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Major progress has been made in defining the basis of the mitochondrial

permeability transition, a Ca2+-dependent permeability increase of the inner

membrane that has puzzled mitochondrial research for almost 70 years.

Initially considered an artefact of limited biological interest by most, over

the years the permeability transition has raised to the status of regulator of

mitochondrial ion homeostasis and of druggable effector mechanism of cell

death. The permeability transition is mediated by opening of channel(s)

modulated by matrix cyclophilin D, the permeability transition pore(s)

(PTP). The field has received new impulse (a) from the hypothesis that the

PTP may originate from a Ca2+-dependent conformational change of F-

ATP synthase and (b) from the reevaluation of the long-standing hypothe-

sis that it originates from the adenine nucleotide translocator (ANT). Here,

we provide a synthetic account of the structure of ANT and F-ATP syn-

thase to discuss potential and controversial mechanisms through which

they may form high-conductance channels; and review some intriguing

findings from the wealth of early studies of PTP modulation that still await

an explanation. We hope that this review will stimulate new experiments

addressing the many outstanding problems, and thus contribute to the

eventual solution of the puzzle of the permeability transition.

A bird’s eye view on the permeability
transition

Although the term ‘permeability transition’ (PT) was

introduced in 1976 [1] and further defined in 1979

[2–4], occurrence of an unselective permeability

increase of mitochondria and its detrimental conse-

quences on energy conservation had been known since

the very first studies on isolated organelles [5,6]. The

permeability increase leading to swelling was widely

considered to be a form of membrane damage [7] pos-

sibly caused by long-chain fatty acid(s) [8] and by

lysophospholipids generated by the Ca2+-dependent

activation of phospholipase A2, as suggested by the

remarkable protective effects of nupercaine [9] and of

N-ethylmaleimide [10]. The far-reaching hypothesis

that the PT could rather be caused by opening of a

regulated inner mitochondrial membrane (IMM) chan-

nel playing a role in physiology (the PT pore, PTP)

[2–4] was generally met with scepticism also because of

the acceptance of the chemiosmotic hypothesis of
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energy conservation [11]. Indeed, permeability defects

with an estimated pore radius of 14 �A [7] seemed hard

to reconcile with the low permeability of the coupling

membrane to solutes and ions, as discussed in detail in

previous reviews [12–14]. The channel hypothesis

gained traction (a) with the electrophysiological identi-

fication of an IMM high-conductance channel named

mitochondrial multiconductance channel [15] or

megachannel [16], which shares the key features of the

PTP [17,18], see [19] for a review and (b) with the dis-

covery that the PT could be inhibited by nanomolar

concentrations of cyclosporine A (CsA) [20–23], a find-

ing that was instrumental in establishing a pathogenic

role for the PTP in cell and organ injury [24–28]. CsA
had no effects on phospholipase A2 [29] while it inhib-

ited a matrix peptidyl prolyl cis-trans isomerase [23]

that was later shown to be mitochondrial cyclophilin

(CyP) D [30,31]. There is no question that CyPD

favours onset of the PT [30] because, like treatment

with CsA, deletion of the Ppif gene (which encodes

CyPD) desensitises the PTP to Ca2+ [32–35]; and yet

both CsA-sensitive and CsA-insensitive PTs with dis-

tinct features could be identified, with a synergistic

effect of free fatty acids on PTP opening [36,37].

The molecular nature of the PTP is still an open

issue, but significant progress has been made in the

recent years. Based on the effects of the selective inhi-

bitors of the adenine nucleotide translocator (ANT)

atractylate (ATR, which favours PTP opening) and

bongkrekate (BKA, which favours PTP closure) the

first proposed candidate for channel formation was the

ANT itself [2]. Consistent with this hypothesis, ANT

from bovine heart and Neurospora crassa formed

Ca2+-activated channels [38,39] with many of the fea-

tures displayed by the PTP at the patch-clamp

[17,40,41], including CsA-inhibitable stimulation by

yeast cyclophilin [39]. At about the same time, the

ANT was shown to copurify with the outer mitochon-

drial membrane (OMM) proteins voltage-dependent

anion channel (VDAC) and translocator protein

(TSPO, formerly called peripheral benzodiazepine

receptor) [42]; and it was found that nanomolar con-

centrations of TSPO-binding ligands (like benzodi-

azepines) promoted channel opening [43]. Although

puzzling, given that the PT takes place at the IMM

[44], these findings shifted the attention of the field to

sites of contact between the OMM and IMM, with the

former also providing accommodation for hexokinase

II [45,46] and for proteins of the Bcl-2 family, linking

the PTP to apoptosis and to regulated necrosis [47,48].

Modulation by CyPD and inhibition by CsA consider-

ably strengthened the idea that the PT was mediated by

a single molecular entity. Given that genetic ablation of

each of the putative components of the PTP (i.e., ANTs,

VDACs and TSPO) did not prevent occurrence of the

PT [49–53], we searched for novel PTP candidates using

mitochondrial CyPD as the bait. A most interesting inter-

actor turned out to be the mitochondrial F-ATP synthase

[54]. This observation was the starting point for a set of

studies addressing the question of whether F-ATP syn-

thase can form a Ca2+-dependent channel with the fea-

tures of the PTP. Results were apparently conflicting.

On one hand, it was shown that partially purified F-

ATP synthase can generate Ca2+-activated channels in

a variety of eukaryotic mitochondria [55–60]; that

knockdown of subunit c [61] or point mutations that

do not affect enzyme complex assembly or ATP syn-

thesis caused specific changes in the properties of the

PTP [56,59,62–68]; and that highly purified F-ATP

synthase preparations display features expected of the

PTP in electrophysiological experiments [69,70].

Remarkably, it was also discovered that benzodi-

azepines are actually not selective ligands of TSPO, as

they also inhibit F-ATP synthase [71,72] while promot-

ing the PT [55,69], effects that mimic those of CyPD

through a shared binding site on subunit oligomycin

sensitivity conferral protein (OSCP) [55,73].

