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We propose a new type of Z polarization asymmetry in bottom-Z production at LHC that should be
realistically measurable and would provide the determination of the so-called Ab parameter, whose
available measured value still appears to be in disagreement with the Standard Model prediction; we
discuss the overall expected precision of this measurement and its implications. If Supersymmetry is
found, a second polarization, i.e. the top longitudinal polarization in top-charged Higgs production, would
neatly identify the tan β parameter. In this case, the value of Ab should be in agreement with the
Standard Model. If Supersymmetry does not exist, a residual disagreement of Ab from the Standard Model
prediction would be a clean signal of New Physics of “non-Supersymmetric” origin.
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1. Introduction

The polarized bottom-Z forward–backward asymmetry has
been defined several years ago [1], and considered to be the best
way of measuring, in a theoretical SM approach, a combination of
the polarized bottom-Z couplings. The definition of this quantity
was chosen as

Ab,pol
FB =

(σe−
L bF

− σe−
R bF

) − (σe−
L bB

− σe−
R bB

)

σe−
L bF

+ σe−
R bF

+ σe−
L bB

+ σe−
R bB

, (1)

where bF ,B indicates forward and backward outgoing bottom
quarks respectively (a polarization degree of the incoming beam
= 1 is for simplicity assumed). At the Z peak one may easily ver-
ify that

Ab,pol
FB = 3

4

g2
Lb − g2

Rb

g2
Lb + g2

Rb

, (2)

where gL,Rb are the couplings of a left and right handed bottom to
the Z . Calling

Ab = g2
Lb − g2

Rb

g2
Lb + g2

Rb

, (3)

one finds that
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Ab,pol
FB = 3

4 
Ab. (4)

The quantity Ab appears also in an unpolarized transition from an
electron–positron to a b–b̄ pair. One finds in that case that the
unpolarized forward–backward b asymmetry at the Z peak can be
written as

Ab
FB =

3

4 
Ae Ab, (5)

where Ae is the longitudinal electron polarization asymmetry [2]

Ae = g2
Le − g2

Re

g2
Le + g2

Re

(6)

and Eqs. (5) and (6) can be extended to a different final quark–
antiquark couple f f̄ , giving

A f
FB =

3

4 
Ae A f , (7)

where A f is the analogue of Ab Eq. (3) with f replacing b. The
direct measurement of Ab , that requires the use of initially lon-
gitudinally polarized electrons, was performed at SLAC [3,4], and
the result was found to be in good agreement with the Standard
Model prediction, that is [5]

ASM,th
b = 0.93464+0.00004

−0.00007.

Later, LEP1 performed a number of unpolarized measurements at
the Z peak from which the value of Ab was derived. This was ob-
tained from Eq. (7) and found to be in severe disagreement, at the
 Funded by SCOAP3.
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3σ level, with the SM prediction [6]. This result was in a certain
sense unexpected, because the relative decay rate of the Z into
bottom pairs R(b) = Γ (Z → bb̄)/Γ (Z → hadrons) provided a value

Rb � g2
Lb + g2

Rb (8)

in perfect agreement with the SM prediction [6]. Accepting the
LEP1 result for Ab , a search started of possible New Physics models
that might have cured the disagreement. In particular, it was con-
cluded that a conventional MSSM was unable to save the situation
[7]. This conclusion remained problematic, since no extra measure-
ments of Ab were eventually performed, and the emerging picture
seems definitely unclear. In addition to the previous statements,
a new feature has now appeared. In a very recent important paper
[8], a SM calculation of sin2 θ

eff ,b
W and Rb has been redone includ-

ing higher order previously neglected effects. The result is that the
SM theoretical prediction for Ab and Rb are now different [5], in
the sense that the disagreement of Ab has been slightly (∼ 2.5σ )
reduced, while a new disagreement (∼ 2.4σ ) for Rb has appeared.
Certainly, a new measurement of Ab and Rb would therefore repre-
sent an undoubtedly relevant improvement of our understanding.
In this Letter, we discuss the possibility of a measurement of Ab .

