCO) PHAH353832 piezoelectric actuator (dimensions L 35×W 3.8×H 3.2 mm,
weight 2.7 g) controlled by a Texas Instrument DRV2667 piezo driver, connected to
an Arduino Mega 2560 microcontroller board via the I2C communication bus. Com-
pared to other haptic technologies (e.g., LRA, ERM and voice coil), piezo actuators
can also render fast transients at different frequencies [9].

In the prototype tested the piezoelectric actuator is attached under the TFT screen
in a central position, producing displacements along the Z axis. However, thanks to
its compact package, the same actuator can be turned in different orientations in
order to produce, e.g. lateral displacements. The piezo driver may operate in analog
mode, by amplifying (up to 200 Vpp) an audio-level signal at its analog input, or it
can use its internal digital-controlled synthesis engine to generate simple sequences
of sine waves, whose parameters (frequency, amplitude, attack and decay time, and
duration) can be programmed through the I2C interface.

Since the touchscreen is suspended on two foam layers, the device is slightly com-
pliant to normal pressing forces (≤ 1 mm).
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Figure 2.2: Frequency response of the device in the range 50-1000 Hz.

The system frequency response was determined by measuring the response to a
50-1000 Hz sweep signal with a Wilcoxon 736 accelerometer attached on top of the
touchscreen (center position), and then deconvolving it [68]. As shown in Fig. 2.2,
the device is mostly efficient around the resonance frequency of the piezo actuator
(230 Hz), whereas it is substantially unable to reproduce frequencies below 100 Hz.
Concerning the upper part of the tested range, distortion is present above 700 Hz,
as, in fact, the reproduction of the sweep signal produced auditory artifacts in that
range.

The device displays up to four virtual buttons labeled A, B, C, D (see Fig. 2.3),
matching the number of main functions commonly found on professional appliances
(2 to 6). Their shape and size (squares of 22 mm side) were set based on guidelines
from the literature [137, 213].

Three different sets of vibrotactile stimuli were designed and associated with the
virtual buttons, aimed at simulating different materials and effects. The first two sets
were designed starting from the vibration stimuli used in the classification experiment
2 (Chap. 1), whereas the last set was designed based on the rendering capabilities of
the device (Sec. 2.3).

2.2 Case study 1

Based on the reported positive results of tactile material classification (Chap. 1),
a first implementation of virtual buttons tested the straightforward reproduction of
the ecological vibration stimuli of experiment 2, that are the stimuli recorded with
the three objects in contact with the table (short decay). Obviously, such stimuli
were considered the most coherent feedback to finger tapping actions. Unfortunately,
such straightforward attempt was not effective at all: the original stimuli shown in
Fig. 2.4 (orange lines) gave rise to weak and distorted reproductions, as visible in
Fig. 2.6 (orange lines). Indeed, the chosen actuator can efficiently reproduce only a
few concurrent spectral components, whereas the reproduction of rich spectral and
dynamic content is generally unsatisfactory.

In an attempt to overcome such issue, two new sets of stimuli were prepared: the
former consisted in a filtered version of the original signals, made using a tenth-order
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Figure 2.3: Visual appearance of the virtual buttons. For the characterization proce-
dure, an accelerometer was placed in the middle of the touchscreen.

Butterworth filter with pass-band 100-600 Hz; the second set was synthesized by
tuning the frequency and decay time of exponentially decaying sine oscillators to the
most prominent components of the original signals in the same frequency band, that
is two components at 115 and 470 Hz for wood, one component at 430 Hz for plastic,
and two components at 230 and 550 Hz for metal. The RMS power of all stimuli
was normalised within a 500 ms window, so as to make them uniform and maximize
vibration amplitude while avoiding distortion. The signals from both sets are made
available via an open-access repository.1 Figures 2.4 and 2.5 show the spectra and
the spectrograms of the obtained stimuli compared to those of the original recordings,
while Fig. 2.6 reports the spectra as actually rendered by the device. Although the
newly designed stimuli were in general better rendered than the original recordings,
their reproduced characteristics are worth noticing: an artifact was introduced by the
actuator at around 100 Hz in all signals; likewise it boosted energy in the low frequency
(< 100 Hz) concerning the synthesized plastic and especially metal stimuli, while both
filtered and synthesized metal stimuli also were boosted around their fundamental
frequency, being it close to the resonant band of the actuator; conversely, the first
component of the original wood signal (115 Hz) was not reproduced by the device;
finally, the spectra of reproduced wood and plastic were quite similar, as they have
frequency components that are close to each other (430 Hz vs. 470 Hz).

2.2.1 User Evaluation

The two sets of stimuli underwent a separate subjective evaluation.

1https://doi.org/10.5281/zenodo.3630367

https://doi.org/10.5281/zenodo.3630367
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Figure 2.4: Spectra of the signals designed based on the original vibration stimuli
from the classification experiment (dashed orange lines). For each material, two
design techniques are shown: signals band-pass filtered in the 100-600 Hz range, and
signals synthesizing a few relevant components of the original spectra (marked by
blue vertical lines).

Three virtual buttons labeled A, B, and C were respectively linked to wood, plas-
tic and metal stimuli, either filtered or synthesized, which were triggered by finger
pressure exceeding 1 N. Given that the target use of the device is in generally noisy
professional environments, and that the evaluation was performed in a silent room,
an auditory distractor reproducing the noise of a crowded room (70 dB(A)) was con-
tinuously delivered during the assessment. This way, the collateral auditory signals
produced by the piezoelectric actuator were masked as in real working conditions.

Fourteen subjects (6 male, 8 female) aged between 22 and 54 (M = 33.1; SD = 7.4)
participated. Each participant performed two sessions, respectively evaluating three
buttons using either filtered or synthesized stimuli. The task was to freely operate the
buttons while answering an online questionnaire in Italian containing 7-point Likert
scale evaluations and multiple choice questions:

1. Degree of difference among the three buttons, based on touch only. The evalu-
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Figure 2.5: Spectrograms of the signals shown in Fig. 2.4. From left to right, each row
reports original, band-pass filtered and synthetic stimuli for the three materials (i.e.
wood, plastic and metal). The horizontal gray lines mark the relevant components in
the original spectra from the filtered and synthetic stimuli.

ation scale ranged from ‘barely different’ to ‘very different’.

2. General tactile quality of all buttons. The evaluation scale ranged from ‘not
appreciated’ to ‘much appreciated’.

3. Compliance of each button. Despite the fact that no displacement was rendered,
compliance illusion could be elicited thanks to the vibrotactile response to finger
pressing [123, 193]. The evaluation scale ranged from ‘weak’ to ‘strong’.

4. Material each button was made of, among five options (metal, plastic, wood,
glass, and rubber). There was one question per material, each with possible
multiple choice of buttons and an additional ‘none’ option (i.e., A, B, C, none).

For the sake of clarity, in what follows the buttons reproducing filtered stimuli are
referred to as Plastic Filtered (PF), Wood Filtered (WF) and Metal Filtered (MF),
while those reproducing synthesized stimuli are labeled as Plastic Synthesized (PS),
Wood Synthesized (WS) and Metal Synthesized (MS).

2.2.2 Results

Figure 2.7 shows the perceived difference scores among the buttons. In addition,
participants reported that buttons reproducing wood (WS, WF) and plastic (PS, PF)
rendered similar stimuli, whereas buttons with metal feedback (MS, MF) differed from
the others in both sets.

Concerning the appraisal of tactile feedback, the distributions reported in Fig. 2.8
show that the evaluations were more consistent for filtered rather than synthesized
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Figure 2.6: Spectra of the stimuli shown in Fig. 2.4 as actually reproduced by the
device. The blue vertical lines represent the main frequency components of the original
signals.

stimuli. However, nobody assigned the highest score to either filtered or synthesized
stimuli.

Regarding the perceived compliance, Fig. 2.9 reports for both sets high scores for
stimuli related to metal (MS, MF) and low scores for stimuli related to wood (WS,
WF). In general, the perceived compliance seemed to depend more on the simulated
material than the type of stimuli (filtered or synthesized).

Material attributions are reported for the two sets separately in Fig. 2.10 and 2.11,
revealing high uncertainty in both cases. Notably, wood was the only material not at-
tributed to any button by almost all participants: wood stimuli were mostly identified
as plastic or glass, confirming the previous observations regarding the similar spectral
content of the original wood and plastic signals. In general also material attribution
seemed to be rather independent of the set type. Given the limited differences among
the filtered and the synthetic stimuli in terms of spectral content and components de-
cay, this suggests that participants generally confirmed the same material attributions
in both sets.
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Figure 2.7: Score distributions of perceived difference among the buttons in case
study 1 (1 = barely different, 7 = very different).
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Figure 2.8: Score distributions of tactile feedback appraisal in case study 1 (1 = not
appreciated, 7 = much appreciated).

2.3 Case study 2

In the light of the poor overall results obtained in case study 1 with filtered and
synthesized stimuli based on the original vibration recordings, a further set of signals
was designed from the ground up making direct use of the piezo driver. Its internal
synthesis engine can generate temporal sequences of sine waves at frequencies multiple
of a fundamental of the piezo (about 7.8 Hz), thus limiting the design space. Four
virtual buttons labeled A, B, C, and D were designed, aimed at simulating different
tactile materials and effects. Based on known illusory kinesthetic effects, such as com-
pliance and indentation, elicited by vibrotactile feedback [123, 193], some mechanical
features of real buttons were also simulated. The spectral and temporal content of
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Figure 2.10: Attribution of materials with filtered stimuli in case study 1.

the stimuli, instead, was designed based on the haptic characteristics of the device,
primarily its natural resonance frequencies. The main characteristics of the designed
buttons are listed below:

• Button A simulates a silicon rubber key.2

Onset: when the applied force exceeds 3 N, a sequence of two sine waves (5 cycles

2https://en.wikipedia.org/wiki/Silicone_rubber_keypad

https://en.wikipedia.org/wiki/Silicone_rubber_keypad
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Figure 2.11: Attribution of materials with synthesized stimuli in case study 1.

Figure 2.12: Vibration waveforms of the four virtual buttons of case study 2, as
measured by an accelerometer (see Fig. 2.3). Different sequences of sine waves are
produced at finger-press onset and release, whose frequencies are reported in green
and yellow bars respectively. Onset/release triggering forces are shown at the bottom.

at 78 Hz and 3 cycles at 164 Hz) is synthesized producing a peak acceleration
of 1.35 m s−2. The frequency of the first signal is below the pass-band of the
device, resulting in a “rubbery” tactile effect just before a further transient that
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simulates a soft ‘click’.

Release: the same two waves are played in reverse order when the force drops
below 1.2 N, producing a 1.9 m s−2 peak acceleration.

Together, these sequences simulate the acceleration curves resulting from press-
ing a finger on soft materials [125].

• Button B simulates the behavior of a metal membrane switch.

Onset: a strong transient consisting of a single cycle of a sine wave at 304 Hz
with 3.8 m s−2 peak acceleration is triggered when the applied force exceeds
1.6 N, simulating the sudden deflection of a metal membrane.

Release: the same feedback is generated when the force falls below 1.2 N, re-
sulting in 3.4 m s−2 peak acceleration.

• Button C simulates a latching push button made of plastic, inspired by the
switches found on old table lamps.

Onset: when a 0.8 N force is exceeded, a 78 Hz sine wave is played for 150 ms,
simulating the initial phase of button depression. Right after that, a stronger
transient (a short 172 Hz sine wave) is produced with 1.8 m s−2 peak accelera-
tion, simulating a ‘click’.

Release: when the applied force falls below 0.6 N, a short 164 Hz sine wave is
generated to simulate the release ‘click’, resulting in 2.2 m s−2 peak acceleration.

• Button D simulates a more abstract metal resonance with long decay, especially
suited to long-press actions.

Onset: when a 2.4 N force is exceeded, a strong 172 Hz sine wave with long
decay is produced to simulate a ‘click’, and if pressure is held for more than
700 ms a further short feedback (250 Hz sine wave) is generated. The peak
acceleration produced is 3.4 m s−2.

No feedback is provided on release.

Despite the fact that wood-related feedback scored best in the material classifi-
cation experiments of Chapter 1, no button was designed to simulate wood. This
mainly because the strong low frequency components typical of this material can
not be correctly rendered by the device, and secondly because it was not reputed a
common material for the buttons found in professional appliances. Metal and plastic
were instead found more appropriate, however since they represent the two materials
that were more often confused in the previous classification experiments, one but-
ton rendering metal (D) was strongly differentiated by implementing longer decaying
resonances inspired to results achieved in the experiment 1 of Chapter 1.

As demonstrated in case study 1, the main spectral components of the vibra-
tory signals used in the material classification experiments (see Fig. 1.5) cannot be
accurately rendered on the device, given its limited bandwidth (see Fig. 2.2). The
frequencies of the synthesized sine waves, as well as their decays and amplitudes,
were therefore empirically chosen based on the pass-band of the device and informal
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Figure 2.13: Spectrograms of the vibrotactile feedback associated to the four virtual
buttons.

testing, while leaving the generation of higher frequency components to the inher-
ent harmonic distortion taking place with strong signals (see buttons B and D in
Fig. 2.13). As a result, the main spectral components of the designed stimuli are gen-
erally at lower frequency than those in the stimuli used for the material classification
experiments reported in the previous chapter. However such pitch-shift is known to
have no effect on the perception of a specific material, being it more associated to the
varying size of an object [87]. Instead, materials were mainly defined by the designed
decays (e.g., shorter for rubber and plastic), amplitudes (e.g., stronger for metal) and
harmonic content.

The vibrotactile feedback produced by the buttons was measured by attaching a
Wilcoxon 736 accelerometer on top of the touchscreen, between the virtual buttons
(see Fig. 2.3). Figures 2.12 and 2.13 respectively show the waveforms and spectro-
grams of the feedback signals. The measured signals, as well as video footage of the
four virtual buttons being operated are made available via an open-access repository.3

When vibrations were produced, the system emitted also some parasitic sound,
however this was hardly perceivable in the (noisy) environment chosen for the device
evaluation, and could therefore be ignored.

2.3.1 User evaluation

Sixteen subjects (9 male, 7 female) aged between 25 and 47 (M = 34.7; SD = 8.1)
evaluated the virtual buttons. The assessment took place in a realistic situation
(i.e., a crowded open-space office hosting about 40 people), thus no additional auditory
distractor was required. The task was to freely operate the buttons and answer an
online questionnaire containing the same 7-point Likert scale evaluations and multiple
choice questions proposed in the case study 1 (see Sec. 2.2.1).

2.3.2 Results

The following evaluation is qualitative, in view of a deeper quantitative analysis of
the results.

3https://doi.org/10.5281/zenodo.3630367

https://doi.org/10.5281/zenodo.3630367
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Figure 2.14: Score distributions of the perceived difference among the four buttons
in study case 2 (1 = barely different, 7 = very different).
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Figure 2.15: Score distributions of tactile feedback appraisal in study case 2 (1 = not
appreciated, 7 = much appreciated).

As highlighted in Fig. 2.14, participants generally rated the buttons as clearly
distinguishable from each other, furthermore they expressed general appreciation for
the quality of tactile feedback, as shown by the score distributions in Fig. 2.15.

Evaluation ratings of the perceived compliance are reported in Fig. 2.16: The
effect was most pronounced for button D followed by button B, while ratings related
to buttons A and C are distributed in the lower and the mid-upper part of the scale.

With regard to the association of five materials (metal, plastic, wood, glass and
rubber) with the virtual buttons, their choice distribution is reported in Fig. 2.17.
Attributions mostly agreed with the intended feedback design (see Sec. 2.3): button A
was mainly associated with rubber, button C clearly with plastic, and buttons B and
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Figure 2.16: Score distributions of the perceived compliance for each button in study
case 2 (1 = weak, 7 = strong).

D even more distinctly with metal. Concerning wood and glass – both not simulated
– the former was not associated with any button by half of the participants, while
a small group associated the latter almost uniformly with all the given possibilities,
including the ‘none’ option.

2.4 Discussion

The two reported case studies revealed the challenges posed by the tactile rendering
of well distinguishable virtual buttons on touchscreens.

The most relevant outcome of the two studies concerns the discrimination of but-
tons: although differences were generally perceived in both assessments, score distri-
butions show that a careful design of tactile signals to exploit device’s peculiarities
(e.g., resonances and damped frequencies, controlled distortion), in conjunction with
the optimization of force thresholds at which feedback is provided, can be even more
effective than the use of real vibration recordings, even if adapted to the device’s
pass-band. Indeed, even if both studies rendered feedback related to ecological mate-
rials, only in case study 2 buttons are rated as “very different” by most participants,
suggesting that the reproduction of signals with realistic frequency components and
decays may be not sufficient to enable a precise discrimination. However, discrimi-
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Figure 2.17: Attribution of materials in study case 2.

nation in case study 2 may also have improved by rendering illusory cues related to
button mechanics (e.g., switches, material compliance).

The tactile feedback generated by our device was generally appreciated in both
studies, however the virtual buttons implementation of case study 2 received higher
scores. After comparing the synthesized signals with the same signals provided via
the analog input of the piezo driver, it is possible to claim that the advantage of the
internal synthesizer is all in its reduced design space which imposes to concatenate
sine waves at frequencies that maximize the actuator’s efficiency.

A major difference between the two case studies concerns the attribution of mate-
rials to the virtual buttons. In case study 1, stimuli originated from metal vibrations
(MF, MS) were almost evenly assigned among the available materials, whereas in
case study 2 the buttons inspired to metal properties (B, D) were clearly identified
independently from the decay. Therefore, the design of effective stimuli simulating
metal seems to be linked with the inharmonicity of their spectra: indeed, although
buttons B and D in case study 2 render spectral components that differ from those
in the original recording of metal vibration, they efficiently generate an inharmonic
content typical of metal [86]. The buttons designed to render plastic materials – that
is, PF and PS in case study 1 and button C in case study 2 – were correctly assigned
by 50% and 62% of the participants, respectively in case study 1 and 2. In both
studies, plastic was more confused with glass than other materials. In general, wood
was the material more associated with the ‘none’ option, which is indeed correct for
case study 2. Surprisingly, in case study 1 the buttons rendering wood-related stimuli
(WF, WS) were mostly associated to every other materials except wood. Actually, the
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impaired reproduction of frequencies below 100 Hz clearly explains these associations.
As mentioned above, vibrotactile feedback can be used to simulate to some extent

button mechanics, thus increasing differences among virtual buttons or easing material
identification, as done in case study 2. However, the illusion of kinesthetic feedback
can be effectively elicited only if tracking the applied force, and by careful design and
control of the delay and duration of the stimuli [149, 178].

This design partially confirms the findings of Sadia et al. [193], who investigated
forces and accelerations involved in various button press actions (e.g., latch, push
and toggle) and emulated such mechanics by reproducing tactile stimuli by means of
piezo actuators. In particular, for their latch button a waveform pattern was generated
whose temporal evolution is close to button C in case study 2. On the other hand,
they triggered stimuli when the applied force was much greater than the force used in
this study. To improve the latch button here proposed it would be possible to trigger
the two parts of the stimuli onset based on multiple subsequent force triggers (e.g., at
3 and 10 N). Moreover, based on the dataset provided by Alexander et al. [5], who
characterized the physical properties of more than 1500 push buttons, it would be
possible to design further button mechanics.

2.5 Lesson learnt

The aim of this chapter was the validation of the results that emerged in passive
conditions in Chapter 1: unimodal tactile feedback can enable material classification,
allowing low mismatch rates. Therefore, multiple virtual buttons were designed for
an ad hoc prototype device, consisting of a touchscreen interface offering rich tactile
feedback and force sensing in the range of soft-touch.

Two user panels evaluated several aspects of the tactile feedback associated to
various sets of virtual buttons through questionnaires: although the vibrotactile feed-
back originated from real bouncing events were relatively clearly discriminated (case
study 1), participants could more successfully discriminate the buttons designed from
the ground up, exploiting the prototype device’s response and characteristics (case
study 2). The characterization and validation of the prototype highlighted that the
stimuli design must carefully match the capabilities of the device, furthermore try-
ing to take advantage of its natural resonances. To design high-quality vibrotactile
stimuli, the modifications of the human finger impedance, consequent to the fingertip
compression while pressing on the device, should be considered too. To this end,
a tool used to simulate the impedance of the human finger while pressing will be
described in Chapter 7.

In the light of the experimental results, it can be speculated that the repeated
everyday use of a known set of virtual buttons, such as those experimented here,
could be proficiently used also in work environments affected by auditory noise and
visual distractors, such as professional kitchens or laundries.

The design strategy adopted to trigger the virtual buttons (i.e. the simultaneous
tracking of finger position and force) shows potentials also in the improvement of
the interaction reliability and robustness concerning professional appliances; indeed,
every key feature triggered by touchscreen selections can be programmed to respond
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only to defined screen positions and to bounded force profiles, therefore minimizing
unintentional selections.

As a final note, although the prototype was assessed in the form of a flat rect-
angular touchscreen interface, the same technology inspired the concept design of a
novel user interface that will be described in the final section of Chapter 6.
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3
Direction and force influence on

vibration perception

The design phase of the prototype described in the previous chapter involved many
practical issues regarding the mechanical design of the user interface. In particular, in
order to maximize the actuator efficiency, the choice of its position and vibration di-
rection was accomplished by comparing the rendering of the same feedback in multiple
configurations. This informal trial-and-error approach revealed that even simple test
stimuli were differently perceived by users, thus avoiding a straightforward decision
on the device design.

In collaboration with the Institute for Computer Music and Sound Technologies
(ICST) of ZHDK (Zurich), this chapter presents an experiment accomplished to in-
vestigate whether the direction of vibration (i.e. lateral or normal) influences its per-
ception sensitivity on touch surfaces. Moreover, since the target application of this
research involves active touch, the experiment was aimed also at defining a model
to relate the normal force exerted by the fingertip on the surface to the perception
sensitivity.

The perception of normal and tangential vibration at the finger has been studied
by several authors, however in contexts and with modalities slightly different from
our case study. For instance, during the 60s, a study considering the whole hand in
contact with a flat vibrating surface (in range 3-300 Hz) reported similar thresholds
for both directions [163]

More recently, Biggs and Srinivasan [22] investigated the perceptual equivalence of
quasi-static forces presented tangentially and normally to the fingertip. In such study,
the index fingertip of subjects was glued to a flat-ended, cylindrical 1 mm diameter
probe tip mounted on a 3-axis positioning robot able to move in both directions.
The tangential motion was found to require higher forces than normal motion for
producing equivalent perception. However, lateral forces can generally be generated
with much smaller displacements, as the finger presses normally. A study, conducted
in similar experimental conditions, revealed that humans are also able to assess the
magnitude of the applied forces concerning both directions at low frequencies [177].

Ullrich and Cruz [224] compared transient pulses of normal and tangential accel-
erations at the fingertip for various pressure levels (0.5, 2, 5 N). Their study showed
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that the perception of tangential and normal motions depends mainly on the respec-
tive acceleration magnitude: the tangential motion was perceived as slightly weaker
than the normal motion for low accelerations, whereas it was perceived up to 40%
stronger for high accelerations. Although the acceleration perception trend-lines were
similar for the considered pressure levels, this effect was found not significant for the
lowest value (0.5 N).

Given the adopted methodologies and the tested frequency range tested, all the
results reported above are mostly related to accelerations that stimulate FA-I, SA-I
and SA-II afferents (i.e. the mechanoreceptors responsible for low-frequency skin mo-
tion and force grip control [117]). Indeed, these results can not be directly transposed
to high-frequency skin motion (40-800 Hz) detected by FA-II afferents (Pacinian cor-
puscles), i.e. to the skin’s dynamic response to vibration [145].

Although several experiments addressed the perception of frequencies in the 100-
700 Hz range, they usually limited the investigation to vibrations in the normal di-
rection. To this end, Verrillo [230] found the lowest amplitude perception thresholds
in the region around 250 Hz. On the other hand, though, the perception of these
high frequencies vibration can vary among the human population, due to many phys-
iological factors. For example, a cadaver study reported that the Pacinian corpuscles
in the human hand are predominantly distributed in the fingers (44-60%) and their
number can vary largely (192-424, M=300) [209]. Other studies investigated the effect
of aging, finding that such frequencies are generally worse perceived by older people,
due to a lower density of mechanoreceptors [3], a reduced functionality of Pacinian
corpuscles [6] and to the changes in the skin mechanical properties [100]. Some effects
related to gender have been identified, although not statistically significant, with lower
perception thresholds reached by women subjects at 250 Hz [229]. The temperature
factor has been studied as well, resulting in higher sensitivity thresholds concerning
subjects with colder hands [100, 1].

To understand and model the propagation of the high-frequency vibrations in the
fingers tissues, Wu et al. [242] developed a Finite Element (FE) model of the fingertip.
The simulation of such model showed two resonant frequencies at 125 and 250 Hz,
not dependent on the motion direction (normal or tangential); in particular, in accor-
dance with their model, normal vibrations should give rise to a horizontal strain of the
finger-pulp tissues, but only in the superficial skin layer. Furthermore, the analysis
indicates that the resonance magnitude at 250 Hz is independent from the finger’s
pre-compression that should, therefore, result in perception thresholds, being inde-
pendent from the finger press force. However, experimental results partially refuted
this model: indeed, the measurements performed by Wiertlewski and Hayward [239]
on human subjects did not find any evidence of the first resonance predicted by the FE
model (125 Hz), whereas other studies found that vibrotactile thresholds proportion-
ally decrease with pressing force in active touch [176, 169]. Finally, Hwang et al. [114]
designed an experiment aimed at identifying the finger sensitivity thresholds concern-
ing all the 3 motion directions (normal, lateral and fore-and-aft) for two stimuli at
150 Hz and 280 Hz, while applying a constant force of 0.8 N. In general, their study
reported lower thresholds for the normal direction; moreover, as opposed to previ-
ous literature [230], they found the thresholds at 280 Hz significantly higher than
those at 150 Hz. Concerning the tangential directions (i.e lateral and fore-and-aft),
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Hwang et al. [114] found comparable vibration perception thresholds; this result was
confirmed also by [239], which measured the fingertip impedance, finding similar stiff-
ness and damping coefficients concerning both tangential directions, thus suggesting
an equal perception of vibrations. In the light of those findings, concerning the tan-
gential direction, the following experiment will test only the lateral direction, in order
to reduce the number of factor combinations.

As opposed to the findings of Hwang et al. [114], the informal tests, accomplished
on the prototype interface of Chapter 2 and on further test devices, revealed lower
sensitivity thresholds for the lateral direction, specially when light pressing force was
applied to the vibrating surface. In order to investigate such effect, a new experiment
was designed to compare the perception of normal vs lateral sustained stimuli at
250 Hz in active touch conditions (i.e. finger pressing at various forces).

Under the above conditions, the experiment tested the following two hypotheses:

H1: Vibrotactile sensitivity to lateral vibration is higher than sensitivity to normal
vibration.

H2: Sensitivity proportionally improves to the applied pressing force.

3.1 Apparatus

For the purpose of the experiment, a device was designed able to efficiently and in-
dependently reproduce normal and lateral vibrations at 250 Hz, while minimizing
cross-talk between the two motion directions. This section describes the implemen-
tation, the characterization and the validation of the device.

