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Abstract: This paper presents a study about a Machine Learning approach for modeling the stiffness
of different high-modulus asphalt concretes (HMAC) prepared in the laboratory with harder paving
grades or polymer-modified bitumen which were designed with or without reclaimed asphalt (RA)
content. Notably, the mixtures considered in this study are not part of purposeful experimentation
in support of modeling, but practical solutions developed in actual mix design processes. Since
Machine Learning models require a careful definition of the network hyperparameters, a Bayesian
optimization process was used to identify the neural topology, as well as the transfer function, optimal
for the type of modeling needed. By employing different performance metrics, it was possible to
compare the optimal models obtained by diversifying the type of inputs. Using variables related to
the mix composition, namely bitumen content, air voids, maximum and average bulk density, along
with a categorical variable that distinguishes the bitumen type and RAP percentages, successful
predictions of the Stiffness have been obtained, with a determination coefficient (R2) value equal
to 0.9909. Nevertheless, the use of additional input, namely the Marshall stability or quotient, allows
the Stiffness prediction to be further improved, with R2 values equal to 0.9938 or 0.9922, respectively.
However, the cost and time involved in the Marshall test may not justify such a slight prediction
improvement.

Keywords: asphalt concretes; road pavements; polymer modified bitumen; recycled asphalt pavement;
stiffness modulus; Marshall stability; machine learning modeling; shallow neural networks; Bayesian
optimization; data augmentation

1. Introduction

High modulus asphalt concretes (HMAC) were first designed and used in France
nearly 40 years ago [1]. HMAC or interchangeable term EME (Enrobé a Module Élevé) is a
special type of asphalt mixture (asphalt concrete) with a strong aggregate structure, slightly
higher amount of bituminous binder and high stiffness. This type of mixture is used in
both heavy-duty and structural rehabilitation projects where it is desirable to minimize the
impact of grade change, yet still, ensure pavement longevity.

Apart from high stiffness modulus, HMAC is defined by high resistance to fatigue
mainly if stiffness is well balanced with fatigue parameters, high strength characteristics,
minimized permanent deformation occurrence, and good resistance to traffic load and
climate conditions. On the other hand, if very hard bituminous binders or higher reclaimed
asphalt content is applied there is a potentially higher risk of low-temperature cracking as
compared with conventional asphalt concretes (AC). Nevertheless, in general, it is assumed
that due to slightly higher bitumen content the fracture toughness and the fracture energy
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reaches usually high values, and the only risk can be represented by brittle type of thermal-
induced cracking. In HMAC usually low gradation bituminous binders (e.g., 10/20, 15/25,
20/30) or polymer-modified bitumen are used—in this case again rather binders with
lower penetration grades (PMB 10/40-65, PMB 25/55-60, etc.) are preferred. Additive for
stiffening can be used as well like for example fatty amide acids.

Use of HMAC in base (or potentially binder) layer can potentially lead to a reduc-
tion of the thickness of asphalt layers in pavement structure in comparison to pavement
structure with conventional asphalt concretes, while the service life of such a construction
remains unchanged. The effort to reduce the thickness of the asphalt layer is related to
the reduction of construction costs and later life-cycle costs related to maintenance (LCC
optimization) [2–4]. In addition, the material resources can be saved. Some of the published
papers or research outputs present a reduction in thickness between 25 and 30 percent in
pavement structure [5,6]. With regard to road pavement bases, such HMAC technology
is somehow comparable, from the performance point of view, to cement-bound mixtures.
In this case, the stiffness modulus is represented by the dynamic elastic modulus of the
cement-bound mixtures, investigated through ultrasonic tests [7,8]. Other innovative equip-
ment for advanced testing on cementitious materials, even derived from asphalt machine
testing, can be found in proper literature [9].

In the case of long-life pavement, the overall costs have to be assessed not only from the
perspective of construction costs, but mainly from the viewpoint of life cycle costs. Primary
cost can be higher, but the pavement shows less demand for repairs and rehabilitation
actions, and therefore the life cycle costs are significantly lower than for other types of
asphalt mixtures. For these reasons, it is necessary to focus on the life cycle cost assessment
during the selection of the right pavement design and not only on the lowest construction
price as currently often happens.

Espersoon [1] showed the results of the experimental research that has been done
to calculate the reduction in thickness of the base layer with HMAC compared to a base
layer with conventional paving grade bitumen for runway pavements based on measuring
and evaluation of dynamic modulus of different mixtures at different temperatures. Rys
et al. [3] presented an analysis of 80 selected road sections in Poland, of a total length of
about 1300 km, and compared low-temperature cracking properties of pavements with
HMAC mix type and conventional asphalt concrete base. It was revealed that pavements
with high modulus asphalt bases have a 2.45 times higher occurrence of odd cracks than
pavements with conventional asphalt concrete bases. H.J. Lee et al. [10] designed HMAC
mixtures as well as high modulus asphalt binders (HMAB). First, the binders were tested
and compared with the conventional unmodified and SBS modified binders. Then HMABs
were used in HMAC mixes. The results showed that dynamic modulus is 50% higher for
HMAC than for conventional AC at high temperatures and rutting is on the other hand
twice smaller. The fatigue test showed 5 to 10 times better results. Moghaddam et al. [11]
investigated the rheological properties of different types of highly modified asphalt binders
and EME mixes. A good correlation between the rheological properties and the binders’
microstructure was determined and from their results, it was stated that the performance
of asphalt mix can, to some extent, be predicted by the rheological properties of bituminous
binders used. Si et al. [12] investigated the micro-mechanical characteristics of HMAC
pavement structure under loads. The application of high modulus materials decreased the
vertical stress in all asphalt layers except the surface layer. Zaumanis et al. [13] designed
HMAC containing 100% reclaimed asphalt (RA). Through multiple design iterations, it
was found that it was not possible to fully fulfill fatigue, stiffness modulus, and rutting
requirements for most of the recycled HMAC mix variants. Even an increase of the binder
content did not help to fulfill the fatigue requirements and therefore use of additives was
recommended in mixtures containing high content of RAP.

The Czech Republic started to use HMAC mixtures from 2001 based on collected
experience (mainly following the French knowledge and good practice) and formulated,
after an initial period of practical experience from diverse job sites, own technical specifi-
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cations: they were adopted in 2009 by the Ministry of Transportation and are known as
TP 151. After additional 11 years, the technical specifications will be upgraded in 2021 to a
national technical standard and the HMAC mixtures will be treated similarly to regular
asphalt concretes in terms of type testing, factory production control, and site control test-
ing requirements. Like the French early-stage approach the HMAC mixtures were mainly
understood as a technical solution of an asphalt layer providing high stiffness. The aspect of
fatigue characteristics is still underestimated which results in mixed designs with stiffness
modules at 15 ◦C > 14,000 MPa (the minimum required limit is 9000 MPa). Since usually
hard paving grades like 20/30 are used this can result, from the perspective of longer
lifetimes, in potential problems in the future especially if these mixtures are used for heavy-
duty pavements. A similar problem can arise if such mixtures are used in binder courses,
especially in the case of sudden changes in the temperatures and repeated freezing-thawing
cycles, which might result in temperature-induced cracks. Reflecting these potential risks,
the new technical standard assumes already that for an HMAC mixture where the stiffness
modulus at 15 ◦C is higher than 13,500 MPa a fatigue test needs to be done to reduce the
probability of an early failure. For the stiffness testing, either repeated indirect tensile strain
test on cylindrical specimens (IT-CY) or 2-point beam test on trapezoidal test specimens can
be done following the standard EN 12697-26. In terms of HMAC mix design, comparing
the requirements with traditional asphalt concrete for base or binder courses, the grading
curve limits are closer, and more stringent requirements are defined for voids content with
a range between 3%-vol. and 5%-vol. for the initial mix design. The minimum bitumen
content shall be 4.2% for HMAC 22 and 4.4% for HMAC 16, usually, the mix designs used
for real job sites vary in bitumen content between 4.6 and 5.1%. Further details related to
requirements and restrictions for HMAC mixtures used in the Czech Republic can be found
in [14].

