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Abstract: The good chelating properties of hydroxypyrone (HPO) derivatives towards oxidovana-
dium(IV) cation, VIVO2+, constitute the precondition for the development of new insulin-mimetic and
anticancer compounds. In the present work, we examined the VIVO2+ complex formation equilibria
of two kojic acid (KA) derivatives, L4 and L9, structurally constituted by two kojic acid units linked in
position 6 through methylene diamine and diethyl-ethylenediamine, respectively. These chemical sys-
tems have been characterized in solution by the combined use of various complementary techniques,
as UV-vis spectrophotometry, potentiometry, NMR and EPR spectroscopy, ESI-MS spectrometry, and
DFT calculations. The thermodynamic approach allowed proposing a chemical coordination model
and the calculation of the complex formation constants. Both ligands L4 and L9 form 1:1 binuclear
complexes at acidic and physiological pHs, with various protonation degrees in which two KA units
coordinate each VIVO2+ ion. The joined use of different techniques allowed reaching a coherent
vision of the complexation models of the two ligands toward oxidovanadium(IV) ion in aqueous
solution. The high stability of the formed species and the binuclear structure may favor their biologi-
cal action, and represent a good starting point toward the design of new pharmacologically active
vanadium species.

Keywords: oxidovanadium(IV); kojic acid; potentiometry; UV-visible spectrophotometry; EPR
spectroscopy; ESI-MS spectrometry; DFT calculations

1. Introduction

Vanadium compounds show a wide variety of pharmacological properties in humans,
among which antiparasitic, antiviral, antibacterial and, particularly, antidiabetic and an-
ticancer action [1–7]. A number of studies have shown that vanadium compounds favor
glucose intake into cells, lowering the level of glucose in blood; vanadium compounds,
with respect to insulin, present the advantage of being orally active [8–11]. A quantity of
VIV complexes have been synthesized and characterized [12], while one of them, formed
by a hydroxypyrone (HPO) derivative, VIVO(ethylmaltolato)2, has passed tests in phase 1
and phase 2 clinical trials in Canada and in the USA [13]. These vanadium compounds
should be neutral and possess the proper lipophilicity to cross easily the cell membranes.
Nevertheless, Kiss, Sakurai and coworkers, based on speciation studies, remarked that the
neutral bis-chelated complexes are not stable, and at acidic pH values they can decompose
with the formation of ionic complexes or free metal ion of low absorption ability [12,14,15].

In recent years, vanadium compounds have emerged as useful anticancer agents
because of desirable properties for chemotherapeutic reagents, displaying higher selectivity,
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low toxicity, greater reactivity, as well as anti-metastatic activity [16–18]. Among the
new potential anticancer agents, the bis-chelated complex formed with the well-known
iron chelator deferiprone, the 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone, is active against
malignant melanoma cells and causes apoptosis and cell cycle block [19,20]. It is noteworthy
that polynuclear metal complexes often have a cytotoxicity higher than mononuclear
species, as was reported for Au, Pd, Pt, and Cu complexes [21–28].

One of main requirements for new potential VIVO2+ drugs is the thermodynamic
stability to survive enough in the serum, enter intact into the cells and release the active
species only in the cytosol. In fact, it has been recently demonstrated that the cellular uptake
of vanadium compounds is reduced upon transferrin binding, and that this interaction
may inhibit, instead of promoting, their biological and pharmacological activity [29].

Based on the above considerations, in this study we have synthesized ligands for
VIVO2+ complexation that combine different advantages, among which the formation
of polynuclear complexes and their high stability are the most noteworthy. The use as
a ligand of kojic acid (KA), a natural, non-toxic and low-cost product of large use in food
and cosmetic industries, their good chelating properties towards VIVO2+ and the simple
synthesis constitute further advantages.

Previously, we investigated the interaction between VIVO2+ and three linear KA
derivatives, in which two KA units are linked in position 2 by diamines of different length;
these ligands, depending on the length of the linker, form VIVO2+ complexes with various
structure and protonation degree [30]. In the current work, we present a potentiometric-
spectrophotometric study supported by EPR, NMR, ESI-MS measurements, and DFT
calculations of VIVO2+ complexation with two KA derivatives, named L4 and L9 (Figure 1).
In these ligands, the two KA units are linked in position 6 by methylamine and diethyl-
ethylenediamine respectively, showing an orientation of KA units opposite to that in the
ligands previously studied [30]. The complex formation equilibria with other metal ions
(Fe3+, Al3+, Cu2+ and Zn2+) has been already studied; in the case of the hard Fe3+ metal
ion, the formation of binuclear Fe2L2 complexes was observed, with an increase of stability
of more than four orders of magnitude with respect to the parent KA ligand [31–34].
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Figure 1. Molecular structure of L4 and L9 ligands.

After the characterization of the systems in aqueous solution, biological tests to
evaluate the antidiabetic and cytotoxic potential of these vanadium complexes will be
carried out in a next research step.