3.1.1 Hardware

The experimental device (or testbed), depicted in Fig. 3.1 and 3.2, is built around a
26×26×36 mm 3D-printed plastic (PLA) cuboid embedding two small actuators which
produce vibrations respectively along its normal and transversal axes (see Fig. 3.3).

Figure 3.3 shows a close-up schematic of the actuated element: two Lofelt L5
voice-coil actuators [20] are embedded in the PLA cuboid, arranged perpendicularly
to each other, and are driven by a 2-channel Class-T audio amplifier (Dayton Audio
DTA-2); a 30×30 mm Plexiglass panel is glued at the top of the cuboid, offering a
smooth surface for finger contact.

To maximize the actuators’ efficiency, the actuated element is mechanically decou-
pled from its supporting structure by suspension: this allowed to greatly reduce the
effective mass moved by the actuators, and enabled free motion even when external
normal forces are applied via finger pressing. Furthermore, the suspension system
allows to minimize the cross-talk between the normal and transversal vibration di-
rections. The supporting structure, visible in Fig. 3.1, consists of a bottom wooden
panel hosting two rubber shock absorbers, which hold the actuated element by means
of nylon wires traversing it via four through-holes (see Fig. 3.3). After testing several
materials, such as steel and copper, nylon wires were selected as they offer a good
trade-off between rigidity and dampening, resulting in low dissipation particularly for
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Figure 3.1: Device inside: an actuated element (i), hosting two small actuators, is
suspended by means of four nylon wires (ii). These are attached to two rubber shock
absorbers (iii) fixed to a bottom wooden panel (iv), which lays on a load-cell sensor.

Figure 3.2: Device outside: a wooden box (v) encloses the device exposing to the user
only the contact point (vi), surrounded by a black foam layer (vii).
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Figure 3.3: Schematic of the actuated element: a PLA cuboid (i) hosts two Lofelt L5
actuators (ii), which are arranged perpendicularly to each other. The cuboid has four
through-holes (iii) for suspension. The touch surface (iv) consists of a 30×30 mm
thin Plexiglass top panel.

vibrations around 250 Hz, which is the frequency used in the experiment. The total
mass of the actuated element is 25 gr, whereas the elastic constant of the suspended
element in the normal direction is 2.6 N/mm.

The bottom wooden panel lays on a CZL635 load-cell sensor, used to monitor
the applied finger-pressing force (Fig. 3.4). The analog force signal is processed by a
INA125P amplifier having the input gain set to read force values in the 0-20 N range.
The force signal is acquired with a resolution of 0.02 N through the 10-bit ADC
converter of an Arduino Mega 2560 microcontroller. Although the setting that we
chose for the Arduino probably resulted in a non uniform sampling of the input data,
the finger-pressing force is expected to change far slower than the 9.6 KHz sampling
rate.

Finally, a wooden enclosure sized 250×130×120 mm protects the whole structure;
its 2 mm plywood top-cover is overlaid by a 6 mm foam layer that surrounds the
finger contact area (see Fig. 3.9).

3.1.2 Characterization and validation

The characterization of the device was performed by measuring vibration acceleration
while human subjects exerted various forces on top of the actuated element. Such
procedure was necessary to determine how vibrations are affected by pressing fingers:
indeed, the biomechanics of the human finger allow to increase the applied pressing
force while keeping the added mass constant and low.

Vibration measurements were acquired via a triaxial PCB 356A17 accelerometer
glued to the top surface of the actuated cuboid. Ten subjects (9 male, 1 female)
were asked to reach and hold a given target force (0.5, 1, 2 and 4.9 N) by pressing
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Figure 3.4: Side view of the device: i) actuated element, ii) nylon wires, iii) shock
absorbers, iv) wooden panel, v) load-cell.

the index finger of their dominant hand on top of the accelerometer, while vibration
was provided. Visual feedback displayed on a computer screen guided the subjects
to accomplish the assigned task. For each force level, the actuators played back a
sequence of stimuli, one direction at a time: a sequence consisted in repeated 250 Hz
sinusoidal stimuli lasting 3 s, whose amplitude decreased by 6 dB at each repetition.

Influence of applied force on vibration amplitude

The resulting vibration recorded by the accelerometer was analysed calculating the
median RMS value of eight subsequent time windows lasting 0.2 s, so as to cancel
out possible noise due to small finger movements during the acquisition. Then, a set
of linear models was fitted on the obtained RMS acceleration data to correlate forces
and vibration accelerations for each tested vibration amplitude. Figure 3.5 reports the
individual measurements (solid lines) and the fitted linear models for each amplitude
and direction (dashed lines).

Although the models show no dependency between the applied forces and resulting
accelerations in any direction (i.e. all the dashed lines have slope = 0), the variance of
individual acceleration measurements actually changes with the direction: while the
variance of horizontal vibration is constant with the applied force, the variance re-
lated to vertical vibration increases proportionally with the force; also, both variances
increase for the lowest amplitude measured. Figure 3.6 reports the repeated measures
for subjects 1 and 2 concerning each vibration direction at the highest amplitude: the
plots reveal high variance in the measurements, which can be explained with small
variations in finger positioning, as no constraints were imposed for the finger contact
angle, rotation, and contact area.
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Figure 3.5: Acceleration measurements for all subjects (solid lines) and models
(dashed lines) for the main direction of motion: Z axis for the vertical actuator (left
plot) and Y axis for the horizontal actuator (right plot).

Vibration amplitude accuracy

Figure 3.7 reports the nominal and collateral vibration accelerations recorded as func-
tions of amplitude variations generated by the vertical and the horizontal actuators,
respectively. Nominal and collateral vibration accelerations decrease linearly in ampli-
tude for about 18 dB; for lower amplitudes, the collateral components become slightly
more relevant.

Vibration frequency response

The vibration frequency response of the system was obtained through the recording
of sine sweeps (10-600 Hz, 15 s), separately reproduced by each actuator [68].

Figures 3.8a and 3.8b respectively report the average transfer function for the
vertical and horizontal actuator. In general, the responses along the two nominal
directions show a peak around the resonance of the actuator (64 Hz). In the 200-
400 Hz range, thanks to the suspension system, the applied force plays a limited
role on the nominal vibration directions, resulting in largely overlapping spectra.
For lower frequencies, light and medium pressing forces (0.5, 1 and 2 N) do not
affect the spectra, while the highest force level (4.9 N) strongly affects the actuators’
motion. The ratio between nominal and collateral vibrations increases with frequency,
resulting in differences respectively greater than 20 dB and 25 dB for the vertical and
horizontal actuator above 200 Hz.
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Figure 3.6: Repeated measurements for subjects 1 and 2 concerning the highest am-
plitude of each motion direction: Z axis for the vertical actuator (left plot) and Y
axis for the horizontal actuator (right plot).
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Figure 3.7: Average amplitude variations for vertical and horizontal motion directions
of 250 Hz sine: nominal and collateral vibrations are respectively represented by solid
and dashed lines.

Characterization issues

As shown in this section, the characterization of haptic devices is not trivial. Indeed,
besides measuring tools and laboratories, it often requires a validation procedure
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Figure 3.8: Frequency response of vibration reproduction in the vertical and horizontal
direction. For each force level, nominal and collateral vibrations are respectively
represented by solid and dashed lines

involving human subjects that inevitably introduces several issues regarding the ac-
curacy and the repeatability of measurements. To this end, a tool for the simulation
of quasi-static finger pressing called Bogus Finger (see Chapter 7) was developed.
Therefore, all the data collected from human subjects during this characterization
procedure are also used in Chapter 7, in comparison with the Bogus Finger, while
pressing on the same shared haptic device.

3.2 Experiment

The main goal of the experiment was the comparison of finger sensitivity to normal
and lateral (ulnar-radial axis) vibration, for pressing forces compatible with every-
day interaction [5]. Psychometric functions – expressing the proportion of correct
responses as a function of vibration acceleration – were estimated for the two motion
directions and two force levels.

3.2.1 Design

In the experiment, measurements were carried out using vibrotactile stimuli at pre-
defined amplitudes and a YES/NO procedure similar to what was done in [114].
This method was chosen over a staircase algorithm for better control over several as-
pects: firstly, device characterization is more accurate for a fixed number of vibration
amplitude levels; secondly, modern analysis methods allow parametric estimation of
response distributions, and thus deliver more information than a single threshold es-
timate; finally, this method leads to sessions of known duration, preventing fatigue
that prolonged staircase runs may cause in an active finger-pressing task.

Seven amplitude levels were measured for two crossed factors: motion direction
(horizontal, vertical) and applied force (f1 = 0.5 N, f2 = 4.9 N). Te proportion of
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correct responses was based on a block of twelve YES/NO trials for each factor com-
bination. In each block, the vibrotactile stimulus was present in 50% of the trials
and absent in the rest. This procedure was chosen in order to penalize biased deci-
sion criteria, like in the two-alternative forced choice design, while keeping the task
simple [167]. Correct responses included both correct detection (hits) and correct re-
jections, while false rejections (misses) and false detection (false alarms) were recorded
as incorrect responses. Thus, accounting for participants’ individual decision biases,
this design leads to a guessing rate of 0.50.

3.2.2 Setup

Inside a quiet room, the device was positioned over a table with an armrest in front
of it and a computer monitor behind it (see Fig. 3.9). A laptop computer run-
ning a Python script controlled the experimental procedure. Vibratory stimuli were
generated as audio signals via a RME Babyface PRO interface. The Arduino micro-
controller, connected to a USB port, provided pressing force data measured by the
load-cell. Also connected to the Arduino microcontroller, a control pad equipped with
two buttons corresponding to YES and NO answers was used by the participants to
report whether they felt vibration. Participants wore Uvex k-series ear muffs (32 dB
noise attenuation) during the experiment. Finally, an IR thermometer was used to
take the participants’ finger temperature before each session.

Figure 3.9: Experiment setup: a subject pressing on top of the actuated element while
the coloured bar displays the target force.
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3.2.3 Stimuli

The stimuli were sinusoidal waveform with a frequency of 250 Hz and a duration of 1 s,
a period sufficiently long for stable perception considering the temporal summation
of the PC channel [228].

Seven amplitudes crossed with two motion directions (vertical and horizontal) and
two force levels (0.5 and 4.9 N) resulted in 28 factor combinations, each of which was
presented 12 times in a block. Within each block, the vibration stimulus was present
in six trials. In total, the experiment contained 28 blocks×12 repetitions=336 trials.
The presentation order was randomized both within and between blocks.

3.2.4 Participants

Twenty-two participants (15 males, 7 females) aged between 22 and 50 (M=31,
SD=7.8) were recruited among students at the University of Udine and employees
of Electrolux Professional SpA. They participated on a voluntary basis and did not
receive any payment.

3.2.5 Procedure

At the beginning of each session, the experimenter briefed the participants and col-
lected personal data such as age, gender, dominant hand and finger temperature.
During the briefing, participants could acquaintance with the experimental protocol.
As training, eight stimuli were presented with amplitudes 3 dB above the highest
amplitudes used in the experiment.

Although the device was completely silent concerning the amplitude range tested,
participants wore ear muffs to avoid any external noise. Participants were asked to
press the index finger of their dominant hand on top of the contact area, reaching and
holding a given target force displayed on the LCD screen. Once the target force was
held for 1 s, another 1 s observation interval would follow, after which participants
had to report by pressing the YES/NO buttons whether they had felt a vibration. A
new trial started automatically after they lifted their finger from the touch surface.

In case participants could not keep a pressing force within ±20% of the target
value across the entire duration of the observation interval, the trial was repeated.
Participants were allowed to rest between trial blocks, and each session lasted between
40 and 60 minutes.

For each trial, the following data were collected: trial ID, factor levels, response,
response time, mean force applied in evaluation window, and mean force applied in
observation window. After each experiment session, all the materials were cleaned
and sanitized following the Italian protocols against COVID-19.

3.2.6 Pilot test

Given the high variability of touch sensitivity [100], a pilot test was performed with
eight participants (6 male, 2 female) to estimate the ranges of vibration amplitude to
be used in the experiment. The technical setup was otherwise similar to the main ex-
periment, but instead of a designed procedure, sequences of vibrotactile stimuli were
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produced with amplitudes decreasing in 3 dB steps from 120 dB RMS (re 10−6 m/s2).
One such sequence was played for each factor combination (i.e. motion direction and
applied force). Correct pressing force levels were signaled by visual feedback. Partic-
ipants reported when they were not able to feel the stimulus anymore. These rough
thresholds, expected to overshoot actual detection thresholds somewhat, advised the
choice of amplitudes for the main experiment. Figure 3.10 reports the pilot results
and the choice of amplitude ranges for each factor combination.
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Figure 3.10: Box plot of vibration thresholds identified in the pilot test with corre-
sponding amplitude levels selected for the experiment (i.e. triangles and circles).

3.3 Results

The measured variable, proportion correct (pc), was computed for all factor combi-
nations and participants as follows [167]:

pc =
hits + correct rejections

total trials (12)

The data were analysed using the software R 4.0.2 with the quickpsy [141] and
brms [31] packages.

3.3.1 Psychometric functions

Psychometric functions were estimated by fitting an s-shaped logistic curve of the
form [219] to each factor combination:

pc(x) = γ + (1− γ − λ) · 1

1 + e−k(x−x0)
(3.1)



3.3. Results 51

where γ is the guessing rate (0.5), λ is the estimated lapse rate, k is the estimated
slope, and x0 is the sigmoid’s estimated midpoint. The explanatory variable x repre-
sents vibration amplitude. The fitted curves are presented in Fig. 3.11 and the esti-
mated vibration perception thresholds at 75% correct (the midpoints of the curves)
in Fig. 3.12. Between the thresholds differences are apparent, while the slopes seem
stable across conditions. For horizontal vibrations, the effect of pressing force is small,
with threshold estimates of 90.2 dB RMS and 89.4 dB RMS for force 1 (0.5 N) and
force 2 (4.9 N), respectively. In contrast, the effect of force is more notable for vertical
vibrations: the respective thresholds are 93.7 dB RMS and 89.9 dB RMS.
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Figure 3.11: Estimated psychometric functions as a function of amplitude for hori-
zontal (left) and vertical (right) vibration.

3.3.2 Statistical analysis

The psychometric functions suggest that at least the motion direction has a significant
effect on the midpoint parameters, i.e. the thresholds. In order to estimate the effects
of both predictors, the continuous amplitude variable (expressed as zamplitude) was
standardized and fitted with the following nonlinear mixed effects model, estimating
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Figure 3.12: Estimated vibration perception thresholds (75% correct).

its parameters by Bayesian inference [133, 31]1:

proportion correct ∼ 0.5 + (1− 0.5) · 1

1 + e−η

η ∼ 1 + zamplitude + direction ∗ force

+ (1 + zamplitude|subject)

(3.2)

where the parameter η of the logistic function depends on vibration amplitude,
vibration direction, pressing force, and the direction:force interaction. In addition
to these population-level effects, individual intercept and slope were estimated for
each subject. A normal prior was used for η. (Because the nonlinear link function is
given in the prediction formula, distribution of the response variable was specified as
binomial with an identity instead of a logistic link in the function call.)

Population-level effects

The estimates for population-level effects and their 95% Credible Intervals (CIs) are
given in Table 3.1. For the nominal factors, the baseline condition is force 1 with
horizontal vibrations. Note that the estimate values refer to the nonlinear parameter
and are, therefore, hard to interpret in terms of proportions correct; however, posi-
tive and negative coefficients respectively implicate an increase and decrease in the
proportion correct relative to the baseline condition. As the CIs do not contain zero
for any of the main effects nor the force:direction interaction, one can infer that all
these effects are significant. In line with the psychometric function estimates , force 2
(4.9 N) has a very slight positive effect in combination with horizontal vibrations (the

1The statistical analysis was performed by Dr. Hanna Järveläinen
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baseline case in Table 3.1), and a notably stronger effect in combination with vertical
vibrations.

Table 3.1: Population-level effects of the nonlinear mixed effects model.

Effect Estimate l-95% CI u-95% CI

η Intercept -0.32 -1.35 0.68
η amplitude 3.82 3.11 4.68
η directionv -1.22 -1.66 -0.80
η force2 0.47 0.06 0.90
η directionv:force2 1.35 0.78 1.96

Random effects and static predictors

To associate participants with their repeated measures in the model, subjects were
treated as a random variable as specified in Eq. 3.2. The estimated random effects
produced subject-specific intercepts and coefficients for the effect of amplitude. It was
then investigated whether the subject-specific effects could be explained through the
two static predictors that were recorded for each participant, namely age and finger
temperature. These values were standardized and linear models were fitted between
them and both random intercepts and slopes: neither the intercepts nor slopes were
significantly associated with participants’ age or finger temperature.

3.3.3 Response time

According to Piéron’s law [185, 186], response time decreases with increasing stimulus
intensity or choice discriminability in detection and decision tasks. In the current
detection task, where guessing produces 50% of proportion correct, response time
is predicted to decline linearly as a function of stimulus intensity, when intensity is
expressed on a logarithmic scale [25]. These chronometric functions [142] are presented
in the left panel of Fig. 3.13. The right panel of Fig. 3.13 presents the Speed-Accuracy
Functions (SAF), which represent the relationship between response time and logit-
transformed proportions correct [25]. Although the response times generally behave
as predicted, the psychometric functions fit the data better than the chronometric or
SAF functions. This may be understood, as participants were not informed about
response time measurement nor instructed to consider how fast they responded.

3.3.4 Pressing force control

The pressing force was recorded during each force evaluation interval (initial load) and
its following observation interval (stimulus / no stimulus). Force control error was
calculated as the difference between a target force and the respective force exerted
by participants. Table 7.3 reports the means and standard deviations of the force
control error. A two-way repeated measures ANOVA was performed to test the effect
of Target force (0.5 N and 4.9 N) and the type of evaluation interval (initial load,
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Figure 3.13: Chronometric functions (left) and speed-accuracy functions (right) for
combinations of force and vibration direction.

stimulus and no stimulus) on the pressing force control error. The effect of the Target
force was found significant (F(1,21)=46.6, p<.001), as well as that of the type of
evaluation interval (F(2,42)=4.35, p<.05). Conversely, the factors interaction effect
was found not significant. The mean control errors were negative for the higher target
force (4.9 N) in all types of evaluation intervals, highlighting an undershoot effect; for
the lower force, instead, the mean errors were balanced around zero with undershoots
in the evaluation interval and overshoots in the observation intervals. In absolute
terms, the control error was higher for the highest force.

The means of the control error were normalized by the target forces as shown in
Table 7.3. The normalized accuracy (i.e. mean relative error) stayed within 2.2% for
the lower force and within 4.4% for the higher one.

As a measure of precision, the standard deviations of the control error normalized
by the means of the measured pressing forces were considered. These values are shown
in the last column of Table 7.3: ranging between 1.9% and 3.6%, they suggest that
the participants could control accurately and precisely the pressing force for both the
chosen force levels. Moreover, during the force evaluation intervals, the precision was
higher than in the observation interval, suggesting that the subjects’ attention moved
from the force precision to the vibration perception.

3.4 Discussion

All participants but one were able to clearly identify at least the highest amplitude
for each factor combination, confirming the preliminary results of the pilot test. In
particular, that specific participant was unable to identify any of the horizontal stimuli
during the experiment.

The experimental results partially confirm the hypothesis H1 and H2 concerning
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Table 3.2: Means and standard deviations of force control error, and means of accu-
racy and precision

Target force (N) Evaluation Error(N) Accuracy Precision
window mean ± s.d. mean (%) mean (%)

0.5 Load -0.009 ± 0.010 -1.8 2.0
0.5 Vibr. +0.007 ± 0.017 1.4 3.3
0.5 No Vibr. +0.011 ± 0.018 2.2 3.5
4.9 Load -0.215 ± 0.094 -4.4 1.9
4.9 Vibr. -0.202 ± 0.167 -4.1 3.4
4.9 No Vibr. -0.168 ± 0.176 -3.4 3.6

the force levels and the stimuli tested.

3.4.1 Effects of motion direction

Although the vibration sensitivity of the whole hand is not much affected by the
motion direction [163], at the fingertip Hwang et al. [114] found significant differences
among directions, with lower perception thresholds associated with vertical motion.
By contrast, the psychometric functions estimated from this experiment highlighted
lower thresholds for horizontal stimuli, confirming our hypothesis H1, even if the
significance of the differences depended on the pressing force level. According to Biggs
and Srinivasan [22], the forces produced by horizontal displacement of the fingertip are
greater than the forces produced by the same displacement in the vertical direction.
This can explain the lower thresholds observed for the lateral vibrations. Also, as
modeled by Wu et al. [242], the vertical vibration at 250 Hz produces a shear strain
on the first skin layer, reducing the effective energy reaching the Pacinian receptor,
thus resulting in lower sensitivities.

The discrepancy between the results of Hwang et al. [114] and the results of this
experiment can be attributed to multiple factors: for instance, the finger press influ-
ences the vibrations produced by the actuator [194] but, as far as it is known, the
experimental setup of Hwang et al. was calibrated without taking into consideration
such effects. To overcome such characterization bias, the device here presented was
calibrated with human subjects pressing on top of the vibrating surface; the playback
of 250 Hz sine signals showed limited acceleration variance among participants, de-
spite their physiological differences and the absence constraints to the finger posture
during the measurements. Furthermore, the output of the device was not affected by
the finger pressing force, reporting a difference between the nominal and the collateral
vibrations (i.e. the cross-talk) of at least 20 dB in both directions. Again, in the study
of Hwang et al. it was not possible to find any reference to the collateral vibrations
measured on complementary axes.

A direct comparison between the absolute thresholds found by Hwang et al. [114]
and this experiment is not possible since the accelerometer used for the characteri-
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zation was absent during the experiment; therefore, the level of vibrations reaching
the finger increased for all the provided amplitudes. However, it is possible to spec-
ulate that the found absolute thresholds should be increased by 3 to 6 dB, result-
ing in values comparable to [114]. A further difference between the experiment of
Hwang et al. [114] and this experiment regards the stimuli playback: whereas all the
trials provided in the experiment of Hwang et al. contained the stimuli, conversely,
in this experiment, half of the trials did not contained the stimulus, resulting in more
unbiased responses [167].

3.4.2 Effects of pressing force

As reported by [176, 169], the increase of pressing force improves the perception of
vibrations in the normal direction. Our experiment confirmed those findings, fur-
thermore proving that the perception improvement is independent from the device
mechanical behavior. Indeed, the finger press does not affect the magnitude of the vi-
brations reaching the fingertip, using the experimental device (see Sec. 3.1.2). There-
fore, the lowering of the sensitivity thresholds observed in the normal direction for
the highest pressing force (f2) depends only on the fingertip’s mechanics: accord-
ing to [97] the finger contact force against the surface changes the impedance of the
finger-pulp, probably resulting in more vibrations reaching the Pacinian receptor. By
contrast, the vibration perception in the horizontal direction is not much affected by
the pressing force. According to [239], the fingertip compression increases also the
horizontal stiffness and damping, following a 1/3 power-law for both distal-ulnar and
lateral directions. However, the signal reaching the Pacinian mechano-receptors does
not seems to be affected by these changes in the impedance, at least for the tested
frequency.

3.5 Lesson learnt

This chapter presented an experiment aimed at assessing whether the vibration di-
rection (normal or lateral) affected the sensitivity to 250 Hz vibration stimuli in a
finger-pressing task involving two force levels (0.5 N, 4.9 N). The chapter showed the
design and the characterization of a testbed device able to independently reproduce
vertical or horizontal vibrations. The latter also allowed to measure the normal force
applied by a finger on top of its actuated surface. The experimental results showed
that the sensitivity to normal vibrations is affected by the pressing force level, having
higher sensitivity associated to the highest pressing force. Conversely, the sensitivity
to lateral vibrations were found to be almost independent of the pressing force. The
comparison between stimuli directions, instead, showed higher sensitivities for the
horizontal direction than for the vertical direction. As a consequence, haptic devices
with limited power capabilities should provide lateral vibrations in order to maximize
the perception of their feedback. Finally, the dependency existing between the sensi-
tivity in the normal direction and the normal force applied can be exploited to design
a wide palette of vibrotactile feedback and, potentially, further tactile illusions.
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Rotations with haptic feedback





4
A low-cost haptic knob with

programmable force feedback

As seen in the previous chapters, touchscreens can be equipped with haptic technolo-
gies to enable more robust multimodal user interactions. However, whenever direct
manipulation provides safer and simpler interactions, tangible controls could be still
be preferred. In today’s cars, for instance, whereas most auxiliary functions are ac-
cessible from touchscreens or capacitive switches, the functions which closely affect
driving are still a domain of physical knobs and selectors [158]. Tangible controls,
indeed, expose multiple haptic feedback allowing safer eyes-free selection while per-
forming other main tasks, such as driving [180]. Furthermore, by distributing part of
the cognitive load onto the somatosensory channel, they ensure better control accu-
racy in several everyday contexts and work environments [136].

In between virtual and physical layouts, tangible digital controls can be provided
with variable haptic feedback: programmable buttons [140] and sliders [19, 143] can
render different force/displacement curves, whereas haptic knobs can generate mul-
tiple effects such as detents, barriers, spring repulsion through variable torque. The
main downside of devices offering force feedback usually resides in their size, power
requirements, and specially costs, which may be several orders of magnitude higher
than those of their purely mechanical counterparts. For instance, a mechanical de-
tented knob can cost less than 1 USD, whereas a programmable haptic knob may
easily be 100 times as expensive (e.g., [10, 33]); moreover, a haptic knob requires
electrical power and is usually much larger.

To this end, this chapter reports the design and the validation of a low-cost,
compact knob with programmable resistive force, built around an electromagnetic
braking system. Although not required in the context of professional appliances,
the power consumption and size of this haptic controller are much lower than those
required by similar existing products, due to the absence of motors or other active
components. This rotary controller was specifically designed considering the cost
limits existing in the market of professional appliances; however, its features can be
implemented in many other applications, such as multimedia controllers, cars and
piloting systems, wired or wireless PC controllers. For this reason, the hardware
and software implementation has been filed with the Italian Patent Office (IPO) [44]
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thanks to the support of the Patent Office of the University of Udine.

Therefore, this chapter will only partially disclose the hardware/software imple-
mentation, whereas it will focus on user interaction aspects, such as the effectiveness
of the resistive feedback in a visual-tactile target matching task.

4.1 Related work

Different studies focusing on the manual control of visual tasks, occurring especially
during machine operation, have found that tangible controllers can improve human
performance, particularly when the cognitive load is high and multiple tasks are
performed at the same time [187, 36, 136, 233, 180]. According to such studies,
some recent smart gadgets incorporate or offer additional physical knobs: examples
include Google Nest [70], an intelligent touchscreen-based thermostat, and the remote
multimedia controllers Griffin PowerMate [90] and Microsoft Surface Dial [159]. This
evidence suggest that the tangibility of physical knobs is still appealing. At the same
time, today it would be desirable to expand their flexibility towards multi-parametric
control as currently offered by virtual knobs, which, on the other hand, cannot be
operated when visual attention is focused elsewhere (e.g., during teleoperation) [179,
36].