In a recent paper [10], we have defined a certain polarization
asymmetry Apol,b

Z to be measured in bottom-Z production at LHC,
and shown that this would represent a possibility of measuring
the Ab quantity. From a theoretical point of view, this asymme-
try exhibits the remarkable properties of being QCD scale and PDF
set choice independent, which would represent a quite remark-
able feature. From the realistic experimental point of view, this
asymmetry should be derived from the experimental determina-
tion of the so-called polarization fractions (see for example [9] and
references therein) of the Z boson in b Z associated production,
known to be affected by intrinsically large systematic uncertainties.
The aim of this Letter is that of proposing an alternative quantity,
proportional to Ab , measurable in the same process of bottom-Z
production at LHC, that would be experimentally clean being even-
tually limited in precision only by statistical uncertainties. Beyond
tree level, the relation between Ab and Apol

Z can be modified by
EW radiative corrections beyond the important QCD corrections.
In principle, these do not trivially factorize into vertex correction
factors in contrast to Z -pole observables, where off-shell effects
enter at two loop [11] or at order O (ΓZ /M Z α). Nevertheless, as
discussed in details and checked numerically in [10], the ratio
defining Apol

Z is dominated by helicity amplitudes that have EW
corrections mutually canceling. Thus, a small non-zero effect only
comes from the smaller amplitudes (suppressed by a factor ∼1/25)
and from the small differences due to the subleading (mass sup-
pressed) terms, leaving an overall EW effect from non-factorizable
one-loop corrections on the asymmetry of less than the 1%. These
remarks allows to consider Apol

Z as an alternative way to measure
Ab , at least in the SM. Of course, if New Physics effects are re-
sponsible for the discrepancy in Ab , their detailed factorizability
properties have to be reconsidered in a model dependent way. The
definition of our proposed asymmetry will be done in the follow-
ing Section 2 of the Letter. In Section 3, the possible relevance
of the measurement of another polarization asymmetry, the top
longitudinal polarization in top-charged Higgs production, will be
discussed in the case of a SUSY discovery. The importance of a
measurement of the Z polarization in bottom-Z production with
or without Supersymmetry will be finally discussed in Section 4.

2. Helicity amplitudes and Ab
FB

The process of associated production of a single b-quark and a
Z boson with its subsequent decay into a lepton–antilepton pair,
Fig. 1. Leading order Feynmann diagrams for the process bg ↔ bll̄.

represented in Fig. 1, is defined at parton level by subprocesses
bg → bll̄ involving two Born diagrams with bottom quark exchange
in the s-channel and in the u-channel. The interaction vertexes in-
volved in the diagrams of Fig. 1 are defined as follows:

gqq: igs/ε
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c

2

)
,
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]
. (9)

Therefore, the Born invariant amplitude is given by
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where ε , λk
c are the gluon polarization vector and color matrix,

pl + pl̄ ≡ p Z , D Z (p2
Z ) is the usual Z effective propagator, q = pb +

pg = p Z + p′
b , s = q2, q′ = p′

b − pg = pb − p Z , u = q′ 2 and with the
kinematic decompositions in the center of mass frame (all fermion
massless)1

pb = (p;0,0, p), p′
b = (p1;0, p1 sin θ1, p1 cos θ1), (11)

pg = (p;0,0,−p), (12)

pl = (p2; p2 sin θ2 sinφ2, p2 sin θ2 cosφ2, p2 cos θ2), (13)

pl̄ = (p3; p3 sin θ3 sinφ3, p3 sin θ3 cosφ3, p3 cos θ3), (14)

ε(g) =
(

0; λg√
2
,− i√

2
,0

)
, (15)

where the variables pi, θi, φi do not yet satisfy momentum con-
servation, for clarity of notation; a more appropriate set of vari-
ables that fulfill pb + pg = p′

b + pl + pl̄ is found rotating the three
momenta of the leptons in a new ‘helicity’ frame, in which the po-
lar axis is the direction of b′ and the azimuthal angle is measured
from the normal to the production plane (i.e. the one spanned by
the colliding and decaying bottom quarks momenta2). The rotation
matrix between the two coordinate systems is