On the other hand, ablation of individual subunits of

F-ATP synthase (which prevented its assembly) in

HAP1 cells was not followed by disappearance of the

PT, which persisted and maintained its sensitivity to

CsA [74–76]. Yet, in the same cells ablation of subunit c

led to the appearance of a channel sensitive to both

CsA and BKA, while the channel of wild-type cells was

sensitive to CsA only [77]. These results can be

explained by the existence of two CsA-sensitive channels

modulated by CyPD. One channel is formed from the

F-ATP synthase, the other from the ANT. Our recent

work fully confirmed the dual nature of the PT and sug-

gested that in wild-type cells the F-ATP synthase pre-

dominates, yet the two PTPs are interconnected [67]

possibly by physical association at the ‘ATP syntha-

somes’, which may also involve the Pi carrier [78–80].
Despite these advances, many open questions remain

including the molecular mechanisms through which

the ANT and F-ATP synthase can form high-

conductance channels, the role of the OMM, and the

assignment of a variety of agents and factors that criti-

cally modulate the PT. The following discussion is

meant to address these issues, with the hope that it

can stimulate new experiments to solve the longest-

standing mystery of mitochondrial biology. Space limi-

tations preclude discussion of the physiology and phar-

macology of the PTP, and of its role in degenerative

diseases, cancer and aging, important topics for which

we refer the reader to published reviews [14,81–92].
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Adenine nucleotide translocator

The ANT is a 30 kDa protein of the IMM that was

first identified in the early 1960s [93,94]. It catalyses

the equimolar exchange of Mg2+-free ADP and ATP

across the IMM. Transport of adenine nucleotides is

determined by their concentration gradient and by the

membrane potential existing across the IMM, since

ADP/ATP exchange is electrogenic. In respiring mito-

chondria this results in uptake of ADP from the cyto-

sol and release of newly synthesised ATP. Humans

have four ANT isoforms, AAC1-AAC4, with AAC4

being specific to germline and to pluripotent stem cells

[95,96]. ANTs belong to the SLC25 mitochondrial car-

rier family, which is the largest solute transporter fam-

ily comprising 53 carriers in humans [97]. These

carriers transport metabolites, inorganic ions and

cofactors across the IMM and are thought to operate

through a common mechanism, defined as alternating-

access mechanism [98]. It is based on three main func-

tional elements, that is, one central substrate-binding

site and two gates with salt bridge networks on either

side of the carrier [99].

Structure and catalytic mechanism

Most structural properties of the SLC25 family have

been defined from studies of the ANT, which were

favoured by its abundance and by the availability of

two specific inhibitors, ATR [100] and BKA [101],

which lock the carrier in two different conformational

states. ATR traps the ANT in the cytoplasmic-open

state (c-state) with the adenine-binding site facing the

cytosol, while BKA locks the ANT in the matrix-open

state (m-state) with the adenine-binding site facing the

matrix [102]. It should be kept in mind that no struc-

tures of substrate-bound states have yet been defined,

so that the events taking place during adenine nucleo-

tide translocation are not known. Information at

atomic resolution was first provided by the crystallo-

graphic structure of the carboxyATR-inhibited bovine

ANT [103]. The protein contains three homologous

domains of about 100 amino acids, each comprising

an odd-numbered transmembrane a-helix (H1, H3 and

H5), a loop with a short matrix a-helix (h12, h34 and

h56) lying in the plane of the IMM, and an even-

numbered transmembrane helix (H2, H4 and H6). This

basic structural fold was confirmed for the yeast iso-

forms Aac2p and Aac3p [104].

In the c-state (which favours the PT) the odd-

numbered transmembrane a-helices, which contain the

conserved Px[DE]xx[KR] motif, are close together

towards the matrix side of the membrane, enabling the

charged residues to establish inter-domain salt-bridges

(the matrix salt-bridge network) and closing the central

substrate-binding site from the matrix side [104]. In

the m-state (which inhibits the PT) the even-numbered

a-helices make inter-domain salt-bridges (the cytoplas-

mic salt-bridge network) through highly conserved

[YF][DE]xx[KR] motifs, closing the central cavity from

the cytoplasm side, while the matrix helices on the

membrane surface are rotated outward opening the

central cavity to the matrix side [105].

The proposed transport mechanism involves six

mobile elements, two per domain. During the switch

from the c- to the m-state triggered by substrate bind-

ing, the core elements composed by the cytoplasmic

ends of the H1, H3 and H5 helices would move out-

ward as rigid bodies, opening up the substrate-binding

site to matrix, while the cytoplasmic gates formed by

the H2, H4 and H6 helices rotate inwards, closing the

cytoplasmic side. The reverse movements would occur

in the m- to c-state transition [99,102]. According to

this structural model, the carrier is monomeric because

the large conformational changes preclude the forma-

tion of a stable dimerisation interface during the trans-

port cycle. An outline of the ANT and of the overall

ATP/ADP exchange process is reported in the left

panel of Fig. 1.

Possible mechanism of high-conductance

channel formation

Some clues on the requirements for channel formation

by ANT may come from recent work on H+ transport

by the structurally related uncoupling protein 1

(UCP1) and by ANT itself. In thermogenic brown fat

H+ permeation is a highly regulated process under hor-

monal control requiring fatty acids and mediated by

UCP1 [106,107], which like ANTs is a member of the

SLC25 mitochondrial carrier family [97]. H+ ions are

transported by the fatty acyl anion, which shuttles

within UCP1 itself [108]. Of note, deletion of amino

acids 261–269 converts UCP1 into a pore allowing per-

meation of species with molecular mass up to 1 kDa

[109]. The IMM has a measurable permeability to H+

(the ‘H+ leak’) also in tissues that do not express

UCP1. The H+ leak is widely considered to result from

passive H+ permeation through the lipid bilayer, which

is compensated by basal respiration (oxygen consump-

tion not coupled to ATP synthesis). Basal respiration

is increased by fatty acids, an effect that can be pre-

vented by ADP or by inhibitors of the ANT [110].

This interesting finding led to the suggestion that the

H+ leak may be due, in part at least, to H+ transport

through the ANT either through an allosteric effect of
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the fatty acid, or through transport of the fatty acyl

anion coupled to passive diffusion of the protonated

fatty acid through the lipid bilayer [110]. A recent elec-

trophysiological study has demonstrated that a rele-

vant fraction of the H+ leak indeed takes place

through the ANT acting as a channel in which fatty

acids play an essential role as cofactors in H+ trans-

port without being actually translocated [111]. These

studies demonstrate that the ANT can act as a (H+-

selective) channel (middle panel of Fig. 1).