One way to make the manipulation of multiple quantities through a single physical
knob more intuitive is to provide it with haptic effects simulating various mechanics.
However, this obviously comes at the cost of embedding actuators and their relative
electronics in the knob, adding cost, complexity, encumbrance and power consump-
tion. As a result, force-feedback rotary controllers are found only where this can be
tolerated: car dashboards, piloting systems, professional audio/video editors, robot
controls and medical devices. Most such controllers make use of DC motors to gen-
erate force feedback [16, 201, 111, 127]. Hybrid solutions that combine motors and
brakes have been proposed as well [33]: while allowing the design of subtle effects,
they further increase hardware complexity. Even more expensive and technologi-
cally advanced solutions make use of magneto-rheological fluids in which the knob
shaft is immersed [232, 10]: in this case, magnetic-field variations are used to change
the density of such fluids, allowing precise control of the resistive torque. Finally,
programmable haptic feedback is going beyond the mere reproduction of mechanical
features like torque and detents, as the idea of branding machine interfaces with a
unique haptic “feel” is progressively finding a relevant place in current technology
trends [207, 124, 26, 201]. In synergy with rigorous functional design constraints,
this idea has nurtured controllers such as the jog wheel aboard the recent Traktor
Kontrol S4 DJ console [115]. In the same fashion, a particular and advanced pro-
grammable knob controller, such as the one here presented, could be a unique design
feature also in the context of professional appliances.
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Figure 4.1: Schematic of the haptic knob: the end-effector (A) is connected to an
encoder (C) by means of an electromagnetic braking system (B).

4.2 Hardware / software design

The knob here presented can be programmed to generate frictional patterns which,
by resisting against rotation, induce resistive force-feedback effects. Its main hard-
ware components consist of a rotary encoder coupled with an electromagnetic braking
system that is controlled by an Arduino microcontroller through its pulse-width mod-
ulation (PWM) output.

Compared to existing haptic knobs, the proposed electromagnetic braking system
has advantages and drawbacks. The main advantage is that it can easily couple a
standard knob to an encoder (see Fig. 4.1), resulting in a thin, lightweight and low-cost
device. It also needs less power than DC motors [16], hence enabling battery-supplied
portable solutions. The main shortcoming is lack of active force, which limits the
feedback to changes in torque, and reproduction of detents as well as end-stops. The
implemented control algorithm samples the encoder position and estimates its rotation
speed during unidirectional shifts; these data are then used to set the magnitude and
duration of the resistive force. The current prototype mounts a magnetic encoder
(AMS5600) with a resolution of 4096 points per revolution, corresponding to about
0.1 degrees.

The output voltage of the microcontroller (between 0 and VCC) depends on the
relative length of the PWM duty cycle, and directly controls the resistive torque of the
knob. For example, if the output maintains a constant voltage, then a proportionally
constant torque is applied against rotation.

Detents are reproduced as follows: once the encoder detects the position occupied
by a detent, the algorithm sets the length of the PWM duty cycle and the value of
a counter, depending on the programmed resistance and estimated rotation speed.
The counter is decremented at every cycle, and the electromagnetic system operates
at a constant PWM value until the counter reaches zero. The harder the detent, the
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longer the knob resists against motion.

(a) Two example effects: E1 sim-
ulates a soft detent by setting the
PWM duty cycle to 100% for 50 ms,
resulting in a brief rotation stop; E2
simulates a lower constant resistance
by repeating several PWM duty cy-
cles at 50%.

(b) Hard detent effect, repeated ev-
ery ten encoder steps. Hard detents
are simulated by almost stopping
hand movement. This is achieved
by setting the PWM duty cycle to
100% for 150 ms, resulting in a
strong resistive force.

Figure 4.2: Temporal evolution of control variables for various haptic effects: when the
encoder position (blue line) reaches a predefined value, resistive force is generated by
activating the output signal (black line) until the counter (green line) is decremented
to zero. The generated resistive force is proportional to the length of the PWM duty
cycle.

Fig. 4.2a shows the temporal evolution of the mentioned variables for two different
haptic effects: in the first event (E1), a soft detent is simulated by applying the highest
possible resistance for 50 ms; in the second (E2), the action of the braking system is
modulated with short activations so as to generate a lower resistance, slowing down
hand movement however without stopping it.

In addition to rotation, the knob can also be pushed as a button. Overall, six
different input modes are made available by combining clockwise (CW) and counter-
clockwise (CCW) rotation with no, short or long push.

4.3 Experimental evaluation

A visual target-matching task was set up to test the effect of resistive feedback while
performing an action that was functionally equivalent to a drag-and-drop action.
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Figure 4.3: The GUI used in the experiment. A vertical red cursor is controlled by the
haptic knob; it moves along a virtual horizontal slider which hosts five round markers.
At each trial, one marker is highlighted with the red color, thus becoming the current
target. The blue squares are activated by pressing the corresponding buttons on the
computer keyboard.

4.3.1 Procedure

Participants were asked to sit at a desk where a computer screen, keyboard and the
knob were placed. The screen displayed a Graphical User Interface (GUI) developed
in Processing 3.5 (see Fig. 4.3): using the knob, a red vertical segment representing
a cursor could be dragged horizontally along a virtual slider which contained five
equally spaced round markers. Two buttons completed the GUI, labeled ‘Confirm’
and ‘Reload’: they were operated by the computer keyboard respectively for confirm-
ing that a target was successfully matched, thus ending the trial, or for repeating the
current trial.

The shift of the cursor had an accuracy equal to 11.4 pixels per degree of rotation;
the markers were set 320 pixels apart from each other, corresponding to a rotation
by about 28 degrees.

Figure 4.4 describes the procedure followed in the test. At the beginning of each
trial, the cursor was reset to the position marked with ‘Home’ in Fig. 4.3, and one of
the markers along the slider was surrounded by a red circle, symbolizing the current
target. Participants had to select this target by dragging the cursor over it: in order
to move the cursor they had to push down the knob and turn it. When they reached
the target, they released the knob and chose whether confirming or repeating the
trial by pressing the respective button on the keyboard using the other hand. At
each trial, haptic feedback was either present or absent; when present, it reproduced
a hard detent (see Fig. 4.2b) in correspondence of a marker. Each factor combination
of 5 targets × 2 feedback conditions was repeated 10 times, hence resulting in 100
trials which were randomly balanced for each participant.

A repetition was typically invoked when participants released the knob off-target,
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Figure 4.4: Test procedure

similarly to what happens when a wrong drag-and-drop action made with the mouse
must be undone. If a trial was confirmed, then the time elapsed from the knob initial
press to its release was measured, along with the distance of the cursor from the target
(called mismatch from now on).

Ten participants (7 males, 3 females) aged between 24 and 57 (M = 39.9, SD =
10.3), all right-handed, took part in the test on a voluntary basis and were not paid.
Before the test, participants performed a training session consisting of 10 trials, in
which each factor combination was presented once in random order.

4.3.2 Results

Fig. 4.5 and 4.6 respectively show box plots of the mismatch in pixel and time-to-
match in ms, for each factor combination. Tests on the data distributions with the
D’Agostino method [42] confirmed no significant deviation from normality.

A two-way ANOVA was conducted to study the influence of the two independent
variables (target position, feedback condition) on mismatch. Using a Greenhouse-
Geisser correction for insphericity, the main effect for feedback yielded F(1, 9) = 13.4,
p < .005, indicating a significant difference between trials in presence of haptic feed-
back (M = 3.7, SD = 0.31) and without it (M = 4.54, SD = 0.31). The main effect
for position instead was not significant with F(1.5, 13.6) = 0.2, p > .05, and so was
the interaction effect: F(2.5, 22.5) = 2, p > .05. In agreement with previous stud-
ies [187], our results show that haptic feedback significantly improved the precision of
the action. The smaller mismatch did not come unexpected though, as the increased
resistance to rotation occurring while traversing a marker supported participants to
stop the cursor at the right location. A further two-way ANOVA was performed
to study the influence of the two independent variables on the time-to-match. Af-
ter a Greenhouse-Geisser correction for insphericity, the main effect for feedback was
not significant with F(1, 9) = 0.43, p > .05. The main effect for position yielded
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Figure 4.5: Box plots showing the mismatch for each factor combination.

F(1.4, 12.8) = 22.3, p < .001, indicating a significant difference between position 1
(M = 1396, SD = 150), position 2 (M = 1720, SD = 145), position 3 (M = 1799,
SD = 133), position 4 (M = 2049, SD = 184) and position 5 (M = 2223, SD = 170).
The interaction effect was not significant: F(1.5, 13.3) = 1.4, p > .05. The time-
to-match depended on the position, with longer time associated to farther targets.
While this result may appear obvious at first, one must consider that haptic feedback
caused resistance to knob rotation each time a marker had to be traversed, however
this had no significant effect on time-to-match. Even further, the time-to-match in
presence of haptic feedback was on average generally lower, suggesting that resistive
force potentially enables even faster execution of target-matching tasks.

4.4 Resistive feedback design

The resistive force feedback technology calls for a specific design of the haptic ef-
fects, too. Whilst haptic knobs based on active force feedback, such as the Torque-
tuner [127], encode the haptic effects as transfer functions between angle/velocity
and torque, a resistive knob needs to be programmed with respect to the resistance
duration, in order to design many of the effects. For instance, the illusion of soft and
hard detents is generated by locking the knob for different amounts of time. Some
haptic feedback effects, that can be designed with the proposed controller, are listed
below.

Haptic markers: movements along a graduated scale trigger resistance points
simulating soft detents. The top-left plot in Fig. 4.7 shows the encoder position
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Figure 4.6: Box plots showing the time-to-match for each factor combination.

during 500 ms in presence of a constant torque input. The absence of resistance
enables fast motion, resulting in the completion of multiple steps in a short time
(steep segments); otherwise, the knob resistance almost stops hand movement
for 100 ms (flat segments). This effect has a visual counterpart corresponding
to a graduated slider or knob.

Multiple selector: movements across markers generate a resistive feedback simu-
lating hard detents. The bottom-left plot in Fig. 4.7 shows the corresponding
feedback: hard detents are rendered by almost stopping hand movement for
350 ms; otherwise, no resistance is generated. This effect has a logical coun-
terpart corresponding to e.g., a set of radio buttons or a rotary selector. A
common practice is to use such controls to select source signals, waveforms, or
to switch among audio channels.

Variable resistance: resistance is proportional to the encoded value (see the top-
right plot of Fig. 4.7). This control can be used to linearly regulate effects’
parameters (e.g., wet/dry, intensity, etc.). Additionally, sudden discontinuities
of the resistance can be programmed to signal positions of the knob featuring
some specific event (i.e. a binary switch following a parameter maximization, or
a peculiar value of the same parameter).

Constant resistance: the resistance of the knob is constant, independent of the
position (see the bottom-right plot of Fig. 4.7). Different values of resistance
may be used to implement softer/harder knobs.
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Figure 4.7: Example of different haptic feedback effects for a constant torque input.

The first two effects provide discrete information, whereas the third and fourth
effects are continuous.

4.5 Applications

In the following, some implementations of the effects are reported.

4.5.1 Multimedia production

A pilot software application was developed in Processing to demonstrate the use of
the device limited to some simple control of effects in music production. A screenshot
of the GUI is reported in Fig. 4.8. The Processing application communicates with
the device through a serial bus. The operations made available by the software are
described below:

Volume control: the controller is associated to the blue virtual knob of Fig. 4.8.
Each discrete value is visually denoted with a small tick. Movements across
ticks generate a resistance simulating soft detents.

Effect selector: the controller is associated to the green virtual knob of Fig. 4.8.
Five possible choices are displayed with ticks. Movements across ticks generate
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Figure 4.8: Software developed in Processing to test the resistive haptic effects for
multimedia production.

a resistance feedback that simulates hard detents.

Parameter control: the controller is associated to the orange virtual knob of
Fig. 4.8. Depending on the effect selected with the green virtual knob, the
resistance changes (i.e. constant or variable).

Amplitude transient detection: the rotary controller allows to explore the track
shown in Fig. 4.8 across time. A red cursor visually prompts the position on
the waveform. Moving along the waveform produces a varying resistance, pro-
portional to the energy of the signal crossed by the cursor.

Time window navigation: the rotary controller allows to explore the track across
time. Time units are displayed above the waveform. A red dot marks the
current position. A hard detent effect is generated each time the cursor moves
through the marker.

A video footage of the haptic knob being used in the five operations mentioned
above is available in an open-access repository.1 Possible formal evaluations of these
features are left for the future.

4.5.2 Control of digital audio effects

The subsequent step in the development process was the test of the device as a multi-
parametric input device for the control of digital audio effects executed at audio rate.
In particular, the device was set as controller of the digital simulation of the EMS
VCS3 voltage-Controlled Filter (VCF) [75]. Given the computational complexity of

1https://doi.org/10.5281/zenodo.3757901

https://doi.org/10.5281/zenodo.3757901
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Figure 4.9: Python software architecture for interactive control of an audio effect with
the haptic knob.

the digital model, the trivial implementations developed in Processing 3.5 were aban-
doned in favor of a structured multi-threading software architecture. The software
was developed in Python 3.6 adopting the real-time audio programming approach de-
scribed in Chapter 8. Sound algorithms, simulating the behavior of electronic circuits
(e.g., audio filters), can be considered a good benchmark to stress the performance of
a software architecture regarding CPU usage and memory management. This way, a
fluid and interrupted interaction accomplished while computing complex audio algo-
rithms will somehow ensure the reliability of the system while testing the prototype
for the control of professional appliances simulated in Python.

Figure 4.9 shows the implemented software architecture: the resistive knob device
communicates with the digital effect through the Arduino microcontroller via serial
connection. The related thread asynchronously receives commands and positional
data, whereas the main control thread makes them available to the DSP algorithm,
and in parallel updates the GUI showed in Fig. 4.10. The audio thread realizes a
simple audio source by synthesizing a sine wave, a square wave, or white noise; in the
meantime, it processes sample-by-sample chunks of audio through the VCF algorithm.
Such algorithm can be easily developed in Python and processed by the Numba library
or can be developed in C code and, hence, made available to the Python interpreter
through the so-called cythonization (see Chapter 8). Two input modalities were made
available through the knob:



70 4. A low-cost haptic knob with programmable force feedback

Figure 4.10: Audio effect GUI: Python-based visual interface displaying the available
user controls and spectrum of the processed sound output.

• The navigation mode allows to select the active control. The modality is
enabled by keeping the knob pressed while browsing over the controls through
CW or CCW rotations;

• The control mode is enabled by simply rotating the knob CW or CCW once
a control parameter has been selected, and allows to change its values.

With regard to the implemented resistive feedback, in navigation mode a hard de-
tent (Multiple selector of Fig. 4.7) is generated each time the user jumps to a different
control, while in control mode the following effects are produced: the selection of the
sound source, as well as the filter on/off switching, are rendered by hard detents (vi-
sually displayed as radio buttons); the VCF cutoff frequency (visually represented by
a slider) is rendered with a fixed low resistance; finally, the VCF resonance (visualized
using a slider) is rendered with a variable resistance. The knob can be also used to
select the fundamental frequency of the oscillator: in this case, the knob actuates no
feedback, just conveying its own physical resistance. All the controls, visually rep-
resented by sliders, furthermore provide a barrier effect corresponding to the sliders’
endpoints.

Figure 4.11 shows code excerpts of the Python threads forming the software ar-
chitecture represented in Fig. 4.9. When a control is selected using the knob in
navigation mode, the function change control(x) is called, which populates the
selected control object attributes with the content of the argument x. The ob-
ject selected control embeds information such as the controlled parameter and its
current value, the functions mapping the knob position into this value and, finally,
information needed by the visual display and haptic effects. Thus, when the active
instance of selected control is changed, the GUI is updated and a consequent com-
mand is sent to the knob controller to configure the corresponding haptic effect. Next,
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Figure 4.11: Threads forming the Python software architecture.
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Figure 4.12: The resistive knob controller applied to a washing machine interface: the
knob, partially overlapped to a touch screen, renders different haptic effects tailored
on the specific function: hard detents to mark the three programs, soft detents to set
the timer, constant resistance to adjust the temperature and a variable resistance to
lock/unlock the door

after some processing by the serial read() thread, the selected control is set with
positional data coming from the knob.

The audio callback function, called by the stream object s of the PyAudio
library, generates and processes audio signal buffers according to user parameters
setting the sound source and the effect properties (see Chapter 8). The function
process vcf(y) realizes the VCF and belongs to the library vcf, independently com-
piled and then imported as shown at the beginning of the code example. The GUI,
generated using Matplotlib widgets, is regularly updated by the audio thread con-
cerning the FFT window, and by the control thread concerning the visual elements
forming the controls.

4.5.3 Professional appliances

The device was finally tested as a user interface for professional appliances. In partic-
ular, a demo user interface was designed for controlling a coin-operated professional
washing machine. The interface was assembled in the Electrolux Professional work-
shop making use of a UDOO Quad [223] development board running a Linux Debian
OS. The main control software was developed in Python 3.6 using the QT4 graphical
framework, whereas the firmware of the resistive knob was compiled for the Sam3x
processor of the same UDOO board. The communication between the mock-up user
interface and the washing machine was established using the Electrolux Professional
proprietary protocol. Figure 4.12 shows different visual-tactile configurations of the
knob while controlling the parameters of the washing machine. In this implementa-
tion, the resistive knob partially overlaps a ten-inches touchscreen, which displays a
needle-shaped cursor controlled by the knob. This way, the pointer can be perceived
as an extension of the knob, improving quality and naturalness of the interaction.
The resistive feedback and the visual representation of the controls were selected in
accordance with their function:
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Cycle selection: the limited number of washing program available on coin operated
machines (e.g., from 3 to 6) can be controlled through a selection switch. The
borders surrounding the program names (leftmost image of Fig. 4.12) are marked
as haptic hard detents remembering an old-fashion mechanical selection switch.

Cycle time: time selection was inspired to the mechanical timer, generally found
on the user interface of domestic ovens. Soft detents marked each tick visually
displayed on the screen.

Cycle temperature: since the washing temperature is a continuous coarse param-
eter, no haptic effects were rendered during this selection, keeping the resistance
constant.

Door lock: the rightmost image of Fig. 4.12 shows the control proposed for the
machine porthole lock. The lock mechanism of real washing machines has a
peculiar haptic feedback curve: the clockwise rotation of the handle gives rise to
a resistance that increases proportionally up to the final lock position; at that
position, the resistance ceases completely confirming the porthole lock. The
same haptic feeling was realized with the programmable knob, whose resistance
was function of the rotation angle up to the ”Closed” position. Then, the knob
resistance was set to the lowest level, confirming the close action.

The user interface was informally tested by Electrolux Professional AD&T mem-
bers in the context of the rapid prototyping of innovative user interfaces; however, the
results are omitted due to the non-disclosure agreement with Electrolux Professional.

4.6 Lesson learnt

This chapter reported the design of a low-cost knob controller with programmable
resistive feedback. Its effectiveness was assessed in a visual target-matching test that
showed a significant reduction of the positional mismatch when resistive feedback was
applied to the knob. This study suggested that, even in absence of active forces as
those provided by more expensive, bulky and power hungry motorized knobs, resistive
feedback has concrete potential to support effective visual browsing of sequential do-
mains such as sliders, program menus, and, in general, all those maps where physical
rotary controls can be conveniently employed for the selection of targets. Moreover,
thanks to the resistive feedback, the controller can be profitably used in eyes-free con-
text, such as the operation of professional appliances. Several resistive haptic effects
were designed and tested in different application contexts, such as multimedia pro-
duction, digital audio effects control and professional appliances. Future development
of the presented technology may involve the addition of vibrotactile actuators to the
knob handle in order to obtain richer haptic effects during rotation (e.g., roughness).
However, most of the possible implementations must face all the problems related to
power and signal transmissions to rotating interfaces (e.g., wire de-rotations, radio
transmissions).

Concerning software architecture, whereas the trivial mock-up applications used
to test the user interaction were developed in Processing, more complex applications
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were designed using a multi-threading approach developed in Python. A more de-
tailed discussion regarding the implementation of the audio digital signal processing
applications in Python is reported in Chapter 8.



5
A performance comparison

between rotary and motionless
knobs

In the previous chapter, physical knobs were presented and discussed, suggesting
their possible advantages with respect to touchscreen interfaces. However, compared
to touchscreens, physical knobs are exposed to mechanical wear, seepage of liquids or
dirt, accidental shocks or vandalism. These factors may reduce the lifetime of the knob
and, consequently, the operation of the appliances. Moreover, physical knobs bind
the design of user interfaces and reconfigurable layouts. Therefore, the substitution or
virtualization of physical knobs still represents a milestone to come, since the straight
knob virtualization on touchscreens has several disadvantages:

• the diameter of physical knobs should stay within a certain range to allow for a
comfortable rotation gesture [109];

• fingers can partially occlude the screen during rotation;

• the implementation of realistic multi-point haptic feedback with virtual knobs
requires complex technologies [175].

As a consequence, even if displayed as circular objects, virtual knobs are often
controlled using sliding gestures: once selected, the user performs linear motions
with one finger on an arbitrary area of the screen while the knob visually changes
its value. This interaction technique is often implemented in touch-enabled digital
audio software (e.g., sound mixers, audio effects, synthesizers) where, usually, the
visual attention can be exclusively focused on the interface. On the other hand, it
may results impractical for professional appliances having the user interface placed
outside the visual working area (e.g., under the appliance worktop).

To address some of the issues pointed out above, one can envision a trade-off
between physical and virtual knobs: a motionless knob consisting in a fixed protruding
cylinder whose side surface is able to sense rotation gestures.

A motionless design brings together many advantages of both virtual and tangible
knobs: a short protrusion can be operated non-visually while being part of a larger
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user interface; it prevents seepage of dirt and liquids and, finally, no mechanical parts
(nor wear) are involved. To this end, a motionless knob can also provide rich haptic
feedback by means of vibrotactile actuators, without caring about the signal and
power transmissions to a rotating device (i.e. wires de-rotation). At the same time,
such design poses issues that need to be investigated, since i) an accurate recognition
of rotation gestures can be complex and difficult to model, and ii) users may not
find it intuitive to slide their fingers around a fixed cylindrical object. In this regard,
an experiment is presented aimed at measuring objective and subjective differences
between the haptic rotation of a rotary knob and fingers sliding around a motionless
knob. The term haptic rotation was recently suggested for a rotation providing only
tactile information [130]

5.1 Related work

The haptic rotation of knobs and, in general, of rotary objects has been widely stud-
ied. Besides the literature focusing on force feedback [179, 180] mentioned in the
previous chapter, haptic rotation was also investigated in its proprioceptive aspects.
Rods have been used to assess the oblique effect and perceived parallelism through
orientation reproduction tasks [85], executions of verbally ordered orientations [148],
or comparisons with reference orientations [120]. Other experiments analyzed hap-
tic rotation using an interface equivalent to a rotary knob. Krieger et al. tested
whether the shape of the handle (e.g. rounded, edged, flat), the number of fingers,
or the initial angular position influenced accuracy and precision. They found that
a round shape provides the lowest precision [130], whereas progressively increasing
the number of fingers (from 2 to 5) grasping the handle led to greater accuracy; on
the other hand, the initial angular position affected rotation precision (i.e. repeata-
bility) but not accuracy, with better results associated with the horizontal grasping
position [131].

Also, excess rotation (overshooting) was generally found with respect to a given
target.

In parallel, rotation gestures have been studied on touchscreens, that is under
visual-tactile conditions, especially considering gestures made with two fingers. A
study involving 90◦ rotations [109] showed multiple outcomes: gesture duration and
ergonomic failures increased with the distance (i.e. diameter, between 40 and 85 mm)
existing between the fingers, furthermore depending on the initial angular position
and rotation direction; moreover, rotations in which the index finger was close to the
horizontal axis were the slowest. Concerning motor control, Olafsdottir et al. found
that awareness of the target angular position helps to optimize the initial one [172].
A further study involving elderly people showed that rotation gestures can likely be
performed using the thumb finger as a pivot, while the index finger draws a semicircle,
thus easing motor control [144].

Conversely, no user studies related to motionless knobs are currently present in
the literature. For this reason, the following experiment draws its methods from the
aforementioned studies.

With regard to sensing technology suitable for motionless knobs, capacitive sensors
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are a common choice for multi-touch position tracking, also for circular surfaces, and
it was recently proposed to embed them also in the encoder of rotary knobs [37, 208].
However, capacitive sensors generally have low spatial accuracy, especially when fin-
gers are close to each other. Instead, since spatial accuracy was of utmost importance
for our experiment, the position of multiple fingers was tracked using a high-speed
video camera.

Two devices were implemented for the purpose of the experiment, object of com-
parison: one built around an optical finger tracker which could be configured either
as a motionless or a rotary knob, and the other in the form of a standard rotary
knob attached to an encoder. In this way, it will be possible to directly compare
the performance of rotary and motionless knobs implemented with a shared tool, fur-
thermore validating the optical acquisition system with respect to an encoder-based
rotary knob.

5.2 Setup

5.2.1 Optical finger tracker

The finger tracker device, shown in Fig. 5.1, was implemented based on a self-
developed optical tracker and a milled aluminium cylinder with a smooth side sur-
face, around which fingers could easily slide. In compliance with ergonomics stud-
ies [173, 214], an external diameter of 65 mm was chosen for the cylinder. The inner
side was further milled to host a 24-LED ring (WS2812 5050 RGB) to enlighten the
user’s fingertips. The cylinder was fixed to a Plexiglas panel (200×300 mm) by means
of an M10 bolt. The function of the bolt was twofold: first, it provided a reference
point for a finger-tracking algorithm; second, it acted as a pivot for the cylinder, also
allowing to set its resistance against rotation. To this end, a half-threaded bolt having
a straight neck of 20 mm was used: in this way, the cylinder rotates with low resis-
tance when the bolt is fully screwed-in, whereas it can be firmly locked by adding a
2 mm thick washer. The Plexiglas panel was enclosed in an aluminium frame mounted
perpendicularly to a metal support. This support also hosted a 40×40 mm platform
enabling micrometric adjustment of the position, pan and tilt of a Sony PlayStation
Eye high-speed camera (60 fps @ 640×480 pixel resolution) connected to a PC and
facing the back of the Plexiglas panel.

Video processing

Figure 5.2 shows the computer vision system at work. A custom software application,
written in Python 3.6 and using OpenCV 4.1.2, tracks the illuminated fingertips and
extracts positional data. As a first processing step, the software compensates for
lens distortion by applying a geometric transformation. Lens distortion correction
– visible on the vertical borders of Fig. 5.2 – was assessed using chessboard image
templates [94].

Video data are then processed as follows:

1. while displaying the first video frame, the software prompts the operator to
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Figure 5.1: The finger tracker system: a metal cylinder (i) is fixed to a Plexiglas
vertical panel (ii) by means of a M10 bolt (iii); a ring of 24 RGB LEDs (iv) enlightens
the user’s fingertips grasping the cylinder; on the back of the panel, a high-speed
camera (v) standing on an adjustable metal support (vi) tracks the angular position
of the fingertips using as a reference two green markers placed on and around the bolt
head (vii).

draw three rectangles with the mouse, each enclosing a fingertip, in the following
order: 1) thumb, 2) index and 3) middle finger;

2. for the subsequent frames, the software automatically tracks the fingertips using
the CamShift algorithm [27], with the additional constraint that their distance
from the center of the cylinder must be constant. Three small red circles are
overlaid on the video frame to represent the position of the fingertips, with
respective numbers;

3. automatic tracking is supervised offline by the operator, who could inspect that
the red circles constantly matched the respective fingertips;

4. as a final check, while displaying the last frame of the video the software asks
the operator to optionally adjust the position of the circles, in case errors oc-
curred during tracking (e.g., if two fingers overlapping during the task caused
the algorithm to swap the association with the corresponding circles).