Rθ1 =
(1 0 0

0 cos θ1 − sin θ1
0 sin θ1 cos θ1

)
, (16)

from which one can define the polar angles θl, θl̄ and the azimuthal
angle φ′

1 An additional azimuthal angle for b′ would manifest itself only through overall
phase factors in the amplitudes.

2 The ambiguity coming from the orientation of the normal to the production
plane will be canceled after integration over the azimuthal angle in the definition
of observable quantities.
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phf
l = (

p2; p2 sin θl sinφ′, p2 sin θl cosφ′, p2 cos θl
)
,

phf
l̄

= (
p3;−p3 sin θl̄ sinφ′,−p3 sin θl̄ cosφ′, p3 cos θl̄

)
.

In this frame the coplanarity of the final particles is manifest
through the dependence on the same variable φ′ for both lep-
tons. Energy conservation leads, in this frame and for massless
particles, to simple formulas for the energies of the final particles
({θl, θl̄}h ≡ {θl, θl̄}/2):

p1 = p
(
1 − cot

(
θh

l̄

)
cot

(
θh

l

))
, (17)
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(
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)
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(
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l

)
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(
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l

)
, (18)

p3 = p csc
(
θh
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)
cos

(
θh

l

)
csc

(
θh

l̄
+ θh

l

)
, (19)

which make manifest the (maximal) domain of integration

θl ∈ [0,π ], θl̄ ∈ [π − θl,π ].
The introduction of this reference frame is motivated by the
cleaner form the matrix elements assume there. In the massless
case, the helicity amplitudes can be expressed as

Mλbλg ;λb′λlλl̄
≡ δλbλb′ δλl λ̄l̄

Mλg ;λb′λl ,

where λ f = ± 1
2 ≡ ±, λg = ±1 ≡ ± and λi ≡ −λ̄i . Modulo a com-

mon factor
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16
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c

)
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the non-vanishing helicity amplitudes factors read:
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while the other four can be derived by these by parity conjugation,
that in our conventions is represented by complex conjugation to-
gether with the switch gL

Z f ↔ g R
Z f . As an example
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)
e−iφ′

√
p1 p2 p3

p

cos θh
l̄

sin θh
l

cos θh
1

.

Note that formulas related by switch of the lepton helicities are
related one to each other by the replacements(
θl ↔ θl̄, φ

′ → φ′ + π
) ≡ l ↔ l̄, (24)

gL
Zl ↔ g R

Zl. (25)

From these formulas one can build the total cross section by
introducing the usual flux factor and the convolution with the rel-
evant partons density functions for the proton. For our purposes it
suffices to define the squared amplitude summed over the initial
state helicities as
ρλb′λl ≡
∑
λg

|Mλg ;λb′λl |2

and to identify

ρ++ + ρ−− ≡ (
g2

Lb g2
Ll + g2

Rb g2
Rl

)
f
(
θh

l , θh
l̄
, θ1, φ

′)
(one can check that actually in the sum in the RHS the couplings
factorize out). The complete unpolarized squared amplitude can
now be simply written as

|M|2 = (
g2

Lb g2
Ll + g2

Rb g2
Rl

)
f
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)
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′) (26)

≡ c+ f + f̄
2 + c− f − f̄

2 , (27)

where f̄ ≡ f |l↔l̄ . In the last line (27), the two terms have definite
symmetry properties under l ↔ l̄, with coefficients

c+ = (
g2

Lb + g2
Rb

)(
g2

Ll + g2
Rl

)
,

c− = (
g2

Lb − g2
Rb

)(
g2

Ll − g2
Rl

)
,

c−
c+

= Ab Al.

This allows us to extract (c−) c+ simply measuring (anti) sym-
metrized combination of cross sections in kinematic domains re-
lated one to each other under exchange of the two leptons angles.
The simplest choice in the CM frame is

D± ≡ θl ≷ θl̄. (28)

To be more explicit, note that the condition θl ≷ θl̄ translates in
the Z rest frame to the experimentally simpler condition of for-
ward/backward lepton momentum respect to the bottom momen-
tum versor. This finally leads to the definition of Ab,LHC

FB

Ab,LHC
FB ≡ σ(DF ) − σ(DB)

σ (DF ) + σ(DB)
, (29)

where the reference axis is the b momentum in the Z rest frame.
From (27) this quantity will be proportional, modulo a kinematic
factor k, to the LEP Ab

FB

Ab,LHC
FB = kAb

FB, (30)

where FB, as already emphasized, has different meaning in the two
expressions.