2. Experimental
2.1. Reagents

NaOH, NaCl, HCl, kojic acid, and VOSO4·3H2O were Sigma-Aldrich (Milano, Italy)
products, and were used without any further purification. L4 and L9 ligands were syn-
thetized as reported in Refs. [31,33]. Carbonate free 0.1 M NaOH solution was prepared
as previously described [35]. Oxidovanadium(IV) sulphate solution ~0.1 M was prepared
weekly, acidified with a stoichiometric amount of HCl to prevent hydrolysis and standard-
ized by redox titration as reported by Berto et al. [36]. All solutions were prepared using
grade A glassware and ultrapure water (conductivity < 0.1 µS).
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2.2. Solution Equilibrium Studies

The complex formation equilibria were studied at 25 ◦C and 0.1 M NaCl ionic strength
by combined potentiometric-spectrophotometric titrations at 1:1, 1:2 and 1:4 VIVO2+:ligand
molar ratios with a constant ligand concentration of 3.0 × 10−4 M. Potentiometric measure-
ments were performed with a dEcotrode plus Metrohm combined glass electrode connected
to an 888 Titrando titrator (Metrohm AG, Herisau, Switzerland). The electrode was cali-
brated daily for hydrogen ion concentration by HCl standard titration with NaOH in the
used experimental conditions, and data were analyzed by Gran’s method [37]. Spectropho-
tometric measurements were performed in the 200–400 nm range with a 0.2 cm fiber optic
dip probe connected to an Agilent Cary 60 UV-vis spectrophotometer. Potentiometric and
spectrophotometric data were processed by HyperQuad and HypSpec programs, respec-
tively [38,39]. Log βpqr values refer to the overall equilibria pV + qH + rL � VpHqLr (electri-
cal charges omitted). During the calculations, the following hydroxido complexes of VIVO2+

were assumed: [VIVO(OH)]+ (log β1–1 = −5.94), [(VIVO)2(OH)2]2+ (log β2–2 = −6.95) [40],
[VIVO(OH)3]− (lo gβ1–3 = −18.0) and [(VIVO)2(OH)5]− (log β2–5 = −22.0) [41,42].

2.3. ESI-MS Measurements

The solutions for ESI-MS measurements were prepared by dissolving a weighted
amount of the ligand L4 or L9 in a VIVO2+ solution (1 mM, in LC-MS grade water or
MeOH) to have a 1:1 VIVO2+:ligand molar ratio. Argon was bubbled to avoid the oxidation
of VIV to VV, and the pH was raised up to 7.0 with ammonium carbonate. Subsequently,
the solutions were diluted to 50 µM or 5 µM immediately before recording the mass
spectra. Positive-ion mode ESI-MS spectra were recorded with a high-resolution Q Exac-
tive™ Plus Hybrid Quadrupole-Orbitrap™ mass spectrometer (Thermo Fisher Scientific,
Milano, Italy). The solutions were infused at a flow rate of 5.00 µL/min into the ESI
chamber. Spectra were recorded in the range of m/z 80–1200 with a resolution of 140,000.
The instrumental conditions were as follows: spray voltage 2300 V, capillary tempera-
ture 250 ◦C, sheath gas 5 (arbitrary units), auxiliary gas 3 (arbitrary units), sweep gas 0
(arbitrary units), probe heater temperature 50 ◦C. MS/MS spectra were recorded using
Normal Collision Energy (NCE) setting in the range of 10–40 and with an m/z range of
1.0 around the peak under investigation; ion fragments were detected with a resolution
of 17,500. All the mass spectra were analyzed by using Thermo Xcalibur 3.0.63 software
(Thermo Fisher Scientific, Milano, Italy).

2.4. EPR Experiments

The solutions were prepared by dissolving in ultrapure water obtained from a Milli-
pore Milli-Q Academic purification system (Merck KGaA, Darmstadt, Germany) a weighted
amount of VOSO4·3H2O and L4 or L9 to obtain a metal ion concentration of 1 or 2 mM
and a ligand to metal molar ratio of 1 or 2. The solutions were bubbled with argon to avoid
oxidation of the metal ion. The pH values of the solution were varied with diluted solution
of H2SO4 and NaOH. To uniformly freeze the solutions and prevent a concentration gradi-
ent during freezing, DMSO was added to each sample (5–10%); under these experimental
conditions, the binding of DMSO to VIV can be neglected.

EPR spectra were recorded immediately after the preparation of the solutions at 120 K
with an X-band Bruker EMX spectrometer equipped with a HP 53150A microwave frequency
counter and a variable temperature unit. The microwave frequency was 9.40–9.41 GHz,
microwave power was 20 mW (a value close to the saturating condition to maximize
signal intensity), time constant was 81.92 ms, modulation frequency 100 kHz, modulation
amplitude 0.4 mT, resolution 4096 points.

The EPR spectrum of [(VIVO)2(L4)2(H2O)2] was simulated with EasySpin software,
vers. 5.2.33 [43–45].
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2.5. NMR Experiments

NMR experiments were performed on a Bruker Ascend™ 400 MHz spectrometer
equipped with a 5 mm automated tuning and matching broadband probe (BBFO) with
z-gradients. The samples for NMR experiments were in the range of 2–4 mM in H2O/D2O
90/10 v/v or in MeOD-d4 solutions and carried out at 298 K in 5 mm NMR tubes at pH 7.4 at
different VIVO2+ ligands molar ratios. The concentration of VIVO2+ ion was achieved by
using a batch of 100 mM deuterated aqueous or MeOD-d4 solutions of oxidovanadium(IV)
sulphate freshly prepared prior each set of NMR experiment acquisition. 2D 1H-13C
heteronuclear single quantum coherence (HSQC) spectra were acquired by using a phase-
sensitive sequence employing Echo–Antiecho-TPPI gradient selection with a heteronuclear
coupling constant JXH = 145 Hz, and shaped pulses for all 180◦ pulses on f2 channel
with decoupling during acquisition; sensitivity improvement and gradients in back-inept
were also used. Relaxation delays of 2 s and 90◦ pulses of about 10 µs were applied in
all the experiments.