For each video recording, the software generates a list of frames containing the
three fingers’ (x, y) coordinates and the respective angle. The difference between the
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Figure 5.2: Finger-tracking: a Python application detects the position of three illumi-
nated fingertips (small red circles) bounded within a circular region (large red circle
enclosing the cylinder). The thin white cross marks the center reference.

last and the first frame of each list was used to compute rotations, resulting in the
following data for each video recording: initial angle, final angle and overall rotation
of each finger, average rotation of all the fingers and respective standard deviation.

Focal alignment and validation

A preliminary calibration procedure was needed to align the camera with the cylinder:
to this end, a plastic ring (internal � = 65 mm, external � = 85 mm) was placed
around the cylinder, then the support was adjusted so as to align and center the
camera with three reference markers: a disc coinciding with the bolt head, a ring
around it, and the mentioned outer plastic ring around the cylinder (only the first
two are visible, in green, in Fig. 5.2).

To assess the accuracy of alignment and tracking, three white circular spots, sur-
rounded by a black background were glued at the side of the plastic ring, thus simu-
lating three illuminated fingertips facing the camera, and 64 random rotations of the
cylinder were recorded. The tracking algorithm was then applied to the recordings:
the resulting tracking error ranged between 0.15 and 1.46◦, with mean standard devi-
ation of 0.64◦. Moreover, this error was evenly distributed around the circumference
of the cylinder, proving that the camera was correctly aligned with it.

5.2.2 Standard rotary knob

An equivalent device based on a standard rotary knob was also implemented. A metal
knob identical to that of the finger tracker was fixed to a vertical metal panel having
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the same size and attach points as the Plexiglas panel of the finger tracker, so as
to make them structurally identical. The cylinder was connected to an AMS 5600
magnetic encoder, having a resolution of 0.1◦, which was connected to the PC used
for the experiment, and asynchronously read through the serial channel.

5.2.3 Trial control

Finally, a device was built to let participants record or repeat trials via two buttons
labeled REC and UNDO. The buttons are connected to an Arduino UNO micro-
controller which also controls the collection of data from the encoder and the finger
tracker. In particular, when the rotary knob is used, the REC button enables the
recording of data from the encoder; conversely, when the finger tracker is used, the
same button switches on the LEDs ring along with video recording. The UNDO but-
ton instead was optionally used by participants who would like to repeat their latest
trial.

5.3 Experiment

The experiment was conducted during the COVID-19 pandemic, in compliance with
the local safety rules that posed specific access restrictions to the location where the
experiment took place and required to sanitize the setup before each session.

5.3.1 Participants

Sixteen people (9 males, 7 females) aged between 22 and 45 years (M=28.6, SD=5.95)
took part in the experiment. None of them reported visual or sensorimotor impair-
ments. Before each session, participants were briefed on the experimental procedure:
the instructions for using the setup were displayed on a computer screen. All subjects
were right-handed but one. They all participated on a voluntary basis and were not
paid.

5.3.2 Procedure and task

Before each session, participants were briefed on the experimental procedure: the in-
structions for using the setup were displayed on a computer screen and further clarified
by the experimenter. In particular, the experimenter checked that each participant
had a clear mental representation of the target angles used in the experiment (45◦

and 90◦, see Fig. 5.3). Also, participants were instructed to always use three fingers
during the experiment, namely the thumb, index and middle finger: this limited the
factors in the experiment, meanwhile not impeding a natural operation of the knobs.

The input devices (either the finger tracker or standard knob) were placed side
by side and covered by an overhanging dark cloth which kept them out of sight (see
Fig. 5.3). Participants sat in front of the computer screen and could adjust the chair
until achieving a comfortable position of the arm while grasping the metal cylinders
with their dominant hand. The cloth also prevented participants to see their hand



5.3. Experiment 81

Figure 5.3: Participant grasping the cylinder of the finger tracker while reading the
rotation to be performed (45◦ counterclockwise in the represented case).

and wrist while operating the input devices. Then, they were instructed to use the
trial control device with the other hand, and to focus their vision on the computer
screen across the entire experiment.

During the session, various target rotation angles were prompted on the screen,
at which point the participants had to i) grasp the knob of the requested device with
three fingers of their dominant hand, ii) press and hold the REC button, iii) perform
the requested rotation and, finally, iv) release the REC button. During the recording
phase, a red dot followed by the word REC was displayed on the screen; after the
recording was stopped, participants were allowed to press the UNDO button if they
were not satisfied with their performance and preferred to repeat the trial.

At the end of the session, participants were asked to rate the naturalness and
pleasantness of the interaction with the input devices, as well as the perceived ease of
execution with each input device. Moreover, participants were asked about the num-
ber of fingers they would used to turn the standard rotary knob without experimental
constraints.

5.3.3 Experimental design

The experiment followed a within-subjects design and compared three different con-
figurations:

• Rotation: participants rotated the cylinder of the finger tracker, set free to
rotate.

• Gesture: participants performed a rotation gesture by sliding their fingers around
the finger tracker cylinder, kept locked.

• Routine: participants rotated the standard knob.

The factor Configuration (Rotation, Gesture and Routine) was crossed with the
factor Angle (-90◦, -45◦, 45◦, 90◦ ) for a total of 3×4=12 factor combinations. Each
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combination was repeated 8 times, resulting in 96 trials per participant. The experi-
ment was carried out in 3 blocks, one for each Configuration.

Half of the participants performed the Routine block first, and the other half
performed it as last block; the Gesture and Rotation blocks were presented in random
order. The 32 trials within each block were also randomized. No time limit was
imposed for task completion, however a session typically lasted 30 minutes.

5.3.4 Dependent variables

After the collection in lists of frames and optional manual correction (see Sec. 5.2.1),
the data in each list were merged in a single comma separated value (CSV) file.
On such data, four dependent variables were computed and analyzed: signed error,
variable error, finger deviation and initial position.

Human performance during haptic rotation has been measured in the literature
using signed and variable errors [130, 148]: the former measures the accuracy in
performing a task, whereas the latter provides insight on the related precision.

The signed error for the Routine configuration was computed as the difference
between the recorded and target angle rotation; for the Gesture and Rotation config-
urations it was instead calculated by averaging the difference between the recorded
and target angle rotation across the three fingers. Then, following the literature [131,
148, 110], the mean signed error was computed for each factor combination by averag-
ing the respective signed errors made across eight repetitions. For clockwise rotation,
positive values corresponded to mean angle rotation larger than the target (over-
shoot), whereas negative values corresponded to mean angle rotation smaller than
the target angle (undershoot). For counterclockwise rotations the opposite applied.
In both cases, smaller absolute mean error values signify higher accuracy.

The variable error was computed as the standard deviation of the signed errors
belonging to a factor combination. Smaller values signify higher precision. The finger
deviation was computed (obviously limited to the Rotation and Gesture configuration)
by averaging the standard deviations of the angle covered by each finger for each
factor combination. The initial angular position was measured (again, limited to the
Rotation and Gesture configurations) at the thumb.

5.4 Results

A statistical analysis, described in Sec. 5.4.1, 5.4.2, and 5.4.3, was conducted to check
whether the dependent variables (signed error, variable error, finger deviation and
initial position) were significantly affected by the independent variables (i.e. factors
Configuration and Angle). Finally, Sec. 5.4.4 reports a descriptive statistics of the
participants’ questionnaires.

Separate analyses were carried out for the dependent variables, as they were found
to be uncorrelated (Pearson Index≈0, p-values�0.05), except for the pair signed
error-variable error resulting in a moderate positive correlation (Pearson Index=0.48,
p<0.01).



5.4. Results 83

Rotation Gesture Routine Rotation Gesture Routine Rotation Gesture Routine Rotation Gesture Routine

−20

0

20

40

60

80

Er
ro
r (
de

gr
ee

)

- 90° - 45° 45° 90°
Signed error
Variable error

Figure 5.4: Boxplot of signed and variable errors for all factor combinations.

In order to keep type I error under control, standard confidence thresholds α = 0.05
were Bonferroni-corrected (α/4 = 0.0125)[23, 203]. Analyses were carried out in
Python 3.6 using the module scipy.stats 1.4.1.

5.4.1 Signed and variable error

Table 5.1: Signed and variable errors grouped by Configuration: each column reports
means (M), medians (Mdn),standard deviations (SD), standard Error (SE), lower
95% CI bound (LOW 95CI) and upper 95% CI bound (UP 95CI) for all angles.

Routine Rotation Gesture

signed variab. signed variab. signed variab.

M 14.7° 11.5° 13.3° 10.9° 14.4° 11.0°
Mdn 15.3° 11.2° 11.1° 9.3° 7.5° 9.5°
SD ±19.5° ±5.8° ±21.4° ±6.9° ±21.8° ±6.0°
SE 2.45° 0.72° 2.69° 0.87° 2.74° 0.76°

LOW 95CI 9.87° 10.02° 8.07° 9.19° 9.04° 9.48°
UP 95CI 19.51° 12.87° 18.63° 12.61° 19.80° 12.46°

Table 5.1 shows mean signed error and mean variable error distributions grouped
by Configuration, whereas Fig. 5.4 reports the related boxplot for all factor combina-
tions.

An inspection of Fig. 5.4 reveals that the signed error was only occasionally nega-
tive, and on average always positive. This means that, independent of Configuration
and Angle, participants on average overshot during the task. The significantly posi-
tive correlation existing between signed and variable errors implies that accuracy in
task execution was paired with precision, and vice-versa. However, as visible in Ta-
ble 5.1, means (M), medians (Mdn), and standard deviations (SD) of the signed and
variable errors are similar across configurations.
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An analysis of the distributions was carried out on individual factor combina-
tions, revealing severe violations of the ANOVA assumptions for both dependent
variables, namely the presence of outliers and deviations from normality. Outliers
are marked with circles in Fig. 5.4, while deviations from normality, computed using
the D’Agostino method [42], were discovered to be caused by skewness rather than
kurtosis.

Therefore, separate two-sided Friedman’s tests [79] were performed for both signed
and variable errors considering each factor combination as one of twelve conditions of
a combination factor (i.e. 3 configurations × 4 angles): no significant differences were
detected for either dependent variables (Q=7.21, p=0.78 for signed error; Q=12.1,
p=0.36 for variable error), meaning that no combination of the independent factors
Configuration and Angle affected significantly the average signed error nor the variable
error.

For the Rotation and Gesture configurations, the signed and variable errors were
further assessed for each finger, however no effects due to a specific finger were found.

5.4.2 Finger deviation
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Figure 5.5: Boxplot of finger deviation in Rotation and Gesture configurations for
each angle.

Figure 5.5 shows boxplots of finger deviation in Rotation and Gesture configura-
tions for each angle. As expected, the finger deviation for Rotation was close to zero,
resulting in a flooring effect affecting the distributions. Therefore, a non-parametric
analysis was performed considering in turn each factor combinations as one of eight
conditions of a combination factor (i.e. 2 configurations × 4 angles).

Friedman’s tests revealed significant differences (Q=63.85, p<0.01), suggesting
to perform multiple pairwise comparisons using the Wilcoxon Rank-sum test [103]
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with Bonferroni correction. Such comparisons, carried out by grouping all conditions
sharing the same configuration, revealed that the finger deviation for Rotation was
significantly smaller than that for Gesture (Z=-7.61, p<0.01). On the other hand,
pairwise comparison of conditions sharing the same angle amplitude (i.e. 45◦ or 90◦)
did not reveal significant differences (Z=-2.15, p=0.09).

Pairwise comparison of conditions grouped by direction (i.e. clockwise and coun-
terclockwise) did not reveal significant differences, too (Z=0.19, p=0.84).

5.4.3 Initial position

-90° -45°

90° 45°

Rotation Gesture

Figure 5.6: Initial position of the thumb for all the considered angles in Rotation and
Gesture configurations. Data are presented from the user’s perspective.

Figure 5.6 shows the initial positions of the thumb in each trial, grouped by Angle
and Configuration. The original data were horizontally flipped to reflect the user’s
perspective, rather than that of the camera.

A wide distribution of the data is visible. Agreement between subjects was highest
in factor combinations having angle equal to -90◦.

Interestingly, the two clusters of outliers in Gesture configuration for angle equal
to +45◦ and +90◦ were produced by only one participant. A general main effect
seems to depend on the direction of rotation (i.e. clockwise for the plots below and
counterclockwise for those above).

Again, an analysis of the distribution revealed violations of the ANOVA assump-
tions, therefore a non-parametric analysis was performed, in turn considering each
factor combination as one of eight conditions of a combination factor (i.e. 2 configu-
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rations × 4 angles). A Friedman’s test with Bonferroni-corrected α = 0.0125 revealed
significant differences (Q=259.8, p<0.01).

Multiple pairwise comparisons were performed using the Wilcoxon Rank-sum test
with Bonferroni correction. Pairwise comparison of direction (clockwise, counter-
clockwise) resulted in significant differences (Z=-15.31, p<0.01). On the other hand,
pairwise comparisons carried out by grouping conditions with the same angle am-
plitude (i.e. 45◦ or 90◦) revealed no significant differences (Z=-0.75, p=0.45), and
so were pairwise comparisons grouping all conditions sharing the same configuration
(Z=-0.34, p=0.73).

5.4.4 Questionnaires

Figures 5.7 and 5.8 report the participants’ answers to the questionnaire. Figure 5.7a
compares the 5-points Likert scale distributions of the perceived naturalness while
performing the task in the Gesture, Rotation and Routine configurations. The distri-
butions of Rotation and Routine are similar, whereas Gesture scored worse. The same
trend is visible in Fig. 5.7b and 5.7c, respectively showing the related pleasantness
and easiness to reach the target.

Figure 5.8 shows the number of fingers participants would used to turn the stan-
dard knob without experimental constraints: the majority of participants (62.5%)
would used four fingers, three fingers were their second choice, while two and five
fingers were preferred only once.

5.5 Discussion

The experiment assessed several objective and subjective issues having implications
in the development of motionless knobs.

A general result, which is shared by related studies [130, 131], is the tendency
to overshoot the rotation by about 10-15◦ independent of Configuration and Angle
(see Fig. 5.4). However, signed and variable errors were not affected by any of the
independent variables, suggesting stability of the task in terms of accuracy and pre-
cision. Although the lack of significant differences in the dependent variables might
be also ascribed to the relatively low number of participants (N=16), the individual
distributions of factor combinations did not show any particular trend or deviation
(see Table 5.1), suggesting that similar results would be achieved also if involving a
larger pool of participants. Indeed, our results are in accordance with previous larger
scale studies on haptic rotation performance with rotary knobs [130, 131]. In what
follows, the effects of each independent variable are separately discussed.

5.5.1 Effect of Configuration

Concerning signed and variable errors, in both Rotation and Gesture configurations
the finger tracker showed results comparable to the standard rotary knob (Routine),
showing that nor the input device neither the configuration affected the rotation
performance.
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Strongly
 Disagree

Disagree Undecided Agree Strongly
 Agree

0

2

4

6

8

Fr
eq

ue
nc

y

Gesture
Rotation
Routine

(c) Q: It is easy to reach the target position.

Figure 5.7: Responses to the questionnaire based on 5-point Likert scales: comparison
among configurations on the perceived naturalness, pleasantness and easiness to reach
the target.

This may suggest that participants assessed angles based on the rotation of the
wrist rather than the fingers; in this way, regardless of whether the fingers are rotating
a knob or sliding around it, the resulting gesture as well as proprioception are on
average similarly effective.

Conversely, Configuration had an effect on the finger deviation measured by the



88 5. A performance comparison between rotary and motionless knobs

0 2 4 6 8 10
Frequency

2

3

4

5

Nu
m
be

r o
f F

in
ge

rs

Figure 5.8: Number of fingers participants felt more comfortable to use to turn the
knob.

finger tracker. This is hardly surprising, since in the Gesture configuration fingers
can slide in different ways, depending on the hand pose and the frictional or adhesive
forces arising from the contact interaction with the handle: as a result, whereas the
fingers’ average rotation does not change significantly, each finger follows its own
trajectory, making it difficult to model a gestural recognition system, unless perhaps
by constraining the number of fingers to two. As a final note, although ideally the
finger deviation for Rotation should be null, deviations of up to 5◦ were measured (see
Fig. 5.5). Such offsets actually depend on occasional tilting of the index and middle
finger, which caused the illumination angle to change with consequent tracking of
the fingers’ apparent movement. However, this optical effect was common to both
Rotation and Gesture, and furthermore smaller than the measured physical movement
of the fingers. Finally, Configuration also did not affect the initial angular position,
that is the initial hand pose.

5.5.2 Effect of Angle

Angle did not affect the signed and variable error magnitudes, meaning that such
errors were relatively larger for smaller angles (i.e. 45◦).

This suggests that accuracy and precision depend on a local process which is
activated in the proximity of the target, rather than by the rotation angle.

Angle had no significant effect on finger deviation either: this in fact slightly
increased proportionally to the angle amplitude, but differences were not significant.
Thus, while prospectively modeling a gestural recognition system, finger deviation
could be treated independently of the rotation angle.

Concerning the initial angular position, although participants were not instructed
on how to grasp the handle, their initial hand pose depended on the target’s direction.
Conversely, the angle amplitude had no effect on it (see Fig. 5.6).

5.5.3 User preferences

The distribution of preferences for the Rotation and Routine configurations were sim-
ilar. Based on this, it is possible to speculate that the finger tracker in the Rotation
configuration was perceived as indistinguishable from the standard rotary knob. De-
spite the general agreement of the measured objective parameters among different
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configurations, participants rated Rotation and Routine positively, whereas in most
cases they rated the Gesture configuration negatively. Such negative ratings may
be partially ascribed to the fact that it was their first interaction with a motionless
knob. Another factor that may have negatively influenced the rating is the unex-
pected friction experienced in the Gesture configuration: since the experiment took
part during the summer season, warm temperatures and humidity resulted in non-
negligible friction between the fingers and the metal handle, making it more difficult
and unpleasant to perform the sliding task.

Finally, the distributions of ratings for the three questions were very similar; this
suggests that a more pleasant and natural interaction was perceived to facilitate the
task. However, this perceived difference was not confirmed by the objective mea-
surements: the signed error in the Gesture configuration actually scored the lowest
median (see Table 5.1).

5.6 Lesson learnt

This chapter presented a preliminary study to the design and development of a mo-
tionless knob. In this experiment, the user interaction with rotary and motionless
knobs was assessed by measuring objective and subjective parameters.

From a technical perspective, the experiment revealed that the high variability of
finger trajectories while sliding around a motionless knob may be the main hindrance
to a precise gesture recognition, furthermore considering the amount of different ges-
tures that users can perform without experimental constraints (e.g., variable number
of contacting fingers, hand poses). Moreover, several other external factors (e.g., size
of the hands, temperature, humidity) may interfere with the gesture tracking system.
In light of the above issues, a tracking system based on capacitive sensors embracing
a machine learning approach may be more robust and reliable for real-world appli-
cations, than a system based on the temporal and spatial modeling of the acquired
signals.

Participants rated the interaction with rotary knobs as more pleasant and natural
than that with a motionless knob. Interestingly though, while they claimed that it was
easier to reach the target position using a regular knob, the experimental data showed
that rotation performance (i.e. average accuracy and precision) was not affected by
the type of the used knob. The lower score given to the Gesture configuration, perhaps
was due to the increased friction, or to the larger finger deviation experienced in that
configuration, reflecting the minor affordability of the motionless interaction.

Overall, the study suggests that, besides the technical issues related to gestures
detection, considerable effort in terms of design and material selection will be required
for a motionless knob to be enjoyed by users.
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6
Non-a-knob: a motionless knob
powered by artificial intelligence

In the light of the findings reported in the previous study, this chapter reports the
design and validation of a motionless knob device. In particular, since knob rotations
and rotation gestures resulted in similar accuracy and precision during the haptic
rotation experiment, the motionless knob here presented is tested in both configu-
rations: this will allow to investigate whether a large finger deviation of the sliding
gestures affects the detection algorithm performance, as suggested in the previous
chapter. The device is also evaluated regarding the quality of the interaction by of-
fering the same questionnaire of the previous study to the participants. Finally, after
the evaluation of the motionless knob, the last section of this chapter proposes a
new concept design that integrates the motionless knob into a compact user interface
providing multimodal feedback.

6.1 Hardware design

The design of the motionless knob started from the selection of the detection tech-
nology; given the promising results of capacitive sensing reported in [37, 208], several
layouts of capacitive sensor pads, also called electrodes, were designed and tested in
different sensing configurations. Among others, the PSoc4 demo board produced by
Cypress [39] was selected and configured to measure the capacitance variations gen-
erated by finger proximity to a plurality of copper sensor plates arranged on the side
of the motionless knob. The PSoc4 board was configured to read and process the
sensors’ signals, furthermore sending asynchronously their values through a virtual
COM port using a serial protocol.

6.1.1 First prototype

The first prototype of the motionless knob (see Fig. 6.1) consisted of a 3D printed
PLA cylinder having six rectangular copper sensing plates (i.e. s1,..,s6) interleaved
by six ground plates (GND) connected together. All the copper plates were separated
by small dielectric PLA protrusions toward the inside of the cylinder.
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Figure 6.1: The model of the first prototype of motionless knob: a 3D printed PLA
cylinder hosts six rectangular sensing plates (i.e. s1,..,s6) that are interleaved by six
ground plates. All copper plates are separated by PLA protrusions.

On such prototype two capacitive sensing configurations were applied: the first
attempt exploited mutual capacitance, which is commonly used in touchscreens (see
Fig. 6.2a); in this configuration, each copper sensing plate (e.g. S1 pad) is surrounded
by ground plates (GND), separated by a dielectric material (e.g. plastic). Such
configuration is equivalent to a capacitor (Cbase) which generates a magnetic field (the
dashed lines in Fig. 6.2a) when powered. When the finger approaches the dielectric
plastic layer, it forms a second capacitor (Cfinger) coupled with the sensing plate,
changing the capacitance of the sensor. Within certain limits, the PSoc4 control board
is able to measure the capacitance variation as defined during its parameters’ setup.
The capacitance variations are reported as counts, with large values corresponding to
high capacitive loads.

Figure 6.3 reports the signals of the six sensing plates (s1,...,s6) shown in Fig. 6.1
being recorded when the index finger was sliding around the motionless knob proto-
type at constant speed:

• when finger positions correspond to the center of a sensing plate, the signal of
such sensing plate reaches the maximum value resulting in a flat plateau (e.g.,
sensor s2 from 3.0 to 3.8 seconds).

• when finger positions correspond to the center of a ground plate (e.g, between
4.0 and 4.5 seconds), the value of the two adjacent sensing plates does not exceed
100 counts.

• when finger positions correspond to the small dielectric PLA protrusions, the
value of the adjacent sensing plate drops to 10-20 counts

• when the finger position is far from a sensor plate, the value of such sensor plate
is zero.

The signals of Fig. 6.3 were successfully used to accurately decode rotations across
twelve positions, operated by a single finger sliding around the motionless knob. A
similar model was successfully used to encode rotations operated by two fingers by
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(a) Mutual capacitance principle: sens-
ing plates (S1 pad, S2 pad) are sur-
rounded by ground plates (GND pad),
interleaved by a dielectric material (e.g.
plastic) creating the equivalent of a ca-
pacitor (Cbase).

(b) Self capacitance principle: each sens-
ing plates (e.g. S1 pad) forms a capacitor
(Csensor) with the ground plane, which is
the earth (GND).

Figure 6.2: Mutual and self capacitance configurations. In both configurations, the
proximity of the finger generates the equivalent of a second capacitor plate (Cfinger))
modifying the magnetic field of the sensing plate (dashed lines) and thus changing
the capacitance of the sensor.

imposing constraints on their mutual distance (e.g., finger positions must be specular
on the knob circumference). However, it was not possible to model rotations with more
than two fingers: in that configuration, many sensing plates were activated at the same
time resulting in uninformative saturated signals; to this end, the mutual capacitance
sensing design did not match the expected requirements for the capacitance variations
measurements. Indeed, this sensing configuration is usually used to trigger on/off
events (e.g., touchscreen taps) rather than precisely measure changes of capacitance.
Moreover, the size of the copper sensing plates was constrained by the knob size,
limiting the capacitance settings available on the PSoc4 board. Consequently, in
order to obtain more informative signals the self capacitance sensing configuration
was tested.

In the self capacitance configuration (see Fig. 6.2b), a sensing plate forms a capac-
itor with the ground plane, which in this case is the earth ground. Therefore, when
the circuit is powered, the driving circuit performs a calibration and forms a broad
magnetic field to the earth ground. When the user finger approaches the sensor pad,
the finger capacitance takes over the earth ground and form the second capacitor plate
(Cfinger). Again, this change in the magnetic field changes the capacitance of the
sensor that is detected by the PSoc4 board. Also in this configuration, the size and
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Figure 6.3: Temporal evolution of the signals encoded by the six copper plates in
mutual capacitance configuration: the index finger is used to slide around the mo-
tionless knob at quasi-constant speed. The blue dots correspond to the positions of
the ground copper plates

the form factor of the sensing plates, together with the settings of the Cypress PSoc4
board, determine the strength and the size of the magnetic field generated. However,
even using the same sensing plates, in self capacitance configuration the board allows
to reach great sensitivities, resulting in meaningful output values in a wider range of
0-65535 sensor counts.

6.1.2 Second prototype

Figure 6.4: The model of the second prototype of motionless knob: a 3D printed PLA
cylinder hosts a strip of copper tape where eight sensing plates (i.e. s1,..,s8) were
engraved on the copper layer (left picture). The tape was attached to the internal
side of the cylinder (right picture).

After the inspection of the signals recorded in the self capacitance configuration,
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a second prototype of the knob was developed removing the protrusions inside the
cylinder (see Fig. 6.4). Moreover, the copper plates were substituted by a strip of
copper tape, which was engraved with a zigzag pattern proposed in the guideline for
capacitive sensor design [7].

Figure 6.5: Three layouts of the copper plates designed for the motionless knob: in
layout a) the plates follow the mutual capacitance design, in layout b) the same plates
are configured for the self capacitance and, in layout c) new sensing plates with a more
complex design are engraved on copper tape for the self capacitance.

Figure 6.5 summarizes the sensor plate layouts tested: the layout a was used for
the mutual capacitance configuration, having sensing and ground plates interleaved;
the layout b was used for the self capacitance having all the copper plates configured as
sensing plates; finally, the layout c was used to improve the signals in self capacitance
configuration by engraving the sensing plates from a thin copper tape. As shown in
Fig. 6.6, which reports the profile of the signals recorded from a finger sliding around
the motionless knob, the ”zigzag” pattern used in layout c allows recording smooth
changes in the signals, in particular when adjacent sensors are crossed by the finger
during sliding.