In recent years, mathematical approaches have been applied to evaluate the character-
istics and performance of asphalt pavements with the aim of implementing a numerical
mix design. Although advanced constitutive models of the asphalt concrete’s mechanical
behavior exist nowadays [15–18], Machine Learning represents a numerical framework of
application interest for the development of predictive models of the ACs’ mechanical re-
sponse [19–24]. Among Machine learnings approaches, Artificial Neural Networks (ANNs)
are nonlinear fitting systems that are imitating the brain’s biological learning process to
correlate information or data. A detailed description of the mathematical framework has
already been widely discussed e.g., by Baldo et al. [25].

Among the literature studies, Ozsahin and Oruc [26] have employed a Shallow Neural
Network (SNN), i.e., a three-layer perceptron neural network, to establish the relation
between the emulsified asphalt mixtures’ resilient modulus and some relevant predictors
(such as cement addition level, curing time and residual asphalt content), demonstrating
that Artificial Intelligence can reduce the time consumed at the design stage to define
the proper mixture. Tapkın et al. [27] have applied ANNs to model the creep behavior
under repeated loading of polypropylene modified asphalt concretes. Similarly, Saoudi and
Haddadi [28] predicted the creep deformation of asphalt concrete modified with different
contents of industrial rubber waste to identify the percentage of additive beyond which the
creep rate stops decreasing. Mirzahosseini et al. [20] have analyzed the rutting potential
of dense ACs, implementing an NN that maps the pattern between the flow number
and the main features of standard Marshall specimens, such as coarse aggregate to fine
aggregate ratio, filler and bitumen contents, percentage of voids in mineral aggregate and
Marshall quotient. Artificial Intelligence has also enabled us to accurately model the fatigue
performance [29,30] and dynamic modulus [31,32] of ACs under different environmental
and loading conditions. Given that the mechanical response of ACs also depends on the
volumetric properties (which have to meet the limits set by standards or local specifications),
Zavrtanik et al. [33] have relied on ANNs to predict air void content in seven types of
asphalt mixture. Recently, Hussain et al. [34] have developed an ANN model that can be
used to characterize the phase angle behavior of wearing and base course AC mixtures.
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Despite the positive results reported in the documented literature, few researchers
have bothered to employ an objective and effective strategy to find the neural network
“structure” with the best score on a certain performance metric, also called optimal NN.
Such structure derives from the so-called hyper-parameters that define both the network
topology and the algorithmic functioning. These “model settings”, which concur to define
the optimal functioning of the neural network, are commonly set up by means of a trial-and-
error procedure [20,21], such as grid or random search, that employs a certain performance
metric (e.g., the mean square error). These approaches, which involve evaluating the
selected performance metric over and over (for all desired hyper-parameters combinations),
are extremely time-consuming and do not guarantee that the optimal model will be identi-
fied [35]. In this context, the Bayesian Optimization offers an efficient and semi-autonomous
process for fine-tuning the hyperparameters of the optimal NN model [36]. By keeping
a record of past evaluations, the Bayesian approach builds a probabilistic model of the
performance function, which is used to make decisions on the next set of hyperparameters
to be evaluated so that the expected error is minimized [37,38].

The purpose of this study is to develop suitable Machine Learning strategies that
allow to design and specify an optimal ANN model for the ACs’ stiffness prediction task
to be accurately identified, even when the available experimental dataset is relatively
small. In particular, Bayesian Optimization was employed to properly set some relevant
topology-related hyperparameters. The motivation for adopting Machine Learning for
assessing or predicting HMAC mix behavior is based on a recommendation provided by
the Czech technical specifications TP 151. The case study involved a set of 38 variants of
high modulus asphalt concretes, with a total of 115 Marshall test specimens, prepared in the
laboratory as part of real-case mix design processes and characterized by different binder
types, bitumen contents, aggregate gradations, and Reclaimed Asphalt Pavement (RAP)
percentages. The SNN approach was employed to identify a reliable correlation between
the Stiffness and the main features related to the mix composition, such as bitumen content
(% by mass of mix), air voids content (%), maximum and average bulk density (g/cm3),
along with a categorical variable that distinguishes the bitumen type and RAP percentages.
Moreover, SNN models have also been developed that include the Marshall tests results
among the input feature aforementioned: in fact, the Marshall Stability and the Marshall
Quotient can be correlated with the target variable and help to improve the prediction
accuracy.

2. Materials and Methods

In the experimental study presented in this article and for the sake of using neural
networks a set of 38 variants of HMAC mixtures was used. These mixtures were either
experimentally designed or sampled from a real asphalt mix production, whereas in
both options the mixtures had to fulfill requirements set in Czech technical specifications
TP 151. The intention was to collect a wide range of possible mix designs which differ
in used aggregate type, bitumen type, and gradation or partial substitution of virgin
aggregates by reclaimed asphalt. The only basic condition was that all mixtures have to be
of gradation 0–22 mm. With respect to used bituminous binders conventional hard paving
grade bitumen of lower penetration values as well as polymer-modified binders were used
in the HMAC mixtures, whereas hard paving grade 20/30 or PMB 25/55-60 dominated
as being mostly recommended and used for practical application. Characteristics of the
binders used in particular HMAC mixtures are not presented by this paper since it was not
the intention to check and validate the required characteristics like penetration or softening
point. Since most of the tested mixtures originated from regular production on mixing
plants and each mixing plant has to follow the factory production control rules according
to EN 13108-21, it is assumed that all the binders were within the specifications. Similarly,
it was not the intention to collect and validate the characteristics of used aggregates, and in
this stage of neural networks modeling the possible impact of aggregate type (in terms of
its mineralogy) was not expected to be included in the machine learning process. Generally,
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the aggregates used in HMAC in the Czech Republic are coming from various regions of
the country and are rich in different minerals like basalt, hornblende, spilite, diorite, gneiss,
greywacke, etc. Nevertheless, the scope of this study was not to investigate the impact of
input materials properties on the resulting asphalt mix stiffness, but to estimate asphalt
stiffness out of asphalt characteristic properties values by applying neural networks.

High Modulus Asphalt Concrete Characterization

As can be seen from Table 1 some mix variants contained between 10% and 30%
reclaimed asphalt. The limitation of 30% is given by the technical specifications TP 151.
In some of these cases, a 50/70 paving grade bitumen was used to soften slightly the
resulting binder in the asphalt mix due to the elevated content of reclaimed asphalt with an
aged bituminous binder. This technical solution so far presents a preferred option besides
the possibility to use rejuvenators. In two cases a hard bitumen 15/25 was used since
being required for some pavement structures. Finally, in one case (marked VMT 22 NT,
VMT stands for Vysokým Modulem Tuhosti, i.e., HMAC in Czech) a warm mix asphalt
concept was applied using an amide fatty acid additive for reduction of the mix production
temperatures.