2D 1H-1H correlation spectroscopy (COSY) spectra were acquired using gradient
pulses for selection with multiple quantum filter according to gradient ratio using pulse
program ‘mqsgp1d2’ for setup gradient ratio optimized for artifact suppression. Solvent
suppression was achieved by using excitation sculpting with gradients. All NMR data were
processed with TopSpin (Bruker Instruments, Billerica, MA, USA) software and analyzed
by Sparky 3.11 and MestRe Nova 6.0.2 (Mestrelab Research S.L., Santiago de Compostela,
Spain) programs.

2.6. DFT Calculations

The geometry of [(VIVO)2(L4)2(H2O)2] complex was optimized and the harmonic
frequencies computed with Gaussian 09 software (revision D.01) [46] at DFT theory level in
aqueous solution describing water with the SMD continuum model of Marenich et al. [47].
The functional B3P86 [48,49] and the basis set 6−311++g(d,p), including diffuse and po-
larization functions for all the atoms, were used according to the reported procedure [50].
The exchange coupling constant J was calculated at the level of theory B3LYP/6-311g with
ORCA package [51], using the Heisenberg Hamiltonian Ĥ = −JŜ1·Ŝ2, where S1 and S2
are the spins on two vanadium(IV) atoms [52]. When S1 = S2, J can be obtained by the
expression J = ELS − EHS, with ELS and EHS energies of the singlet and triplet state; the
energy of the low spin state, ELS, can be determined the broken-symmetry solution, EBS [53].
The tensor A(51V) was calculated using the method developed and implemented into the
Gaussian package at the level of theory BHandHLYP/6−311+g(d) following the protocol in
the literature [54]. Concerning the algebraic sign of the V hyperfine coupling constants [51],
they are negative for VIV, but their absolute value is reported in this study. The percent
deviation (PD) of the absolute calculated value, |Az|calcd, from the absolute experimental
value, |Az|exptl, was obtained as follows: 100 × [(|Az|calcd − |Az|exptl)/|Az|exptl].

3. Results and Discussion
3.1. Characterization of the Ligands

The synthesis and the characterization of the ligands L4 and L9 has been previously
reported, as well as their solid-state structure [31–34].

In the present study, mass spectrometry measurements were used to confirm the
structure of L4 and L9. The peaks at m/z 340.10 and 362.08 can be attributed to the adducts
with proton and sodium, [L4+H]+ and [L4+Na]+ and that at 425.19 to [L9+H]+ (Table S1,
the Tables and Figures denoted as Snumber are reported in the Supplementary Materials).
Further evidence is provided by ESI-MS/MS measurement. With L4, MS/MS spectrum
recorded in the range m/z = 340.10 ± 0.5 shows two peaks at 155.03 and 186.08, due to the
ligand fragmentation (Figure S1); similarly, in the spectrum at m/z = 425.19 ± 0.5 of L9, the
signals of the fragments C7H7O4, C8H12O4N, C15H18O8N at m/z 155.03, 186.07 and 340.10,
respectively, coming from the breaking of the various C–N bonds, are detected (Figure S2).
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3.2. Protonation Equilibria

Table 1 reports the protonation constants of L4 and L9 ligands previously published [31,33].

Table 1. Protonation constants of L4 and L9 ligands evaluated from potentiometric titration at 25 ◦C
and 0.1 NaCl ionic strength. L indicates the completely deprotonated form of the L4 and L9 ligands.

L4 L9

Species log β log K log β log K

[LH]− 9.19 (3) 9.19 a 10.81 (1) 10.81
LH2 16.70 (3) 7.51 a 19.04 (2) 8.23 a

[LH3]+ 21.08 (5) 4.38 25.99 (2) 6.95 a

[LH4]2+ 26.50 (4) 0.51
a Protonation constants related to KA moieties.

The 1H NMR chemical shift variations during a pH titration of L9 ligand allowed the
unambiguous assignment of the first deprotonation step to N8 nitrogen atom on the linker,
and the fourth deprotonation to N11 nitrogen atom in the lateral chain [34].

The assignments of the protonation constants to the proper basic groups allow us to
comment and to explain the different acid behavior of the two ligands. Starting from the
most protonated species, the pK value 4.38 of L4, related to the loss of the proton from the
N8 nitrogen atom, is ~4 pK units higher than the corresponding value 0.51 for L9, due to
the different charge of the starting molecule (2+ in L9 vs. 1+ in L4). An easier formation of
stabilizing hydrogen bonding between the neutral N8 atom and the OH group of one of the
KA units further lowers the pK of L9. Similarly, the pK values related to the deprotonation
of OH groups in the KA moieties are 0.5–1.0 pK units lower in L9, again depending on the
different charge of the starting molecules. The L9 ligand has a further protonated group
respect to L4, the N11 atom in the lateral chain, characterized by a pK value 10.81. This high
value depends both on the negative charge on the starting molecule, and on the hydrogen
bonding between N11 and a phenolate group in one KA unit.

Spectrophotometric titration of L4 and L9 ligands (Figures S3–S6) was carried out to
evaluate the absorptivity spectra in the experimental conditions. The spectral behavior
observed is the same as KA, but with values of ε almost double.

3.3. Oxidovanadium(IV) Complex Formation Equilibria

The complex formation equilibria involving VIVO2+ and L4 and L9 were studied by
combined potentiometric-spectrophotometric titrations at 1:1, 1:2 and 1:4 VIVO2+:ligand
molar ratios (Figures S7–S14), supported by EPR and ESI-MS measurements. The formed
complexes and the related stability constants are reported in Table 2 and the speciation
plots in Figure 2.