A theoretical prediction of Ab,LHC
FB (and, in particular, of the

numerical value of the kinematical constant k) has to take into
account several experimental issues, thus needing a realistic simu-
lation of the detector features, and in particular of its geometrical
properties and of intrinsic cuts applied to the event reconstruc-
tion. In such a contest, kinematic cuts on transverse momentum
and pseudorapidity of the decaying particles introduce some sub-
tleties in the derivation of a direct connection of Ab,LHC

FB to the
LEP asymmetry Ab

FB. To prove the validity of (30) also in the pres-
ence of a realistic event selection, one can vary fictitiously gL,R

Zb
in a wide range of values, determining the corresponding values
of Ab,LHC

FB with usual kinematic cuts. Fig. 2 shows the results of
a simulation with 10 different choices of gL,R

Zb , including the SM
one (for the events simulation we have used CalcHEP [12] and
checked good agreement with different event generators). The par-
ticular choice of selection criteria closely follows the one used by
ATLAS for the Z –b-jets cross section analysis [13]. With these as-
sumptions, the kinematical constant k is found to be −0.37 at LO.
Its QCD scale dependence has been inspected varying simultane-
ously the renormalization and factorization scales and computing
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Fig. 2. Event level (i.e. without parton showering) dependence of the asymmetry
defined in the text on Ab

FB, in a fictitiously wide range of Ab
FB values, aiming to

prove the direct proportionality also in the presence of typical kinematic cuts [13]
on decay products pseudorapidities and transverse momenta. The uncertainty on k
is only numerical, i.e. related to MC statistics (see the text for other uncertainties).

Fig. 3. Comparison between the LO μF = μR = kM Z scale variation dependencies of
the total cross section and our asymmetry.

Fig. 4. Comparison of different pdf set LO asymmetry predictions taking CTEQ6L1 as
reference.

the corresponding Ab,LHC
FB values, Fig. 3. Similarly the PDF set choice

dependence is depicted in Fig. 4. The total theoretical uncertainty
in both cases is at the 1 percent level.

For a detector level simulation one has to choose an appropriate
procedure to measure the b-jet charge, that can be achieved adapt-
ing the LEP procedure to the LHC case [14,15]. Here a weighting
technique [16,17] is applied in which the b-jet charge is defined as
a weighted sum of the b-jet track charges,

Q b-jet ≡
∑

i Q i |�j · �pi|k∑ |�j · �p |k (31)

i i
where Q i and �pi are the charge and momentum of the i-th track,
�j defines the b-jet axis direction, and k is a parameter which was
set to 0.5 following literature (this value optimizes the separa-
tion between b- and b̄-jets mean charges). In addition, in events
with muons with transverse momentum relative to the jet axis
prel

T > 0.8 GeV (this value is known to maximize the b-purity times
efficiency, see [21]), we have defined an effective jet charge as

Q μ
b-jet ≡

(
prel

T

mb

)k

qμ (32)

where qμ is the reconstructed muon charge and k was set to 0.5
from optimization. This method is a simplified version of similar
ones present in literature [21] mixed with the tracks weighted one,
from which it inherits the advantage of taking already into account
the problem of the B0–B̄0 mixing. For both methods, one can then
define

〈Q FB〉 ≡ 〈
(−1)FB Q jet

〉
,

where (−1)FB is computed event by event as the sign of �j∗ · �p∗
e− ,

both taken in the Z rest frame. The mean b-jet charge δb ≡ 〈Q b〉 is
obtained from the average value of Q jet for events with a b-quark
initiated jet (i.e. not a b̄), and was here taken from simulations (but
will be experimentally constrained in a real measurement). With
these definitions, in a pure b/b̄ sample, the b asymmetry Ab,LHC

FB is
proportional to 〈Q FB〉:

〈Q FB〉 = δb Ab,LHC
FB . (33)