Table 1. Summary of experimental test results and specimens’ characteristics.

Mix
Bitumen

Type ID

Bulk
Density

Max Bulk
Density

Binder
Content

Voids
Content

Maximum
Strength

Marshall
Stability

Marshall
Flow

IT-CY
15 ◦C

(g/cm3) (g/cm3) (%) (%) kN kN (0.1 mm) (MPa)

VMT 22 with
30% RA

(Froněk-A)
20/30 M1

2.455
2.640

4.9 7.0 20.6 20.0 33 16,062
2.429 4.9 8.0 22.4 22.7 35 14,283
2.456 4.9 7.0 21.6 23.1 28 16,078

VMT 22 with
30% RA

(Froněk-B)
20/30 M1

2.459
2.647

4.6 7.1 20.7 20.9 51 14,867
2.453 4.6 7.3 19.6 20.5 41 15,616
2.456 4.6 7.2 21.0 21.4 43 14,350

VMT 22 with
30% RA

(Froněk-C)
20/30 M1

2.473
2.663

4.3 7.2 22.8 22.4 22 15,974
2.475 4.3 7.0 24.7 25.9 24 15,535
2.485 4.3 6.7 24.1 24.6 27 15,452

VMT 22 with
20% RA

(Froněk-1)
20/30 M2

2.467
2.676

4.3 7.8 20.1 20.5 58 12,049
2.463 4.3 8.0 19.0 19.8 42 14,419
2.461 4.3 8.0 20.2 21.0 30 13,003

VMT 22 with
20% RA

(Froněk-2)
20/30 M2

2.486
2.682

4.6 7.3 20.7 21.7 59 13,792
2.462 4.6 8.2 18.9 20.0 42 11,559
2.480 4.6 7.5 19.6 19.8 47 12,452

VMT 22 with
20% RA

(Froněk-4)
20/30 M2

2.460
2.678

4.9 8.1 23.5 23.5 53 14,441
2.460 4.9 8.1 24.3 23.9 45 15,113
2.443 4.9 8.8 23.9 24.6 30 16,558

VMT 22 with
20% RA

(Froněk-6)
20/30 M2

2.422
2.667

5.2 9.2 18.6 21.8 35 13,116
2.411 5.2 9.6 19.1 22.2 27 11,548
2.422 5.2 9.2 22.3 25.4 34 12,370

VMT 22 with
30% RA var. 5.1

50/70 M3
2.547

2.617
5.1 2.7 17.1 19.7 71 13,171

2.554 5.1 2.4 17.2 20.0 55 11,659
2.538 5.1 3.0 19.6 21.9 45 13,242

VMT 22 with
30% RA. var. 4.8

50/70 M3
2.538

2.607
4.8 2.6 17.4 19.9 58 12,739

2.535 4.8 2.8 14.8 16.9 47 13,287
2.539 4.8 2.6 22.7 25.5 61 13,217

VMT 22 with
30% RA
(Froněk)

50/70 M3
2.549

2.602
4.8 2.0 17.4 20.2 53 13,025

2.539 4.8 2.4 15.3 17.9 63 14,267
2.548 4.8 2.1 16.8 19.0 66 13,325

VMT 22 with
30% RA
(Froněk)

50/70 M3
2.553

2.626
4.6 2.8 20.6 20.7 51 15,871

2.548 4.6 3.0 18.6 21.0 54 15,666
2.548 4.6 3.0 20.2 23.4 50 16,707
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Table 1. Cont.

Mix
Bitumen

Type ID

Bulk
Density

Max Bulk
Density

Binder
Content

Voids
Content

Maximum
Strength

Marshall
Stability

Marshall
Flow

IT-CY
15 ◦C

(g/cm3) (g/cm3) (%) (%) kN kN (0.1 mm) (MPa)

VMT 22 with
20% RA

(Froněk-3)
50/70 M4

2.473
2.639

4.8 6.3 18.1 19.0 34 12,729
2.495 4.8 5.4 20.2 21.6 34 12,282
2.477 4.8 6.1 21.5 22.3 46 14,101

VMT 22 with
20% RA
(PKB-A)

50/70 M4
2.397

2.496
4.4 4.0 14.2 13.6 48 8666

2.421 4.4 3.0 13.4 13.4 50 9064
2.412 4.4 3.4 12.2 12.4 51 8135

VMT 22 with
10% RA

(PKB-101)
50/70 M5

2.358
2.559

4.6 7.9 12.1 11.4 35 8950
2.351 4.6 8.1 15.3 14.1 37 9339
2.355 4.6 8.0 12.8 14.5 34 9311

VMT 22 with
10% RA

(PKB-102)
50/70 M5

2.341
2.559

4.5 8.5 17.1 16.2 90 9203
2.343 4.5 8.4 17.1 16.1 80 9142
2.323 4.5 9.2 15.1 14.2 96 9361

VMT 22 NT 20/30 M6
2.362

2.490
4.7 5.1 18.9 17.1 46 14,357

2.409 4.7 3.2 21.4 20.3 56 14,601
2.409 4.7 3.3 20.8 19.7 52 14,784

VMT 22 NT 20/30 M6
2.296

2.490
4.7 7.8 19.4 16.3 84 13,653

2.313 4.7 7.1 20.8 18.8 84 15,529
2.296 4.7 7.8 19.7 16.5 59 15,345

VMT 22 (SK-1) 20/30 M6
2.330

2.449
4.6 4.9 25.4 24.1 26 12,102

2.324 4.6 5.1 24.5 23.2 20 12,027
2.305 4.6 5.9 22.5 20.5 27 10,528

VMT 22 (VIA-1) 20/30 M6
2.702

2.789
4.7 3.1 21.1 22.8 42 17,417

2.691 4.7 3.5 19.2 21.3 34 17,262
2.680 4.7 3.9 20.5 23.0 29 17,478

VMT 22 (SK-2) 30/45 M7
2.414

2.490
4.6 3.1 22.0 20.6 49 12,483

2.416 4.6 3.0 20.8 19.6 54 12,129
2.396 4.6 3.8 21.7 20.6 59 11,734

VMT 22 (VHS) 30/45 M7
2.641

2.747
4.7 3.9 11.5 14.7 38 12,136

2.648 4.7 3.6 14.4 15.8 55 11,478
2.650 4.7 3.5 14.2 15.6 42 12,566

VMT 22 (VIA-2) TSA
15/25 M8

2.709
2.818

4.8 3.9 19.7 22.8 39 16,182
2.724 4.8 3.3 18.0 21.6 31 17,571
2.712 4.8 3.8 18.4 22.3 31 17,227

VMT 22 (TPA-1) TSA
15/25 M8

2.458
2.566

4.6 4.2 21.5 21.5 45 12,629
2.454 4.6 4.4 22.5 21.8 40 12,412
2.460 4.6 4.1 23.5 23.0 52 13,627

VMT 22 (EV) PMB
25/55–60 M9

2.574
2.655

4.9 3.0 24.8 25.1 81 13,203
2.567 4.9 3.3 23.2 23.6 71 11,688
2.576 4.9 3.0 27.2 27.7 65 13,772

VMT 22 (SK-3) PMB
25/55–60 M9

2.357
2.436

4.7 3.2 19.7 19.9 67 10,581
2.362 4.7 3.0 20.4 20.6 62 10,940
2.363 4.7 3.0 20.9 21.1 76 10,505

VMT 22 (SK-4) PMB
25/55–60 M9

2.366
2.436

4.9 2.9 11.8 18.5 34 6632
2.367 4.9 2.8 10.8 17.3 28 6001
2.358 4.9 3.2 11.3 17.8 28 6699

VMT 22 (TPA-2) PMB
25/55–60 M9

2.338
2.457

4.8 4.8 16.3 16.1 30 9024
2.329 4.8 5.2 20.2 20.4 31 9134
2.334 4.8 5.0 17.6 17.4 39 9097

VMT 22
(ESLAB)

PMB
25/55–60 M9

2.476
2.558

4.7 3.2 18.4 19.5 31 9585
2.485 4.7 2.9 17.9 18.4 47 9322
2.481 4.7 3.0 17.2 17.4 46 10,656

VMT 22 (TPA-3) PMB
25/55–60 M9

2.415
2.632

4.9 8.3 20.8 19.7 53 7102
2.427 4.9 7.8 18.8 17.8 51 8203
2.430 4.9 7.7 19.4 18.5 47 7986
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Table 1. Cont.

