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Cancer cells must adapt to the hostile conditions of the microenvironment in terms of nutrition, space, and im-
mune system attack. Mutations of DNA are the drivers of the tumorigenic process, but mutations must be able
to hijack cellular functions to sustain the spread of mutant genomes. Transcriptional control is a key function
in this context and is controlled by the rearrangement of the epigenome. Unlike genomic mutations, the epige-
nome of cancer cells can in principle be reversed. The discovery of the first epigenetic drugs triggered a contam-
inating enthusiasm.Unfortunately, the complexity of the epigeneticmachinery has frustrated this enthusiasm. To
develop efficient patient-oriented epigenetic therapies, we need to better understand the nature of this complex-
ity. In this review, we will discuss recent advances in understanding the contribution of HDACs to the mainte-
nance of the transformed state and the rational for their selective targeting.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The drawing and maintenance of complexity in multicellular organ-
isms, as well as the adaptive responses that characterize the life of cells
in tissues, are achieved through the control of gene expression. The first
step in the long journey bywhich genes determine/control phenotype is
transcriptional control. Access to the DNA sequence is a fundamental
decision that enables the initiation of transcription and is operated
through the control of chromatin compaction.

Changes in the transcriptional landscape are associated with almost
all pathological conditions. Cancer is an altered cellular fate that is
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constantly evolving. DNA mutations are the major causes of cancer oc-
currence and progression.With few exceptions, most mutations of can-
cer driver genes show their deleterious effects in only one or a few
tissue types. It has been hypothesized that, among other factors, the
pre-existing epigenetic landscapes that characterize different tissues
may or may not allow mutant oncogenes or tumor suppressor genes
to exert their malignant outcomes (Haigis, Cichowski, & Elledge,
2019). As recently observed, the transforming ability of the oncogenic
mutation in BRAFV600E is robustly manifested in neural crest and mela-
noblast populations, whereas melanocytes are much less responsive.
This oncogenic competence depends on chromatin-modifying enzymes
such as ATAD2, which binds the transcription factors (TFs) SOX10 and
MYC (Baggiolini et al., 2021).

Histones are the major structural proteins associated with DNA and
the major targets of epigenetic control. Throughout evolution, several
post-translational modifications (PTMs) of histones have been selected
to regulate chromatin accessibility rapidly and reversibly. Among the
various PTMs, acetylation acts as a distinct switch to favor TFs access
to DNA. As is always the case with PTMs, acetylation is under the super-
vision of antagonizing enzymes: the histone acetyl-transferases or ly-
sine acetyl-transferases (KATs) and histone deacetylases (HDACs) or
lysine deacetylases (Drazic, Myklebust, Ree, & Arnesen, 2016).

Although originally defined as enzymes involved in the dynamic
regulation of acetylation, it is currently emerging that additional PTMs
can be monitored by HDACs and KATs. Short-chain lysine acylations
can characterize histones and non-histone proteins. Formylation,
propionylation, butyrylation, crotonylation, 2-hydroxyisobutyrylation,
β-hydroxybutyrylation, succinylation, malonylation, glutarylation, and
benzoylation dynamics have been shown to be under the supervision
of KATs and HDACs (Aramsangtienchai et al., 2016; Kelly et al., 2018;
Sabari, Zhang, Allis, & Zhao, 2017; Zhao, Zhang, & Li, 2018)

There are two main reasons that make HDACs promising targets for
cancer therapy: i) their activities need to be hijacked to maintain the
transformation state; ii) they are directly responsible for transformation
events.