At present, there is no obvious mechanism to

explain channel formation by ANT. Inspection of the

protein does not reveal the presence of Ca2+-binding

sites, suggesting the possible requirement for addi-

tional factors, such as cardiolipin [112] or for post-

translational modifications, for example, Ca2+-

dependent limited proteolysis. It has been suggested

that the PT is favoured by oxidation of ANT residues

C57 [113,114] and C160 [114], which would cause for-

mation of disulphide bridges followed by enhanced

binding of CyPD [114]; yet, the PTP could be induced

by thiol oxidants without dimerisation of the ANT

[115] and Ca2+-induced ANT channel opening has

been documented in the absence of oxidants [38,39]. It

is hopeful that the contribution of ANT Cys residues

will be studied by site-directed mutagenesis and elec-

trophysiology, and possibly by structure determination

through high-resolution cryo-EM in the presence of

Ca2+. It appears conceivable, however, that CyPD and

Ca2+ could favour the channel transition of ANT, as

seen in reconstitution experiments with the bovine [38]

and yeast species [39], possibly in cooperation with

fatty acids, which are well-known activators of the

PTP [116] (right panel of Fig. 1).

F-ATP synthase

F-ATP synthase is an abundant complex located in

the IMM that functionally cooperates with ANT and

the Pi carrier to produce ATP from cytosolic ADP in

aerobic conditions. F-ATP synthase makes ATP from

ADP and Pi by rotary catalysis using the proton

motive force generated by H+ pumping by the respira-

tory chain complexes. It consists of the water-soluble,

F1 head exposed to the mitochondrial matrix, which is

responsible for the synthesis of ATP; and the

membrane-embedded FO sector involved in proton

traslocation. The two sectors are connected by a cen-

tral stalk rotating within F1 and a stationary periph-

eral stalk essential in maintaining complex stability

[117].

Structure and catalytic mechanism

Crystallography has revealed the structure of many F1

and FO sub-complexes from bovine heart [118,119] and

yeast [120]. Cryo-EM studies have reported structures

of the entire complex from Yarrowia lipolytica [121],

Saccharomyces cerevisiae [122], Sus scrofa [123],

Bos taurus [124] and Ovis aries [125], providing high-

resolution maps of all the FO subunits (upper panel of

Fig. 2). The F1 sector comprises three ab pairs

Fig. 1. Schematic representation of the possible functions of ANT. (Left) The established function of ANT is to exchange adenine nucleotides,

transporting matrix ATP to the cytosol and cytosolic ADP to the matrix in energised mitochondria. (Center) In response to fatty acids ANT

mediates H+ currents, suggesting that nucleotide exchange and H+ transport are not mutually exclusive functions. (Right) In the presence of

Ca2+ and CyPD, ANT may undergo a still undefined conformational change which allows the formation of a high-conductance channel.
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surrounding the c subunit, which forms the central

stalk by associating at the foot with subunits d and ε.
The three ab pairs contain six nucleotide-binding sites,
only three of which are catalytically active and mostly
contributed by the b subunits. A rotor ring with a variable
number of copies of subunit c (8 in metazoans, 10 in
yeast and a record 17 in Burkholderia pseudomallei) is
located in the FO sector. The cavity of the c-ring is

occupied by phospholipids [125], in keeping with previous
proposals [126]. The lipids at the intermembrane space
(IMS) and matrix end of the c-ring are functionally and
chemically distinct. Only the matrix-side lipids rotate with
the c-ring, and thus providing a ‘lubricated’ plug facilitat-
ing rotation [125]. The outer surface of the c-ring is
attached to subunit a, which is arranged in a concave
four-helix horizontal bundle around the c-ring forming

Fig. 2. Structure of the F-ATP synthase monomer. (Upper panel) F-ATP synthase structure is based on the atomic model of Spikes et al.

[124]. (Lower panel) Density maps of F-ATP synthase derived by cryo-EM in the indicated studies, with fitted atomic models. Subunits b, e

and g are green, cyan and red, respectively.
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two aqueous half-channels separated by a conserved argi-
nine [117]. In mammals, subunit a is also tightly bound to
subunits j (6.8PL), k (DAPIT) and 8 (A6L) forming a
structure that has been denoted as ‘proton translocation
cluster’ [124,125]. The two half-channels allow H+ to
reach an essential ionised glutamate residue of subunit c
that, once protonated, moves to a more hydrophobic envi-
ronment generating rotation of the c-ring and consequently
of the central stalk. Rotation of c subunit forces each of
the three catalytic sites into three major conformations
with different affinities for nucleotides, denoted as bE
(empty), bDP (occupied by Mg2+-ADP and Pi) and bTP
(occupied by Mg2+-ATP), thereby catalysing the synthesis
of one ATP molecule during each 120° rotation of the c
subunit [127]. The enzyme can work in reverse pushing
the central stalk and the c-ring backward with the energy
deriving from ATP hydrolysis, generating a H+ gradient.
Catalysis requires the nucleotide in complex with Mg2+

(or with other metals with decreased efficiency) [128]. Of
specific interest to the topic of this review, Ca2+ has the
unique property to catalyse ATP hydrolysis not coupled to
formation of a H+ gradient [129,130] despite its ability to
generate rotation of the c subunit [131], a finding that
suggests onset of permeabilisation.

The mitochondrial FO contains an additional subset

of four conserved subunits (b, e, f, g) with subunit b

reaching out of the membrane to form the core of the

peripheral stalk. Through its helices H2 and H3 within

the IMM, subunit b makes a ‘U-turn’ forming a hair-

pin able to interact with the horizontal bundle of sub-

unit a on one side, and on the other side to form a

compact triple transmembrane helix bundle with sub-

units e and g [125]. This bundle is packed through

GXXXG motifs located at N- and C-termini of sub-

units e and g, respectively, with the C-terminus of sub-

unit e reaching out and attaching to the c-ring lipids

from the IMS to form a ‘hook’ [124,125]. A structure

protruding into the IMS, thought to arise from sub-

units e and g in contact with subunit b, had originally

been shown in the cryo-EM analysis of the bovine

heart F-ATP synthase (lower left panel of Fig. 2); this

structure first revealed flexibility of the intact enzyme

due to bending and twisting of the central and periph-

eral stalks [132]. Subunit b also contributes to form

the membrane domain of the peripheral stalk together

with subunits e, f, g, 8 and j [124]. In its extrinsic part

subunit b forms a long, continuous a-helix stiffened by

interactions with subunits 8, F6 and d, finally reaching

out to the C-terminus of OSCP subunit on top of the

F1 sector. OSCP forms many tight interactions with F1

at three a, two b and with F6 and b subunits. These

interactions result in a strong link between FO and F1,

which prevents co-rotation of the ab pairs with

subunit c. Anchoring is further strengthened by the

already mentioned connection of subunit e with the

lipid plug of the c-ring at the opposite side [124,125]

(lower middle and right panels of Fig. 2). This com-

plex structure makes F-ATP synthase a ‘perfect

chemomechanical coupling device’ between H+ translo-

cation, rotor rotation and ATP synthesis/hydrolysis

[133]. Based on the cryo-EM structures of different

rotational states [132,134], cooperation between FO

and F1 appears ensured by elastic power transmission

mediated by the flexible peripheral stalk, primarily at

the inter-domain hinge of the OSCP subunit, a well-

established target of drugs and matrix proteins includ-

ing CyPD [135].