Mix
Bitumen

Type ID

Bulk
Density

Max Bulk
Density

Binder
Content

Voids
Content

Maximum
Strength

Marshall
Stability

Marshall
Flow

IT-CY
15 ◦C

(g/cm3) (g/cm3) (%) (%) kN kN (0.1 mm) (MPa)

VMT 22 (TPA-4) PMB
25/55–60 M9

2.416
2.485

4.9 2.8 21.1 21.7 42 9174
2.408 4.9 3.1 19.4 19.6 39 10,245
2.404 4.9 3.3 19.6 19.8 50 9421

VMT 22 (VIA-3) PMB
25/55–60 M9

2.415
2.510

4.8 3.8 18.4 17.5 57 9731
2.416 4.8 3.7 18.1 16.9 45 10,044
2.415 4.8 3.8 19.2 17.7 48 9446

VMT 22 (TPA-5) PMB
25/55–60 M9

2.338
2.457

5.0 4.8 18.7 18.9 46 8691
2.329 5.0 5.2 20.7 20.9 36 8759
2.334 5.0 5.0 17.4 17.6 34 8611

VMT 22 (TPA-6) PMB
25/55–60 M9

2.335

2.467

4.8 5.3 18.2 18.8 36 9953
2.332 4.8 5.5 16.5 18.0 35 9018
2.339 4.8 5.2 17.5 17.9 28 9884
2.330 4.8 5.5 16.3 16.4 26 9521

VMT 22
(Chvaletice)

PMB
25/55–60 M9

2.392
2.532

4.7 5.5 28.3 26.3 47 16,134
2.397 4.7 5.3 25.6 23.8 41 15,808
2.386 4.7 5.8 28.3 26.8 33 15,855

VMT 22 (SK-5) PMB
25/55–60 M9

2.373
2.460

4.9 3.5 14.5 12.9 37 5685
2.362 4.9 4.0 14.2 12.0 34 5636
2.378 4.9 3.3 15.2 13.7 52 5991

VMT 22 (TPA-7) PMB
25/55–65 M10

2.439
2.610

5.1 6.6 15.1 14.8 85 6686
2.441 5.1 6.5 15.8 14.9 90 6223
2.433 5.1 6.8 14.1 13.6 76 6848

VMT 22 (TPA-8) PMB
25/55–65 M10

2.553
2.648

4.8 3.6 19.8 19.2 79 11,989
2.556 4.8 3.5 21.8 22.0 61 12,075
2.545 4.8 3.9 18.9 19.1 58 11,958

VMT 22 (TPA-9) PMB
25/55–65 M10

2.554
2.629

5.0 2.8 21.8 22.7 54 11,849
2.548 5.0 3.1 19.8 20.2 59 11,603
2.543 5.0 3.3 19.5 19.3 56 12,071

For all mix variants bulk density and maximum density were determined and void
content was calculated (EN 12697-8), whereas the void content requirement in TP 151 is
set with a range of 2.5%–6.0%-vol. for control testing. The test specimens were compacted
by 2 × 75 blows using an impact compactor (EN 12697-30). From all tested mixtures
12 variants did not fulfill the voids content requirement, whereas most of them were
variants with reclaimed asphalt and in one case it was the warm mix variant of HMAC,
where the test specimens were compacted at a lower temperature. Soluble bitumen content
was determined as another empirical characteristic that could be used for neuronal network
analysis and machine learning approach. The TP 151 prescribes a bitumen content of 4.2%
to 5.4%. All analyzed mixtures fulfill this criterion and none of them was neither at the
lower limit nor approaching the upper limit. On average the bitumen content was around
4.8%–4.9% which has provided the asphalt mixtures with sufficient bitumen film.

Test specimens of all mixtures were then conditioned at 15 ◦C and tested according
to EN 12697-26, annex C by repeated indirect tensile strain test on cylindrical specimens
(IT-CY) for stiffness. The technical specifications TP 151 require a minimum stiffness value
at 15 ◦C 9000 MPa. In Table 1 values that did not meet this criterion are marked in red.
On the other hand, there is no upper limit for the stiffness which is potentially dangerous
with respect to fatigue life. This might be true especially for hard paving grade binders
which can lead often to stiffness values > 14 GPa. In these cases, the new technical standard,
which is under final review, recommends running fatigue test according to EN 12697-24,
which shall provide sufficient confidence that too high stiffness values will not result in
early loss of fatigue life.

After stiffness testing specimens were conditioned at 60 ◦C for 45–60 min in a water
bath prior to running the Marshall test, which was performed according to EN 12697-34.
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Such test is commonly used in asphalt concretes mix-design, including epoxy asphalt
concretes for wearing surface on orthotropic steel bridge decks [39]. Generally, there is
no requirement according to the existing specifications to execute this test. The TP 151
just indicates that the mix designer can prior to stiffness testing run the Marshall test and
if the Marshall Stability reaches min. 14 kN and/or the Marshall Flow is in the range of
20–60 dmm such mix might reach the required stiffness as well. The reason for this optional
validation was in the past defined in the technical specifications because there is a limited
number of laboratories able to run stiffness tests (actually, in the Czech Republic only two
university laboratories are able to perform such tests). This recommended procedure was
originally one of the incentives why to apply the neural network approach. If it could
be proven that based on characteristic properties the neural network model can predict
with good accuracy the stiffness modulus, the Marshall test could be used, e.g., for control
testing during asphalt mix production and paving.

The results of bulk densities vary with aggregate types which are used in the Czech
Republic. Values approaching bulk densities of 2.7 g/cm3 are usually related to mixing
designs where basalt is used. On the other hand, values between 2.3 g/cm3 and 2.4 g/cm3

are mostly related to minerals like spilite or hornblende.
Since the Marshall test and its characteristics are not required as a standard parameter

for HMAC, it is even not possible to compare the results with some limiting threshold
values. Most of the mixtures reached Marshall Stability values in the range of 17–21 kN; only
two mix variants had a value < 14 kN. Additionally, with respect to the recommendation
provided by the TP 151 and described earlier in the text, related to the limit of 14 kN as
an indication for reaching stiffness > 9000 MPa, it has been verified that for some mixes
(Table 1: VMT 22 (SK-4), VMT 22 (TPA-3), VMT 22 (TPA-5), VMT 22 (TPA-7)) with Marshall
Stability values over 14 kN, the stiffness modulus resulted lower than 9000 MPa. Similarly,
it is true for the Marshall Flow values and recommendation provided by TP 151.