Table 2. Complex formation constants of VIVO2+ with L4 and L9 evaluated from combined
potentiometric-UV titrations at 25 ◦C, 0.1 M NaCl ionic strength.

L4 L9

Species log β pK log β pK

[VIVOLH2]2+ 22.08 (1) 26.03 (3)
[(VIVO)2L2H3]3+ – 52.73 (4) 4.41
[(VIVO)2L2H2]2+ 41.63 (2) 4.63 48.32 (2) 7.30
[(VIVO)2L2H]+ 37.00 (1) 7.24 41.02 (3)

[(VIVO)2L2] 29.76 (1) –

pVIVO2+ 12.9 11.1
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Figure 2. Speciation plots of VIVO2+-ligand systems (L4 on the left and L9 on the right), calculated with Hyss program [55].
Top: conditions of spectrophotometric titrations, 1:1 VIVO2+:ligand molar ratio at ligand concentration 3 × 10−4 M. Bottom:
conditions of EPR measurements 1:2 VIVO2+:ligand molar ratio at ligand concentration 4 mM. V stands for VIVO2+, and L
for L4 or L9; charges are omitted for simplicity.

In the calculation of complex stability constants, the formation of VIVO2+ hydroxido
species was taken into account, assuming the species [VIVO(OH)]+ with log β1–1 = −5.94,
[(VIVO)2(OH)2]2+ with log β2–2 = −6.95, [40] [VIVO(OH)3]− with log β1–3 = −18.0, and
finally [(VIVO)2(OH)5]− with log β2–5 = −22.0 taken from Komura and Hayashi [41].

Some representative UV spectra collected at increasing pH values are shown in
Figure 3. Potentiometric-spectrophotometric titrations data of VIVO2+–L4 system at differ-
ent VIVO2+: ligand molar ratios (1:1, 1:2 and 1:4) (Figures S7–S10) were fitted assuming
the formation of a mononuclear complex [VIVOLH2]2+ at low pH values, in which the
VIVO2+ ion is most likely bound by one KA unit, being the second one and the N8 nitrogen
atom still being protonated. The formation of a binuclear complex [(VIVO)2L2H2]2+starts
at pH > 2.5. The first VIVO2+ ion is bound by two KA units of two different ligands, and
the second one by one remaining KA unit, being the fourth KA unit and the N8 nitro-
gen atom protonated. At increasing pH levels, this complex loses a proton with pK 4.63,
presumably from the last KA unit to form [(VIVO)2L2H]+ in which both one VIVO2+ ions
are fully coordinated by two KA units. A further proton is lost with pK 7.24, presumably
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from a coordination water of one VIVO2+ group. It must be noted that the deprotonation
pK of the equatorial water coordinated to vanadium in cis-[VIVO(KA)2(H2O)] to give the
hydroxido complex cis-[VIVO(KA)2(OH)]− is 8.46 [56]. At pH > 9 the formation of the
hydroxido species [VIVO(OH)3]− and [(VIVO)2(OH)5]− causes the release of the ligands
from metal first coordination sphere, and in the corresponding spectra the formation of the
deprotonated forms [LH]− and L2− is evident (Figure S8).
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Figure 3. Representative spectra of VIVO2+-L4 (A) and VIVO2+-L9 (B) both at 1:1 molar ratio collected between 200 and 400 
nm, l = 0.2 cm at 25 °C, 0.1 M NaCl ionic strength and ligand concentration 3 × 10−4 M. 

Figure 3. Representative spectra of VIVO2+-L4 (A) and VIVO2+-L9 (B) both at 1:1 molar ratio collected between 200 and
400 nm, l = 0.2 cm at 25 ◦C, 0.1 M NaCl ionic strength and ligand concentration 3 × 10−4 M.

A similar complexation scheme is presented by L9, studied by potentiometric-spectrop-
hotometric titrations in the same conditions as above (Figures S11–S14). At low pH values,
a mononuclear complex [VIVOLH2]2+ is formed, in which the VIVO2+ ion is most likely
bound by one KA unit being the second and the N11 nitrogen atom still protonated, and N8
deprotonated at this pH values as in the free ligand. At pH > 3, the formation of a binuclear
complex [(VIVO)2L2H3]3+ occurs, in which the first VIVO2+ group is probably bound by
two KA units of two different ligands, and the second VIVO2+ by one of the remaining KA
units, being the second KA protonated, as well as both N11 atoms on the lateral chain of the
linker. This complex loses a first proton with pK 4.41, surely not from N11, characterized
by a pK 10.81 in the free ligand, and not from a coordinated water, being the pK value
too low for such a deprotonation. Therefore, it is likely that the deprotonation occurs on
the OH group of KA, forming a complex [(VIVO)2L2H2]2+ in which both VIVO2+ ions are
fully coordinated by KA units. This complex then loses a further proton with pK 7.30,
presumably for the deprotonation of a coordinated water molecule, as happened with
L4 (pK 7.24). At pH > 9, the formation of VIVO2+ hydroxido complexes takes place, as
previously observed with L4.