Oligomeric states of F-ATP synthase

As mentioned earlier, a notable feature of the F-ATP

synthase complexes is their association into dimers

that self-assemble into long rows of oligomers to

develop the typical cristae [136,137], which have a

direct impact on mitochondrial bioenergetics [138].

However, the structural details and functional roles of

such supramolecular structures are still debated.

Pioneering experiments in yeast established the exis-

tence of (a) a dimerisation interface stabilised through

interactions of subunits a, b, e, g, F6 and i/j, which

contribute in an additive way to the association of

monomers; and (b) an oligomerisation interface mainly

stabilised through e/e and g/g interactions [139]. Later,

in situ cryo-EM structures demonstrated that F-ATP

synthase forms V-shaped (type I) dimers at an angle of

80–90° between the two central stalks, with the periph-

eral stalks turned away from one another [117]. The

recent cryo-EM structure of dimeric complexes from

bovine heart shows that the interaction is mainly medi-

ated by the two j subunits and is highly dynamic, that

is, it changes over time to accommodate motions both

dependent on and independent of catalysis [140]. This

study also proposed that dimers associate into oligo-

mers mainly through homo-interactions between the

matrix-exposed part of subunit g together with subunit

k, forming a ‘fluid interface’ able to follow the cristae

curvature. Conversely, cryo-EM analyses of the ovine

and porcine tetrameric complexes showed that the

‘neighbours in a row’ monomers are linked by two IF1

molecules, and that the resulting tetrameric structures

have a higher stability compared to the dimers

[123,125]. Such results suggest that different F-ATP

synthase oligomeric structures can coexist within a

mitochondrion at the cristae edges. In addition, the

presence of a sub-population of monomeric F-ATP

synthase complexes probably prevailing in the inner
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boundary membrane has been proposed [141]. These

monomeric complexes are characterised by higher

mobility compared to the dimeric complexes localised

at the cristae edges and may be working as ATPases.

F-ATP synthase thus seems able to undergo not only

functional but also spatial and structural reorganisa-

tion to respond to different metabolic conditions [141],

which also involve interactions with the cristae-shaping

protein OPA-1 [142]. Finally, it has been proposed

that F-ATP synthase, ANT and the Pi carrier associate

in a supramolecular structure, the ‘ATP synthasome’

[78,79], the formation of which would depend on

CyPD association and on the bioenergetic state of the

mitochondria [80].

Possible mechanisms of channel formation

As mentioned in the Introduction, the first clue that

the F-ATP synthase could be involved in the PT was

the demonstration that CyPD interacts with the

peripheral stalk of F-ATP synthase [54]. CyPD binding

required relatively high concentrations (10 mM) of Pi

and resulted in partial inhibition (about 30%) of the

rate of oligomycin-sensitive ATP synthesis and hydrol-

ysis; CsA dissociated CyPD from the F-ATP synthase

removing this inhibitory effect [54]. A few years later

clear evidence was obtained that Ca2+-dependent chan-

nel formation from F-ATP synthase can actually take

place [55,56] as now supported by a variety of studies

based on reconstitution of highly purified preparations

from bovine [69] and porcine hearts [70].

Based on extensive mutagenesis [56,61–68], reconstitu-
tion [55–59,69,70] and structural work [123–125] a plau-

sible mechanism through which F-ATP synthase could

generate a channel is beginning to emerge. First pro-

posed by Gerle as the ‘death finger’ hypothesis

[143,144], this model combines elements of two previous

hypotheses, that is, that the PTP may form at the dimer

interface of monomers through a conformational change

originating at OSCP [55] or at the c-ring after dissocia-

tion of F1 [56,61]. The following putative sequence of

events takes into account most of the available informa-

tion obtained in several laboratories (Fig. 3A).

a) Under basal conditions (enzyme turnover with

Mg2+ at the catalytic site) rotation of the c subunit

is smooth, and elastic force is dissipated through

OSCP and the peripheral stalk with little effects on

the ‘hook apparatus’ connecting with the outer side

of the lipid plug in the c-ring (Fig. 3A, left).

b) Binding of Ca2+ occurs at the catalytic metal site

contributed by both a and b subunits (Fig. 3A,

centre), which is usually occupied by Mg2+; the

larger van der Waals radius of Ca2+ causes a spa-

tial rearrangement of the F1 sector with increased

overall rigidity [62].

c) The rearrangement is transmitted to the crown

region, that is, the b-barrel-shaped ‘ring’ at the F1/

OSCP interface [119] through the long connecting

loop made up by residues 82-131 of subunit b [62].

d) The decreased compliance causes more mechanical

stress on OSCP, overcoming its ‘shock absorber’

function during rotation of subunit c [134] in a

process that is favoured by binding of CyPD

(Fig. 3A, centre) or of its chemical mimic benzodi-

azepine (Bz)-423 [55], which decreases OSCP flexi-

bility; CsA desensitises the PTP by displacing

CyPD from OSCP rather than by a direct effect on

F-ATP synthase [54,55].

e) The mechanical energy is transmitted from OSCP to

the peripheral stalk relaying it at the point of entrance

into the membrane [121,132], where subunit b forms a

hairpin that makes a tight association with the C- and

N-termini of subunits g and e, respectively, forming a

strong ‘wedge’ [124] or ‘bundle’ [125].

f) The C-terminus of subunit e, which extends outside

the bundle region to make contact with the c-ring

in the ‘hook apparatus’ [125], exerts a pulling effect

on the lipids allowing formation of a channel within

the c-ring by displacing the outer lipid plug [125].

g) At physiological, low levels of matrix Ca2+ the PTP

oscillates between the closed and open states

(Fig. 3A, centre); as matrix Ca2+ increases, or as

the result of additional inducing agents, openings

become more stable and lead to displacement of

the inner lipids and of the central stalk (Fig. 3A,

right). Of note, also the fully open state is reversi-

ble when Ca2+ is removed [145].