In Section 3.3 a detailed analysis of the correlation strength between the Marshall
mechanical parameters and stiffness is presented. However, the scatter plot suggesting
the type of correlation between stiffness modulus and Marshall stability (or Marshall flow)
is presented in Figure 1 (and Figure 2, respectively): the stiffness seems to have some
dependence on the Marshall stability, whereas no dependence was found for the flow
(please refer to Table 1 for Legend understanding).
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Table 1 provides data about HMAC stiffness at 15 ◦C. Six mixtures showed lower
values than the minimum requirement from the specification TP 151—variant VMT 22
with 20% RA (PKB-A), VMT 22 (SK-4), VMT 22 (TPA-3), VMT 22 (TP-5), VMT 22 (SK-5),
and VMT 22 (TP-7). For three of them, the values are very low. Additionally, except
the VMT 22 with 20% RA (PKB-A) where the stiffness could be influenced by the used
50/70 paving grade, the remaining 5 mixtures with low stiffness were all designed and
produced with PMB. Often for HMACs with PMB 25/55-60, it is challenging to exceed the
limit of 9000 MPa due to the elastic behavior of this polymer-modified binder, and several
optimizations and modifications of the grading curve are needed. This might explain why
most variants with lower stiffness are at the same time containing this type of PMB.

3. Methodology
3.1. Shallow Neural Networks with Backpropagation Algorithm

Shallow Neural Networks (SNNs), also called Multilayer Perceptron Neural Networks
(MLPs), is a type of Artificial-Intelligence-based on the feedforward network architecture,
which can approximate essentially any relation between input and output patterns to an
arbitrary degree of accuracy [40,41]. To fully understand the topology and algorithmic
functioning of an SNN, the reader should be reminded that the biological nervous system,
the brain, acquires knowledge and abilities by a learning process, and that specific synaptic
weights of interneuron’s connections store the acquired know-how to replicate it. Similarly,
to perform a particular task or function of interest, a Shallow Neural Network has to
be trained using a process, typically supervised (i.e., based on input pattern x ∈ RF

and ground-truth target y ∈ R known beforehand), that iteratively updates connections’
weights, according to a learning rule, until the network is able to replicate the desired task
with the required accuracy. In fact, a Multilayer Perceptron Neural Networks consists of
an input layer, at least one hidden layer, and an output layer. Each of these layers has
several processing units, the artificial neurons, and each of them is interconnected with
weighted connections to any other unit in the subsequent layer: thereby, the information
to be processed travels in just one direction, from input to output layer. Figure 3 shows a
typical SNN topology.
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Artificial neurons perform the network computations: these are logistic regression
models with a nonlinear activation function. This means that each neuron in the first hidden
layer implements a dot product between the input feature vector x ∈ RF and the vector
w(1)

j ∈ RF that represents the weights of the connections it has made with each component

of the input feature vector (or the neurons xi) and adds a scalar bias b(1)j . The resulting

scalar is passed to a function φ(1), called transfer or activation unit, which returns the neu-
ron’s output: h(1)j = φ(1)(∑F−1

i=0 w(1)
ij · xi + b(1)j ). Some activation functions, which are also

employed in this study, are shown in Figure 3: the rectified linear (ReLU), the hyperbolic
tangent (TanH), and the logistic sigmoid (LogS) units. The first hidden layer output is the
vector h(1) = [h(1)0 , · · · , h(1)N−1], with N the number of neurons that form the layer itself, but
it is also the input vector of the subsequent hidden layer. Therefore, the outlined process
is repeated until the output of the network is computed: ŷ = φ(out)(h(L)). The matrix
W = {w(l)

ij , b(l)j | l ∈ {1, 2, · · · , L}}, with L the number of network layers, forms the set of
parameters to be defined in the supervised training process, in which a back-propagation
algorithm is typically used [42]. These algorithms compute the first-order approximation
of the gradients of a loss metric L(ŷ , y) (or error function), between the network output ŷ
and the expected target vector y, with respect to the parameters W; then, a learning rule
uses the derivatives of L(·) to correct the weights and biases of the network, performing
several iterations until the loss value is minimized; the resulting parameters are kept fixed
to process new feature patterns. In this study, the loss optimization objective L(·) is the
Mean Squared Error (MSE):

L(ŷ(We), y, We) =
1
M

M

∑
m=1

(ŷm(We)− ym)
2 (1)

where We is the parameters’ matrix at iteration e of the training process and ŷ(We)− y
the errors of the corresponding network, whereas M is the number of observations in the
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training set. In fact, since a single experimental data set is usually available, it is randomly
partitioned, according to fixed percentages, into a training, a validation, and a test subset:
this practice is known as the hold-out method.

The training set contains the data used to train the SNN, while the validation and
test sets hold the data intended to evaluate the model’s effectiveness. Evaluation on the
validation set occurs at regular intervals during the training process, while the test set
evaluation is typically performed on the fully trained model when it is desired to estimate
the model’s generalization capability (i.e., the out-of-sample performance) and then to
compare the accuracy of different models. In fact, generalization refers to how well the
concepts learned by a Machine Learning model apply to specific observations not used by
the neural network during the training process since the model, in order to minimize the
MSE, might fit too much of the training data. Such a situation, known as Overfitting, is
caused by large values of the connections’ weights and results in an excessively fluctuating
and physically unjustified interpolating surface/curve of the experimental data. A good
generalization, stated on the basis of a given performance metric’s value, allows reliable
predictions to be made in the future about data out of the training sample, since the
overfitting problem has been successfully prevented. In particular, among the methods to
avoid overfitting and improve generalization, Early Stopping is the most widely used and
simplest approach [41]. This method exploits the iterative nature of the training process
and the validation data set to decide when to stop the training, according to a procedure
called cross-validation: in fact, at each iteration of the training algorithm, the performance
of the training process can be measured by monitoring the model error on the validation set.
In general, it is observed that up to a certain number of iterations, new iterations improve
the model. However, after that point, the model’s capability to generalize can weaken as
the neural network begins to overfit the training data and compromise the accuracy of the
validation set. When the error on the validation set goes up for several iterations (i.e., in this
study, for 7 iterations), the training is stopped, and the weights and biases that produced
the minimum MSE on the validation data set are employed as the final trained network
parameters.

In the current study, the Levenberg-Marquardt backpropagation algorithm [43], jointly
with the Early Stopping method, was employed due to its efficiency in training Shallow
Neural Networks among those implemented in MATLAB® [41]. In order to ensure con-
vergence to the minimum of the error surface (and thus to the optimum values of the
connections’ weights), the training process was repeated 10 times and the best performing
model was selected. With regard to the hold-out method, it is worth pointing out that such
a practice has two major drawbacks when the number of observations is small: first, some
relevant patterns may be excluded from the training set; second, the training-test splitting
makes the model sensitive to the randomness of data in the training set. Therefore, since the
purpose of the study is to predict the representative mechanical response of each asphalt
concrete considered here, the original data set was augmented by Q = 38 data by averaging
the experimental results of specimen replicas of each HMAC variant and associating the
main mix composition features of the original variant with each new synthetic target. The
obtained stiffness modulus values form a representative set of all situations for which
the network will be used. For this reason and to avoid the aforementioned problems,
the cross-validating (20%) and the training (80%) sets for the SNN training procedure were
selected randomly from the experimental data set (115 Marshall test specimens), while the
38 synthetic data were used for testing the trained SNN model.