With a non-pure sample of jets originated from different quark
flavors, (33) gets modified into:

〈Q FB〉 =
∑

f

δ f A f ,LHC
FB r f , (34)

where the sum runs over the quark flavors present in the sam-
ple, while r f are the fractions of events with flavor f . For the
purposes of this article, given the usual efficiencies and mistag
rates of b-tagging algorithms on the market, it suffices to con-
sider only the c-jet background (represented at LO from the pro-
cess p p → c l l̄). The simulated samples were generated using
MadGraph 5 [18] interfaced with PYTHIA 6.4 [19] for the show-
ering and with Delphes 3 [20] for the detector simulation (the
Delphes card was modified for ATLAS updated parameters). The
event selection criteria was taken from [13]. The number of events
generated corresponds to a conservative estimate of a ten years
luminosity of 400 fb−1 at 14 TeV, though results can also be ex-
trapolated to a possible final total integrated luminosity of 3 ab−1,
predicted for the (not yet approved) High Luminosity LHC. Due
to partial cancellation from opposite values of mean jet charges
in (34), the value of b-tagging efficiency that optimizes the rela-
tive uncertainty on 〈Q FB〉 was found to be around 55% (see [22]):
for this reason we present results at two different b-tagging ef-
ficiency working points ({εb, εc} = {50,3}%, {60,8}%), which, from
inversion of (34), allows in principle also an independent determi-
nation of Ac

FB, taking as input the predicted flavor fractions and
mean charges. Table 1 collects the number of generated events
and computed input parameters, while results are presented in
Table 2, and refers to a single experiment (ATLAS in this case).
Systematic uncertainties from ISR/FSR has been inspected switch-
ing them separately off and taking, as the associated uncertainty,
20% of the total effect. While FSR has no impact at all, ISR gives a
relative systematic uncertainty lower than 2%, and needs a deeper
understanding of the source of this variation. The impact of pile-
up effects has been inspected using the related Delphes Pile-Up
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Table 1
Generated events and input parameters. Systematic errors on flavor fractions and δ f are irrelevant given the estimated statistical uncertainty on the final results, while they

should be taken into account (comprising possible effects giving δ f �= −δ f̄ ) in a possible HL-LHC upgrade.

b/b̄ sample c/c̄ sample

Jet charge Soft muon Jet charge Soft muon

Total number of events 8.96 · 106 10.08 · 106

Flavor fractions εb 50% 0.94 0.99 0.06 0.01
εb 60% 0.88 0.97 0.12 0.03

δ f −0.0736 −0.3027 0.0721 0.535
Table 2
Results (times a factor 104) for an integrated luminosity of 400 fb−1 for both elec-
tron and muon channels, assuming lepton universality.

εb 50% εb 60% Ab,LHC
FB Combined value

〈Q FB〉 23.4 ± 2.3 21.3 ± 2.0 −343±54 −347 ± 47
〈Q μ

FB〉 104 ± 17 96 ± 15 −361±95

module, setting the average amount of pile-up events per bunch-
crossing to 50, and found to be negligible.

This simplified study shows that a relative overall uncertainty
on the measured asymmetry value of less than 10% can be eas-
ily reached at 400 fb−1 (taking into account also ATLAS and CMS
combination). This value, extrapolated at an integrated luminos-
ity of 3 ab−1, can be lower than 4%, imposing at that level also a
deeper study of systematic uncertainties, out of the scopes of this
Letter. One should also take into account that these values have to
be intended as very conservative, and will most likely be lowered
in a real experimental measurement, owing to the use of more
involved methods (ready from LEP studies) and improvements on
b-purities and mean charges (e.g. from tagging and rejection of
double b-hadron jets from ISR [23]). Furthermore, one should com-
pare this kind of uncertainties with the present one of 1.6% on the
world average value of A0,b

FB , that results in a discrepancy around
2.5 standard deviations from its theoretical prediction. A new de-
termination of A0,b

FB through Ab,LHC
FB with a relative uncertainty

lower than 5% would definitely influence this discrepancy. In con-
clusion, we can firmly assess that a measurement of this quantity
at LHC (and, possibly, at HL-LHC) will be of crucial importance.