2. HDACs

Since their discovery more than 25 years ago, histone deacetylases
have attracted much attention as potential targets for cancer therapies.
Indeed, even before the cloning of the first HDAC, small natural com-
pounds were known to increase histone acetylation, alter transcription,
and induce growth arrest and cell death. Moreover, these compounds
were fundamental to the identification of HDACs (Taunton, Hassig, &
Schreiber, 1996). The use of HDAC inhibitors (HDACIs) in clinic, as single
agent, is limited to few hematological tumors: the cutaneous T-cell lym-
phoma and the peripheral T-cell lymphoma (Bose, Dai and Grant, 2014;
Moskowitz and Horwitz, 2017). After the initial enthusiasm for the
treatment of thesemalignancies, the subsequent failures of several trials
have led to a rethinking of the potential use of HDACIs in the clinic
(Fig. 1A/B). Currently, several clinical trials are redesigning the use of
HDACIs in combination therapies (Karagiannis & Rampias, 2021). All
approved HDACIs are pan-selective inhibitors of zinc-dependent
HDACs and interfere with the active site (Fig. 1C/D). The non-selective
action of these inhibitors could be an explanation for the side effects,
also severe, experienced by some patients.

Inmammals, 18 differentHDACs are expressed, 11 ofwhich are zinc-
dependent. In general, they are part of multiprotein complexes and can
regulate lysine deacetylation of a relatively wide range of substrates, al-
though histones remain an important target.

HDACs are classified into five subfamilies based on their sequence
homology, catalytic activities, and phylogenetic criteria (Fig. 2). There
are several excellent reviews discussing the structural differences, the
specific regulatory mechanisms, and the various multiprotein com-
plexes in which HDACs are found (Emmett & Lazar, 2019; Porter &
Christianson, 2019; Bahl & Seto, 2021; Li, Tian, & Zhu, 2020, Millard,
2

Watson, Fairall, & Schwabe, 2017; Di Giorgio & Brancolini, 2016).
Here, we will focus on the most recent studies addressing the contribu-
tion of zinc dependent epigenetic HDACs to cancer development and
the potential for targeting them in cancer therapy.

3. Class I HDACs

3.1. Structural features and rational of targeting

To better understand the contribution of these family members,
which includeHDAC1/2/3/8, to carcinogenesis and to rationally develop
therapeutic strategies, it is important to recognize that they mainly do
not act as isolated enzymes but as part of multiprotein complexes. The
composition of these complexes is variable and can change according
to cellular requirements. HDAC8 is the exception. It has strong catalytic
activity even when not in complex with other partners. HDAC8 is sub-
ject to allosteric regulation, with populationsmoving back and forth be-
tween active and inactive states. A helix-loop-helix forms the "allosteric
domain" that coincideswith the distal region of the enzyme. This region
is responsible for interaction with partners and is subject to regulatory
post-translational modification (Lee, Rezai-Zadeh and Seto, 2004;
Millard et al., 2017; Werbeck et al., 2020). Structural studies have re-
vealed further peculiarities of HDAC8 in the catalytic pocket. In class I
HDACs, a narrow hydrophobic channel allows acetyl-lysine to enter
the catalytic chamber where the zinc ion is located. A second channel
is perpendicular to the first channel and has been termed the 'foot
pocket'. It is believed that the foot pocket forms the exit pathway for
the acetate product (Millard et al., 2017; Wang, Wiest, Helquist, Lan-
Hargest, & Wiech, 2004; Whitehead et al., 2011). In HDAC8, the pres-
ence of a tryptophan limits the available space in the foot pocket. The
structural features of the foot pocket have been exploited to develop
isoform-specific inhibitors. Benzamides and in particular MS-275/
entinostat (Fig. 3) is considered a specific class I inhibitor and shows
some selectivity for HDAC1/2/3 over HDAC8 (Hu et al., 2003).

4. HDAC1 and HDAC2

HDAC1/2 are recruited to a multiprotein complex that promotes the
acquisition of fully competent enzymatic activity. HDAC1/2 can remove
the acetyl or other acyl groups from target lysines that are not restricted
to histone proteins. These two HDACs are highly homologous (> 80% aa
identity), often fully interchangeable, and are recruited to various
multiprotein complexes involved in epigenetic control of gene expres-
sion (Millard et al., 2017). There are also reports showing independent
actions of HDAC1 and HDAC2. For example, HDAC2, but not HDAC1
andHDAC6, represses the formation of primary cilia in pancreatic ductal
carcinoma cells (Kobayashi et al., 2017). The primary cilium is a
microtubule-based structure that is present on the surface of many
cells and is often lost from cancer cells. As a sensor, it coordinates signal-
ing responses to environmental stimuli and its repression sustains cell
proliferation (Peixoto, Richard, Pant, Biswas, & Gradilone, 2020).