3.4. ESI-MS

The mass spectra recorded on the system VIVO2+-L4 at 1:1 molar ratio in ultrapure
water (Figure 4) confirm the formation of binuclear species in aqueous solution. Different
adducts with H+, Na+ and K+ ions were detected, whose m/z values are listed in Table 3.
The formation of these adducts was confirmed by the comparison between experimental
and calculated isotopic pattern of the detected peaks. As an example, comparing the exper-
imental and calculated isotopic pattern (Figures S15 and S16) of the peaks at m/z 405.03 and
809.04, the signals can be attributed to [(VIVO)2(L4)2+2H]2+ and [(VIVO)2(L4)2+H]+, deter-
mined also by potentiometric measurements. According to EPR and computational data
(Sections 3.5 and 3.6), this species can be described with the formula [(VIVO)2(L4)2(H2O)2]
with the two VIVO2+ ions in an octahedral geometry and water ligand in cis to the V=O
bond, a typical arrangement for KA derivatives [56–58]. The lacking detection of two water
molecules in the mass spectra is in line with the results in the literature since it has been
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demonstrated that a weak monodentate ligand can be removed from the metal coordination
sphere during the ionization process [59–61].
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Table 3. Species identified in the ESI-MS spectra of the systems VIVO2+-L4 and VIVO2+-L9.

Species Composition m/z (exptl) a m/z (calcd) a Deviation (ppm) b

[(VIVO)2(L4)2+2H]2+ C30H32N2O18V2 405.02573 405.02592 −0.5
[(VIVO)2(L4)2+H+Na]2+ C30H31N2O18V2Na 416.01658 416.01689 −0.7

[(VIVO)2(L4)2+H]+ C30H31N2O18V2 809.04406 809.04457 −0.6
[(VIVO)2(L4)2+Na]+ C30H30N2O18V2Na 831.02600 831.02651 −0.6
[(VIVO)2(L4)2+K]+ C30H30N2O18V2K 846.99983 847.00045 −0.7

[(VIVO)2(L9)2+2H]2+ C40H54O18N4V2 490.11474 490.11507 −0.7
[(VIVO)2(L9)2+H]+ c C40H53O18N4V2 979.22286 979.22235 0.5

[(VVO2)(VIVO)2(L9)3+4H]3+ d C60H82O28N6V3 495.78245 495.78265 −0.4
[(VVO2)(VIVO)2(L9)3+3H]2+ d C60H81O28N6V3 743.17012 743.17034 −0.3
[(VV

2O3)(VIVO)2(L9)4+3H]3+ d C80H107O37N8V4 658.48251 658.48264 −0.2
[(VV

2O3)(VIVO)2(L9)4+H2O+3H]3+ d C80H109O38N8V4 664.48597 664.48616 −0.3
[(VV

2O3)(VIVO)2(L9)4+H2O+2H+Na]3+ d C80H108O38N8V4Na 671.81325 671.81348 −0.3
[(VV

2O3)(VIVO)2(L9)4+H2O+2H]2+ d C80H108O38N8V4 966.22516 966.22560 −0.5
a Experimental and calculated m/z values refer to the monoisotopic peak with the highest intensity. b Error in ppm respect to the
experimental value, calculated as 106 × [Experimental (m/z)—Calculated (m/z)]/Calculated (m/z). c Species detected only in the spectra
recorded in MeOH. d Species detected only in the spectra recorded in H2O.

ESI-MS spectra of the system VIVO2+-L9 were recorded in both aqueous and methanol
solution (Figures 4 and S17). In the spectrum recorded in MeOH, besides the signal of the
free ligand at m/z 425.19, the peaks at m/z 490.11 and 979.22 were assigned to the dimeric
species [(VIVO)2(L9)2+2H]2+ and [(VIVO)2(L9)2+H]+ (Table 3) and their composition was
confirmed by the isotopic pattern simulations (Figures S18 and S19). These species were
also determined by pH-potentiometry. The intensity of the peaks is higher in MeOH than
in H2O, but this could be related to a better ionization.

In the spectra recorded in ultrapure water, the signals of tri- and tetranuclear species
were identified; their structure could be based on VIVO2+/VVO2

+ and VIVO2+/VV
2O3

4+

groups bridged by three or four (L9)2− anions with an (equatorial–axial) coordination
mode. Even though the intensity of the signals is low, various adducts with H+ and Na+
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and different charge, listed in Table 3, were identified. Their elemental composition was
confirmed by isotopic pattern calculations (Figure S20). Notably, the fragmentation of
these species in the MS/MS spectra results in the formation of [(VIVO)2(L9)2+2H]2+ and
[(VIVO)2(L9)2+H]+. Therefore, it cannot be excluded that in aqueous solution, vanadium
complexes with nuclearity higher than two exist in small amount. It cannot be ascertained
if the detection of VV moieties is due to the to the partial oxidation in solution of the
corresponding VIV complexes or an in-source oxidation process, as already reported in
literature [60,62].

3.5. EPR

The EPR spectra of VIVO2+-L9 system at 1:1 and 1:2 molar ratio at increasing pH
show the progressive formation of four species indicated with I–IV (Figure 5). The pH
dependence is similar to that indicated in the distribution curves in Figure 2.
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VIVO2+-L9 system at 1:1 (A) and 1:2 (B) molar ratio at VIVO2+ concentration 2 mM at different pH.

Species I is attributed to the mono-chelated complex with ‘KA-like’ coordination
(CO, O−); H2O; H2O; H2O, [VIVOLH2]2+complex or [(VIVO)2L2H3]3+ (with NH+ and OH
protonated), confirming potentiometric and spectrophotometric data. Spin Hamiltonian
parameters are gz = 1.938 and Az = 177.0 × 10−4 cm−1, in agreement with the data in
the literature [30,56,58]. This could correspond also to [(VIVO)2L2H2]2+ (with one NH+

and OH protonated). The involvement of a second KA in the coordination is observed
in species II, which has gz = 1.943 and Az = 170.1 × 10−4 cm−1. This should correspond
to the binuclear species [(VIVO)2L2H2]2+, where the two ligands act as a bridge between
each VIVO2+ center and bind the metal through ‘KA-like’ coordination (CO, O−); (CO, O−);
H2O in an equatorial–equatorial and in an equatorial–axial coordination [56–58].