3.2. Bayesian Optimization

The definition of the neural network topology and of the training algorithm parameters
(i.e., the model’s hyper-parameters) is an essential step in the application of any Machine
Learning approach to a specific input-output fitting problem. This process, known as
hyper-parameters tuning, represents a challenge for any research engineer and is closely
related to model selection, since the hyper-parameters determine the response of the neural
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network and therefore the performance of the model of which they are part. However, this
tuning process is simplified when dealing with Shallow Neural Networks: Hagan et al. [41]
assert that an SNN, as defined in the previous Paragraph, can arbitrarily well solve any
multidimensional regression problem between given data by providing a sufficient number
of neurons and an adequate transfer function to its single hidden layer. It means that
the SNN hyper-parameters, when the parameters of the Levenberg-Marquardt training
algorithm are set to their default values (please refer to the LM algorithm implementation
proposed by the MathWorks® within the well-known MATLAB® ANN Toolbox), are
related only to the network architecture, namely the number N of neurons that form the
hidden layer and the activation unit φ that characterizes them. Therefore, it becomes
clear that the choice to exploit SNNs stems from the possibility of simplifying the hyper-
parameters tuning problem as well as from the need to identify an easily interpretable and
usable modeling tool for the research engineer or laboratory technician interested in the
development of predictive models of the asphalt concrete’s mechanical response. Figure 4
shows a flowchart of the optimization procedure followed in this study.
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Regarding strategies for carefully defining model hyper-parameters, standard ap-
proaches involve a random or grid search for the optimal set within pre-defined ranges on
the basis of a sampling method. However, there are many optimization algorithms available
nowadays that can reduce the time spent in searching for the best model hyperparameters.
Among them, the Bayesian optimization (BO) algorithm [44] has found considerable suc-
cess mainly due to the work of Snoek et al. [45]. The goal of the optimization process is to
minimize a given objective function f (z) for z =

[
zp
]
, p ∈ {0, . . . , P}, P ∈ N in a bounded

domain Zp ⊂ R. For this purpose, the BO algorithm adopts a Gaussian Process regression
model (GPR) for f (z) [46], i.e., builds a non-parametric probabilistic model of the objective
function, and updates it based on Bayesian statistics for each new evaluation of f (z). Then,
an acquisition function a(z) based on the prior distribution is maximized to determine
the next point znext for the evaluation: znext = argmaxza(z). By repeating this procedure
iteratively (until the set maximum number of iterations is reached), the BO algorithm
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progressively improves the underlying probabilistic model for the objective function and
thereby allows the acquisition function to sample points that improve the metric f (z).
For optimal results, a rule of thumb asserts to set a maximum number of runs greater
than or equal to 20 times the number of hyper-parameters to be optimized. In particular,
the acquisition function best known for its capability to efficiently reduce the number of
evaluations required to find the global minimum of many black-box functions [47,48] is the
Expected Improvement (EI) algorithm [49]. Such EI function evaluates the goodness of a
point z by the expected amount of improvement in f (z), ignoring the solutions that cause
an increase in the objective metric. To escape a local minimum, the correction proposed by
Bull [50] allows the EI acquisition function to modify its behavior when it estimates the
over-exploitation of an area of the bounded domain Zp: the resulting acquisition function
is called Expected-Improvement-Plus (EIP) and it has been used in the current study setup.

Focusing on the current problem, namely the modeling of high-modulus asphalt con-
crete stiffness by means of Shallow Neural Networks, the objective function has to consider
both out-of-sample performances, i.e., generalization capability, and model parsimony. In
fact, as the complexity of the network increases (i.e., in this study, as the number of hidden
neurons increases), the SNN does not use all of its weights to minimize the mean squared
error because early stopping restricts the number of effective parameters, i.e., limits the
weights value, to avoid overfitting. This means that if a “large” network was selected
for the given problem, it would not necessarily overfit the data (due to early stopping)
but it would definitely take longer to compute the network response, which might not
be very different from that of a “smaller” network. If this happened, the model would
be over-parameterized for the task, with direct consequences on efficiency. Therefore, the
function f (·) used in this study adds a penalty term, reliant on the number K = 3N + 1 of
network parameters (i.e., weights and biases) and the number M = 92 of observations in
the training set, to a term measuring the goodness-of-prediction of the model to the Q = 38
test data [51]:

f (N, φ, y, Q, M) = log

(
1
Q

Q

∑
q=1

(
ŷq(N, φ)− yq

)2
)
+

2(3N + 1)
M

(2)

Given the P = 2 hyperparameters, N and φ, and fixed their ranges ZN = {1, · · · , 20},
Zφ = {TanH, ReLU, LogS}, f (·) is a function that implements an SNN with N neurons in its
hidden layer and φ as activation function; such SNN is trained on a M-observation training
set for 10 times and early stopped each time to avoid overfitting; the best performing
SNN is then selected and performs on a Q test data set; f (·) returns a single scalar that
expresses the balance between model generalization and model parsimony. The Bayesian
optimization algorithm is run for 40 iterations. The optimal hyper-parameters N and φ,
and then the optimal model, are selected when f (·) is minimized by the BO algorithm.

All codes required for this study were implemented in MATLAB® using the ANN
Toolbox framework and they were run on a machine provided with an Intel® Core™
i7-6700HQ 2.60 GHz CPU and 16GB of RAM running Windows 10 Home. Each experiment
lasted about 2 h.

3.3. Input Features Selection and Models Evaluation

Recalling that the aim of the study is to develop a model for predicting the stiffness
modulus of different asphalt concretes, the problem arises of selecting the input variables
or features that will characterize the model itself. In fact, a model that engages irrelevant
features, poorly correlated with the target variable, may have learning difficulties, higher
memory requirements, and increased complexity, as well as worse prediction accuracy and
then poor generalization capability [52,53]. Due to the dependency of mechanical character-
istics on both aggregate and bitumen properties, it is important to include the fundamental
parameters of asphalt concretes related to their composition in the input feature vector, i.e.,
in the current study, the bitumen content (% by mass of mix), the air voids content (%),
maximum and average bulk density (g/cm3), along with a categorical variable that distin-
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guishes the bitumen type and RAP percentages (values from 0 to 10). Nevertheless, the use
of the Marshall test results, in terms of Stability or Quotient, as predictors could help to
improve the accuracy of the predictions, even though these parameters are often considered
as target variables due to their frequent use in the mix design process or simply due to the
implied costs of the test [54–56]. In particular, the relationship between Marshall Stability
(MS), as well Marshall Quotient (MQ), and Stiffness Modulus was investigated using the
non-parametric Spearman Rank Order Correlation (rho) [57]. There was a strong correlation
between MS and Stiffness (rho = 0.67, n = 115, p < 0.0005), with high stiffness levels
associated with high stability levels, and the same applies to the relationship between MQ
and Stiffness but with a medium correlation strength (rho = 0.35, n = 115, p < 0.0005).

Therefore, three SNNs characterized by a different number of predictors were devel-
oped in this study and referred to in the following with the acronyms MIXSNN, MSSNN,
MQSNN. More specifically, the first of these employs the aforementioned five mix compo-
sition variables to predict the Stiffness Modulus, while the remaining ones add MS and
MQ to the input feature vector, respectively. Each variable belonging to both input and
target vector has been standardized before being processed by the SNN, i.e., all variables
have been rescaled to have zero mean and unity standard deviation: such an adjustment
served to improve the efficiency of the Levenberg-Marquardt algorithm. In addition, all
three models were optimized according to the procedure reported in Section 3.2, and then,
evaluated and compared on the test data set using statistical performance metrics to iden-
tify the features combination that yields the best generalization capability. The employed
model evaluation functions are the mean absolute error (MAE), the root mean square error
(RMSE), the coefficient of determination (R2), and adjusted R-squared (R2

adj). For a detailed
description of each performance metric please refer to Biecek and Burzykowski [58], as well
Legates and McCabe [59].