The most investigated HDAC1/2-containing complexes are the SIN3
(switch-independent 3) [Hassig, Fleischer, Billin, Schreiber, & Ayer,
1997; Clark et al., 2015; Banks et al., 2020; Laherty et al., 1997) the
MiDAC (mitotic deacetylase) (Bantscheff et al., 2011; Itoh et al., 2015),
the CoREST (co-repressor of REST) (You, Tong, Grozinger, & Schreiber,
2001; Song et al., 2020), theMIER (mesoderm induction early response)
(Ding, Gillespie, & Paterno, 2003), and the RERE (arginine-glutamic acid
dipeptide repeats) (Plaster, Sonntag, Schilling, & Hammerschmidt,
2007) (Fig. 4). These complexes contain scaffold proteins that, not
only enhance the enzymatic activity of HDAC1/2, but also mediate the
interaction with selected TFs.

The contribution of HDAC1/2 to cancer is not easy to assess. Direct
dysfunction of these HDACs is frequently observed in the form of ex-
pression levels in various tumors, whereas mutations are rare (http://
www.cbioportal.org). However, because these HDACs assemble in

http://www.cbioportal.org
http://www.cbioportal.org
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Fig. 1. HDACIs in clinic.
A) Summary of the status for all clinical trials using HDACIs for cancer treatment.
B) Summary of all clinical trials using HDACIs for cancer treatment subdivided for the specific phase.
C) Description of the phase 4 clinical trials. Data were obtained from https://www.clinicaltrials.gov
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distinct multiprotein complexes, dysfunction in any member of the
complex could be responsible for affecting deacetylase activities during
the tumorigenic process. Importantly, in cancer cells, additional copies
of HDAC1/2 could interact with noncanonical partners or alternatively
induce proteotoxic stress (Brancolini & Iuliano, 2020). There are several
reports highlighting a role for HDAC1, HDAC2, or both in certain aspects
of the transformation process, such as the pro-angiogenic switch or reg-
ulation of TP53 functions (Hulsurkar et al., 2017; Stojanovic et al., 2017).
HDAC1/2 complexes can also influence the acetylation status of non-
histone proteins. A well-known example is GLI1, a downstream TF of
the Hedgehog pathway involved in tumorigenesis (Hui & Angers,
2011). HDAC1/2 deacetylate K518ac of GLI1 to allow its association
with chromatin and activation of transcription (Canettieri et al., 2010).
Control of acetylation status is important for the sequestration of
GLI1 at the nuclear lamina (Mirza et al., 2019).

4.1. HDAC1/2, typical enhancers and super-enhancers

H3K4me1 and H3K27ac mark typical enhancers (TE) and super-
enhancers (SE). SE are clusters of stretched TE, in which binding of mul-
tiple TFs can enhance transcriptional output. These distal regulatory
3

elements control cell identity by regulating differentiation-specific
genes (Aranda-Orgilles et al., 2016, Di Stefano et al., 2016). The epige-
netic architecture that coordinates the activities of TE and SE is fre-
quently altered in cancer to maintain the oncogenic transcriptional
program (Mathison et al., 2021).

The CoREST complex coordinates various epigenetic modifications
to repress gene expression. Via LSD1/KDM1A (lysine-specific
demethylase 1), it catalyzes the demethylation of mono- and di-
methylated lysine 4 of histone H3, while via HDAC1/2 it can deacetylate
H3K27ac (Shi et al., 2004). The CoREST complex is therefore the ideal
molecular machinery to silence TE and SE. In leukemia cells of the
erythro-megakaryocyte lineage, CoREST can control the expression of
TFs involved inmyeloid differentiation, including GFI1, a master regula-
tor of neutrophil development (Karsunky et al., 2002). This effect is
achieved by silencing a super-enhancer known as GFI1-SE and can be
controlled pharmacologically (Tatsumi et al., 2020).