Cryo-EM structures of F-ATP synthase prepared in

the presence of 5 mM Ca2+ yielded 3D density classes

specific to the Ca2+ dataset, that is, never observed

with Mg2+. These could be arranged in a plausible

sequence that may provide snapshots of the different

stages in the process of PTP opening [125]. The mech-

anism through which the channel would reversibly

form within the c-ring [56], which in the fully open

state also implies some rearrangement or even the dis-

placement of F1, remains shrouded in mystery. Impor-

tantly, it is not clear whether all conductance substates

of the PTP can be explained by the above hypothesis.

In patch-clamp experiments with native membranes

the PTP exhibits a large variety of substates ranging

from as little as 45 pS to as high as > 1000 pS [15,16].

All these substates are also observed in highly purified

dimeric F-ATP synthase preparations reconstituted in
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lipid bilayers [69]. As just mentioned, it is possible that

the low-conductance flickering reflects reversible oscil-

lations of the lipid plug within the c-ring. An interest-

ing (and not mutually exclusive) alternative, however,

is suggested by the reconstruction of the dimer inter-

face from the high-resolution structure of monomers

(Fig. 3B), where adjacent subunits j form a cavity that

appears not to be filled by lipid [124] and that may

provide an interface for channel formation in dimers

(Fig. 3B). This could contribute to the reversible, tran-

sient flickering of the PTP observed both in isolated

mitochondria and intact cells [146–149].

Fig. 3. Hypothetical models for PTP formation by F-ATP synthase. (A) The ‘death finger’ model proposes the transition of the c-ring into the

PTP channel on a conformational change of the peripheral stalk that eventually perturbs subunit e, the final transducer of pore opening. The

C-terminus of subunit e makes contacts with lipids of the plug within the c-ring from the IMS (left). In the presence of physiological, low

Ca2+ concentrations with CyPD bound to OSCP subunit (middle), the peripheral stalk transmits mechanical force generated by Ca2+ binding

to subunit e (red arrow), which may exert a pulling action dragging some lipids out of the plug. This condition, together with a secondary

relaxation of the central stalk/c-ring connections would accommodate a low-conductance mode of channel opening mediating the passage

of ions but not of larger solutes, representing the ‘flickering’ mode of the PTP (middle). As the matrix Ca2+ levels rise, the mechanical force

exerted on subunit e becomes stronger allowing removal of the lipid plug from the c-ring and displacement of F1 with formation of the high-

conductance PTP, which remains fully reversible if Ca2+ is removed [145]. (B) Entire F-ATP synthase dimer (left), after removal of the F1

domains (centre) and following a 90° rotation to show the two FO domains as viewed from the matrix side (right). The conformational

change transmitted through the peripheral stalk (red arrows in the right panel) may affect both subunits g/e and the monomer–monomer

interface, with possible channel formation at the point of contact of subunits j, which undergo a pivoting motion at their interface during

catalysis [124].
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It has been proposed that PTP formation requires

dissociation of the dimers, in a study where isolated

mitochondria were subjected to Ca2+-dependent PTP

opening leading to a small decrease of the dimer/mo-

nomer ratio, as measured by activity staining in native

gels where the presence of oligomers and of partially

assembled forms of the complex was not assessed

[150]. The prevalent state of F-ATP synthase was still

the dimeric form, so that assigning occurrence of the

PT to the monomers appears arbitrary. The key issue,

however, is that these experiments cannot tell whether

the partial disassembly of the dimers is the cause or

rather the consequence of swelling, a problem that also

applies to the interpretation of the in situ studies [150].

While PTP formation in monomers is possible,

whether this is a requisite for pore opening remains

very difficult to assess even in reconstituted systems, as

will be discussed later.

Species-specific features

The F-ATP synthase is a highly conserved enzyme

with a substantial degree of sequence identity from

bacteria to mammals, which is particularly evident for

the catalytic domain, where more than 60% residues

of subunit b have been conserved [151]. In eukaryotes,

the enzyme contains unique so-called ‘supernumerary’

subunits anchored to the FO region, which in yeast

include subunits e and g that are strictly associated

with dimers [152,153] and appear to mediate dimerisa-

tion of monomers in mammals as well [139]. Cryo-EM

images of dimers from different species confirmed a

wide conservation of the central structure, while

revealing extensive variations in the composition and

structure of the peripheral stalk, especially in the

dimeric interface [121,154,155].

The molecular connections between monomers or

dimers vary among species, and most data were gath-

ered by structural analysis of the yeast and bovine

enzymes. In Yarrowia lipolytica, the dimeric interface

was reported to be primarily occupied by the C-

terminus of subunit f, to include subunits a and 8

while the resulting wedge-shaped space in between

appears to be filled by lipids [121]. In the structure of

the Saccharomyces cerevisiae F-ATP synthase dimer,

the density of subunit f was reassigned to subunit i/j (j

in mammals), while occupancy of the dimer interface

by subunit a was confirmed [156]. In both structures

subunits e and g, which are connected with the N-

terminus of subunit b in a well-defined bundle, locate

at a more distal position. They confer a peculiar cur-

vature to the membrane and do not participate in

dimer formation but rather in dimer–dimer contacts.

Subunit e protrudes straight out of the Fo domain with

its C-terminus towards the IMS without any obvious

implications in the organisation of higher-order struc-

tures [121]. In Saccharomyces cerevisiae, it connects

with subunit k in an arrangement that may be specific

for yeast, given that subunit e has a completely differ-

ent orientation in the mammalian enzyme

[124,125,132]. However, it is important to note that

the density for yeast subunit e (and g) was recon-

structed using poly-alanine models, which may camou-

flage the real structure and position of the protein. In

the bovine and ovine F-ATP synthases, the dimer

interface includes subunit j, which spans from the

matrix to the IMS and together with subunit f gener-

ates a cavity where the membrane has reduced thick-

ness. Interestingly, subunit a appears to be completely

covered by subunits j, 8 and partially by cardiolipin.

As in yeast, subunit e locates in a proximal domain

and coordinates dimer–dimer contacts, but it bends

toward the lipid plug of the c-ring.

Subunit e shows species-specific sequence features

(Fig. 4). As expected, the well-characterised GXXXG

motif (position 23-27 in Homo sapiens), which allows

tight packing with the a helices of subunits g and b, is

highly conserved both in terms of sequence and of

position within the protein. Sequence similarity is also

visible in the transmembrane region. Prominent varia-

tions are instead present in the C-terminus, with termi-

nal sequences unique to various strains of Drosophila

and yeast. These overall differences may provide an

explanation for the different orientation of subunit e

relative to the mammalian protein, and perhaps also

for the channel-forming ability of F-ATP synthases.