In summary, the investigated SNNs is realized with a 5- or 6-neurons input layer (one
neuron for each input feature), a N-neurons hidden layer whose processed output is passed
to an activation unit φ(·) being either a ReLU, TanH or LogS function, and a 1-neuron
output layer associated with the identity activation function. Figure 5 shows a summary
flowchart of the full procedure followed.
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4. Discussion

Table 2 summarizes the results of the hyperparameter optimization process, according
to the procedure described in Section 3.2, for each group of input features and the value
of the statistical metrics assessing generalization capability for each model. In particular,
columns 3 and 4 show the number of neurons and the activation function of the hidden layer,
identified by the Bayesian process based on the objective function f (·), for the three SNNs
(i.e., MIXSNN, MSSNN, MQSNN): these shallow solutions (N < 8 neurons) represent the most
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efficient neural configuration for each modeling problem considered (Section 3.3). The best
result in terms of f (·) (fifth column of Table 2) was achieved by the MSSNN ( f (·) = 11.856,
Table 2), i.e., the network that receives as input features the Marshall Stability along with the
mix composition parameters of the HMAC: Figure 6 shows the Gaussian Process regression
model (overlapped with the objective function points that were sampled) that the Bayesian
optimizer has progressively developed to find the minimum of the function f (·) for the
MSSNN. This network, which is the best in terms of generalization performance (last four
columns of Table 2), receives as input a 6-component features vector, which is processed by
a 6-neurons hidden layer characterized by the TanH activation function.

Table 2. Comparison between SNN models.

ID Features N φ f(·) MAE RMSE R2 R2
adj

MIXSNN 5 6 TanH 12.093 209.12 293.56 0.9909 0.9894
MSSNN 6 6 TanH 11.856 160.17 241.54 0.9938 0.9923
MQSNN 6 8 LogS 12.373 174.91 272.61 0.9922 0.9902

Coatings 2022, 12, x FOR PEER REVIEW 16 of 21 
 

 

results of the MSSNN will be presented as it represents the best model among those evalu-

ated, it is advised to use the Marshall parameters when the prediction of the IT-CY asphalt 

mix stiffness from the main composition parameters of the HMACs should not be satis-

factory. 

 

Figure 6. Gaussian Process regression model for the MSSNN. 

Figure 7 shows the linear regression model between the network outputs and the 

experimental targets in the test data set: the high value of the coefficient of determination 

R2 = 0.99384, very close to unity, suggests that the MSSNN is capable of accurately predicting 

the average mechanical response of HMAC specimen replicas in the training data set and 

that the problem of overfitting has been avoided despite the small data set available. The 

same is true for the other SNNs, which show slightly lower performance (please refer to 

the second-to-last column of Table 2). Therefore, the data augmentation approach de-

signed and implemented in the present study has been particularly suitable for the mod-

eling problem in question and represents an effective approach whenever multiple repli-

cates of different mixtures were available and it was desired to model the average me-

chanical response resulting from different aggregate compositions, binder percentages, 

and so on. The Stiffness-Stability comparison between network outputs and experimental 

targets in the training data set is presented in Figure 8: the absence of an exact matching 

between the blue and orange points is further evidence of the MSSNN’s capability to disre-

gard the behavior of the single replica in order to capture the average mechanical response 

resulting from the mixtures’ composition parameters. 

Finally, it is necessary to point out that, generally, the data sets used for modeling the 

mechanical behavior of ACs are relatively small, due to the time and cost that the execu-

tion of a multitude of laboratory tests on multiple replicas of the same mixture and/or 

different variants implicitly requires. Therefore, even though the experimental data set 

exploited in this paper may seem limited for neural network modeling, there is evidence 

that the application of shallow neural networks, coupled with an appropriate data aug-

mentation technique, avoids model overfitting and, consequently, an effective procedure 

for small HMACs data sets has been validated. Accordingly, there is the possibility of 

extending the current study (using the same techniques) to other mixtures, characterized 

by binders and aggregates different from those considered. 

Figure 6. Gaussian Process regression model for the MSSNN.

In general, the addition of the empirical mechanical parameters among the predictors
of the stiffness modulus improved the prediction accuracy compared to the use of mixes’
composition parameters alone, as shown by the model evaluation functions: in particular,
the values of the R2

adj parameter (last column of Table 2), a modified version of R2 which
assesses the effect of adding predictors to a model, increase with the use of MS or MQ,
showing that the new independent term improves the model more than would be expected
by chance, but the percentage gain in model accuracy is really paltry. In fact, although the
percentage variation in MAE between MIXSNN and MSSNN is +23.4%, in terms of R2

adj the
gain is only +0.29% and therefore such that it may not justify the use of additional data,
such as any results of the Marshall test. Therefore, even though in the following the results
of the MSSNN will be presented as it represents the best model among those evaluated, it
is advised to use the Marshall parameters when the prediction of the IT-CY asphalt mix
stiffness from the main composition parameters of the HMACs should not be satisfactory.

Figure 7 shows the linear regression model between the network outputs and the
experimental targets in the test data set: the high value of the coefficient of determination
R2 = 0.99384, very close to unity, suggests that the MSSNN is capable of accurately predicting
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the average mechanical response of HMAC specimen replicas in the training data set and
that the problem of overfitting has been avoided despite the small data set available. The
same is true for the other SNNs, which show slightly lower performance (please refer to
the second-to-last column of Table 2). Therefore, the data augmentation approach designed
and implemented in the present study has been particularly suitable for the modeling
problem in question and represents an effective approach whenever multiple replicates
of different mixtures were available and it was desired to model the average mechanical
response resulting from different aggregate compositions, binder percentages, and so on.
The Stiffness-Stability comparison between network outputs and experimental targets in
the training data set is presented in Figure 8: the absence of an exact matching between
the blue and orange points is further evidence of the MSSNN’s capability to disregard the
behavior of the single replica in order to capture the average mechanical response resulting
from the mixtures’ composition parameters.
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Finally, it is necessary to point out that, generally, the data sets used for modeling the
mechanical behavior of ACs are relatively small, due to the time and cost that the execution
of a multitude of laboratory tests on multiple replicas of the same mixture and/or different



Coatings 2022, 12, 54 17 of 20

variants implicitly requires. Therefore, even though the experimental data set exploited
in this paper may seem limited for neural network modeling, there is evidence that the
application of shallow neural networks, coupled with an appropriate data augmentation
technique, avoids model overfitting and, consequently, an effective procedure for small
HMACs data sets has been validated. Accordingly, there is the possibility of extending the
current study (using the same techniques) to other mixtures, characterized by binders and
aggregates different from those considered.

5. Conclusions

The following conclusions can be drawn from this study:

1. The IT-CY Stiffness Modulus of 115 Marshall test specimens of high-modulus asphalt
mixtures prepared in the laboratory with reclaimed asphalt pavement or polymer-
modified bitumen has been investigated, according to EN 12697-26 Annex C, as part
of real case-mix design processes.

2. There were good correlation strengths between the Stiffness Modulus and the Marshall
test results, with high stiffness levels associated with high stability or quotient levels.
Therefore, one of these empirical parameters could be used as an input feature, along
with some parameters related to the HMAC composition, to improve the performance
of a predictive model.