The repressive action of HDAC1 at enhancers, as important event in
the tumorigenic process, has also been observed in acutemyeloid leuke-
mia (AML). Here a repressive multiprotein complex composed of the
Forkhead factor FOXC1, RUNX1, the Groucho repressor TLE3 and
HDAC1 inhibits the activity of enhancers controlling the monocyte/

https://www.clinicaltrials.gov
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macrophage differentiation and promotes the tumorigenic process
(Simeoni et al., 2021).

HDAC1/2 may also indirectly sustain SE reprogramming. In glioblas-
tomamultiforme (GBM) HDAC1/2 activities are required to support ex-
pression of the MYC oncogene. MYC in turn organizes SE that feed
glycolysis and the Warburg effect. Non-selective HDACIs affect the ex-
pression of MYC, the organization of SE and the induction of TFs that
are master regulators of the oxidative metabolism. In patient-derived
xenografts, this metabolic rewiring can be addressed with inhibitors of
fatty acid oxidation in combination with HDACIs. The combination of
epigenetic resetting and metabolic inhibition may more effectively re-
duce tumor growth (Nguyen et al., 2020).
4.2. Glioblastoma multiforme (GBM) and the paradigm of the complexity

The pro-oncogenic activity of an epigenetic regulator can be attrib-
uted to different targets as part of different protein complexes. In
GBM, silencing of HDAC1, but not HDAC2, profoundly affects prolifera-
tion of glioma stem cells by reactivating TP53 activities. Under these
conditions, the cells reduce their proliferation and eventually die. How-
ever, when the same GBM cells are transplanted in a different microen-
vironment in vivo, the absence of HDAC1 leads to a more aggressive/
invasive phenotype through activation of STAT3 (Lo Cascio et al.,
2021). This study confirms the involvement of HDAC1 in GBM but
opens a new scenario and gives rise to new cautions for the use of selec-
tive HDAC inhibitors (Puchalski et al., 2018, Qazi et al., 2017). Given the
extreme heterogeneity of GBM, which is evident also between themar-
gin and the core of the tumor, these results need to be validated with
4

different patient-derived cells and ideally with knowledge of the spe-
cific mutational burden.

Tumor-initiating cells may be present at the periphery/edge of the
tumor and cause recurrence from there (Minata et al., 2019). GBM
spheres generatedwith these peripheral/marginal cells showhigher ex-
pression of HDAC1 comparedwith nucleated spheres. Accordingly, high
HDAC1 expression correlates with poorer prognosis. In contrast, HDAC2
expression correlates with a better prognosis. The aggressiveness and
transcriptional profile that characterize these tumor-initiating cells re-
quire the presence of HDAC1.

Proteomic studies aimed at mapping the multiprotein complexes
present in GBM cell lines have shown that HDAC1/2 belongs to the
"classical CoREST complex" with NCOR1/LSD1. In addition, HDAC1 can
also be isolated as part of a complex with PARP1, Ku70/Ku80, and
CHD4 involved in the non-homologous end-joining (NHEJ) DNA repair
pathway (Connelly, Hedrick, Paschoal Sobreira, Dykhuizen, & Aryal,
2018). Consequently, impairment of HDAC1/2 activities both geneti-
cally and pharmacologically impairs cell proliferation and survival
(Was et al., 2019).
4.3. HDAC1/2 and the metastatic process: hopes for therapies