Figure 6.6: Temporal evolution of the signals encoded by the eight sensors in self
capacitance configuration (layout c of Fig. 6.5) when the index finger slides around
the motionless knob at quasi-constant speed.
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6.2 Gesture detection

Once the highest quality of the signals was obtained by setting the PSoc4 board
parameters (e.g. sensitivity of each sensor, control of the circuits’ driver), a second
gesture model was attempted. However, even with improved and more informative
signals, a general model of rotation gestures detection based on signal variations
turned out to be difficult to design and parameterize: indeed, the variability of the
rotation gestures (e.g. number of fingers used, inter-distance between fingers, hand
pose) together with the variability of anthropometric factors (e.g. hand size, finger
length) resulted in hundreds of possible signal configurations. As an example, Fig. 6.7
reports the temporal evolution of the signals encoded by the eight sensors during a
90° clockwise rotation gesture, performed using 3 fingers.

Figure 6.7: Temporal evolution of the signals encoded by the eight sensors during a
90° clockwise rotation gesture performed using 3 fingers.

For this reason, an approach based on machine learning (ML) was preferred to
the design of multiple models to encode specific gestures or fingers configurations.
In particular, an ordinary fully connected feedforward Neural-Network (NN) [71] was
designed.

6.2.1 Dataset

Machine learning algorithms use huge tagged datasets to train and test their param-
eters. In the specific case of NN with supervised learning, once the developer has
defined the structure of the NN, part of the dataset (i.e. the training set) is used
to iteratively tune the weights associated to each neuron of the NN, whereas the re-
maining part of the dataset is used for test and validation of the NN. See [71] for a
complete review on the design, training and test of feedforward NN.

Usually, the creation of reliable and complete datasets is one of the greatest chal-
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lenges of a ML project. Indeed, the generation of a great amount of data, being
representative of the overall features space used by the ML algorithm often requires
long, complex and expensive data acquisitions campaigns, especially when labeled
data are required. Luckily, in this specific case, the creation of a big dataset was
straightforward. The data collection was carried out with 8 human subjects aged
between 18 and 54 years (4 males, 4 females) who performed rotation gestures on the
motionless knob prototype. Obviously, such subjects had different physiological hand
characteristics. For the data collection, each subject was asked to perform uncon-
strained rotation gestures clockwise. This way many different hand poses, multiple
starting and target angles were acquired. Subjects were also asked to perform rota-
tion gestures using all fingers’ possible combinations (i.e. from 1 to 5 fingers). In
addition to the rotation gestures, subjects were asked to operate the motionless knob
as a standard knob by performing clockwise rotations while grasping a thin plastic
ring applied over the PLA cylinder (see Fig. 6.8). The same procedure was applied
also for counterclockwise gestures and rotations.

Figure 6.8: The prototype motionless knob used for the dataset creation (and the
experiment reported in Sec. 6.3): whereas the gestures were performed directly on
the black PLA cylinder (leftmost picture), rotations were performed grasping and
rotating the thin plastic ring (center picture) completely inserted around the PLA
cylinder (rightmost picture).

After the data processing described in Sec. 6.2.2, the data collection resulted in
32409 records, equally distributed among clockwise and counterclockwise rotations.
Each data record consisted of an array containing the 8 processed signal values and
a label corresponding to the rotation direction step (i.e. CW motion Step, CCW
motion Step). Therefore, each rotation gesture generated several data records, all in
the same motion direction.

Figure 6.9 reports the schematic of the control algorithm developed in Python 3.6,
using Tensorflow 1.15 as back-end for the NN design. Each stage of the algorithm is
reported in the following:

6.2.2 Input and data processing

The data processing stage used the eight capacitive signal values S = (s1,..,s8) acquired
by the PSoc4 board and sent through the Virtual COM to a Dell Precision 5520 PC.
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Figure 6.9: Schematic of the control algorithm: starting from the [INPUT] stage,
the raw values of the sensors (s1,..,s8) are processed calculating the differences (dts1,
..., dts8) with the last values fed into the NN. At the [DATA PROCESSING] stage,
only when the sum of the differences is greater than a defined threshold (THR), data
are passed to the [FEEDFORWARD NEURAL NETWORK] stage. The input layer
of NN has 9 neurons (i.e. one for each sensor plus the bias neuron); the NN has
one or more hidden layers connected to the output layer having 2 neurons (OUTCW ,
OUTCCW ). The output of the NN is used in the [FINITE-STATE MACHINE] stage
that, considering user defined parameters, generates one of the following outputs: CW
Step, CCW Step, Idle. Finally, the history of the output values multiplied by a user
defined factor (MULT. FACTOR) determines the angular position of the knob.

Instead of considering the raw signal values in the range (0, 65535), for each sensor
the algorithm calculated the difference dtsn between the current value sn(t) and its
last reference value saved sn(t-1), normalized in range (-1,+1).

The array of differences D = (dts1, ..., dts8) was used by the next algorithm stage,
only when:

8∑
i=1

abs(dtsi) > THR (6.1)

where the threshold value (THR) was defined to reduce the noise result of micro-
movements of the fingers. Each time the array D satisfied Eq. 6.1, the corresponding
array S was saved as a reference value for subsequent inputs. Since the algorithm was
designed to consider signal differences instead of the raw data, its results were largely
independent of differences in signal magnitude due to hand size.

The data processing stage was common to both the acquisition algorithm used to
create the dataset, and to the control algorithm: whereas the acquisition algorithm
saved each entry of the array D in a CSV file, the control algorithm used the array D
as the input of the NN.
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6.2.3 Feedforward Neural Network

The structure of the NN was designed to be as simple and light as possible, in order
to be easily coded into embedded systems. The NN had the following structure:

Input layer

The input layer has 9 input neurons: 8 neurons receive the sensors’ differences and
one neuron contains the bias fixed value +1, used to generalize the training of the
NN. Since the NN stage is activated only when the threshold (THR) is exceeded, the
sensitivity of the capacitive sensors must be calibrated to generate congruent signal
variations during rotation gestures. However, by lowering the sensors’ sensitivities, it
is possible to introduce a sort of safety mechanisms: indeed, if the signals’ variations
generated by small hands are too low to trigger the rotation detection, this setting
can be used, for instance, to avoid children to unintentionally operate the motionless
knob.

Hidden layers

Usually, the most complex part in the design of NN is the definition of the hidden
layers, since their functions, structure and connections determine how the input data
are combined and transformed through the NN. Given the limited complexity of the
task (i.e. to divide into 2 categories tuples of 9 values), this specific NN was expected
to have a low number hidden layers, each containing a limited number of neurons.

Figure 6.10: Schematic of the neuron model used in the first hidden layer: each
element of the input layer (x0, x1, ..., xn) is multiplied by a given weight (w0, w1,
..., wn) and then summed by the neuron as the value v. Such value is used as the
argument of a non-linear activation function ϕ().

The k neurons belonging to the first hidden layer are designed following the gen-
eral schematic reported in Fig. 6.10, where the input values (x1,...,x8) correspond to
the eight sensors’ differences and the input x0 corresponds to the bias input. Each
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input value is multiplied by its corresponding weight (w0,...,w8) and summed into the
variable v, used as the input parameters of the sigmoid activation function y = ϕ(v).
The neurons belonging to the (eventual) subsequent hidden layers are designed in the
same fashion, using as inputs all the computed output values (y0,...,yk).

Output layer

All the neurons of the last hidden layer are fully connected to the output layer. The
output layer has 2 neurons, one for each category identified (i.e. CW motion step,
CCW motion step). Concerning the neurons of the output layer, all their inputs
are multiplied for the corresponding weights and then summed in the variable v.
Therefore, the category identified by the NN corresponds to the output neuron having
the highest sum v. Moreover, the distance between the v values can be used as a metric
of the prediction accuracy. Therefore, in addition to the category identified, also the
two values of prediction accuracy are used as inputs of the finite-state machine stage.

6.2.4 Finite-state machine and Output

The finite-state machine stage was designed to encode three motion states: clockwise
rotation, counterclockwise rotation and no rotation. The motion state of the machine
changes with the NN output (i.e. category and accuracy) and the parameters set by
the user.

At the output stage, the control algorithm can provide the following outputs based
on the current machine motion state:

• CW Step if the NN infers with sufficient accuracy the CW category AND the
current motion state is (clockwise rotation OR no rotation)

• CCW Step if the NN infers with sufficient accuracy the CWW category AND
the current motion state is (counterclockwise rotation OR no rotation)

• Idle in all the other cases

Finally, the control algorithm encodes the absolute angular position of the mo-
tionless knob based on the history of the CW and CCW steps and a multiplication
factor set by the user.

6.2.5 NN Training and performance

The NN was trained and evaluated by comparing multiple configurations. In partic-
ular, the final structure of the hidden layers was defined experimentally by testing
the classification performance of NNs having a different number of layers and differ-
ent number of neurons per layer. Each configuration of hidden layers was tested on
the entire dataset (Sec. 6.2.1) by randomly assembling its samples into a training set
(65%), a validation set (10%) and a test set (25%).

Figure 6.11 reports the classification accuracy achieved combining all the con-
figurations of two fully connected hidden layers, both having a variable number of
neurons ranging between 2 to 14. As reported for both the training set (Fig. 6.11a)
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and the test set (Fig. 6.11b), the increase in the number of neurons in the first layer
is associated with improved accuracy; on the other hand, the increase in the number
of neurons of the second layer has no effects on the accuracy. In the light of these
experimental results the second hidden layer was removed, resulting also in a simpler
single hidden layer NN.

(a) Training set (b) Test set

Figure 6.11: Classification performance on training and test dataset as a function of
the number of neurons used for the first (H1) and the second (H2) hidden layers.

The performance of the single hidden layer configuration was further tested for an
increased number of neurons and training epochs. Figure 6.12 reports the classifica-
tion accuracy achieved with different numbers of neurons (8 to 39) and two training
epochs (40 and 240). Although the dependence of accuracy on the training set is
monotonic, the dependence on the test set stabilizes when more than 21 neurons are
used. This means that the surplus neurons (i.e. from 22 to 39) were trained on spe-
cific features belonging only to the training set. Furthermore, an increased number
of training epochs improved only the accuracy of the training set, too. In the light
of such experimental results, the final NN configuration was designed as a single hid-
den layer NN having 21 neurons, trained for 40 epochs. This specific configuration
resulted in a prediction accuracy of 91.4% concerning the training set and of 89.2%
concerning the test set.

6.3 Experimental Validation

In addition to the measurements of the NN classification accuracy, an end-to-end val-
idation of the device was performed by repeating the experiment on haptic rotations
described in Chapter 5 using the motionless knob. The evaluation of the gesture
detection algorithm was not obvious: whereas objective measurements without hu-
man participants would have been not realistic, in visual-haptic conditions the visual
feedback would have probably biased the results with visual cues of finger position.
Repeating the experiment of Chapter 5, instead, allowed us to compare the perfor-
mance of the motionless knob with the objective data acquired by the optical finger
tracker. Finally, this choice made it possible to compare the subjective evaluations
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Figure 6.12: Classification performance as a function of the different number of neu-
rons (from 8 to 39) and training epochs (i.e. 40 and 240)

collected through the questionnaires at the end of the experiments.

6.3.1 Participants

Twenty one subjects (17 males, 4 females) aged between 17 and 57 years (M=31.3,
SD=10.4) took part in the experiment. All subjects were right-handed, and no one
reported visual or sensorimotor impairments. They all participated on a voluntary
basis and were not paid.

6.3.2 Experimental design and procedure

The new version of the experiment made use of the same materials and methods
described in 5.3.2, except for the experimental apparatus: indeed, the motionless
knob prototype was used instead of the finger tracker(see 5.2.1). Figure 6.13 shows a
participant while performing the experiment with the new setup, having the standard
knob and the motionless knob placed side-by-side.

This new experiment compared three different configurations, too:

• Gesture: participants performed a rotation gesture by sliding their fingers around
the motionless knob (see Fig. 6.8 left).

• Rotation: participants rotated a thin plastic ring applied around the motionless
knob (see Fig. 6.8 right).

• Routine: participants rotated the standard knob used in the previous experi-
ment (see 5.2.2).

The factor Configuration (Rotation, Gesture and Routine) was crossed with the
factor Angle (-90◦, -45◦, +45◦, +90◦ ) for a total of 3×4=12 factor combinations.
Each combination was repeated 8 times, resulting in 96 trials per participant. The
experiment was carried out in 3 blocks, one for each Configuration. Also in this
experiment, half of the participants performed the Routine block first, and the other
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Figure 6.13: Participant grasping the standard knob while reading the rotation to be
performed.

half performed it as last block; the Gesture and Rotation blocks were presented in
random order. The 32 trials within each block were also randomized.

At the end of the experimental session, participants were asked to rate the nat-
uralness and pleasantness of the interaction with the input devices, as well as the
perceived ease of execution with each input device. Moreover, participants were asked
about the number of fingers they would use to turn the standard rotary knob without
experimental constraints.

6.3.3 Dependent variables

Each trial of the experiment produced a CSV file containing the angular positions
measured using the motionless control algorithm or the encoder of the standard knob,
depending on the Configuration. On such data, two dependent variables, i.e. signed
error and variable error, were computed and analyzed.

In all configurations the signed error was computed as the difference between the
recorded and target angle rotation; then, as in the previous experiment, the mean
signed error was computed for each factor combination by averaging the respective
signed errors made across eight repetitions. The variable error, instead, was computed
as the standard deviation of the signed errors belonging to a factor combination.

6.3.4 Results

A statistical analysis was conducted to check whether the dependent variables (signed
error and variable error) were significantly affected by the independent variables
(i.e. factors Configuration and Angle). Separate analyses were carried out on the
two dependent variables since only a moderate positive correlation was found (Pear-
son Index=0.22, p<0.01). A descriptive statistics of the participants’ questionnaires
is reported at the end of the Section. Analyses were carried out in Python 3.6 using
the module scipy.stats 1.4.1.
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Figure 6.14: Boxplot of signed and variable errors for all factor combinations.

Variable and Signed error: descriptive analysis

Table 6.1: Signed and variable errors grouped by Configuration: each column reports
means (M), medians (Mdn) and standard deviations (SD), standard Error (SE), lower
95% CI bound (LOW 95CI) and upper 95% CI bound (UP 95CI) for all angles.

Routine Rotation Gesture

signed variab. signed variab. signed variab.

M 10.4° 11.1° 2.3° 15.2° -1.0° 14.5°
Mdn 9.0° 8.9° 1.1° 13.5° -1.9° 12.9°
SD ±18.4° ±7.1° ±22.5° ±8.0° ±21.1° ±5.4°
SE 2.02° 0.78° 2.47° 0.88° 2.32° 0.59°

LOW 95CI 6.43° 9.60° -2.55° 13.49° -5.53° 13.36°
UP 95CI 14.35° 12.66° 7.16° 16.93° 3.57° 15.68°

Table 6.1 shows mean signed error and mean variable error distributions grouped
by Configuration, whereas Fig. 6.14 reports the related boxplot for all factor combi-
nations.

An inspection of Fig. 6.14 reveals that the mean signed errors, compared to the
previous experimental results (see Fig. 5.4), are more equally distributed around zero.
The moderate positive correlation existing between signed and variable errors implies
that accuracy in task execution was paired with precision, and vice-versa. As shown
in Table 6.1 and Fig. 6.15, standard deviations (SD) of the signed and variable errors
are similar across configurations, reporting values close to the previous experiment
(see Table 5.1); conversely, means (M) and medians (Mdn) seems affected by the
Configuration factor. The inspection the signed error distributions, grouped by the
factor Angle (see Fig. 6.16), revealed similar distribution for angles having the same
magnitude (i.e. 45 or 90), independently from the direction (i.e. CW or CCW).
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Figure 6.15: Boxplot of signed and variable errors grouped by Configuration.

For this reason, concerning the signed error statistical analysis, the independent vari-
able Angle was furthermore separated into two factors: Angle Magnitude and Angle
Direction.

Signed error

The analysis of the signed error univariate distributions reported no violations of the
ANOVA assumptions. Therefore, a three-way ANOVA analysis was conducted to
study the influence of the three independent variables (Configuration, Angle Magni-
tude, Angle Direction) on the signed error. Using a Greenhouse-Geisser correction for
insphericity, the main effect for Configuration yielded F(1.77, 35.3) = 4.03, p < .05,
indicating a significant difference between Routine (M = 10.4, SE = 2.0), Rotation
(M = 2.3, SE = 2.4) and Gesture (M = −1.0, SE = 2.3). The main effect for Angle
Magnitude yielded F(1, 20) = 22.8, p < .01, indicating a significant difference be-
tween 45° (M = 8.4, SE = 1.54) and 90° (M = −0.6, SE = 2.1). The main effect for
Angle Direction, instead, was not significant F(1, 20) = 0.8, p > .05. Finally, the only
significant interaction effect was found between the factors Configuration and Angle
Magnitude, yielding F(1.67, 33.5) = 11.49, p < .01.

Variable error

The analysis of the variable error univariate distributions revealed several deviations
from normality [42] and presence of outliers.

Therefore, two-sided Friedman’s tests [79] were performed for both the indepen-
dent variables Configuration and Angle. In order to keep type I error under con-
trol on such non-parametric analyses, standard confidence thresholds α = 0.05 were
Bonferroni-corrected (α/2 = 0.025)[23, 203].

Friedman’s tests on Configuration revealed significant differences (Q=26.64, p<0.01),
suggesting to perform multiple pairwise comparisons using the Wilcoxon Rank-sum
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Figure 6.16: Boxplot of signed and variable errors grouped by Angle.

test [103] with Bonferroni correction. Such comparisons revealed that the variable er-
ror in Routine configuration was significantly smaller compared to both the Gesture
(Z=-4.34, p<0.01) and the Rotation (Z=-3.99, p<0.01) configurations. On the other
hand, the pairwise comparison between Rotation and Gesture yielded no significant
differences (Z=-0.2, p>0.05).

Friedman’s tests on Angle revealed significant differences, too (Q=21.76, p<0.01).
Pairwise comparisons carried out grouping the angles with the same magnitude re-
vealed that the variable error of 45° haptic rotations was significantly smaller than
if equal to 90° (Z=-3.0, p<0.01). On the other hand, the pairwise comparison car-
ried out grouping the angles with the same direction found no significant differences
between clockwise and counterclockwise directions (Z=-0.3, p>0.05).

Questionnaires

Figures 6.17 and 6.18 report the participants’ answers to the questionnaire. Fig-
ure 6.17a compares the 5-points Likert scale distributions of the perceived natural-
ness while performing the task in the Gesture, Rotation and Routine configurations.
The three distributions are quite different: the Routine configuration received lumped
high scores, the Rotation received more distributed scores, while the Gesture config-
uration received evaluations along the entire scale. Similar distributions are visible
in Fig. 6.17b and 6.17c, respectively showing the related pleasantness and easiness to
reach the target.

Figure 6.18 shows the number of fingers participants would used to turn the stan-
dard knob without experimental constraints: half of the participants (52%) would
used four fingers, three fingers were their second choice, while five fingers were pre-
ferred only by two participants. None of the participants chose two fingers.
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(c) Q: It is easy to reach the target position.

Figure 6.17: Responses to the questionnaire based on 5-point Likert scales: compari-
son among configurations on the perceived naturalness, pleasantness and easiness to
reach the target.

6.3.5 Discussion

In the following, the results of the experiment are discussed and then compared to the
findings presented in Chapter 5: in fact, although the results were generally improved
in terms of accuracy when the motionless knob was used, these results differed from
the baseline experiment detailed in previous chapter.

Effects of Configuration

In the experiment the Configuration factor played an effect on both the dependent
variables. In particular, in both cases significant differences were found between the
control condition (i.e. the Routine configuration) and the configurations that made
used of the motionless knob (i.e. Rotation and Gesture).

Considering the Routine configuration, distributions of both dependent variables
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Figure 6.18: Number of fingers participants felt more comfortable to use to turn the
knob.

are quite similar to the distributions found in the previous experiment: this is not
surprising since such configuration was identical in the two experiments. However,
whereas the 95% confidence intervals (CI) of variable error perfectly overlap, the mean
value of the signed error is slightly different (see Tables 6.1 and 5.1). To this end, the
limited number of participants involved in the experiments may partly explain such
differences.

In this new experiment, both the Rotation and the Gesture configurations showed
significantly lower signed errors compared to the Routine configuration, reaching mean
signed errors close to zero. However, given the findings on the overshoot trend high-
lighted by the previous experiment and in other literature results [130, 131], the
smaller values identified in the Rotation and Gesture configurations must be ascribed
to some adjustment introduced by the control algorithm of the motionless knob. Con-
versely, the variable error equal to both Rotation and Gesture configurations in the
new experiment showed significantly higher values, furthermore showing values close
to each other (i.e. the means are 15.2° for the Rotation and 14.5° for the Gesture
configuration, respectively). Therefore, the haptic rotations recorded by the motion-
less knob have signed errors that are lower than expected and variable errors that are
greater that expected: this means that the control algorithm probably fails to encode
some parts of the rotation gestures. However, since standard deviations in the two
experiments are very close to each other concerning both signed and variable errors
(see Tables 6.1 and 5.1), the mis-detections of the algorithm are not related to specific
subjects.

Finally, since no significant differences were found between Rotation and Gesture
configurations concerning both signed and variable, this means that the control algo-
rithm of the motionless knob was able to detect rotations and gestures in the same
way. In conclusion, the higher finger deviation found during the previous experiment
concerning the Gesture configuration (see 5.4.2) was incorporated in the knowledge
base of the NN.

Effects of Angle

The magnitude of the Angle had an effect on both dependent variables, too. Con-
cerning the signed error, small rotation angles (i.e. +45°,-45°) gave rise to significant
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overshoot (mean 8°) compared to large rotations (i.e. +90°,-90°), that were associated
with errors close to zero. Conversely, in the previous experiment signed errors were
found to be as independent from the angle magnitude, showing mean overshoots of
about 14°. Concerning the variable error, smaller angle magnitudes resulted in more
precise haptic rotations (M=12°, SD=5.8) than larger angle magnitudes (M=15°,
SD=7.8). In the previous experiment, instead, variable errors were slightly smaller
(M=11°), furthermore independent of the magnitude of the angle.

Taken together, these results confirm that the control algorithm fails to encode
some parts of the rotation gestures: in fact, whereas short rotations resulted in over-
shoot values close to the previous experiment, larger rotations showed an increased
accuracy, previously not observed. Although no results on the effects played by the
angle magnitude on haptic rotation were found in the literature, the results of our
previous experiment were considered reliable, since data were acquired with an optical
system and carefully checked. Finally, since the precision decreased with the angle
magnitude, this means that the probability to miss some rotation steps is proportional
the rotation magnitude.

The direction of the haptic rotations, instead, had no effect on the measured
dependent variables. This result, common to the previous experiment, shows that the
control algorithm of the motionless knob was adequately trained in both directions.

Interaction effects

The statistical analysis on the signed error found also a significant interaction effect
between the Configuration and the Angle magnitude. The analysis of the estimated
marginal means shows that the Angle magnitude had an effect mainly on the config-
urations making use of the motionless knob (i.e. Gesture and Rotation). Even more
interestingly, such effect brought to notable undershoots when 90° rotations were per-
formed on the motionless knob (Gesture=-8.5°, Rotation=-3.2°), resulting instead in
overshoot with the standard knob (Routine=9.9°).

User preferences

The questionnaires reported slightly improved results compared to the previous exper-
iment, in particular regarding the Gesture configuration. As expected, the evaluations
on the standard knob in both experiments had similar distributions concerning all the
questions.

Concerning the Rotation configuration, participants rated the interaction with
the motionless knob as natural as the interaction with the finger tracker, thus slightly
lower than the interaction with the standard knob. On the other hand, the perceived
naturalness in the Gesture configuration sometimes scored better than the previous
experiment, resulting in wide distributed evaluations. This difference can be explained
by the different material used: the PLA, in fact, gives rise to less friction during the
fingers’ sliding compared to aluminium used by the finger tracker.

The same effect involved also the pleasantness of the interaction, that resulted
slightly improved for the Gesture configuration. On the other hand, with the Rotation
configuration results were worse than in the previous experiment. The reason of such
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evaluations can be ascribed to the compliance and the friction of the thin plastic ring
used to simulate the rotation: harder materials with less friction probably will help
restore evaluations similar to the standard knob.

Also the perceived easiness in reaching the target proved better in the Gesture
configuration: the reduced friction exposed by the PLA cylinder probably improved
the perceived proprioception during the rotation gestures. Instead, the evaluations
on the Rotation configuration remained stable between the two experiments.

Finally, also in this case participants would have used four fingers to grasp the
knob without experimental constraints. However, the number of user that would have
used three fingers improved.

6.3.6 Future work

The results of the experiment showed that the control algorithm of the motionless
knob introduces systematic errors, proportional to the magnitude of the angle, but
independently from subjects. The reason behind such bias can be found in the finite-
state machine output procedure: in fact, once determined the rotation direction,
the control algorithm quantifies each detected rotation in 3°, independently from the
current angular position and the past history. Such conversion factor, determined
during informal trials accomplished in visual-haptic conditions, was chosen as a fair
starting value for the experiment. Therefore, starting from the data acquired in this
experiment it will be possible to model improved strategies having, for instance, the
conversion factor depending on the angular distance covered during rotation gestures.

6.4 Full concept design

In its whole concept design, the motionless knob was imagined as the part of a more
complex user interface. Indeed, the currently empty circular region and the cylindrical
box behind it allow to host further interface elements as well as the hardware com-
ponents needed to enable them. The complete interface layout consists of a unique
object featuring multiple elements:

• a motionless knob, optionally equipped with a plastic ring providing standard
rotational input

• a force-sensing visual touchscreen placed on the circular region

• an audio-tactile actuator behind the screen

Following this concept design, the frontal panel of the motionless knob, for in-
stance, can embed the haptic touchscreen previously described and evaluated in Chap-
ter 2. In the intended interaction design, the haptic touchscreen interface is used in
combination with the motionless knob to perform few fundamental everyday opera-
tion that may require eyes-free interactions (e.g. one to four program sections, power
increase/decrease, manifolds control). Conversely, the standard visual-based interac-
tion is left available for all the other functions (e.g. setup of parameters, service).
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Figure 6.19 shows how this layout would appear: a refined version of the haptic
touchscreen described in Sec. 2.1, having a round touchscreen panel, is coupled with
the second prototype of the motionless knob (Sec. 6.1.2) by means of a rubber o-ring.
The function of the o-ring is twofold: whereas, on the one hand, prevents from any
dirt or liquid intake, on the other hand, it allows the touchscreen panel to indent
proportionally to the normal pressing force applied. This way, the load-cell mounted
on the back of the touchscreen can precisely track the normal force applied by the
fingers on the device. The audio-tactile feedback is generated by means of an actuator
attached, for instance, between the load-cell and the touchscreen panel.

Figure 6.19: The model of the final concept design of the motionless knob. The
leftmost picture shows the device as it appears to the user. The rightmost picture
shows the schematic of the hardware used: a 3D printed PLA cylinder (i) hosts a
strip of copper tape (ii). Inside the cylinder, a load-cell (iii) tracks the normal force
applied to the touchscreen (vi) by the finger. The touchscreen is coupled with the
cylinder by means of a rubber o-ring (iv), allowing its indentation. An audio-tactile
actuator (v) attached between the load-cell and the touchscreen panel provides rich
haptic feedback during rotation gestures and finger press.

6.4.1 An intermediate step

The design of such a concept requires to carefully study the user interaction at incre-
mental stages. For this reason, the prototype shown in Fig. 6.20 was designed and
assembled. The aim of this prototype was to improve the capacitive sensors sensitivity
and to provide a first informal assessment of the vibrations’ propagation through the
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(a) Front view: a transparent plastic
sealed cylinder host a strip of copper
tape engraved with eight sensors and
a Dayton DAEX25SHF-4 exciter at-
tached to the front side.