Indeed, it is of interest that the PTP displays distinct

properties in different species [157] including the mean

conductance, which ranges from 500 pS (bovine) [55]

to 300 pS (yeast) [57], to a mere 53 pS in Drosophila

[58], where the PTP operates as a highly selective Ca2+

release channel [158]. Whether these properties can be

ascribed to the unique C-termini of subunit e and/or

to the specific features of the monomer/monomer

interfaces is being actively investigated in our laborato-

ries. These studies should provide interesting insights

into the mechanism(s) of PTP formation and a poten-

tial test of the ‘death finger’ hypothesis [144].

Effect of detergents

As already discussed, in the native IMM the F-ATP

synthase is organised in complex multimeric structures

[159]. After assembly from preformed F1/c-ring and

peripheral stalk subcomplexes [160] monomers associ-

ate into dimers [152], the actual building blocks that
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by lateral association form long rows of oligomers,

which in turn help to shape the IMM foldings at the

cristae [161]. Purification of F-ATP synthase disrupts

its native conformation affecting the properties of the

resulting enzyme complex in a manner that depends

on the detergent(s) used, an issue that should always

be kept in mind in the design and interpretation of

reconstitution experiments.

Extraction with digitonin [162] or lauryl maltose

neopentyl glycol (LMNG) [69] generated monomeric,

dimeric and oligomeric states when F-ATP synthase

was analysed by non-denaturing blue-native [163] or

clear-native PAGE [164]. After elution, F-ATP syn-

thase dimers but not monomers displayed Ca2+-

induced channel activity in lipid bilayers [55,69]. Pro-

tein elution from the gel slices was carried out with n-

heptyl b-D-thioglucopyranoside [55,69], however; and

we suspect that this step may have removed compo-

nents of the hook apparatus (like subunit e) from

monomers but not dimers, and thus preventing chan-

nel formation in the former.

In contrast with these results, it was convincingly

shown that reconstituted, monomeric F-ATP synthase

generates currents similar to those of the PTP [70]. In

these protocols, mitochondria were extracted with

dodecyl maltoside (DDM), which removes the labile

subunits j and k [165] together with the ‘dimerisation’

subunits e and g [70], thus generating the monomeric

form only [166]. At variance from the case of the bona

fide PTP, currents did not require added Ca2+ and

were inhibited by oligomycin [70]. As mentioned ear-

lier, the subunits removed by DDM are critically

located in the hook apparatus [70,165]; and yet, chan-

nel opening was seen [70]. A possible explanation is

the delipidating effect of DDM [163], which may per-

turb the lipid plug thus bypassing the Ca2+ require-

ment for PTP activation. Preservation of the lipids by

the milder detergents digitonin and LMNG could

explain lack of channel formation in the reconstituted

system with our monomer preparations [55,69].

Cyclophilin D

CyPD is the unique mitochondrial isoform of the

cyclophilins, a family with more than 15 mammalian

members that exhibit peptidyl-prolyl cis-trans iso-

merase activity and share the ability to bind the inhibi-

tory drug CsA. In mammals, CyPD is encoded by the

Ppif gene [167,168]. CyPD has emerged as central in

the mitochondrial proteome. Early work documented

an interaction between CyPD and the PTP putative

components ANTs, VDACs and TSPO [23], the Pi

carrier [169] and the F-ATP synthase [54,55]. Addi-

tional partners have been discovered including compo-

nents of the electron transport chain [170], proteins

involved in cellular signalling pathways including ERK

[171,172], GSK3b [171,173] and SIRT3 [174,175], and

proteins involved in stress response pathways including

HSP90 and TRAP1 [176]. Interestingly, only some of

these interactions are sensitive to CsA, suggesting the

existence of multiple binding modes that are yet to be

explored [167]. The best-characterised function of

CyPD is sensitisation of the PTP through binding to

OSCP [54,55]. This association requires Pi, which

probably acts by charge neutralisation favouring the

electrostatic interactions between the two proteins [63].

Through this effect Pi is a PTP inducer [177] despite

its lowering effect on the concentration of matrix free

Ca2+ [178]. It is remarkable that in yeast and Droso-

phila mitochondria, where the PTP is insensitive to

CsA, Pi is a PTP inhibitor [57,158,179]; and that in

the absence of CyPD (or in the presence of CsA) Pi

becomes an inhibitor also for the PTP of mammalian

mitochondria [180].

Getting a crystal of CyPD suitable for X-ray analy-

sis has been challenging, due to the high water

Fig. 4. Sequence alignment of subunit e from various species. Accession number of sequences used for the alignment: H. sapiens (P56385),

B. taurus (Q00361), S. scrofa (Q9MYT8), R. norvegicus (P29419), M. musculus (Q06185), D. rerio (A7YY99), D. willistoni (B4N947),

D. melanogaster (O77134), D. sechellia (B4HEN9), S. cerevisiae (P81449) and Y. lipolytica (B5FVG3). The multiple sequence alignment was

performed with the CLUSTALW program and analysed by JALVIEW software.
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solubility and pI of the protein. A high-resolution

structure was obtained of a K133I mutant of human

CyPD lacking the first 13 amino acids. The structure

confirmed the high homology of CyPD with other

CyPs, which all consist of eight antiparallel b-sheets,
two a-helices and one 310 helix enclosing the sheets

[181]. CyPD does not undergo conformational changes

on binding of CsA, an interaction that mainly involves

hydrophobic and hydrogen bonds [181]. It is important

to note that the unique N-terminus missing in the

structure may impart specific features to the protein,

also because this region is the target of many post-

translational modifications.

Post-translational modifications in pore

modulation

CyPD can undergo several post-translational modifica-

tions that alter PTP regulation [167,168]. CyPD is the

target of phosphorylation, with functional effects that

depend on the phosphorylated site and may result in

opposite outcomes. In mice lacking the mitochondrial

Ca2+ uniporter, phosphorylation at S42 increased asso-

ciation of CyPD with F-ATP synthase resulting in

PTP sensitisation [182]. Conversely, PI3K- and Akt2-

mediated phosphorylation at S31 preserved mitochon-

drial function; while expression of the CyPD-S31A

phosphomimetic mutant caused mitochondrial dys-

function consistent with PTP activation [183], as also

observed after phosphorylation by GSK3b [171]. By

combining in silico analysis of potential CyPD phos-

phorylation sites for GSK3b with genetic manipula-

tions, a crucial role of CyPD residue S191 has been

recently demonstrated in mouse hearts, with phospho-

rylation increasing CyPD binding to OSCP, increased

PTP opening and myocardial damage [184].