The treatment of metastatic cancer is still an unsolved therapeutic
problem. Dysregulations of HDAC1 activity have recently been discov-
ered in metastatic breast cancer. Chromatin remodeling complexes
monitor access to DNA by hydrolyzing ATP and modulating the topol-
ogy of nucleosomes. The SWI/SNF ATPase complex was first identified
in yeast and is the best characterized chromatin remodeler. (Centore,
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Sandoval, Soares, Kadoch, & Chan, 2020, Reyes, Marcum, & He, 2021). In
human there are three SWI/SNF complexes known as BAF (BRG1/BRM-
associated factor), p-BAF and ncBAF (non-canonical BAF) (Mashtalir
et al., 2018; Michel et al., 2018). BRG1/SMARCA4 and BRM/SMARCA2
provide the ATPase activity which generates the energy necessary for
nucleosome sliding and eviction, mutually exclusive to all complexes.
Furthermore, a constellation of additional partners characterizes the dif-
ferent chromatin remodelers. ARID1A is a specific subunit of the BAF
complex. Recently, inactivating mutations in this gene have been re-
ported in treatment-resistant tumours and metastases (Yates et al.,
2017) as well as in ER+ breast cancer (Pereira et al., 2016). In breast
cancer, the pioneer factor FOX1A recruits ARID1A to chromatin tomod-
ulate expression of ER-target genes from enhancer elements, indepen-
dent of nuclear receptor activation. HDAC1 interacts with ARID1A and
5

tamoxifen may promote recruitment of HDAC1 to ER complexes to me-
diate a repressive effect (Papachristou et al., 2018). Patient-derived xe-
nograft models mutant for ARID1A are characterized by a reduction in
interactions between ER, HDAC1, and BAF components. Finally, loss of
ARID1A is associated with a lack of recruitment of HDAC1 and an in-
crease in histone H4 acetylation in regulated genomic regions
(Nagarajan et al., 2020). Although it is unclear which HDAC1
subcomplex plays a role in this context, this discovery opens a new sce-
nario for the treatment of patients carrying ARID1A mutations. In these
patients, instead of HDAC inhibitors, BET inhibitors should be more ef-
fective (Bechter & Schöffski, 2020).

ARID1A also affects HDAC2 activities independently of HDAC1.
ARID1A mutations are characteristic of more than 50% of ovarian can-
cers. These mutations enable the interaction between HDAC2 and the
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catalytic subunit EZH2 of PRC2 (Polycomb repressive complex 2).
HDAC2 can affect the expression of a subset of genes regulated by
EZH2/ARID1A, and SAHA/vorinostat can increase survival in mice with
ARID1A-mutated cancer (Fukumoto et al., 2018).

Another complex of HDAC1/2 has been shown to be involved inmel-
anoma metastasis. Here, the SIN3A-HDAC1/2 complex silences BMP6
expression and promotes metastatic spread and tumor growth by sup-
pressing BMP6-activated SMAD5 signaling (Min et al., 2020). Similarly,
in colon cancer, miR-500a-5p targeting the 3' end of HDAC2 mRNA is
downregulated during cancer progression and HDAC2 is necessary to
maintain proliferation and invasion of neoplastic cells (Tang et al.,
2019). Again, the molecular complexes and specific mechanisms by
which HDAC2 is involved in colon cancer cell aggressiveness remain
to be elucidated.

4.4. HDAC1/2 as tumor suppressors

Depending on the context HDACs can also exert tumor suppressive
actions. High-risk B-cell acute lymphoblastic leukemia is frequently
characterized by loss of IKAROS/IKFZ1 functions. IKAROS binds to the
6

promoter of the anti-apoptotic gene BCL2L1/BCLXL where it recruits
HDAC1, to repress transcription (Song et al., 2020). In this context,
targeting HDAC1 activity could have a deleterious effect on tumor
growth due to apoptotic resistance. A role that has also been observed
in previous studies (Paz-Priel, Houng, Dooher, & Friedman, 2011). Fo-
cusing on a single target gene could lead to misinterpretation, as
HDAC1/2 multiprotein complexes can also repress the expression of
pro-apoptotic genes (Contreras et al., 2013; Piazza et al., 2013;
Ramsey, He, Forster, Ory, & Ellisen, 2011). Cancer cells could switch
the repressive influence of HDAC1 on pro-apoptotic genes by control-
ling the phosphorylation status of HDAC1. The catalytic activity of
HDAC1 is modulated by serine phosphorylation (Pflum, Tong, Lane, &
Schreiber, 2001) and cancer cells can sustain it (Citro, Miccolo, Meloni,
& Chiocca, 2015). HDAC1 is also phosphorylated at multiple tyrosines.
In particular, Tyr72 plays an important role in regulating HDAC1 stabil-
ity, and can be phosphorylated by EGFR. This phosphorylation impinges
the anti-apoptotic role of HDAC1 and the repression of the pro-
apoptotic BH3-only family member BIM1 (Bahl et al., 2021).