(b) Rear view: a load-cell is at-
tached to the back of the exciter,
measuring the normal force ap-
plied to the motionless knob frontal
panel; the electronics (i.e. Teensy
3.6 board, DSP module and load-
cell driver) is attached at the right-
bottom part of the device

Figure 6.20: An intermediate prototype of the concept design of the motionless knob:
the prototype is able to produce rich haptic feedback during rotation gestures and
finger pressing thanks to a powerful exciter. A Teensy 3.6 board encodes the eight
capacitive signals of the copper strip and the signal of a load-cell; the board processes
all the input signals and generates the output audio-haptic signal through a dedicated
DSP module.

cylinder. As it can be seen in Fig 6.20a, the PLA 3D printed cylinder has been substi-
tuted with a thermoformed thin plastic handle: this way, the sensitivity of capacitive
sensors is improved, whereas the friction during rotation gestures is further reduced.
In order to generate powerful vibrations in range 30-500Hz, as well as audio signals
up to 16000Hz, a 20w Dayton DAEX25SHF-4 exciter has been attached between the
cylinder frontal panel and a load-cell (see Fig 6.20b); the load-cell is used to measure
the normal force applied by the finger on the front panel of the cylinder, when the lat-
ter features a button. Concerning the electronics, in this prototype a compact Teensy
3.6 board is used to process the capacitive sensors’ data and the load-cell signal. The
same board is used in conjunction with a DSP module to generate and manipulate
the audio-haptic output signal.

Although, in the current stage of research, such prototype has been informally
tested for both gesture recognition and haptic feedback rendering, further develop-
ments are required before starting any experimental phase. In particular, the next



6.4. Full concept design 113

development steps will be:

• the design of the mechanical model of the device

• the study of the propagation of vibrations in the cylinder structure

• the improvement of the mechanical coupling between the actuator, the motion-
less knob and the metal frame based on numerical simulations

• the design of an experiment to evaluate different haptic feedback delivered dur-
ing rotation gestures

Only by carrying out all these development steps and the experimental evaluations
it will be possible to integrate the touchscreen interface described in Chapter 2 and
to finally evaluate the user interaction with this new compact user interface, which
collects many findings of this research.
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7
The Bogus Finger

This part of the thesis describes hardware and software tools developed to support
this PhD research. In particular, the tool presented in this chapter required several
months of development and validations carried out in collaboration with the Insti-
tute for Computer Music and Sound Technologies (ICST) of ZHDK (Zurich). The
target of the project was the development of a DIY robotic tool able to simulate the
mechanical response of the human finger to vibrations. As shown in Chapter 3, the
simulation of the characteristics of the human finger is not trivial, since its mechanical
characteristics change dynamically with the normal force exerted: after the initial con-
tact, the finger compression increases the skin-surface contact area, the stiffness and
the damping of the fingertip [99, 200], affecting also the friction coefficient with the
surface [218]. Therefore, the mechanical impedance of the finger changes accordingly.

As shown in Chapter 2, the dynamic of finger-pulp compression can be exploited
to produce tactile illusions through the generation of tailored stimuli bounded to the
force level. However, without a precise mechanical model of the haptic device, the
stimuli design is a time consuming task, always requiring validations with human
subjects. To this end, several issues arise when designing active touch experiments,
particularly concerning the control over the subjects’ gesture (e.g., repeatability) [161],
and the measurement accuracy when manipulable apparatuses are employed.

To overcome such issues, two solutions are viable: since the mechanical impedance
of the human finger is well known and modeled [122], one can build a mechanical
model of the haptic device and simulate the effects of the finger being in contact with
it; on the other hand, by having a robotic tool simulating the human finger, it will
be possible to characterize the haptic devices without modeling their structure and
components.

Given the increasing number of haptic devices becoming available on the market,
the second solution guarantees better results, allowing to compare multiple devices
with a common tool independently from their mechanical complexity. However, such
artificial tool must provide force control accuracy and precision together with a reliable
simulation of the human finger mechanical impedance, concerning multiple force levels
and different directions.

Thanks to the ICST, which provided facilities and materials, the Bogus Finger
was developed: a robotic tool for the simulation of quasi-static finger-pressing forces
of various magnitudes, suitable for interaction with both stationary and vibrating
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surfaces.

The finger press in static conditions has been studied by measuring on human
subjects stiffness, contact area, mean pressure with different levels of force and veloc-
ities [181, 200, 99]. Such data has been used to create and validate physical finger-
analog implementations [102, 237]. Among others, Friesen et al. compared different
types of complex artificial fingers consisting of bone, tissue, skin, and outer skin layers
analogs [80], while Controzzi et al. [35] built a bio-inspiered artificial finger described
by a Finite Element (FE) model. Beside the excellence of these artificial fingers,
their dynamic response is usually not considered in the analysis. By contrast, the de-
vice described in this paper targets mainly the issue of reproducing systematic finger
pressing force simulations in dynamic conditions.

The dynamic behavior of the finger can be fully characterized by knowing the
mechanical impedance it exposes at the contact point with a surface. The impedance
of the finger depends on its mass, stiffness and damping and it is furthermore depen-
dent on the finger-pulp compression [34]; for instance, the compression increases the
stiffness [200] while the mass exposes quasi-constant values for increasing press force
levels [97, 239].

In general, the impedance depends on the considered motion direction, being
different in the tangential or in the normal direction [61]. Concerning the frequency,
instead, fingertips behave elastically up to about 100 Hz, whereas the damping effect
dominates the response between 100 Hz and 1 kHz. Given the small mass exposed
by the finger, the inertial contributions can be neglected up to 500 Hz [239].

In the light of such considerations, the fingertip can be modeled as a viscoelastic
non-linear spring-mass-damper lumped parameter system. The model can be arbi-
trarily complex: for instance, it can consider the finger as a single mass connected to
the external world through a spring-damper connection, or it can represent the contri-
butions of the different elements (e.g., skin, bones, tissues and joints). Several finger
models with variable complexity are described and discussed in [101]. To this end, the
network model proposed by Kern et al. [122] considers two main masses, representing
the finger and the hand/arm interconnected by three spring-damper connections.

Once defined a reasonable mechanical model, the major issue is the accurate esti-
mation of the parameters, especially considering that in systems like the human finger
the elements can not be evaluated separately; for this reason, Kern et al. [122] used
a least-mean-square technique to fit their model parameters starting form impedance
measurements.

The characterization of a mechanical device, like the tool here presented (i.e. a
series of connected elements), is usually more precise and straightforward; the masses
can be detached and weighed separately, while the elastic coefficients can be obtained
by measuring the relation between force and displacement at each joint. The evalua-
tion of the damping, instead, requires dynamic conditions: in fact, the procedures to
estimate the damping require the analysis of time or frequency domain responses to
force input signals [21, 93].

Given the DIY nature of the project, an easy-to-implement and inexpensive tool
was built and made available as an open-source project, furthermore characterized
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with procedures making use of commercial available tools, thus easily reproducible.
In this chapter, a general model of the contact interaction is provided, accompanied by
a procedure to estimate the coefficients of the model parameters, providing insights
to converge to the mechanical impedance of the human finger. In addition to the
technical implementation, the model and the characterization, it is reported an end-
to-end validation where vibration measurements accomplished with human subjects
are compared to the measurements realized using the Bogus Finger.

In this project, my personal contributions were related to the device hardware/-
software design, to its characterization, and to its experimental validation. Dr. Mat-
tia Dal Borgo and Dr. Eleonora Pippia developed the mathematical model of the
device. Dr. Stefano Papetti and Prof. Federico Fontana coordinated and supervised
the project.

7.1 Device design

(a) Full view with end-effector surrounded
by a yellow dashed line.

(b) End-effector schematic: hemispheric
silicone layer (i), load-cell force sensor (ii),
rubber shock-absorbers (iii), angle metal
bracket (iv), vertically sliding metal plate
(v).

Figure 7.1: The Bogus Finger

Figure 7.1a shows a working prototype of the Bogus Finger realized by assembling
off-the-shelf components and custom-designed parts. The device is released as an
open-source project (CC BY-NC 4.0) documented by a public repository linked to
GitHub.1 The repository stores DIY instructions, mechanical and electronic speci-

1https://github.com/yuridepra88/Bogus-Finger

https://github.com/yuridepra88/Bogus-Finger
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fications and schematics, 3D models, Arduino code and Python script examples for
remote control.

7.1.1 Hardware design

The vertical displacement of the Bogus Finger’s end-effector is operated by a slide
stroke linear motion actuator: a 250× 50× 50 mm vertical metal profile holds the ac-
tuator, whose motor (NEMA17 42 mm stepper motor, torque 4.5 kg·cm) is controlled
by a TB6600 driver connected to an Arduino Mega 2560 microcontroller board. The
driver also limits the current provided to the motor, in this way protecting it, and can
increase its spatial accuracy by subdividing the motor’s step into up to 32 sub-steps
(maximum resolution 0.6 µm). The force signal measured by a load-cell mounted on
the end-effector is fed back to the microcontroller, allowing to reach and hold stable
target forces over time.

The end-effector was designed to model a human finger pressing down vertically.
Its components were selected among off-the-shelf material, aiming at matching the
mechanical properties of the finger, as described in the literature [41]. Figure 7.1b
shows a schematic of the end-effector, whose main components are:

i) A hemispheric silicone layer (radius 10 mm, thickness 6 mm) with squared base
(side 24 mm, thickness 4 mm) simulates the viscoelastic properties of the finger.
The choice of silicone type, mass and shape has great impact on the exposed
characteristics of the device such as its stiffness, damping and inertia. The
current prototype mounts soft silicone (Silastic 3481) having mass 4 g, young
modulus 0.93 MPa and shore-A hardness 25. In Sec. 7.3 and 7.5, a comparison
is reported with a harder silicone (Sylgard 184) having young modulus 1.45 MPa
and shore-A hardness 40.

ii) A CZL635 load-cell monitors the exerted pressing force. The analog force signal
is processed by a INA125P amplifier and sampled with 10-bit resolution by the
Arduino ADC converter. The amplifier gain was set to read force values in the
0-20 N range with 0.1 N resolution. Although the load-cell can read values up
to 50 N, greater values were considered outside the scope of our application.

iii) A pair of rubber shock-absorbers connect the end-effector to the linear motion
actuator, preventing external vibration noise from reaching the accelerometer
during measurements.

The structure chosen for the end-effector is fundamental to characterize the compo-
nents of the mechanical system, as reported in Sec. 7.2. Three buttons, labeled Up,
Down, Stop/Function, offer basic on-board controls, while a switch enables/disables
the motor (e.g., once a target force is reached) making the device completely silent
and vibration-free. A 16 × 2 LCD display connected to the I2c bus of the Arduino
provides various information to the user.

Mechanical supports and electronics lay on a thick wooden board. In our test
setup, the device was fixed to a vibration-isolation table (CleanBench TMC).
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7.1.2 Force calibration

The load-cell was calibrated by measuring the forces exerted by the end-effector on
a Kern 440-47N digital scale: the output voltage of the load-cell was associated to
the weight measured by the digital scale. The interpolation of multiple measurements
resulted in two different model fits: due to the nonlinear behavior of the load-cell for
values between 0 and 3 N, a 3rd-order polynomial was fitted in this range, whereas a
linear model was adopted for higher forces.

Once a target force is reached by pressing against a surface, negative drifting may
take place over time due to mechanical backlashes, proportionally to the magnitude
of the applied force. To counteract such effect, the force-control algorithm overshoots
the desired force by about 5% and then adjusts the end-effector’s displacement until
a stable force is reached.

7.1.3 Controls

The Arduino board processes both on-board and remote commands. A reduced set
of commonly used functions is available on-board, operated by the device’s physical
buttons: i) read the current force at the end-effector; ii) set a target force level to be
reached and held; iii) freely move the end-effector; iv) set the home/zero position.

Remote control is provided through the Arduino USB serial connection. The on-
board functions are also made directly available through remote commands. Commu-
nication with the device is asynchronous, while the data type depends on the selected
function mode. Three types of messages can be exchanged: force values, command
acknowledgments and events. A remote control API is offered, implemented using
Python 3.6 and OSC.2 Example applications are supplied which showcase the de-
vice’s functionalities.

7.2 Model

In this section, the mechanical model of the Bogus Finger is presented 3. The pro-
totype of Sec. 4.2 was used to derive and validate a mechanical lumped parameter
model, which allows to concentrate the physical parameters on specific elements of
the device. Given the DIY nature of the project, a procedure to estimate the param-
eters of the model using commercial tools is detailed, providing the final users with a
guideline to characterize the system, when materials or components change.

The dynamic response of a mechanical system is determined by its impedance.
Once the mathematical model has been derived, the point where the external force
is applied is selected, the responses (acceleration, velocity or displacement) of each
mass of the system to the external force are then calculated. Thus, once the mass
being in contact with the external force has been selected (i.e. the haptic device in
this case), it will be possible to calculate the impedance at that point.

2A widely used communication protocol optimized for multimedia and networking technology:
http://opensoundcontrol.org/.

3The mathematical model was developed thanks to Dr. Mattia Dal Borgo and Dr. Eleonora
Pippia.

http://opensoundcontrol.org/
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Figure 7.2: Mechanical model of the Bogus Finger. The same model applies for both
normal and lateral direction.

The prototype of the Bogus Finger can be modeled as two degree-of-freedom (DoF)
system. Figure 7.2 shows the mechanical model of the Bogus Finger being in contact
with a haptic device. The external force (F0), generated by the haptic device (i.e. the
vibration source), is applied to the mass of the silicone interface m2. In the model, the
spring k1 and the damper b1 represent the shock absorbers, whereas k2 and b2 belong
to the silicone interface. Regardless of the compression load, the shock absorbers are
defined by fixed elastic and damping coefficients. Conversely, the hemispherical shape
of the silicone interface makes the contact area to increase proportionally with the
compression, resulting in increasing elastic and damping coefficients. Finally, the mass
m1 represents the remaining mass of the end-effector up to the shock absorber. All the
remaining parts of the Bogus Finger (i.e. linear actuator, supports and electronics)
are considered as fixed to the ground.

The mechanical impedance Z(s) of the Bogus Finger model, calculated as ratio
between the external force F0(s) acting on the mass m2 and the velocity ẋ2(s), is
described by equation 7.1, where s is the complex variable of the Laplace transform.
The impedance of the system in normal and tangential direction is different, even if the
structure of the model is shared. Indeed, whereas the value of the masses m1 and m2

remain obviously constant, the elastic and damping properties of the spring-damper
connections change due to their form factor that is different along the directions (e.g.,
the silicone interface is wider than tall).

Z(s) =
F

ẋ
=

(m1m2)s4 + (m1b2 +m2b1)s3 + (m1k2 + b1b2 +m2k1)s2 + (b1k2 + b2k1)s+ k1k2
(m1 +m2)s3 + (b1 + b2)s2 + (k1 + k2)s

(7.1)
Beside this, two further minor differences associated with lateral forces can affect

the mechanical model: firstly, the end-effector itself can be considered as a cantilever
beam, thus its lateral oscillations depend on the point where the force is applied along
the beam; secondly, the worm gear shown in Figure 7.1a presents a finite stiffness,
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which changes depending on the vertical position of the end-effector (i.e. the distance
from the motor anchor point).

7.3 Modeling parameters

The parameters of the model can be identified from experimental measurements.
Parameters can be estimated considering the overall mass of the end-effector (msys =
load cell, accelerometer, metal supports, half of silicone and shock absorber masses)
as being suspended between two spring-damper connections (i.e. shock absorber
and silicone interface). Thus, by applying harmonic oscillations to the mass msys,
its acceleration can be acquired and analyzed in the frequency domain to identify
the stiffness and damping coefficients [93], furthermore repeating the procedure for
different pressing forces while the silicone interface is in contact with a rigid surface.

Figure 7.3 shows the experimental setup used to estimate the parameters of the
model: a voice coil actuator Lofelt L5 was fixed to the central part of the end-
effector by means of an aluminium square and driven by a Dayton DTA-1 amplifier.
Depending on the direction measured, the actuator was rotated in order to oscillate
along the vertical or the lateral direction. For both motion directions, six levels of
pressing force were tested (0.5, 1, 2, 3, 5, 8 N), resulting in 12 test conditions. For each
condition, the response of the system was recorded with a PCB 356A17 accelerometer,
fixed on top of the end-effector. For each measurement, the transfer function from
the input signal (a logarithmic sine sweep between 10 and 600 Hz lasting 15 s) to
the output acceleration was calculated using the function tfestimate of the GNU
Octave 5.1 software.

The electro-mechanical lumped parameter model of the entire system (Bogus Fin-
ger + L5 actuator) is reported in Fig. 7.4. A current flowing through the winding of
the voice coil actuator generates the input signal F0, which results applied, in oppo-
site directions, both to the mass of the permanent magnet mact and to the case of
the actuator that is fixed to the end-effector mass msys. The overall system can be
modeled as a 4th-order system, with equations of motions given by equation 7.2a for
msys and equation 7.2b for mact.{
msysẍsys = −ksysxsys − bsysẋsys − kact(xsys − xact)− bact(ẋsys − ẋact)− F0 (7.2a)

mactẍact = kact(xsys − xact) + bact(ẋsys − ẋact) + F0 (7.2b)

where ksys = k1 + k2 and bsys = b1 + b2
As shown for example in Fig. 7.5a, the transfer function of the acceleration data

(blue line) is used to fit the 4th-order model (orange line) based on the equations 7.2a
and 7.2b. Indeed, once the values of the masses mact and msys are defined, only
one set of (ksys,bsys,kact,bact) minimizes the error with the experimental data at
each frequency. In particular, ksys and bsys determine respectively the position and
the amplitude of the lower frequency resonance peak, whereas kact and bact count
for the higher frequency resonance peak that remains constant for all the measure-
ments. The parameters of the voice-coil actuator have been identified as mact =3.9 gr,
kact =0.564 N/mm and bact =0.55 Ns/m. These parameters are related to the reso-
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Figure 7.3: Experimental setup used for the model parameter estimation: a Lofelt L5
voice coil was attached to the mass msys (load cell, accelerometer, metal supports, half
of silicone and shock absorber masses) while the Bogus Finger was pressing against a
metal bar.

nance peak at 63 Hz that can be identified in all the reported transfer functions (see
Fig. 7.5a, 7.5b and 7.6).

Figures 7.5a and 7.5b report the frequency response in vertical and horizontal
directions, respectively, when the device is suspended, thus not in contact with any
surface through the silicone interface. This configuration was adopted to charac-
terize the stiffness and the damping of the shock absorbers: according also to the
static measurement reported in Fig. 7.9, the vertical stiffness is constant, and is
equal to 7.67 N/mm; the vertical damping coefficient, instead, is equal to 2.34 Ns/m.
These two parameters characterize the shape and the frequency of the resonance peak
(f0=36 Hz), correspondent to the mass msys reported in Fig. 7.5a. Concerning the
horizontal direction, the model fitting of the data reported in Fig. 7.5b results in a
stiffness coefficient of 2.45 N/mm and a damping coefficient of 1.8 Ns/m.

Whereas the parameters of the connection kact and bact are constant (i.e. they
depend on the stiffness and damping coefficients of the structure holding the magnet
of the actuator), the parameters ksys and bsys change with the force applied. To tune
these two parameters, a greedy optimization algorithm was set up for each tested
pressing force. In particular, the Particle Swarm Optimization (PSO), implemented
in Matlab® 2019b software, was applied with the default parameters. The optimiza-
tion procedure minimizes a weighted root mean squared error between the modeled
magnitude and the acquisition. Since more accuracy was required around the two
peaks, a window of [-50,50] Hz was defined around the maximum peak: in that range,
the weight was set to 1, whereas, in the remaining domain, the weight was reduced
to 0.1; this way, the model was less affected where the acquisition was more unstable.
The window was manually set to capture the slope and the magnitude of the two
peaks, characterizing the shape of the frequency response.

Fig. 7.6 reports the obtained frequency response of msys in the vertical direction
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Figure 7.4: Electro-mechanical model of the setup used in the characterization pro-
cess: the current (i) flowing through the voice coil generates the input signal F0

proportional to the transduction coefficient (Bl). Such input signal is applied, in
opposite directions, to both the masses m1 and mact.

while different pressing force levels are applied: the progressive force increment pro-
duces a stiffer (connection/joint) that brings to higher natural frequency of msys (i.e.
from 40.2 to 47.9 Hz).

Table 7.1 reports the parameters estimation of stiffness and damping for all the
pressing force concerning the vertical direction. Since the shock absorbers and silicone
interface are modeled as parallel connections, the silicone properties (k2 and b2) can
be calculated by subtracting the constant values of the shock absorbers (k1, b1) from
the model estimated values (ksys, bsys).

Table 7.2 reports the parameters estimation of the stiffness for all the pressing force
concerning the horizontal direction. Unfortunately, it was not possible to calculate the
exact damping coefficients from the experimental data, due to a strong anti-resonance
found in the frequency region of the msys natural resonances. On the other hand,
it was still possible to roughtly estimate the ksys values matching the slopes of the
functions.

The model of the Bogus Finger, reported in Fig. 7.2, was used to calculate the
impedance at the contact point, applying the parameters of Tables 7.1 and 7.2 to
Eq. 7.1. Figures 7.7a and 7.7b show a comparison between the impedance of the
Bogus Finger with the silicone interfaces (s1 or s2) and the impedance of the human
finger reported by [122, 101] with vibrations in the normal direction.

Figures 7.8a and 7.8b, instead, show the same comparison but with vibrations in
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Figure 7.5: Frequency response of msys without the silicone interface in contact with
the bottom surface. The model (orange line) is fitted to experimental data (blue line).
The frequencies, corresponding to the natural resonances of the suspended mass (f0)
and the actuator (f1), are highlighted with vertical dashed lines.

the lateral direction. Since it was not possible to estimate the damping variations
consequent to the applied increasing force, the damping coefficient was set to 2 Ns/m
for all the force level; however, as reported for the vertical direction, an increment of
damping for increasing forces is expected.

7.4 Model comparison

This section reports a comparison between the models of human finger and the lumped
model developed for the Bogus Finger concerning the vertical and the horizontal
directions. In particular, the impedance measurements accomplished by Hatzfeld and
Kern [101, 122] were used to compare the theoretical impedance of the Bogus Finger
calculated from the model.

When the human finger touches a flat large surface vibrating in the vertical or in
the lateral direction, the model of [122] shows an impedance function with a unique
minimum in the range 20-1000 Hz (see dashed lines of Fig. 7.7a and 7.8a). Such
minimum corresponds to the natural resonances of the finger: the frequency of such
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Table 7.1: Parameters estimation for all the forces with different silicone interfaces
in the vertical direction. Stiffness values are expressed in N/mm whereas damping
values are expressed in Ns/m

Sil. Param Press(N)
0.5 1 2 3 5 8

ksys 10.41 11.08 12.16 13.25 15.30 –
s1 k1 7.67 7.67 7.67 7.67 7.67 –

k2 2.74 3.41 4.49 5.58 7.63 –
ksys 9.49 9.74 10.45 11.18 12.26 13.33

s2 k1 7.67 7.67 7.67 7.67 7.67 7.67
k2 1.82 2.07 2.78 3.51 4.59 5.66
bsys 3.98 4.38 5.80 6.80 8.20 –

s1 b1 2.34 2.34 2.34 2.34 2.34 –
b2 1.64 2.04 3.46 4.46 5.86 –
bsys 3.35 3.48 3.87 4.12 4.88 5.61

s2 b1 2.34 2.34 2.34 2.34 2.34 2.34
b2 1.01 1.14 1.53 1.78 2.54 3.27

resonance mainly depends on the ratio between the stiffness and the mass of the
finger, whereas the resonance magnitude depends on the finger damping, with great
resonances (i.e. low impedance) associated with low damping coefficients.

In what follows, a detailed comparison between the components of the model for
both vertical and horizontal direction is reported.

7.4.1 Vertical direction

Mass

In a spring-mass-damper system, the mass contributes in defining the natural fre-
quency of the system and its behavior in the high frequency range. Human finger
mass was found constant or tending to a constant plateau of 6 g within the force
interval 2-20 N [97]. The model of Bogus Finger has two masses: the first mass (m1)
is the end-effector (130 g) that affects the impedance of the Bogus Finger, mainly in
the low frequency range having a resonance at 36 Hz. The second mass (m2) is the
silicon specimen (between 3 and 4 g). Given the structure of the Bogus Finger, only
m2 mass is affected by high frequencies.

Stiffness

The stiffness in the normal direction can be determined in static conditions measur-
ing the force/deformation ratio. The measurements on the Bogus Finger, reported
in Fig. 7.9, show a linear dependency regarding the direct contact (DC) of the load
cell pressing over a rigid surface, whereas the addition of a silicone interface between
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Table 7.2: Stiffness estimation for all the forces with different silicone interfaces in
the horizontal direction. Values are expressed in N/mm.

Sil. Param Press(N)
0.5 1 2 3 5 8

ksys 2.8 3.0 3.2 3.4 3.7 3.9
s1 k1 2.45 2.45 2.45 2.45 2.45 2.45

k2 0.35 0.55 0.75 0.95 1.25 1.45
ksys 3.0 3.2 3.4 3.8 4.1 4.4

s2 k1 2.45 2.45 2.45 2.45 2.45 2.45
k2 0.55 0.75 0.95 1.35 1.65 1.95

the load cell and the surface produces a non-linear trend, meaning that the stiffness
increases with the force. This nonlinear trend resembles that of the human finger-
tip [99, 200], which however is more compliant for low forces, as shown in Fig. 7.9
(dashed line). Finally, the human finger stiffness assumes different values during press
and release actions, furthermore depending on the compression speed [35].

In dynamic conditions, the stiffness of shock absorber and silicone layers acts on
the frequency of the system natural resonances. In particular, the stiffness of the
shock absorbers is responsible for the local minimum at 36 Hz, whereas the stiffness
of the silicone interface determines the frequency of the absolute minimum. Such
minimum varies between 160 and 250 Hz for the silicone s1 (Fig. 7.7a) and between
100 and 160 Hz for the silicone s2 (Fig. 7.7b) depending on the normal force applied.
The local minimum of the Bogus Finger at 36 Hz can be lowered in frequency by
increasing the mass of the end-effector and/or using softer shock absorbers, resulting
thus closer to the human finger.

Damping

The damping coefficient of the shock absorbers counts for the magnitude of impedance
inversion in the low frequency range with small magnitudes associated to high damp-
ing coefficients and vice versa. The damping coefficient of the silicone interface, in-
stead, determines the magnitude of the main resonance in the high frequency range.
As show in Fig. 7.7a and 7.7b, the damping increases with the pressing force with
values between 1.64 and 5.86 Ns/m concerning the silicone s1 and values between 1.01
and 2.54 Ns/m for the silicone s2. Human finger damping was found dependent on
the applied normal force, too, with values rising from a mean of 2.2 to 4.0 Ns/m in
the interval 2-20 N and high variability among the subjects of the study [97].
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Figure 7.6: Frequency responses to vertical vibrations of msys with the silicone s2 in
the characterization setup of Fig. 7.4. Each subplot reports the frequency response
measured (blue line), the model fitting (orange line), natural resonances of msys (black
dashed line) and mact (gray dashed line) for different pressing forces in range 0.5-8
N.