The mono-hydroxido complex with ‘KA-like’ coordination (CO, O−); (CO, O−); OH−

is formed at higher pH values (species III, gz = 1.945 and Az = 168.1 × 10−4 cm−1) and its
composition is [(VIVO)2L2H]+. The simultaneous deprotonation of more than one water
ligand to give OH− complexes is not favored and rarely was observed in the literature;
when this occurs, polynuclear species are formed. The resonances of the species IV, formed
at pH > 7, may be assigned to the mono-hydroxido complex with (O−, N, O−); OH− coordi-
nation. This species with the ligand in the fully deprotonation form is observed at basic pH
for tridentate ligands with two phenolato-O− and one amino/aromatic-nitrogen [63,64].

The large broad signals observed from pH 3 to 4 (when the formation of the binu-
clear species starts) could be due to the presence of the dimers and a small amount of
EPR-active hydrolytic or polynuclear VIVO complexes [65]. Notably, ESI-MS shows the pres-
ence in solution of species with such features, with formula [(VVO2)(VIVO)2(L9)3+xH]y+,
[(VV

2O3)(VIVO)2(L9)4+xH]y+ and [(VV
2O3)(VIVO)2(L9)4+H2O+xH]y+ (Table 3), which could

escape, at least to a first approximation, to the spectrophometric/potentiometric titrations.
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Similar comments can be made regarding the systems with L4 whose EPR spectra col-
lected in the VIVO2+-L4 system at 1:2 molar ratio as a function of pH are shown in Figure 6.
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Figure 6. High-field region of the anisotropic X-band EPR spectra recorded on frozen solutions
(120 K) of VIVO2+-L4 at 1:2 molar ratio and VIVO2+ concentration 2 mM at different pH.

The behavior of the systems with ratio 1:1 and 1:2 is comparable, but resolution of
the EPR spectra improves when the ratio metal to ligand is increased to 1:2. The species
indicated by I is the mono-chelated complex with ‘KA-like’ coordination (CO, O−); H2O;
H2O; H2O and formula [VIVOLH2]2+ (with one NH+ and OH protonated). Spin Hamil-
tonian parameters are gz = 1.939 and Az = 176.6 × 10−4 cm−1 [56,58]. Species II is the
bis-chelated complex with KA donor set (CO, O−); (CO, O−); H2O and with EPR param-
eters gz = 1.943 and Az = 170.1 × 10−4 cm−1; the arrangement of the two KA groups is
(equatorial–equatorial) and (equatorial–axial) and corresponds to [(VIVO)2L2H2]2+ and
[(VIVO)2L2H]+ [56,58]. Species III is the mono-hydroxido complex [(VIVO)2L2] with
‘KA-like’ coordination (CO, O−); (CO, O−); OH− and spin Hamiltonian parameters are
gz = 1.944 and Az = 168.0 × 10−4 cm−1 [53,55]. The spin Hamiltonian parameters for the
species IV, observed at pH around 5, are unusual and could be attributed to a non-oxido
VIV complexes with compositions VL2·H2O (i.e., VL2H2), present in small amounts in
solution. In this species, the ligand is in the fully deprotonated form and binds VIV with
(O−, N, O−), similarly to other ligands with two phenolato-O− and one amino/aromatic-
nitrogen [63,64,66].

3.6. NMR Experiments

The 1D spectra of L4 and L9 ligands in MeOD solution are reported in Figures S21
and S22, respectively. The assignments of the free ligands in D2O solution were previously
reported [31,34]. The spectra of L4-VIVO2+ system in water are reported in Figure 7 at
different L4:VIVO2+ ratios varying from the 1:0.002 to 1:1. From this figure, it is possible
to observe that all the proton signals progressively disappear, due to the paramagnetic
effect of the VIVO2+ ion, except the signal corresponding to protons in position 9, which
decreases in intensity and undergoes a small shift additionally. The same behavior has
been evidenced in 1H and in 1H-1H COSY spectra in MeOD solution (Figures S23 and S24).

Concerning the L9 ligand, the increase of L9:VIVO2+ molar ratio from 1:0.002 to 1:1, in
water solution at pH 7.4, causes a selective decreasing of the signal intensities, involving
protons 3, 14 and 7 in particular, and to a lesser extent, in protons 10, 12, 9 and 13. This
suggests that the paramagnetic ion is more distant from these atoms than from the previous
ones. From HSQC spectra, it is possible to evidence that the less affected atoms are located
close to N11.

The same behavior, a decrease of the signal intensity together with a small shift, has been
observed in the L9-VIVO2+ system in MeOD solution, indicating proton 13 and, to a lesser
extent, proton 12 as the atoms furthest away from the paramagnetic center (Figure 8).
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In the MeOD COSY spectra (Figure 9) the new correlation between the signals of the
protons 12–13 of the L9-VIVO2+ species appears.
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Taking into account the structure of L4 and L9 molecules, it is possible to confirm
from NMR results the involvement of oxygen donor atoms in the coordination to VIVO2+

ion. The occurrence of the signals of proton 9 for L4 ligand and of 12 and 13 for L9
ligand suggests that these protons are the most distant ones from the paramagnetic site.
In addition, the variation in the chemical shift for the proton 9 of L4 ligand and for the
protons 12 and 13 of L9 ligand indicates that a high symmetry characterizes the molecular
structure of the obtained VIVO2+ complexes.