Further studies reported the tumor suppressive effect of HDAC1/2 in
a specific context. Aggressive forms of mantle cell lymphoma express
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high levels of the neuronal transcription factor SOX11. CyclinD1/CCND1
has been shown to bind HDAC1/2 and sequester it into the cytoplasm.
Although there are several aspects of this mechanism that deserve fur-
ther validation, knockdown of HDAC1/2 is sufficient to increase acetyla-
tion of H3K9/14 at the SOX11 promoter and increase its expression.
(Mohanty et al., 2019).

The TF Sall4, also known as stem cell factor (Zhan et al., 2006), is
strongly upregulated in hyperplastic,melanoma-pronemurinemelano-
cytes, where it sustains cell proliferation (Diener et al., 2021). Although
Sall4 is required for primary tumor growth, loss of Sall4 results in in-
creased metastatic burden. The anti-invasive effect of Sall4 is explained
by a repressive effect on a number of melanoma-specific invasiveness
genes. The repressive influence of Sall4 is enabled by the establishment
of a complex with Hdac2 at the regulatory elements of invasive genes.
Here, the Sall4/Hdac2 complex represses their expression through an
epigenetic switch involving the reduction of H3K27ac levels (Diener
et al., 2021). This result contrasts with the pro-metastatic role of
HDAC1/2 in melanoma through BMP6 regulation discussed above
(Smart, Oleksak, & Hartsough, 2021). Clearly, further studies are needed
to rationalize the use of specific inhibitors targeting the metastatic be-
havior of melanoma. Fig. 5 summarizes some of the pro-oncogenic
and tumor suppressive actions of HDAC1/2.
4.5. HDAC1/2, the DNA damage response (DDR) and the genome stability

In response to genotoxic insults epigenetic modifications cooperate
with the DNA damage response to orchestrate an efficient repair (Mir
et al., 2021; Van & Santos, 2018). DNA double-strand breaks (DSB) are
the most deleterious type of DNA damage. They are repaired mainly
by two major pathways: nonhomologous end-joining (NHEJ) and ho-
mologous recombination (HR) (Gavande et al., 2016). Lysine 85 of
linker histone H1 is dynamically acetylated in response to DNA damage
by the antagonistic activities of the acetyl-transferase p300/CBP-
associated factor (PCAF/KAT2B) and HDAC1. Acetylation at this residue
promotes chromatin compaction through greater interaction with nu-
clear histones and recruitment of HP1 (heterochromatin protein 1). A
condition that makes cells more susceptible to death in response to
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genotoxic agents, possibly due to an increased amount of DNA damage
(Li et al., 2018).

HDAC1/2 can also control the acetylation status of core histones dur-
ing DDR. By deacetylating of H3K56, they promote NHEJ repair (Miller
et al., 2010). An activity monitored by USP38. This deubiquitylase
binds to HDAC1 and removes the K63-linked ubiquitin chain. Within
the CoREST complex, deubiquitylation of HDAC1 increases its interac-
tion with SIN3 (Yang et al., 2020). It is possible, but currently unknown,
that HDAC1/2 might also modulate acetylation of proteins involved in
NHEJ repair. In this context, the use of isoform-specific HDACs inhibitors
in combination with inhibitors of the various DDR signaling pathways
should be investigated.