7.4.2 Tangential direction

Mass

In the lateral direction the mass exposed by the Bogus Finger is the same described
above. Concerning the tangential direction, the mass of the human finger results
practically constant in the force interval (i.e. 0 - 2N), showing lower values compared
to normal direction (from 0.1 g to 0.5 g). According to the literature, the inertial
contributions of human finger in tangential direction could be neglected from DC to
500 Hz [239].

Stiffness

For the time being, the shearing stiffness of the Bogus Finger in static conditions
has not yet been addressed, as it would require an additional degree of freedom
(motion along X or Y) and an end-effector able to measure lateral forces. Moreover,
the shearing stiffness does not depend only on the finger deformation but also on
the friction of the surface in contact with the fingertip: when lateral forces overtake
friction, a slip effect occurs [166]. For this reason, the stiffness of the human finger was
compared with that of the Bogus Finger only in dynamic conditions on an common
surface, so as to determine their contribution to the respective frequency response.

According to the literature [239], in dynamic conditions the human finger stiffness
is proportional to the normal force applied following a 1

3 power-law in both proximal-
distal and medial-lateral directions, with values between 0.6 and 3 N/mm in the
interval (0 - 2N).

The lateral stiffness of the Bogus Finger reports values between 0.35 and 1.45 N/mm
for the silicone s1, and between 0.55 and 1.95 N/mm for the silicone s2. Compar-
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Figure 7.7: Comparison between the impedance of Bogus Finger with different silicone
interfaces and the impedance of human finger (dashed lines) concerning the vertical
direction.

ing the impedance calculated from the Bogus Finger model to the measurements on
human fingers, the stiffness of the Bogus Finger seems to be lower than the latter.

Damping

The human finger damping is proportional to the normal force applied following a
1
3 power-law, too. Values increase from 0.4 to 3 Ns/m in the interval 0 - 2N [239].
As previously said, concerning the lateral direction, it was not possible to assess the
value of the damping from experimental data. Thus, the damping coefficient was set
to 2 Ns/m for all the force levels; however, also the damping of the Bogus Finger is
expected to slightly increase with the applied normal force.
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Figure 7.8: Comparison between the impedance of Bogus Finger with different silicone
interfaces and the impedance of human finger (dashed lines) concerning the horizontal
direction.

7.4.3 Friction

Regarding the tangential direction, also the friction has to be taken into account.
The friction is defined as the force resisting the relative motion of solid surfaces, fluid
layers, and material elements sliding against each other. Thus, the total friction force
between the human finger and a flat surface is a sum of following forces: adhesive
force, skin deformation force, capillary or viscous shearing force caused by water or
natural grease on the skin, and friction due to the deformation of finger ridges [217].
Conversely, in its current configuration, the Bogus Finger exposes only a low adhesive
force and no viscous shearing force.

7.5 Validation

The behavior of the Bogus Finger prototype pressing on a vibrating surface was
compared to that of the human finger, in order to validate the model proposed and
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Figure 7.9: Displacement of the end-effector as function of the normal force applied
to a stationary rigid surface. The plots show respectively the effects of direct contact
of the load cell (DC), and the use of two different silicone layers at the interface (s1:
Sylgard 184; s2: Silastic 3481). For comparison, the force/deformation curve of the
human fingertip is shown, as reported in the literature [99, 200].

its parameters.
For this purpose, the testbed device described in Chapter 3 and the previous

measurements accomplished by ten human subjects were used for validating the Bogus
Finger. Therefore, by repeating the same procedure described in Sec. 3.1.2, the Bogus
Finger coupled with silicone layer s1 and s2 was used instead of the human subject,
providing different force levels.

As test vibrations, the logarithmic sine sweeps between 10 and 600 Hz lasting
15 s (two repetitions) were used. Also in this case, vibrations were recorded with a
PCB 356A17 triaxial accelerometer fixed to the top of the testbed cuboid. Pressing
forces were recorded across the whole validation to compare accuracy and precision
between the Bogus Finger and the human subjects.

The collected acceleration recordings and the data previously acquired from the
human subjects were analyzed to determine the effect of the following factors: agent
(human subject, Bogus Finger), pressing force (0.5-4.9 N) and stimuli direction (ver-
tical, horizontal).

In particular, for each measurement, the transfer function from the input signal
to the output acceleration was calculated using the function tfestimate of the GNU
Octave 5.1 software. Figure 7.10 compares the frequency responses of the human
finger (dashed lines) to that of the Bogus Finger with silicone s1 and s2 for the four
force levels measured in the vertical directions. Figure 7.11, instead, reports the same
comparison concerning the horizontal direction. The data measured from human
subjects were aggregated in magnitude averages and standard deviations, providing
more simple visualization and comparison.

The responses to human fingers (gray and blue areas) show a generally narrow
confidence interval, especially in the range 200-400 Hz; in the same range, the response
to the Bogus Finger with silicone s2 is rather close to that of the finger, while, in the
lower range, the response to our device diverges noticeably. Such differences are
greater with silicone s1 than s2 for all factor combinations. The most prominent
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difference involves the amplitude and the frequency of the main resonance peaks,
that are both higher when the Bogus Finger is applied to the testbed. The amplitude
of the main resonance peak depends mainly on the damping at the contact point,
with low damping coefficients associated to large amplitudes. On the other hand,
the frequency of the peak is related to stiffness: the larger the interface hardness, the
higher the frequency of the peak. As a matter of fact, the silicone s1 (which is harder)
always shows higher frequency peaks compared to the soft silicone s2. Finally, the
frequency responses change with motion direction: concerning the vertical direction
the frequency of the peaks measured in presence of the Bogus Finger is always higher
than in presence of the human finger; concerning the horizontal direction, instead,
the frequency of the peaks is close to that of the human finger (at least considering
silicone s2), whereas the amplitudes are about 6 dB higher.
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Figure 7.10: Comparison of frequency responses of the testbed in the vertical di-
rection, for different pressing forces. The responses of the human participants are
represented by grey shaded areas, while the respective average responses are depicted
in dashed lines. Solid cyan and magenta lines report respectively the response of the
Bogus Finger with silicone s1 and s2.
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Figure 7.11: Comparison of frequency responses of the testbed in the horizontal direc-
tion, for different pressing forces. The responses of human participants are represented
blue shaded areas, while the respective average responses are depicted in dashed lines.
Solid cyan and magenta lines respectively report the response of the Bogus Finger
with silicone s1 and s2.

Pressing force control

Force-control error was analyzed in the data recorded during the experiment.

Table 7.3 reports means and standard deviations of the normalized control error
for the human participants and the Bogus Finger. Means account for the accuracy
of the pressing force, whereas standard deviations are related to the force-control
precision.

Overall, the best accuracy and precision are associated to the 2 N force level. For
lower levels, the accuracy of the human participants and the Bogus Finger is similar,
while the precision of the device is much higher. When applying the highest pressing
force (4.9 N), humans show the lowest accuracy, while the device shows uniformly
high accuracy and precision for forces ≥ 2 N.
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Table 7.3: Force-control error.

Force (N) Error (%) mean ± s.d.
Human finger Bogus Finger

0.5 1.6 ± 7.0 1.0 ± 1.6
1.0 -1.6 ± 4.7 1.0 ± 1.0
2.0 -1.1 ± 4.4 0.2 ± 0.25
4.9 -2.7 ± 3 -0.6 ± 0.6

7.6 Discussion

The validation generally confirms the differences predicted from the model reported
in Fig. 7.2. Indeed, since the frequency response of the device testbed was not linear,
this validation can be used only to compare the relative differences between human
finger and the Bogus Finger with different silicone layers. Furthermore, it allows to
compare the theoretical impedance calculated from the model and the literature to
the real values measured with a common haptic device.

As predicted by the model, the Bogus Finger shows two natural resonances for each
test condition, whereas the human finger shows always a single resonance. Moreover,
the subplots of Fig. 7.10 and 7.11 show that the stiffness of the human finger slightly
grows with the pressing force for both motion directions, shifting its natural resonance
towards higher frequency. As predicted by our model, the Bogus Finger shows a
similar trend.

However, whereas in the vertical direction the frequency of the resonances pre-
dicted by the Bogus Finger model is in agreement with the experimental data, in
the horizontal direction the peak frequencies are different concerning the silicone s1.
Such difference can be ascribed to a different friction coefficient that can introduce
slip effects, affecting the frequency response.

The most important model prediction assessment regards the value of the damping
exposed by the silicone layers, being always too small compared to the human finger.
To this end, the damping at the contact point could be increased by finding alter-
native composite materials having similar mass/stiffness ratio, but greater damping
coefficient.

7.7 Conclusions and future development

This chapter presented several design aspects and key features of the Bogus Finger.
Based on the characteristics of the device, a mechanical model was designed and
parametrized with experimental data. The end-to-end validation of the prototype
revealed good approximation of the finger impedance in the frequency range of highest
human sensitivity to vibrations. Despite this, the impedance of the Bogus Finger
diverges in the lower range, with resonance peaks either located at higher frequency
or having larger amplitude for vertical or horizontal vibration, respectively. However,
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the experimental results are in good agreement with the responses calculated offline
on the model. Thanks to this, the resonances of the Bogus Finger may be made to
match the response of the human finger by fine-tuning the silicone layer in its mass,
stiffness, damping and form factor parameters through numerical simulations, thus
reducing the number of tests with physical prototypes [35].

Future extensions encompass also the simulation of force envelopes by means of
lookup tables directly controlling the motion of the stepper motor: these would allow
to achieve increased acceleration/velocity (e.g., reproducing impacts) at the expense
of spatial accuracy, which could however be recovered via force-feedback control.

Finally, the availability of this low-cost DIY tool in open-access form, rather than
proprietary and expensive finger-analogues, has the potential to grant access to real-
istic simulation of finger-based interactions to a larger community of researchers in
the fields of touch psychophysics and haptic interfaces.



8
Python for real-time signal

processing

This final chapter is a sort of appendix that shows one challenging application about
the characteristics of the Python programming language: the digital signal processing
at audio rate. In this thesis, Python has been already mentioned in multiple activities:
for instance, it was used to create all the automatic experimental procedures, to
manage the input/output, the communications with many devices, the randomization
of the experimental trials and the data collection. Concerning the data representation
and the analysis, Python was used to generate all the plots shown in this thesis, and to
perform almost all the statistical analyses. Finally, Python was used also to develop
the control algorithm and the machine learning algorithm of the motionless knob.

As mentioned in Chapter 4, Python has been profitably used to develop and
execute digital simulations of analogical electronic circuits described by non-linear
equations. However, the efficient and uninterrupted execution of such code was not
straightforward, requiring the refactoring procedures presented in the following.

8.1 Computer music applications

Among the many definitions, the development of computer music applications has
been qualified as “the expression of compositional or signal processing ideas” [154].
In fact, a computer music language should be oriented in particular to the develop-
ment of real-time software. To this end, a common characteristic of computer music
languages is their orientation toward real-time software. Due to the efficiency of the
resulting machine code, early computer music developers used to program on their
personal computer in C or C++. This necessity has sometimes caused excessive de-
pendency of the application on the characteristics of the programming language itself
[157]. In particular, the high technicality of C and C++ has often discouraged com-
puter musicians to approach problems, requiring solving skills which are domain of
computer scientists and engineers instead[116, 212]. To reconcile this divide, abstrac-
tions have been proposed leading to specialized languages such as Csound, Max, Pure
Data, SuperCollider, Chuck, Faust, and not only [4]. These abstractions embrace
the imperative, functional and visual programming paradigm. On the one hand they
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allow computer musicians to create software with lower effort; on the other hand, the
long-term life of their sound applications obviously depends on the continued support
of such peculiar languages on standard operating systems and graphic user inter-
faces. Although, many positive examples of communities that succeed in developing
and maintaining open-source hardware and software exist [165], due to the limited
business moved by this niche market, and because many such languages are main-
tained (sometimes even for free) by programmers who are also computer musicians,
unfortunately this community has been suffering probably more than others from the
lack of a systematic, durable approach to the development and maintenance of sound
software [164]. Conversely, Python is continuously increasing in popularity, thanks
also of a non-commercial license of use [132]. Its community maintains a lot of offi-
cial packages, including libraries (e.g. Numpy, Scipy, Matplotlib) providing scientific
computing tools comparable to those equipping dedicated software such as Matlab
and R. Thanks to a fast learning curve, its rapid prototyping features and intuitive
readability of the code, the Python community now includes also users paying partic-
ular attention to the interaction aspects of their software, such as academics [92, 152]
employing Python as a teaching-by-examples tool [63]. Despite this quest for interac-
tivity, use of Python in real-time applications is testified by exceptions: RTGraph, for
instance, instantaneously processes physiological signals and then displays the results
trough the Qt framework [199].

This limitation is common for interpreted software. Unlike C and other compiled
languages, Python in fact generates bytecode which is interpreted by a virtual ma-
chine operating at application level. This, however, is not the only way to run an
application. In particular, Python puts available more than one tool to compile the
code, hence affording performances that are accessible only at processor level. For
instance, the Numba library through its just-in-time compiler speeds up numerical
iterations such as those needed by vectorial operations called by Numpy. Further-
more, chunks of C code can be embedded within a Python program [12] using the
Cython library, which includes a static compiler accepting instructions belonging to
several compiled languages as part of a program written in Python. Using Cython
it is also possible to declare static variables as C programmers do for substantially
reducing the time to bind them at runtime. This way, algorithms translated from
e.g. Matlab or already in C can be compiled through Cython furthermore preserving
the static memory space. Later they can be called from the Python environment as
standard modules, however computed at machine level. In both Numba and Cython
the refactoring of few lines of code is often sufficient to optimize the most computa-
tionally intensive parts of an algorithm, with dramatic speedup of the application. In
the sound processing domain, this optimization is often limited to the loops that are
indefinitely iterated at sample rate.

8.1.1 Related work

The number of computer music programming languages is notable. Each language
differs in terms of abstraction, coding approach, learning curve, portability across
architectures and operating systems. In parallel, all make real-time sound program-
ming easier. In particular, those in the Music-N tradition [153] support dynamic
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instantiation of graphs of unit generators (UG’s), the basic building blocks of a sound
synthesis and processing algorithm. Csound [227] structures the code in two parts: an
instrument file contains the UG’s, while a score file controls them along time through
note and other event parameters. Pure Data [188] and Max [38] allow the visual
programming of UG networks and related control messaging. SuperCollider [154]
implements a client-server architecture enabling interactive sound synthesis and algo-
rithmic composition through live coding, also interpreting different languages thanks
to the flexibility of the client. ChucK supports deterministic concurrency and multi-
ple control rates, providing live coding and enabling live performances [235]. Faust
follows the functional programming paradigm, and builds applications and plugins
for various real-time sound environments thanks to automatic translation into C++
code. It also provides a powerful online editor, enabling agile code development [72].

Existing sound applications in Python mainly focus on the analysis and presenta-
tion of audio, as well as on music retrieval [88, 155, 14]. Most such applications have
no strict temporal requirements, and hence are conventionally written for the inter-
preter: examples of this approach to sound programming can be found in e.g. [238],
where latency figures are also detailed. Concerning sound manipulation, computer
musicians often rely on the Pyo library [13], a client-server architecture allowing to
combine its UG’s together into processing networks. Hence, the abstraction from the
signal level is realized through Pyo also in Python, making the creation of sound
generation and effect chains possible as most sound programming languages do.

On the other hand, the low-level development of sound algorithms is not trivial
when working with UG’s, as they encapsulate the signal processing by definition. Also
because of the existing excellence in this sound programming paradigm, the approach
here described puts the accent to coding at signal level. Addressing such a level in
Python requires to profile and refactor usually few signal processing instructions. The
advantages of code refactoring go beyond sound applications; in fact, refactoring can
be applied to contexts including, among others, real-time data collection, systems
control and automation.

8.1.2 On real-time processing

By definition, real-time processes produce an output within a given time. Concerning
sound processing, nominally this time is inversely proportional to the audio sam-
pling rate. Our test environment is an Intel-i5 laptop computer running Windows
10, connected to a RME Babyface Pro external USB audio interface. Contrarily
to hardware/software systems specifically oriented to real-time audio [65], in such a
standard architecture a sound process can be stopped by the operating system (OS)
scheduler for too long or too many times within an allowed time window, hence be-
coming ultimately unable to regularly refill the audio output buffer at sample rate,
with consequent sound glitches and distortions in the output. A common workaround
to this problem, known as buffer underflow, consists of increasing the size of the audio
buffer. As a sound process normally produces samples much faster than the audio
sample rate, this workaround decreases the probability for the audio interface to find
the buffer empty.

However, longer buffer size comes along with a proportionally higher latency of
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the output. Although latency can be a negligible issue in feed-forward sound interac-
tions, conversely it can annihilate a closed-loop musical perception-and-action, where
typically no more than 10 milliseconds are allowed for a computer music setup to re-
spond to musicians [156]. More in general, all the applications involving multimodal
feedback should limit the processing latency, particularly when tactile feedback is
provided. Therefore, the buffer size must compromise between probability of signal
artifacts and tolerable latency.

Irrespective of the buffer size, higher latency is generally beneficial for sound qual-
ity since the OS scheduler in that case can stop the sound process occasionally for
a longer while, e.g. to handle an external interrupt. However, the developer should
always avoid to include unbounded time operations in a sound processing thread.
Rather, input/output (I/O) instructions, graphic functions, and in general all proce-
dures in charge of the interaction with the system, should be implemented by par-
allel threads sharing lock-free data structures with the sound processing thread. In
this regard, practical general suggestions on real-time programming can be found in
thematic discussions on the Internet [15]. At any rate, Python is not designed to
support the servicing of audio threads within deterministic temporal constraints. For
this reason, regardless of the performances reported for this test environment in the
following sections, Python applications should not be programmed with the purpose
to guarantee real-time sounds at low latency.

8.1.3 Structure of the chapter

The chapter is structured as follows: Sec. 8.2 explains real-time software interpretation
in Python through a simple example. Sec. 8.3 introduces programming and code
profiling with Numba and Cython. Sec. 8.4 applies the above concepts on the VCF
sound algorithm, being profiled during its running in real time. All the code examples
have been put available on GitHub,1 along with the scripts that have been used to
benchmark the algorithms. Finally the Section 8.5 discusses the results in front of
the constraints imposed by the OS to real-time process running.

8.2 Standard interpreted approach

Real-time program development first of all needs to manage sound I/O through a low-
level application programming interface. Concerning Python, the library PyAudio
[184] among others provides bindings for portaudio, an open-source cross-platform
audio device. As most low-level libraries do, PyAudio allows to operate sample-by-
sample on audio chunks whose size is set by the user. Typical chunks range between
64 and 2048 samples. PyAudio provides a blocking mode, enabling synchronous read
and write operations, as well as a non-blocking mode managing the same operations
through a callback by a separate thread. On top of I/O, Python provides libraries
supporting the agile development of virtual sound processors: the module scipy.signal
within the Scipy library, for instance, contains some standard signal processing tools.
An exhaustive list of Python libraries supporting audio analysis and processing can be

1https://github.com/yuridepra88/RealtimeAudioPython

https://github.com/yuridepra88/RealtimeAudioPython
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Figure 8.1: Real-time spectrum of the output signal and low-pass filter cutoff param-
eter control.

found in [211]. Further examples of the interpreted approach to sound programming
are presented in [238].

Listing 8.1: Audio I/O – Callback function

de f c a l l b a c k ( i d , frame count , t i n f o , f ) :
data = w a v e f i l e . readframes ( frame count )
samples = pcm2f loat ( data )
y = proce s s ( data )
out = float2pcm ( y )
re turn ( out , pyaudio . paContinue )

In Listing 8.1, the basic structure of a callback procedure enabling the asyn-
chronous processing of an audio chunk at sample rate is reported. Each time the
procedure is called, one chunk is read from the audio buffer and then assigned to the
array data, containing accessible sound samples. The functions pcm2float(byte[]) and
float2pcm(float[]) convert each sample from raw bytes to [-1., 1.]-normalized floats and
vice versa. Finally, the function process(data) encapsulates the processing algorithm.

Building upon this structure, a simple procedure is exemplified implementing the
following low-pass digital filter [162]:

y[n] = αx[n] + (1− α)y[n− 1] , 0 < α < 1 . (8.1)

Fig. 8.1 shows a simple graphical interface for this low-pass filter control. The
interface displays also the Fast Fourier transform computed at runtime on each chunk
by the scipy.fft(float[]) method, provided by Scipy. An example that implements
different Butterworth filters meanwhile providing parameter controls to the user is
available on our GitHub repository.

Listing 8.2: Low-pass filter implementation – iPhyton
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de f p roce s s ( data ) :
g l o b a l l a s t s a m p l e

b = 1−alpha
y= np . arange (CHUNK SIZE, dtype=f l o a t )

y [ 0 ] = alpha ∗data [ 0 ] + b∗ l a s t s a m p l e
f o r i in range (1 ,CHUNK SIZE−1):

y [ i ] = alpha ∗data [ i ] + b∗y [ i −1]
l a s t s a m p l e = y [CHUNK SIZE−1]
re turn y

Listing 8.2 shows the respective implementation: each time the process(data) func-
tion is called, the samples in the array are sequentially processed by the algorithm
to form one output chunk; moreover, the last output sample is stored in the variable
last sample for processing the first sample of a new chunk when process(data) is called
next. The variable last sample must belong to the global scope since carrying a value
between subsequent function calls. As opposed to other languages, global variables in
Python must be declared at the beginning of a function using the global identifier if
they are later written within an instruction appearing inside the same function. Oth-
erwise, a local variable with the same name is automatically generated. Conversely,
the variable alpha does not need such declaration; in fact this variable is read inside
the function and, concurrently, written by the control thread that assigns a value
depending on the slider position visible in Fig. 8.1. These considerations are crucial
not only to prevent from incorrect use of the variable scope. In fact, as explained
in the next Section, global variables must be correctly refactored depending on the
optimization tool.

Alternatively, Python offers the possibility to program the UG’s as objects, hence
inherently encapsulating every UG state as part of the corresponding object vari-
ables. By guaranteeing code modularity through the unit generator abstraction, the
UG-based/object-oriented approach essentially removes the need to manage global
variables, with major advantages when sets of identical UG’s, such as oscillators or
filters, must be first instantiated and then put in communication with each other. As
an example, the object class OscSine() was uploaded in GitHub, allowing multiple
instances of a simple sinusoidal oscillator. Similarly to the previous simple low-pass
filter, this example will be refactored and hence proposed again in the next sections.
However, coherently with the general aim of exploring low-level sound programming,
it will give emphasis to procedural instead of object-based examples. Some arguments
are in favor of this choice. For instance, especially in the case of nonlinear systems
such as those being presented in Sec. 8.4, the UG-based approach shows limits as
soon as a sound algorithm improvement requires to concatenate existing UG’s in the
form of a delay-free loop [73]. In such a case, programming a new object lumping
together such UG’s can be much more time-consuming and error-prone than adapt-
ing an existing procedure to compute the delay-free loop. Unfortunately, the Python
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interpreter fails to compute sounds signal in time even at audio sample rate as soon
as the processing algorithm falls outside simple cases. Although on the one hand dy-
namic interpretation allows faster development and reduces programming errors, on
the other hand it slows down the computation. Among the causes of this slow down,
dynamic typing has been recognized to prevent the interpreter from achieving the real
time. In this regard, the Python library line profiler [121] can be used to profile and
analyse code performances: such library measures the code execution time line-by-
line. An example of interpreted code profiling is reported in Listing 8.3, where the
cost of incrementing a variable and computing a sin() function are measured. This
example will be proposed again in the next section, to benchmark the refactored code.

Listing 8.3: Global variable profiling – interpreted Python

Function : t r y g l o b a l
Hit time un i t : 3 .41 e−7 s
Total time : 0 .1037 s

Hits Time Per Hit % Time Line Contents
==================================================

1 3 .0 3 .0 0 .0 a=0
de f t r y g l o b a l ( ) :

g l o b a l a
1 3 .0 3 .0 0 .0 i=0

100001 85289.0 0 .9 28 .0 whi l e i < 100000:
100000 92719.0 0 .9 30 .5 i += 1
100000 126083.0 1 .3 41 .5 a = math . s i n ( i )

8.3 Code speedup

Due to the dynamic interpretation of the bytecode, Python does not allow to declare
static variables. On the other hand static variables speed up access to the data, since
they are not allocated in the local memory of a function every time it is called. In
practice, the conversion into static of any possible variable that is used intensively in
a program can bring substantial performance benefits. As part of their optimization
features, Numba and Cython allow to declare static variables.

8.3.1 Numba

Numba is a just-in-time (JIT) compiler for vectorial computing in Python [135]. Us-
ing Numba, it is possible to speed up functions containing instructions that can be
computed more efficiently at machine instead of application level, such as those ap-
plying to NumPy objects. In this case, the instructions are sent to the JIT compiler
by adding the decorator @jit before declaring a function. At this point, the byte-
code is translated in Low Level Virtual Machine Intermediate Representation (LLVM
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IR), an architecture-independent language similar to assembly. Numba provides two
operating modes, that are assigned during the decoration: the nopython mode (i.e.,
@jit(nopython=True)) compiles the code completely, whereas the object mode tries
to compile the loops while leaving to the interpreter the instructions outside them.
The performance improvement resulting from the object operating mode is limited
and, in general, not sufficient for achieving the real time.

Numba is easy to use, furthermore it requires almost no changes of the Python
code. On the other hand it translates only a fraction of the Python instruction set,
even if its expressive power is increasing release after release. Most importantly, the
functions compiled in nopython mode cannot access Python objects at runtime; thus,
data can be exchanged between such functions and a Python program only in form of
input and return arguments. This limitation asks for refactoring the communication
among functions and restructuring the code into simple functions, containing only
critical instructions (i.e., arithmetic loops).

Listing 8.4: Global variable profiling – Numba

from numba import j i t , f l o a t 3 2
import math
a=0.
@j i t ( f l o a t 3 2 ( f l o a t 3 2 ) , nopython=True )
de f numba global ( a ) :

i=0
whi le i < 100000:

i+=1
a = math . s i n ( i )

r e turn a

# Execution and benchmark o f the r e f a c t o r e d func t i on
Function : wrap numba global
Hit time un i t : 3 .41 e−7 s
Total time : 0 .0474 s

Hits Time Per Hit % Time Line Contents
===================================================

def wrap w numba global ( ) :
g l o b a l a

1 129328.0 129328.0 93 .0 wrap numba global ( )
1 3 .0 3 . 0 0 .0 a=1.
1 2183 .0 2183 .0 1 .6 wrap numba global ( )

Numba is instructed about static variables through the decorator, that must ex-
plicitly refer to the input and return arguments as Listing 8.4 shows. Without this
information, the compiler in some cases could be unable to determine the variable
scope and, consequently, force the object mode. In the specific case a wrapper func-
tion named wrap numba global() is needed to declare the global variable a, and then
pass it to the function numba global(a) as an argument. Otherwise, numba global can-
not access its content since belonging to the runtime space. Listing 8.4 shows also the
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time profiling concerning the computation of the sin() function applied to iterated
variable after Numba refactoring. wrap numba global() is called twice: in the first
call the JIT compiler optimizes the code, hence slowing down the execution; from the
second call on, the optimized cycle is computed in as fast as 7.45 ns.