CyPD can undergo (de)acetylation reactions, and

these modifications significantly affect the PTP

[174,185]. Indeed, in Sirt3�/� mice CyPD is hyper-

acetylated at K166 (a residue conserved in the human

protein) leading to PTP activation and cell death in a

model of aortic constriction [174]. Consistently (a)

hypoxia increased CyPD acetylation while SIRT3

overexpression was protective in rat heart-derived

H9C2 cells; (b) the acetylation mimic K166Q increased

PTP sensitisation and cell death, while the K166R

variant had the opposite effect; and (c) cardiac ischae-

mic postconditioning did not reduce infarct size and

CyPD acetylation in mice lacking SIRT3, suggesting

that attenuation of CyPD acetylation by SIRT3 could

prevent lethal injury at reperfusion [186]. Finally,

acetylation of OSCP residue K70 caused by NAD+

redox imbalance promotes interaction of F-ATP

synthase with CyPD and sensitises the PTP to opening

in mouse hearts [187].

CyPD contains several Cys residues, some of which

(C82 and C104 in the human protein) strongly influ-

ence the enzyme’s isomerase activity [188]. Site-

directed mutagenesis identified human C203 as an

important redox-sensitive residue, possibly through

formation of a unique disulphide bridge with an yet-

undefined partner [188]. Consistently, mutation of the

corresponding mouse C202 to a Ser residue desensi-

tised the PTP in cells [189] and in Langendorff per-

fused mouse hearts subjected to ischaemia/reperfusion

injury, with a matching decreased association of

CyPD-C202S with F-ATP synthase [190]. CyPD C202

is also the target of S-nitrosylation [191] and of S-

palmitoylation [190], and it has been proposed that

oxidation of C202/3 favours PTP opening leading to

ischaemia-reperfusion damage, while its S-

nitrosylation/acylation confers cardioprotection [190].

Open questions

The progress discussed earlier has been substantial,

and yet key open questions remain. These include the

role of the OMM, the basis for modulation by qui-

nones and activation by free fatty acids, the assign-

ment of regulatory sulfhydryl residues mediating the

effect of oxidants, and the existence of additional per-

meability pathways.

Outer membrane

The PT is an IMM event as it can take place in mito-

plasts, which lack an intact OMM [44]; and yet there

is evidence that the OMM (a) is involved in mediating

the effect of maleimides because their inducing activity

on the PTP is no longer seen in mitoplasts [192] and

(b) is required for the inducing effects of photosensitis-

ers like porphyrins [193]. Porphyrins can be excited by

visible light to produce singlet oxygen, 1O2, which pri-

marily affects amino acids (Trp, Tyr, His, Cys, Met)

causing a variety of alterations in target proteins [194].

Porphyrins (like haematoporphyrin) tend to concen-

trate in mitochondria [195]. Remarkably, it was known

that F-ATP synthase and ANT are the most vulnera-

ble targets of 1O2 [195,196]. Photoirradiation of

haematoporphyrin-loaded mitochondria has been used

to study the effects of 1O2 on the PTP [197–199]. At

variance from the inducing effect generally observed

with oxidants, short (≤ 100 s) irradiation times caused

desensitisation of the PTP to Ca2+, the first example of

pore inactivation by an oxidant [197]. If the irradiation

time was extended to more than 100 s, a process of
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PTP reactivation ensued that was mediated by the

OMM [199], as confirmed by the finding that mito-

plasts were completely refractory to this reactivation

of the PTP by high light doses [44]. These results are

interesting also because they bear on the question of

whether the PTP may form at the sites of contact

between the OMM and IMM, as was suggested rela-

tively early in the history of the PT [46]. Indeed, in the

photoirradiation paradigm it is very unlikely that PTP

activation is mediated by a diffusible species because
1O2 is very short-lived particularly in biological sys-

tems, where it has an estimated lifetime of 100-250 ns

and a diffusion distance of the order of 10–20 nm

[200,201].

The major proteins of the OMM are VDACs

[202], which have long been suggested to take part in

PTP formation [45,46,203–210], an issue that gener-

ated considerable discussion [211–213]. Ro 68-3400,

the first high-affinity inhibitor of the PTP to be iden-

tified by functional screening of a chemical library,

labelled a 32 kDa protein originally identified as

VDAC1 by mass spectroscopy after hydroxyapatite

chromatography [207]. Subsequent studies failed to

confirm the identity of the labelled protein as

VDAC1, 2 or 3 [50]; and a thorough characterisation

of the PTP in mitochondria from VDAC1-null mice

revealed no differences in the effects of a variety of

inducers and inhibitors, including CsA and ubiqui-

none (Ub) 0 [50]. The possible compensatory role of

VDAC2 and 3 was ruled out by experiments in cells

where all three VDAC isoforms had been genetically

ablated [51]. As a result of these studies we think

that VDACs cannot be considered essential compo-

nents of the PTP. However, together with the earlier

work mentioned earlier [203–210], some recent stud-

ies are consistent with a modulatory role of VDACs,

which may be the targets of signalling pathways and

of drugs [214–216].
A role in the PT has also been described for other

proteins that can reside in the OMM such as pro- and

anti-apoptotic members of the Bcl-2 family [47,48] and

hexokinases [212,217–219]. In the case of Bcl-2 family

members, the effect may be exerted more on PTP-

dependent swelling than on PTP modulation as such.

Indeed, it has been shown that these proteins exert a

mechanical effect on OMM resistance to stretching,

which is decreased by proapoptotic Bax and Bak and

increased by antiapoptotic Bcl-2 [48]. In the case of

hexokinase, the mechanism may instead be linked to

Ca2+ diffusion through contact sites between the endo-

plasmic reticulum and the OMM, because displace-

ment of the protein leads to PTP opening through a

large yet localised process of Ca2+ influx [220].