Other studies have discovered additional contributions of HDAC1/2
complexes during NHEJ. Chromodomain helicase DNA binding protein
7 (CHD7) is recruited to damaged sites in a PARP-dependent manner
to aid repair. Chromatin at the damaged site must undergo a cycle of
decondensation and condensation to promote the recruitment of pro-
tein complexes involved in DDR and NEHJ repair. PARP triggers the re-
laxation of chromatin. This relaxation must be spatially controlled to
initiate NHEJ repair. Here, it was proposed that the deacetylase activities
of HDAC1/2 act as limiting factors to concentrate the classical NHEJ com-
plexes at the cleaved site by preventing their spread along the chromo-
some (Rother et al., 2020).

Regulation of the stability of class I HDACs has also been associated
withDNAdamage. HDAC2, togetherwithHDAC3, can form a noncanon-
ical complex with PACS-1 (phosphofurin acidic cluster sorting protein-
1). PACS-1 is awell-knownmultifunctional regulator ofmembrane traf-
ficking that shuttles between the Golgi and the early endosome
(Thomas et al., 2017). During the cell cycle, PACS-1 can accumulate in
the nucleus, where it maintains genome stability by buffering replica-
tion stress. The action of PACS-1 is important in protecting HDAC2 and
HDAC3 from degradation in replication forks and thus can support the
establishment of the desired chromatin microenvironment (Mani
et al., 2020).

HDAC1/2 are also responsible for preserving the genome stability
during mitosis. The MiDAC complex contains as core components
MIDEAS (mitotic deacetylase associated SANT domain protein) and
DNTTIP1 (deoxynucleotidyltransferase terminal interacting protein
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1) which binds and oriented HDAC1/2 (Huttlin et al., 2017; Joshi et al.,
2013) TheMiDAC complex plays an important role in cell cycle control.
Indeed, knockdown of MIDEAS or DNTTIP1 in cancer cells leads to mis-
alignment of chromosomes during mitosis. (Turnbull et al., 2020). Ac-
cordingly, the KO of HDAC1 and/or HDAC2 in mouse ES cells results in
lagging chromosomes at the anaphase, micronuclei formation, and
monopolar spindles (Jamaladdin et al., 2014). A cryo-EM study suggests
that DNNTIP coordinates the assembly of the complex by binding
MiDEAS and determining the orientation of the HDACs (Fig. 4). The
MIDAC complex is quite unique in that it is responsible for the assembly
of fourHDACs subunits. The authors suggest that the peculiarities of this
complex may guarantee the alignment of specific chromatin conforma-
tions (Turnbull et al., 2020).

It has been underestimated that the activities of HDAC1/2 related to
DDR can be targeted with specific inhibitors. It is very possible that
targeting these epigenetic regulators may improve the efficacy of
genotoxic therapies (Groselj et al., 2018, Tharkar-Promod et al., 2018).
Whether or not manageable in terms of toxicity needs to be carefully
evaluated.

4.6. Class I HDACs, the example of entinostat and the immunotherapy

Benzamides and entinostat in particular have recently experienced a
new renaissance as HDAC1/2/3 subclass-specific inhibitors (Fig. 3). The
new frontier on which many hopes are pinned is the improvement of
immunotherapy. Initial studies have shown that a small group of pa-
tients with advanced lung cancer benefit from a combination of epige-
netic drugs (azacytidine plus entinostat) and nivolumab, a checkpoint
inhibitor, targeting PD -L1 (Juergens et al., 2011; Topalian et al., 2012).
Preclinical studies have confirmed these initial observations. In synge-
neic mouse models of lung and renal cell carcinoma, entinostat alone
inhibited the immunosuppressive function of both polymorphonuclear
and monocytic-myeloid-derived suppressor cell populations (Orillion
et al., 2017).