3. Machine Learning approaches have been employed for the development of a predic-
tive model of the HMACs’ stiffness modulus: the focus was particularly on Shallow
Neural Networks, given their simple structure and good computational power even
with respect to small data sets.

4. A Bayesian optimization process was used to identify the neural topology, as well
as the transfer function, optimal for the required modeling. In addition, a data
augmentation strategy was designed for the case of the IT-CY test.

5. By employing different performance metrics, it was possible to compare the opti-
mal models obtained by varying the input feature related to the empirical Marshall
test results. The SNN, which showed the best prediction accuracy of the average
mechanical response of HMAC variants, receives as input a 6-component features
vector, i.e., the Marshall stability (kN), the bitumen content (% by mass of mix), the air
voids content (%), maximum and average bulk density (g/cm3), along with a cate-
gorical variable that distinguishes the bitumen type and RAP percentages (values
from 0 to 10); such input features vector is processed by 6 neurons in the hidden layer
characterized by a hyperbolic tangent activation unit.

6. A worthwhile future development could be an in-depth investigation of aggregate
grading curves’ influence on stiffness predictions by including additional inputs
connected with mixture proportion. Another valuable alternative would be to replace
during the modeling phase, variables referring to empirical properties (i.e., Marshall
Stability) with those referring to pavement performance. In this way, it would be
possible to predict by machine learning approaches fatigue life and/or permanent
deformation resistance. Such an attempt would represent a significant step toward
performance-based mixture design.

Author Contributions: Conceptualization, N.B., M.M. and J.V.; methodology, N.B., M.M., F.R., J.V.
and P.V.; software, M.M.; validation, N.B., M.M., F.R., J.V. and E.M.; formal analysis, N.B., M.M., F.R.,
J.V., P.V. and E.M.; investigation, J.V. and P.V.; resources, N.B. and J.V.; data curation, N.B., M.M.,
F.R., J.V., P.V. and E.M.; writing—original draft preparation, N.B., M.M., F.R., J.V., P.V. and E.M.;
writing—review and editing, N.B., M.M., F.R., J.V., P.V. and E.M.; visualization, E.M.; supervision,
N.B.; project administration, N.B. and J.V.; funding acquisition, N.B. and J.V. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Coatings 2022, 12, 54 18 of 20

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in Table 1 of the current paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Espersson, M. Effect in the high modulus asphalt concrete with the temperature. Constr. Build. Mater. 2014, 71, 638–643. [CrossRef]
2. Miró, R.; Valdés, G.; Martínez, A.; Segura, P.; Rodríguez, C. Evaluation of high modulus mixture behaviour with high reclaimed

asphalt pavement (RAP) percentages for sustainable road construction. Constr. Build. Mater. 2011, 25, 3854–3862. [CrossRef]
3. Rys, D.; Judycki, J.; Pszczola, M.; Jaczewski, M.; Mejlun, L. Comparison of low-temperature cracks intensity on pavements with

high modulus asphalt concrete and conventional asphalt concrete bases. Constr. Build. Mater. 2017, 147, 478–487. [CrossRef]
4. Corté, J.F. Development and uses of hard-grade asphalt and of high-modulus asphalt mixes in France. Transp. Res. Circ. 2001, 503,

12–31.
5. Newcomb, D.E.; Willis, R.; Timm, D.H. Perpetual Asphalt Pavements—A Synthesis; Asphalt Pavement Association of Michigan:

Okemos, MI, USA, 2002.
6. Geng, H.; Clopotel, C.S.; Bahia, H.U. Effects of high modulus asphalt binders on performance of typical asphalt pavement

structures. Constr. Build. Mater. 2013, 44, 207–213. [CrossRef]
7. Marvila, M.T.; Azevedo, A.R.G.; Alexandre, J.; Zanelato, E.B.; Azeredo, N.G.; Simonassi, N.T.; Monteiro, S.N. Correlation between

the properties of structural clay blocks obtained by destructive tests and Ultrasonic Pulse Tests. J. Build. Eng. 2019, 26, 100869.
[CrossRef]

8. Pasetto, M.; Baldo, N. Re-use of industrial wastes in cement bound mixtures for road construction. Environ. Eng. Manag. J. 2018,
17, 417–426. [CrossRef]

9. Wang, L.; Song, Z.; Zeng, S.; Liu, J.; Ma, K. Exploration of the load fatigue test method for cement concrete wheels. Case Stud.
Constr. Mater. 2022, 16, e00793. [CrossRef]

10. Lee, H.J.; Lee, J.H.; Park, H.M. Performance evaluation of high modulus asphalt mixtures for long life asphalt pavements. Constr.
Build. Mater. 2007, 21, 1079–1087. [CrossRef]

11. Moghaddam, T.; Baaj, H. Rheological characterization of high-modulus asphalt mix with modified asphalt binders. Constr. Build.
Mater. 2018, 193, 142–152. [CrossRef]

12. Si, C.; Zhou, Y.; You, Z.; He, Y.; Chen, E.; Zhang, R. Micro-mechanical analysis of high modulus asphalt concrete pavement. Constr.
Build. Mater. 2019, 220, 128–141. [CrossRef]

13. Zaumanis, M.; Arraigada, M.; Poulikakos, L.D. 100% recycled high-modulus asphalt concrete mixture design and validation
using vehicle simulator. Constr. Build. Mater. 2020, 260, 119891. [CrossRef]

14. Baldo, N.; Valentin, J.; Manthos, E.; Miani, M. Numerical Characterization of High Modulus Asphalt Concrete Containing RAP: A
Comparison among Optimized Shallow Neural Models. In IOP Conference Series: Materials Science and Engineering, Proceedings of
the 5th World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium, Prague, Czech Republic, 15–19 June 2020;
IOP Publishing: Bristol, UK, 2020. [CrossRef]

15. Yun, T.; Kim, Y.R. Viscoelastoplastic modeling of the behavior of hot mix asphalt in compression. KSCE J. Civ. Eng. 2013, 17,
1323–1332. [CrossRef]

16. Di Benedetto, H.; Sauzéat, C.; Clec’h, P. Anisotropy of bituminous mixture in the linear viscoelastic domain. Mech. Time-Depend.
Mater. 2016, 20, 281–297. [CrossRef]

17. Rahmani, E.; Darabi, M.K.; Little, D.N.; Masad, E.A. Constitutive modeling of coupled aging-viscoelastic response of asphalt
concrete. Constr. Build. Mater. 2017, 131, 1–15. [CrossRef]

18. Darabi, M.K.; Huang, C.W.; Bazzaz, M.; Masad, E.A.; Little, D.N. Characterization and validation of the nonlinear viscoelastic-
viscoplastic with hardening-relaxation constitutive relationship for asphalt mixtures. Constr. Build. Mater. 2019, 216, 648–660.
[CrossRef]

19. Specht, L.P.; Khatchatourian, O.; Brito, L.A.T.; Ceratti, J.A.P. Modeling of asphalt-rubber rotational viscosity by statistical analysis
and neural networks. Mater. Res. 2007, 10, 69–74. [CrossRef]

20. Mirzahosseini, M.R.; Aghaeifar, A.; Alavi, A.H.; Gandomi, A.H.; Seyednour, R. Permanent deformation analysis of asphalt
mixtures using soft computing techniques. Expert Syst. Appl. 2011, 38, 6081–6100. [CrossRef]
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