3. The top longitudinal polarization in top-charged Higgs
production

The previous discussion about Ab is not dependent on the as-
sumption of a Supersymmetric model of New Physics. In partic-
ular, there is no impact of SUSY on Ab if one assumes a heavy
enough charged Higgs and sbottoms/stops squarks which seems
to be the case. If Supersymmetry is found, a different asymmetry
measurement becomes relevant at LHC, the top longitudinal polar-
ization asymmetry in top-charged Higgs production. This quantity
has been exhaustively discussed in a previous paper [24], where
it was shown that its value would essentially mostly depend on
that of the MSSM tanβ parameter, and would be almost rigor-
ously QCD scale and PDF choice independent. In particular, it was
shown in Ref. [24] that varying tan β from approximately one to
approximately ten, the value of the asymmetry changes sign, mak-
ing an experimental determination effective even in the presence
of a realistic experimental and theoretical error. For larger tanβ

values, on the contrary, the asymmetry remains essentially con-
stant and provides a minor but still relevant information, and we
defer to Ref. [24] for more details. The relevance of the considered
asymmetry appears to us to have been enormously increased by
the latest results on the Higgs boson mass derived at LHC [25,
26]. If one wants to retain a MSSM scheme, the residual range
of the Supersymmetric parameters has been greatly reduced. In
Fig. 5. Top polarization asymmetry in t H± associated production as a function of
tanβ with tree different assumptions on the charged Higgs mass.

particular the allowed values of tanβ lie exactly in our “optimal”
range, roughly from one to ten, with a mass of the charged Higgs
in the 300–600 GeV range. Indeed, according to a recent analysis
[27], while the best fit MSSM point derived from the latest LHC
Higgs data gives MH+ ≈ 600 GeV and tanβ ≈ 1, data are still in a
good agreement with low tanβ values and MH+ values down to
300 GeV (the reason being that the χ2 is relatively flat). The vari-
ation of the top polarization asymmetry with tan β in scenarios of
this kind is shown in Fig. 5. In our calculation, we have used the
previous results of Ref. [28] and have remained essentially limited
to an effective Born approximation. The Figure shows the top po-
larization asymmetry for three different choices of the Higgs mass:
the center of mass energy is

√
s = 7 TeV and, following [28,29],

the factorization scale μF is set to 1/6(MH± + mt) to minimize
the QCD corrections. The value of the bottom mass in the Yukawa
coupling tbH± is evaluated in the M S-scheme at the factorization
scale.

The main conclusion of our analysis is that a determination of
tanβ in the residual range would not request an “extremely” pre-
cise experimental measurement. This is a consequence of the fact
that a jump from a positive value of approximately twenty percent
to the same value of opposite sign would not escape a “reasonable”
determination.

4. Ab indications if Supersymmetry is not found at LHC

Coming back to the bottom Z process, assuming that Super-
symmetry is found, the proposed determination of Ab from Z
polarization becomes now extremely relevant, given the fact that
Supersymmetry would be unable to explain a discrepancy with
the available Standard Model result. But this asymmetry could also
play a fundamental role in the case of a negative Supersymmetric
search at LHC. In particular we shall consider two opposite cases:

(A) The Ab value is in disagreement with the Standard Model
prediction. This result would completely eliminate Super-
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symmetry, even at a more powerful proton–proton CERN col-
lider, but would necessarily indicate the presence of New
Physics of non-Supersymmetric nature, like that discussed in
some recent papers (see e.g. [30–32] and references therein).

(B) The Ab value is in agreement with the Standard Model pre-
diction. This would leave an “open door” for very heavy Su-
persymmetry, to be searched at a future more powerful CERN
collider, or also exclude effects at LHC due to a large class of
considered New Physics models [32].

The conclusion that we personally think can be derived from
our Letter is that, in full generality, a measurement of the Z po-
larization and top longitudinal asymmetries, which could be per-
formed at LHC under reasonably expected experimental conditions,
is, to use a mild definition, “worth”. We are ready and willing to
collaborate with possibly interested experimental teams to make
this project fulfilled.
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