Quinones and lipids

Quinones are among the most interesting modulators

of the PT. After the discovery that Ub0 is a potent

inhibitor [221], studies were performed to define the

structure-activity relationship of quinones with various

side chains [222,223], see [224] for a review. From

these studies, three classes could be identified, that is,

PTP inhibitors, PTP inducers and PTP-inactive qui-

nones that are able to compete with both inhibitors

and inducers [224]. The structure-activity relationship

is extremely complex given that seemingly minor struc-

tural modifications profoundly affect the effects on the

PTP. The most striking examples are perhaps those of

decylUb (inhibitor) and OH-decylUb (inducer); and of

the isomers 3-EtO-decylUb (inhibitor) and 2-EtO-

decylUb (inactive). It appears that the 1,4-

benzoquinone ring as such is not sufficient for pore

regulation, and that specific substituents at carbons 2,

3, 5 and 6 may be essential for PTP modulation. It is

also noteworthy that quinones with very different

chemical structures may have similar effects on PTP

regulation, suggesting that the spatial conformation

may be more important than the nature of the sub-

stituents per se. The correlation between quinone

structure and effects on the PTP, as well as their tar-

get(s), remain elusive although it is clear that neither

the redox potential nor the hydrophobicity of the side

chain are crucial factors [221–224]. Overall, data are

consistent with the existence of a common binding site,

which however remains undefined [224].

A recent study with photoreactive, PTP-inhibiting

derivatives of Ub1 in Saccharomyces cerevisiae mito-

chondria has shown labelling between residues Phe221

and Lys234 (a segment that connects the 15th and

16th b-strand sheets) in the C-terminal region of

VDAC1 [215]. No labelled proteins were detected in

VDAC1-null yeast, indicating that the interaction is

selective for VDAC1 [215]. Whether quinone-sensitive

PTP opening occurred in yeast mitochondria lacking

VDAC1 was not assessed, however, so it cannot be

excluded that quinones bind to both VDAC1 and to a

component of the IMM involved in the PT.

Another intriguing observation is that the crys-

tallised, 14 subunit c-ring of spinach chloroplasts

resolved at 2.3 �A presents internal electron densities

forming circles parallel to the membrane plane, which

based on a variety of criteria were attributed to plasto-

quinones [225]. Similar structures have been observed

in the c-ring of other organisms [226–230], which could

be formed by coenzyme Q in mitochondria and by

menaquinone in bacteria [225]. Given the prominent

effects of quinones on the PTP and the likely role of
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the c-ring in PTP formation [56,60,61], it is tempting

to speculate that short-chain quinones may compete

for binding with endogenous ubiquinone, affecting in

turn the probability of channel formation by the PTP.

The lipid plug of the c-ring might also be the site of

action of fatty acids, which have long been known to

uncouple oxidative phosphorylation [8–10] with an

effect largely mediated by the PTP [116,231,232].

Assigning a site of action to pore modulators

The number and variety of PT modulators remains puz-

zling. In their still very useful review of 1990, Gunter and

Pfeiffer listed 43 classes of compounds and conditions

affecting the PT [177], a list that has continued to grow

and still represents a challenge to any mechanistic

hypothesis to explain the PT. Significant progress was

made with the discoveries that the PTP is voltage-

dependent [233] and inhibited by mildly acidic matrix pH

[18,234], and that the voltage threshold for opening is

modulated by many agents [235] with a prominent effect

of oxidative events affecting the status of critical thiols

[236] and of matrix pyridine nucleotides [237]. These find-

ings suggested that many inducers and inhibitors could

converge on a smaller number of effector sites determin-

ing the stochastic probability of PTP opening [12]. The

existence of more than one mechanism for the PT [67,77]

has complicated the picture, but some specific sites of reg-

ulation have been convincingly assigned to F-ATP syn-

thase (a) by genetic ablation or downregulation of

subunits OSCP [55,67], c [61], e and b [67], f [238] and of

the bundle region made up by subunits b, e and g [59];

and (b) by site-directed mutagenesis which led to identifi-

cation of the Ca2+-binding site in subunit b [62], of the

H+-sensing His residue in OSCP [63], of the conserved

Arg residue modified by glyoxals in subunit g, which may

play a role in voltage sensing [239], of the regulatory

interaction between one Arg of subunit e and one Glu of

subunit g [65], of the OSCP Cys residue responsible for

the effects of the dithiol oxidant diamide [66] and of Gly

residues involved in channel formation in subunit c

[56,68]. The location of at least two additional classes of

Cys residues [115,237] and of a Me2+-binding site located

on the cytosolic side, the occupancy of which results in

PTP inhibition [240], remains to be identified.

Rotenone is a very effective inhibitor of the PTP, as

reproducibly observed in succinate-energised mito-

chondria [241,242]. One possible explanation is that it

inhibits reverse electron transfer through respiratory

complex I, a major source of reactive oxygen species

that may overwhelm antioxidant defences particularly

in the phase of reperfusion after ischaemia [243]. How-

ever, the effects of rotenone and CsA are additive and

complementary, in the sense that inhibition by rote-

none increases as inhibition by CsA decreases and

vice versa, with maximum inhibition being constant

[242]. Genetic ablation of CyPD restores PTP inhibi-

tion by rotenone in tissues that are otherwise resistant

to its effects, suggesting that inhibition by rotenone

and CsA occurs through a common, still unidentified

site masked by CyPD [242].

Conclusions and perspectives

We think that progress in defining the molecular bases of

the PT has been substantial, particularly over the last

10 years; but it is also clear that several key questions still

await an answer. The number of pores appears to be very

limited compared with the abundance of F-ATP synthase

and ANT [244]. Can all F-ATP synthase and ANT mole-

cules form a PTP or rather a priming event, possibly a

posttranslational modification, is required? Can the pores

form anywhere, or are there privileged locations, for

example, the interface with the OMM?What is the role of

the interactions of F-ATP synthase and ANT at the ATP

synthasomes, given that lack of F-ATP synthase leads to

activation of the ANT channel [67,77]? Are there addi-

tional mechanisms for the PT based on other proteins or

molecular species such as polyphosphate [245,246]? We

would also like tomention a very important paper demon-

strating that the salt- and anoxia-tolerant brine shrimp

Artemia franciscana does not undergo the permeability

transition in spite of the presence of both ANT and F-

ATP synthase [247]. We expect that sequence analysis of

the corresponding genes will provide an invaluable tool to

address the basis for this resistance and to further test the

molecular mechanisms of the PTP. Finally, we would also

like to report a very elegant paper that appeared at the

time of our submission, and that bears on the importance

of the PTP in the lifespan of Caenorhabditis elegans. The

study demonstrates that genetic ablation of OSCP in adult

worms triggers the PTP and shortens lifespan, which can

be restored by pharmacological or genetic pore inhibition

[248]. We hope that this review will help address the

numerous open questions and eventually help solve the

70-year-oldmystery of the PT.
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