The results acquired from NMR measurements are in agreement with all the data
obtained with the complementary spectrometric and spectroscopic techniques used to
characterize the systems VIVO2+-L4 and VIVO2+-L9.

3.7. DFT Calculations

To characterize the binuclear complexes observed in solution by potentiometry and
mass spectrometry, the structure [(VIVO)2(L4)2(H2O)2], with two water ligands equatorially
bound to VIVO2+, was DFT optimized. Subsequently, the magnetic coupling between the
VIVO2+ centers and Az(51V) of the two metal ions was predicted. In the optimized structure
(Figure 10), the distance between the two vanadium atoms is 8.882 Å; the V=O lengths
are 1.607 and 1.610 Å, the equatorial V–O(phen) and V–O(keto) are 1.973–1973 Å and
in the range 2.022–2.071 Å, respectively, the axial V–O(phen) 2.156 and 2.181 Å and the
two V–O(water) bonds 2.156 and 2.187 Å; these data are in line with what was reported for
VIVO2+ species [42]. The equatorial O=V–O angles are between 90.1 and 107.2◦, while the
axial O=V–O angles are 164.9 and 166.9◦. The magnetic interaction between the two VIVO2+

centers is almost negligible with a very weak ferromagnetic coupling. The predicted value
of J is 0.11 cm−1, in agreement with the EPR data; in fact, the EPR signal experimentally
detected (Figure 6) is assignable to a doublet spin state (S = 1

2 ) that suggests two distinct
and almost non-interacting mononuclear VIVO units.
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In addition, the Az(51V) values of the two VIVO2+ centers were calculated by the
DFT protocol established in the literature, which allows to predict them with a mean
absolute percent deviation (MAPD) from the experimental values below 4% and a standard
deviation (SD) around 3% [54]. The results are listed in Table 4; the PD values for Az are
below 1%, in line with the previous results [54].



Pharmaceuticals 2021, 14, 1037 13 of 17

Table 4. Experimental and calculated hyperfine coupling constants for [(VIVO)2(L4)2(H2O)2].

VIVO2+ Center Ax
calcd(51V) b Ay

calcd(51V) b Az
calcd(51V) b Az

exptl(51V) PD(Az) a

1 −71.0 −65.5 −168.7 −170.1 −0.8
2 −72.1 −69.0 −171.2 −170.1 0.7

a Hyperfine coupling constants reported in 10−4 cm−1 units. b Percent deviation of the DFT calculated parameter from the experimental value.

The EPR spectrum of [(VIVO)2(L4)2(H2O)2] was simulated with EasySpin software,
using the J value calculated by DFT methods and is shown in Figure 11. It can be seen
that the simulated spectrum reproduces qualitatively the detected signal, even if the exact
agreement cannot be obtained due to the lack of knowledge of the exact experimental value
of J. The simulations agree well with the data in the literature for VIVO dinuclear complexes
with comparable J [67]. Therefore, on the basis of this result, the broad and unresolved
signals observed from pH 3–4 to pH 9–10 in the EPR spectra (see Figures 5 and 6) could be
attributed to the presence in solution of VIVO dimers with J close to 0.1 cm−1.
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Figure 11. Experimental (top) and simulated (bottom) EPR spectrum of [(VIVO)2(L4)2(H2O)2]
(VIVO2+-L4 1:1, VIVO2+ concentration 1 mM, pH 5.1). The spectrum was simulated with EasySpin
software, considering two VIVO ions with S = 1/2 coupled with J = 0.11 cm−1. For each VIV center
gx,y,z = {1.979, 1.979, 1.943} and Ax,y,z= {52.5, 52.5, 170.1} × 10−4 cm−1 were used. Gaussian and
Lorentzian broadening were set to 1.4 and 1.4 mT.

Overall, the data confirm the potentiometric, ESI-MS and EPR results and suggest
that in the dimer [(VIVO)2(L4)2(H2O)2] and [(VIVO)2(L9)2(H2O)2] the coordination around
VIV is octahedral with an (equatorial–equatorial) and an (equatorial–axial) arrangement
of the two ligands, as demonstrated for mononuclear complexes formed by KA [58] and
maltol [56,58,68].
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4. Conclusions

The joined use of complementary techniques, such as potentiometry, spectrophotome-
try, mass spectrometry, EPR and NMR spectroscopy, and DFT calculations has led to the
definition of the complexation scheme of VIVO2+ ion in aqueous solution with the two L4
and L9 kojic acid derivatives. At low pH values, a simple 1:1 complex is formed, with
VIVO2+ coordinated by one of the two KA moieties. Increasing the pH, both ligands form
a binuclear complex, in which two KA units from two different ligands coordinate each
VIVO2+ ion.

These binuclear species are very stable at physiological pH, as the pVIVO2+ values of
12.9 and 11.1 with L4 and L9, respectively, show. The tendency of both the ligands to form
binuclear complexes with oxidovanadium (IV) can be explained after careful examination
of molecular models. If the two KA moieties of the same ligand molecule were bound
simultaneously to only one VIVO2+ ion, the resulting structure would be very distorted
and strained, with the two C=O groups forced to coordinate in the equatorial plane while
none of the two C–O− donors could coordinate the metal in the third equatorial position.