8.3.2 Cython

Cython extends Python by allowing explicit type declarations and direct compilation
of C code [12]. Almost all Python libraries for scientific computing use Cython to
minimize the computational burden, also because most algorithms provided by these
libraries were already optimized on pre-existing pieces of C, C++ or even Fortran
code. In fact, Cython is able to wrap functions written in different compiled languages.
Unlike Numba, Cython is an ahead-of-time (AOT) compiler: during the so-called
cythonization, C code is generated from additional (.pyx) files written by the developer
during refactoring. Such files contain Python code (that is optimized automatically)
and/or function wrappers of external routines in other languages. The efficiency of
the cythonization can be measured as usual through code profiling: by just adding
an option to the cythonization command, Cython even offers pictorial highlighting of
the instructions proportionally to their computational cost.

Listing 8.5: Global variable profiling – Cython

Function : c y t h o n t r y g l o b a l
Hit time un i t : 3 .41 e−7 s
Total time : 0 .0526 s

Hits Time Per Hit % Time Line Contents
=====================================================

1 3 .0 3 .0 0 .0 cde f f l o a t a=0
de f c y t h o n t r y g l o b a l ( ) :

g l o b a l a
1 4 .0 4 .0 0 .0 cde f i n t i=0
1 1 .0 1 .0 0 .0 whi l e i < 100000:

100000 55087.0 0 .6 37 .4 i+=1
100000 92154.0 0 .9 62 .6 a =math . s i n ( i )

Listing 8.5 repeats the refactoring example seen in Listing 8.4, this time in Cython.
Before the functions declaration, the global variable is defined static using the anno-
tation cdef. Although Cython reduces the processing time by about 50% the interpre-
tation of the same procedure, Numba generates faster code at the cost of the initial
optimization.

On the other hand, compared to Numba, Cython abstracts less layers hence allow-
ing easier debugging and optimization of the code. However, the creation of additional
files (at least one) is needed. As an example, Listing 8.6 revisits the simple low-pass
filter implementation seen in Sec. 8.2. After cythonization, which makes available the
function lp by compiling low pass.pyx, the resulting low pass module can be launched
from a Python program:
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• c low pass.c contains the procedure within the C function lp.

• low pass.pyx binds the C file to the corresponding Python functions. From it,
Cython compiles the corresponding module low pass.

• test lp.py calls the low pass module functions.

For the sake of comparison, the Cython and Numba refactored code of the Osc-
Sine() object class have been uploaded in GitHub, together with time profiling.

Listing 8.6: Low-pass filter implementation – Cython

===========================
c low pas s . c

===========================
double l a s t s a m p l e = 0 ;
double b = 0 ;

void lp ( double ∗ data , i n t samples , double ∗ a ){
b = 1 − a ;
data [ 0 ] = a∗data [ 0 ] + b∗ l a s t s a m p l e ;
f o r ( i n t i = 1 ; i < samples ; i++) {

data [ i ] = a∗data [ i ] + b∗data [ i −1] ;
}
l a s t s a m p l e = data [ samples −1] ;
r e turn ;

}

===========================
low pass . pyx

===========================
import cython
. . .

#d e c l a r e i n t e r f a c e to C code
cde f extern void lp ( double ∗ data , i n t samples , double ∗ a )

# c−array that conta in s samples
cde f double ∗ cdata

#func t i on compiled as module
de f p roc e s s (np . ndarray [ double ] data , i n t samples , double a l f a ) :

. . .
lp ( cdata , samples , a )
. . .
r e turn data

===========================
t e s t l p . py
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===========================
import low pass
. . .

# ’ ’ a ’ ’ i s the user parameter
de f p roc e s s ( data ) :

r e turn low pass . p roce s s ( data , CHUNK SIZE, a )

8.3.3 Comparisons & Benchmarking

For what we have seen, Numba and Cython target two different approaches to code
refactoring. Below, the most important features and differences are briefed.

• In general, code refactoring is easier and faster in Numba than Cython.

• Numba performs well if arithmetic operations are repeatedly computed without
communicating with Python objects at runtime.

• Cython code is compiled once (AOT), while Numba optimizes a script at each
new execution (JIT).

• Cython requires to write C instructions.

• Cython allows to debug and profile the code after translation.

• Cython allows to embed existing code written in C or other languages.

The computational performances of cythonized functions encoding standard al-
gorithms such as Fibonacci, FASTA, binary-tree visits in different programming lan-
guages can be benchmarked, thus measuring processor and memory occupation. For
instance, the Computer Language Benchmark Game [216] compares the processing
time differences between interpreted Python and C code, highlighting a dramatic per-
formance drop of some Python implementations. Using Pybenchmarks [160] instead,
several pairwise comparisons among Python algorithm implementations (e.g. Python3
vs. Numba or Numba vs. Cython) can be performed. In general, Numba requires less
computational resources than Cython. On a final note, Numba and Cython are not
the only libraries available for code optimization and speedup. A thorough discussion
about compiled Python can be found in [89], whereas examples of C functions writ-
ten for processing sounds using the portaudio device can be found in [189]. Together,
such documentary resources provide a broad picture of the pros and cons coming from
using interpreted or compiled Python instead of C/C++.

8.4 Applications to Virtual Analog

Virtual analog is a branch of sound processing dealing with the modeling and real-
time simulation of analog effects [247]. To this end, a digital simulation of the voltage-
controlled filter algorithm, previously shown in Chapter 4, is reported. The code was
benchmarked using the line profiler and the memory profiler [182] libraries concerning
processing time and memory occupation, respectively.
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8.4.1 Voltage-controlled filter

The code development and refactoring of the voltage-controlled filter aboard the EMS
VCS3 sound synthesizer is presented. The core part of the algorithm consists of iterat-
ing the computation of five nonlinear and five linear equations, until the loop converges
to a fixed point solution; at this point the state of the filter is updated and a new
input sample vIN can be processed:

1: repeat

2: read vIN

3: repeat

4: compute v∗OUT = vOUT

5: compute u1 = tanh
(
(v∗OUT − vIN )/2VT

)
6: compute vC1 = I0(u2 + u1)/(4CFS) + s1

7: compute u2 = tanh
(
(vC2 − vC1)/2VT

)
8: compute vC2 = I0(u3 − u2)/(4CFS) + s2

9: compute u3 = tanh
(
(vC3 − vC2)/2VT

)
10: compute vC3 = I0(u4 − u3)/(4CFS) + s3

11: compute u4 = tanh
(
(vC4 − vC3)/2VT

)
12: compute vC4 = I0(u5 − u4)/(4CFS) + s4

13: compute u5 = tanh(vC4/6γ)

14: compute vOUT = (K + 1/2)vC4

15: until |vOUT − v∗OUT | < 10−4|v∗OUT |

16: compute s1 = vC1/(2FS) + s1

17: compute s2 = vC2/(2FS) + s2

18: compute s3 = vC3/(2FS) + s3

19: compute s4 = vC4/(2FS) + s4

20: until ever.

The translation of this core in C code is straightforward since it contains only the
instructions describing the equations. The final software architecture of the Cython
refactoring using an external C file consists of c vcs.c and vcs.pyx, forming the algo-
rithm library, and the main file test vcs.py that calls the external functions importing
the vcs module. The code is made available in the Github repository. . A Numba and
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Table 8.1: Voltage-controlled filter: mean processing time and memory occupation
of different implementations; chunk size=512; processing time averaged over 1000
chunks. (Real-time limit: 22.6 µs/sample)

Processing time Memory occupation
Interpreted Python 199.3 µs/sample 1KB
Cython annotations 6.5 µs/sample 16KB
Cython + native C 0.14 µs/sample 12KB
Numba 1.36 µs/sample 12KB

an annotated Cython version of the same algorithm were prepared as well. The re-
lated Numba refactoring consists of the creation of a wrap function compute numba(),
passing the global variables to the compiled function compute numba low() that com-
putes the equations. Moreover, the compiler is instructed about the static character
of the input and return arguments.

As it can be seen in Table 8.1, Cython is about five times as fast as Numba. This
difference highlights the computational advantage for the C application of keeping
the filter state within global variables instead of continuously passing their values
through arguments, as Numba does instead. Moreover, the benefits of importing few
C instructions accelerate Cython by about fifty times as much. In fact, the manual
reprogramming of the hyperbolic tangent function using the math.c library translates
in a notably more efficient implementation of the same code.

In any case, Table 8.1 reports computation times for the program when it is in
running state. As anticipated in Sec. 8.1.2, the same program can take much longer
to deliver sound samples to the audio interface in the multitasking environment. This
fact is discussed in more detail in the next section.

8.5 Discussion

Table 8.2 reports statistics for the voltage-controlled filter implemented using the
Cython+native C approach under different OS load conditions. In all cases a chunk
size of 64 samples was set. The real-time limit for this chunk is equal to 64 × 22.6

Table 8.2: Statistics for the voltage-controlled filter running at different OS loads,
with audio chunks of 64 samples: audio application only, audio application with I/O
operations in the Python GUI and audio application with copy of a directory tree in
background.

Load
Audio only GUI operations File copy

Idle Proc. Total Idle Proc. Total Idle Proc. Total
Min (ms) 0.005 0.039 0.044 0.005 0.037 0.042 0.005 0.038 0.044
Max (ms) 36.5 8.7 36.8 33.9 31.6 40.9 27.9 29.9 29.9
Avg (ms) 1.31 0.14 1.44 1.32 0.13 1.44 1.35 0.09 1.45
Viol. (%) 11% 0.17% 11.2% 11% 0.8% 11.8% 11% 0.15% 11.2%
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µs ≈ 1.45 ms. According to the values reported in Table 8.1, the process takes 64
× 0.14 = 8.96 µs processor time for each chunk. However, in the best case a chunk
was computed in about 37 µs in our test environment. The extension of this extra
time depends on the priority assigned to the real-time process by the OS. Using the
highest load that it was possible to reproduce, the consequent extra time (31.6 ms in
Table 8.2) exceeded the real-time limit for this chunk size by no less than 20 times.

Furthermore, Table 8.2 in the last row reports the percentage of violations of
the real-time limit, measured as the time between two subsequent callbacks (idle
time). Since no buffer underflow and consequent sound artifacts occur in consequence
of such violations, certainly the system alternated audio chunks preemption with
prioritization of non real-time processes. In fact, portaudio creates a further buffering
level hence smoothing out delays due to algorithmic and/or OS bottlenecks, at the
cost of introducing additional latency—about 50 ms in our tests. Fig. 8.2 shows that,
in practice, few longer delays interleaved with several short idle times. Such delays
happen when the Python process waits for the next chunk of samples to become
available from the audio driver.

The total latency of the system depends on multiple factors: the audio interface
hardware, the audio drivers, the buffering levels introduced by the system and the
chunk size. In our test environment, latency grew up to about 500 ms when the
voltage-controlled filter was computed using the internal sound card instead of the
Babyface. More generally, Python does not acquire special privileges from the OS or
address possible priority inversion problems, and even an audio thread must contend
with non-real-time Python threads for the interpreter lock. Furthermore, real-time
Python programmers should always check the virtual memory occupation of their
software as page faults can have a huge impact on real-time performance. Unless these
issues are rigorously managed, uninterrupted audio in principle cannot be guaranteed
by a Python application.

8.6 Lesson learnt

This chapter made a short tour showing the potential and limits of Python for real-
time sound programming, starting with a simple digital filter to a complex virtual
analog model. If the interpreter alone has limited application, conversely refactoring
critical parts of the code for libraries like Numba or Cython allows for processing also
complex algorithms in real time. In particular:

• the code parts dealing with environment setup, type conversions, user interac-
tion, signal analysis and interface development can be managed by the Python
interpreter;

• procedures which do not need to intensively interact with the program workspace
can be compiled with Numba (e.g., CPU bound loops);

• procedures, which, conversely, must often interact with the program workspace
in terms of e.g., memory allocation or signal resampling and filtering, can be
compiled with Cython;
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Figure 8.2: Timing of audio callbacks and audio processing in the voltage-controlled
filter algorithm.

• finally, already existing procedures written in C or other languages can be effi-
ciently cythonized as well.

Tests of a computationally-intensive sound algorithm were made under different
OS loads, leading to accurate audio outputs with a latency of about 50 ms. Unfortu-
nately, lower latency values were out of reach, due to the Python threading mechanism
and its interaction with the OS scheduler. This limit prevents from using the resulting
applications in contexts where latency is critical (e.g., interactive music). However,
Python has certainly potential for integrating sets of computationally-intensive algo-
rithms in frameworks where real-time processing is not bound to low-latency interac-
tive controls.
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Conclusions

This thesis showed some effects of multimodal feedback to the user interaction with
professional appliances, mostly highlighting the importance of haptic feedback for the
reliability and the robustness of the interaction in specialized environments. As a first
step, several literature studies on physical/virtual input controllers, multimodal in-
teraction, and material classification were analyzed and discussed. Secondly, research
questions which were relevant to the context of professional appliances were investi-
gated throughout rigorous experiments. Finally, based on experimental and literature
results, prototypes were designed and validated through user interaction studies.

In the first part of the thesis, three studies (each made of multiple experiments)
addressed various aspects related to the rendering of reliable virtual buttons for pro-
fessional appliances. In particular, the first study assessed the capabilities of humans
to classify materials based on unimodal (auditory, tactile) and bimodal feedback in
passive conditions. Compared to the literature, the experiments here used ecological
stimuli, such as the reproduction of a light ball bouncing on top of different materi-
als (i.e. wood, plastic, and metal). Experimental results suggested that even in the
worst conditions, both unimodal auditory and tactile modalities scored greater than
chance level, allowing material classification based on the decay of the feedback and
its spectral content. On the other hand, the dual modality always gave rise to greater
classification scores, suggesting a profitable integration effect between auditory and
tactile modalities. The second study further investigated the material classification
based on the unimodal tactile modality in active conditions: multiple virtual buttons
inspired to ecological materials were designed for an ad hoc prototype device, consist-
ing of a touchscreen interface offering rich tactile feedback dependent on the specific
normal force applied. Two user panels evaluated several aspects of the tactile feed-
back associated with various sets of virtual buttons: while the vibrotactile feedback
originating from real bouncing events was relatively clearly discriminated, users could
more successfully discriminate the buttons designed from the ground up, exploiting
the prototype device’s response and characteristics. In general, the study suggested
that the unimodal vibrotactile feedback can be profitably used to discriminate few vir-
tual buttons rendering ecological stimuli. Consequently, touchscreens providing such
haptic feedback can be adopted to improve the user interaction in work environments
affected by auditory or visual distractors, such as professional kitchens and laundries.
However, in order to strengthen the haptic effects to the most, an effective haptic
feedback design must match the inherent resonance frequencies of the haptic device
in the frequency region where the human vibration perception is best. To this end, the
third study assessed whether the vibration direction (normal, lateral) or the normal
force applied to the surface (0.5 N, 4.9 N) affected the sensitivity to haptic feedback.
The first experimental results, now limited to sinusoidal vibrations at 250 Hz, showed
that the sensitivity to normal vibrations is lower than the sensitivity to lateral vi-
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brations. Moreover, the sensitivity to normal vibrations was found to depend on the
pressing force, with increased sensitivities associated to higher pressing force, whereas
the sensitivity to lateral vibrations was not. The results of this study suggested that
haptic devices with limited power capabilities should, therefore, provide lateral vibra-
tions to maximize the perceived strength of the haptic feedback. These three studies
achieved the first goal of the research, drawing a roadmap for developing a touch-
screen interface displaying virtual buttons with multimodal feedback. Furthermore,
they gave insights on the haptic feedback design and the mechanical optimization
of haptic devices. The characterization of the devices used in the above-mentioned
experiments, which often required the involvement of human subjects, inspired the
development of a robotic tool to simulate the impedance of the human finger while
applying different force levels. The robotic tool, aimed at reducing the effort needed
to characterize haptic devices, was modeled, parameterized, and validated, reporting
a good simulation of the finger impedance in the frequency range 200-400 Hz.

The second part of the thesis addressed a number of research questions about
knobs. The first study achieved the second goal of the research: thanks to the inves-
tigation of new technologies and hardware configurations, a low-cost knob providing
programmable force-feedback was designed, developed and patented. The related user
studies proved that, even simple resistive feedback patterns, improved accuracy and
precision in the rotary selections. Moreover, the study demonstrated practical appli-
cations of the resistive feedback design in the context of professional appliances and
multimedia controllers. In accordance with the third research goal, the other studies
reported in the second part investigated a novel interaction primitive. The Non-a-
knob is the concept design of a new user interface for professional appliances that,
without having moving parts, embeds the form factor of a physical knob in the layout
of the appliance. A preliminary experiment successfully tested the hypothesis that
rotary gestures were eligible to substitute the standard rotations accomplished with
physical knobs. The experiment assessed the accuracy, precision, starting position
and finger deviations between such two configurations, finding significant differences
only regarding finger deviation. Indeed, as opposed to standard rotations, during
the rotary gestures each finger slides almost independently from the others. Given
this significant variability, the prototypes of motionless knob were controlled by neu-
ral networks rather than predefined models. Several configurations and detection
technologies were discussed and compared, achieving a working solution. The most
promising prototype was evaluated in an experiment that compared the detection per-
formance of the device with the objective data acquired in the preliminary experiment.
Although the results showed significant differences between the two experiments in
terms of accuracy and precision, such differences depended on the parameters of the
control algorithm, being therefore be easily adjustable. Conversely, the control algo-
rithm of the motionless knob was able to encode gestures and rotations in the same
fashion, independently of the physical characteristics of the subjects. Eventually, the
last part of the study proposed a full concept design that merged together multiple
research findings: the motionless knob was ideally merged with the haptic touchscreen
described in the first part to create a compact user interface enabling an advanced
user interaction with professional appliances.

Future work will encompass the progressive refinement of the prototypes accom-



Conclusions 155

panied by rigorous validations carried out with the material and methods developed
during this PhD. Indeed, the design and test of rich haptic feedback for a motionless
knob will be the natural subsequent step in the development of an interface. The
final steps of the research will be about the engineering of the discussed prototypes
in terms of mechanical and electronic design. Further research is also needed regard-
ing the materials of the interfaces. The measurement tools and software solutions
described in the thesis will be used to investigate yet not considered experimental
conditions, extending and strengthening the results of this research.
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Complementary activities

During my Ph.D., I accomplished several complementary activities as member of the
Advanced Development and Technology (AD&T) team at Electrolux Professional. All
those multidisciplinary activities strongly contributed to my personal and professional
growth.

Communication Protocols

During the first year of Ph.D., I developed an ASCII based client/server commu-
nication protocol over TCP/IP to interact with a COMAU Racer 4 robotic arm.
The server on the robot side was configured to accept different type of commands,
like: absolute positions, relative positions, point-based trajectories or paramterized
trajectories. A demo client was developed in Python and the communication was
successfully tested in multiple task. For instance, the system was profitably used
to perform flipping actions during food cooking tasks. The control strategies of the
trajectories between successive positions were managed by the robot’s proprietary
planning system.

I also developed several Python clients to communicate with Electrolux Profes-
sional machines through proprietary protocols.

Computer Vision

I developed many computer vision algorithms for different applications:

• recognition and estimation of steam emissions in controlled environments to
monitor and compare the performances of Electrolux appliances (continuous
integration of background/foreground elements)

• object detection of dishes and glasses inside washing baskets applying classic
computer vision algorithms (e.g., edge detection, histograms analysis)

• food recognition and tracking during grilling task using a re-trained version of
the Mask-R CNN. The algorithm was used to build a dataset of food pose during
grilling task, which complementary article is currently under review [183].

Rapid Prototyping

Beside prototyping the user interfaces described in this thesis, I used the platform
Arduino to deliver many prototypes to Electrolux Professional regarding data acqui-
sition and data visual representation.
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Detection of keyboard vibrations and effects on perceived piano quality. The J.
of the Acoustical Society of America, 142(5):2953–2967, 2017.

https://elk.audio/audio-latency-demystified-part-ii/
https://elk.audio/audio-latency-demystified-part-ii/


Bibliography 165

[77] Bettina Forster, Cristiana Cavina-Pratesi, Salvatore M Aglioti, and Giovanni
Berlucchi. Redundant target effect and intersensory facilitation from visual-
tactile interactions in simple reaction time. Experimental brain research,
143(4):480–487, 2002.

[78] John J. Foxe. Multisensory integration: Frequency tuning of audio-tactile inte-
gration. Current Biology, 19(9):R373 – R375, 2009.

[79] Milton Friedman. The use of ranks to avoid the assumption of normality im-
plicit in the analysis of variance. J. of the American Statistical Association,
32(200):675–701, 1937.

[80] Rebecca Fenton Friesen, Michael A Peshkin, and J Edward Colgate. Bioinspired
artificial fingertips that exhibit friction reduction when subjected to transverse
ultrasonic vibrations.

[81] Waka Fujisaki and Shin’ya Nishida. Audio–tactile superiority over visuo–tactile
and audio–visual combinations in the temporal resolution of synchrony percep-
tion. Experimental brain research, 198(2-3):245–259, 2009.

[82] Waka Fujisaki, Midori Tokita, and Kenji Kariya. Perception of the material
properties of wood based on vision, audition, and touch. Vision Research,
109:185 – 200, 2015. Perception of Material Properties (Part I).

[83] Markus Funk, Juana Heusler, Elif Akcay, Klaus Weiland, and Albrecht Schmidt.
Haptic, auditory, or visual? towards optimal error feedback at manual assembly
workplaces. In Proc. of the 9th ACM Int. Conf. on Pervasive Technologies
Related to Assistive Environments, pages 1–6, 2016.

[84] William W. Gaver. Synthesizing auditory icons. In Proc. of the INTERACT ’93
and CHI ’93 Conf. on Human Factors in Computing Systems, CHI ’93, pages
228–235, New York, NY, USA, 1993. ACM.

[85] Edouard Gentaz, Gabriel Baud-Bovy, and Marion Luyat. The haptic perception
of spatial orientations. Experimental brain research, 187(3):331, 2008.

[86] Bruno L. Giordano and Federico Avanzini. Perception and Synthesis of Sound-
Generating Materials, pages 49–84. Springer London, London, 2014.

[87] Bruno L. Giordano and Stephen McAdams. Material identification of real im-
pact sounds: Effects of size variation in steel, glass, wood, and plexiglass plates.
The J. of the Acoustical Society of America, 119(2):1171–1181, 2006.

[88] John C Glover, Victor Lazzarini, and Joseph Timoney. Python for audio signal
processing. 2011.

[89] Micha Gorelick and Ian Ozsvald. High Performance Python: Practical Perfor-
mant Programming for Humans. ” O’Reilly Media, Inc.”, 2014.

[90] Griffin Technology. PowerMate multimedia control knob, accessed March 29,
2021. Available at https://www.iclarified.com/i1112/.

 https://www.iclarified.com/i1112/


166 Bibliography

[91] Steve Guest, Caroline Catmur, Donna Lloyd, and Charles Spence. Audiotac-
tile interactions in roughness perception. Experimental brain research. Experi-
mentelle Hirnforschung. Expérimentation cérébrale, 146:161–71, 10 2002.
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impedance of the index finger in multiple dimensions. In Int. Conf. on Hu-
man Haptic Sensing and Touch Enabled Computer Applications, pages 175–180.
Springer, 2008.

[123] Johan Kildal. 3d-press: haptic illusion of compliance when pressing on a rigid
surface. In Int. Conf. on Multimodal Interfaces and the Workshop on Machine
Learning for Multimodal Interaction, pages 1–8, 2010.

[124] Laehyun Kim, Manchul Han, Sang Kyun Shin, and Se Hyung Park. A haptic
dial system for multimodal prototyping. In Int. Conf. on Artificial Reality and
Telexistence (ICAT), 2008.

[125] Young-Seok Kim and Thenkurussi Kesavadas. Material property recognition
by active tapping for fingertip digitizing. In 2006 14th Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems, pages 133–139.
IEEE, 2005.

[126] Young-Seok Kim and Thenkurussi Kesavadas. Material property recognition by
active tapping for fingertip digitizing. In Proc. of the 14th Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems, pages 133–139,
March 2006.

[127] Mathias Kirkegaard, C Frisson, and MM Wanderley. Torquetuner: A self con-
tained module for designing rotary haptic force feedback for digital musical
instruments. In Proc. of the 2020 Int. Conf. on New Interfaces for Musical
Expression, NIME, 2020.

https://github.com/rkern/line_profiler
https://github.com/rkern/line_profiler


Bibliography 169

[128] Roberta L. Klatzky, Dinesh K. Pai, and Eric P. Krotkov. Perception of ma-
terial from contact sounds. Presence: Teleoperators & Virtual Environments,
9(4):399–410, 2000.

[129] Emilia Koskinen, Topi Kaaresoja, and Pauli Laitinen. Feel-good touch: Finding
the most pleasant tactile feedback for a mobile touch screen button. In Proc.
of the 10th Int. Conf. on Multimodal Interfaces, ICMI ’08, pages 297–304, New
York, NY, USA, 2008. ACM.

[130] Kathrin Krieger, Alexandra Moringen, Astrid ML Kappers, and Helge Ritter.
Influence of shape elements on performance during haptic rotation. In Int.
Conf. on Human Haptic Sensing and Touch Enabled Computer Applications,
pages 125–137. Springer, 2018.

[131] Kathrin Krieger, Alexandra Moringen, and Helge Ritter. Number of fingers and
grasping orientation influence human performance during haptic rotation. In
2019 IEEE World Haptics Conf. (WHC), pages 79–84. IEEE, 2019.

[132] Sonal Dahiya Krishan Kumar. Programming languages: A survey. Int. J. on
Recent and Innovation Trends in Computing and Communication (IJRITCC),
pages 307 – 313, 05 2017.

[133] John K. Kruschke. Doing Bayesian data analysis - A tutorial with R, JAGS,
and Stan. Academic Press, 2nd editio edition, 2014.

[134] Andrew J. Kunkler-Peck and Michael T. Turvey. Hearing shape. J. of Experi-
mental psychology: human perception and performance, 26(1):279, 2000.

[135] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based
python jit compiler. In Proc. of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, pages 1–6, 2015.

[136] Ju-Hwan Lee and Charles Spence. Assessing the benefits of multimodal feedback
on dual-task performance under demanding conditions. People and Computers
XXII Culture, Creativity, Interaction 22, pages 185–192, 2008.

[137] Seungyon Lee and Shumin Zhai. The performance of touch screen soft buttons.
In Proc. of the SIGCHI Conf. on human factors in computing systems, pages
309–318, 2009.

[138] Michael Levin and Alfred Woo. Tactile-feedback solutions for an enhanced user
experience. Information Display, 25(10):18–21, 2009.

[139] Daniel J. Levitin, Karon MacLean, Max Mathews, Lonny Chu, and Eric Jensen.
The perception of cross-modal simultaneity (or “the greenwich observatory
problem” revisited). In AIP Conf. Proc., volume 517, pages 323–329. AIP,
2000.



170 Bibliography

[140] Yi-Chi Liao, Sunjun Kim, and Antti Oulasvirta. One button to rule them
all: Rendering arbitrary force-displacement curves. In The 31st Annual ACM
Symposium on User Interface Software and Technology Adjunct Proc., pages
111–113, 2018.
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