As a perspective, these binuclear complexes will be tested as potential insulin-enhancing
and cytotoxic agents. Due to their high thermodynamic stability, they could enter intact
into the cytosol without interaction with the blood and cellular proteins, which would
result in a significant inhibition of the biological and pharmacological activity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14101037/s1, Figure S1: ESI-MS/MS(+) spectrum of the signal relative to the [L9+3H]+

ion selected in the range of m/z = 425.19 ± 0.5, NCE = 10, recorded on the system VIVO2+-L9 at
1:1 V IVO2+: ligand molar ratio at ligand concentration 5 µM (MeOH); Figure S2: ESI-MS/MS(+)
spectrum of the signal relative to the [L4+H]+ ion selected in the range of m/z = 340.10 ± 0.5,
NCE = 10, recorded on the system VIVO2+-L4 at 1:1 VIVO2+: ligand molar ratio with [L4] = 50 µM;
Figure S3: Representative spectra of UV titration of L4 ligand at ligand concentration 3 × 10−4 M.
Top: beginning of titration at λ = 274 nm and pH 3.89. Bottom: end of titration at λ = 326 nm and
pH = 10.06; Figure S4: Molar absorptivity of L4 ligand; Figure S5: Representative spectra of UV
titration of L9 ligand at ligand concentration 3 × 10−4 M. Top: beginning of titration at λ = 276 nm
and pH 4.87. Bottom: end of titration at λ = 330 nm and pH = 10.99; Figure S6: Molar absorptivity
of L9 ligand; Figure S7: UV titration of VIVO2+-L4 at 1:1 VIVO2+: ligand molar ratio at ligand
concentration 3 × 10−4 M. HypSpec screenshot. Top: λ = 272 nm, pH 3.33. Middle: λ = 322 nm,
pH 7.00. Bottom: λ = 322 nm, pH 9.98; Figure S8: Molar absorptivity of VIVO2+-L4 at 1:1 VIVO2+:
ligand molar ratio at ligand concentration 3 × 10−4 M; Figure S9: UV titration of VIVO2+-L4 at 1:2
VIVO2+: ligand molar ratio at ligand concentration 3 × 10−4 M: HypSpec screenshot. λ = 320 nm, pH
9.00; Figure S10: UV titration of VIVO2+-L4 at 1:4 VIVO2+: ligand molar ratio at ligand concentration
3 × 10−4 M: HypSpec screenshot. λ = 322 nm, pH 8.71; Figure S11: UV titration of VIVO2+-L9
at 1:1 VIVO2+: ligand molar ratio at ligand concentration 3 × 10−4 M: HypSpec screenshot. Top:
λ = 276 nm, pH 2.51. Middle: λ = 276 nm, pH 7.00. Bottom: λ = 322 nm, pH 9.98.; Figure S12: Molar
absorptivity of VIVO2+-L9 at 1:1 VIVO2+: ligand molar ratio at ligand concentration 3 × 10−4 M.;
Figure S13: Molar absorptivity of VIVO2+-L9 at 1:1 VIVO2+: ligand molar ratio at ligand concentration
3 × 10−4 M; Figure S14: UV titration of VIVO2+-L9 at 1:4 VIVO2+: ligand molar ratio at ligand
concentration 3 × 10−4 M: HypSpec screenshot. λ = 364 nm, pH 8.38.; Figure S15: Experimental
(top) and calculated (bottom) isotopic pattern for the peak of [(VIVO)2(L4)2+2H]2+ detected in the
ESI-MS(+) spectrum of the system VIVO2+-L4 at 1:1 molar ratio (LC-MS H2O, ligand concentration
50 µM); Figure S16: Experimental (top) and calculated (bottom) isotopic pattern for the peak of
[(VIVO)2(L4)2+H]+ detected in the ESI-MS(+) spectrum of the system VIVO2+-L4 at 1:1 molar ratio
(LC-MS H2O, ligand concentration 50 µM).; Figure S17: ESI-MS(+) spectrum recorded on the system
VIVO2+-L9 at 1:1 molar ratio (LC-MS MeOH, ligand concentration 5 µM); Figure S18: Experimental
(top) and calculated (bottom) isotopic pattern for the peak of [(VIVO)2(L9)2+2H]2+ detected in the
ESI-MS(+) spectrum of the system VIVO2+-L9 at 1:1 molar ratio (LC-MS MeOH, ligand concentration
5 µM); Figure S19: Experimental (top) and calculated (bottom) isotopic pattern for the peak of
[(VIVO)2(L9)2+H]+ detected in the ESI-MS(+) spectrum of the system VIVO2+-L9 at 1:1 molar ratio
(LC-MS MeOH, ligand concentration 5 µM); Figure S20: Experimental (top) and calculated (bottom)
isotopic pattern for the peak of [(VV

2O3)(VIVO2)2(L9)4+3H]3+ detected in the ESI-MS(+) spectrum of

https://www.mdpi.com/article/10.3390/ph14101037/s1
https://www.mdpi.com/article/10.3390/ph14101037/s1


Pharmaceuticals 2021, 14, 1037 15 of 17

the system VIVO2+-L9 at 1:1 molar ratio (LC-MS H2O, ligand concentration 50 µM); Figure S21: 1D
1HNMR spectra of free ligands L4 (bottom) and L9 (top) in MeOD; Figure S22: NMR HSQC of L4
and L9 ligands in MeOD; Figure S23: 1D 1HNMR spectra of L4-VIVO2+ system in MeOD at different
L4:VIVO2+ ratios; Figure S24: Comparison of 2D 1H-1H NMR COSY spectra of L4 free (blue) and
L4-VIVO2+ (red) systems in MeOD solution; Table S1: Species identified in the ESI-MS spectra of the
L4 and L9 ligands.
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