Tregs are key components for immune system homeostasis
(Josefowicz, Lu, & Rudensky, 2012). In cancer, these cells can dampen
host anti-tumor immunity, reducing the effectiveness of tumor immune
surveillance (Bauer et al., 2014). In patients with metastatic clear cell
renal cell carcinoma, entinostat in combination with high dose of IL2
led to downregulation of Fox3p expression and a reduction in the num-
ber of Tregs. An effect that enhanced anti-tumor immunity and showed
promising clinical activity (Pili et al., 2017). The ability of HDACIs to re-
inforce immunotherapy has been demonstrated in other studies.
Entinostat can suppress the immunosuppressive effect of tumor-
infiltrating myeloid cells and reprogram them to eliminate antigen-
negative tumor cells. In the presence of entinostat, increased IFN-γ
levels in the tumor microenvironment modulate the local cytokine
landscape and promote antitumor myeloid polarization (Nguyen et al.,
2018). Entinostat also potentiates immunotherapy elicited by an anti-
cancer vaccine designed on human carcinoembryonic antigen. In the
presence of entinostat, the tumor microenvironment is marked by in-
creased inflammation, enhanced infiltration of activated CD8+ T cells
with maximal granzyme B, T-cell responses to different tumor-
associated antigens, increased IFNγ and decreased of regulatory T-cells
(Hicks et al., 2020). A reprogramming activity towards an immune-
permissive tumor microenvironment was confirmed in another study,
with beneficial therapeutic effects (Hicks et al., 2021).

These positive results in terms of therapeutic perspective have justi-
fied the phase 2 PEMDAC clinical trial. Entinostat was used in combina-
tion with the PD-1 inhibitor pembrolizumab for the treatment of
metastatic uvealmelanoma. This study showed that a small group of pa-
tients benefited from the combined treatment. The median overall sur-
vival of 13.4 months achieved was longer than the ten-month
benchmark survival determined from historical data (Ny et al., 2021).

Mechanistically, the immunosuppressive effect of HDAC1/2 can be
exploited by several mechanisms. For example, entinostat may increase
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the infiltration of MDSC (myeloid-derived suppressor cells) in the
tumor microenvironment. In this context, HDAC2 plays the main role,
independent of HDAC1. HDAC2 ismodulated by CSF1 signaling and sup-
presses granulocytic chemokine expression in carcinoma-associated fi-
broblasts, limiting MDSC infiltration. (Kumar et al., 2017).

As part of a broader strategy, the CoREST complex could also be used
to enhance immunotherapy. Genetic or pharmacological targeting of the
CoREST complex enhances anti-tumour activity in mice (Bantscheff
et al., 2011; Xiong et al., 2020).

As mentioned earlier, most cancer-related deaths are due to metas-
tasis. There is an urgent need to develop new therapeutic interventions
to treat metastasis. The creation of a favorable microenvironment con-
tributes to tumor spread. Cancer cells at the primary site can sculpture
a pre-metastatic niche by releasing soluble factors and extracellular ves-
icles (Liu & Cao, 2016; Peinado et al., 2017). Myeloid cells derived from
bonemarrow contribute to the formation of the premetastaticmicroen-
vironment. Interestingly, low-dose adjuvant epigenetic therapy (a com-
bination of the DNA methyltransferase inhibitor 5-azacytidine and
entinostat) can disrupt the premetastaticmicroenvironment and inhibit
both metastasis formation and growth. Epigenetic switching promotes
MDSC differentiation into a more interstitial, macrophage-like pheno-
type. A reprogramming that inhibits trafficking ofMDSC through down-
regulation of CCR2 and CXCR2. (Lu et al., 2020).

Entinostat was also identified as a potent inhibitor of regulatory ac-
tivities responsible for immune-evasion and metastatic potential in pa-
tients with gastroenteropancreatic neuroendocrine tumors (GEP-NET).
After screening with 107 different compounds, entinostat was isolated
because it abrogated tumor growth, after perturbing the transcriptome
in GEP-NET (Alvarez et al., 2018).

Collectively, these observations suggest that cancer cells utilize class
I HDACs to create an immune-repressive environment and orchestrate
immune cells activities. However, the epigenetic repression exerted is
dynamic and fully reversible. Simply abrogating class I HDAC activity
without any interference with other epigenetic regulators is sufficient
to influence the expression of cytokines, chemokines, and other inflam-
matory signals that remodel immune cells activities (Hicks et al., 2020;
Hicks et al., 2021; Nguyen et al., 2018).
5. HDAC3

5.1. Basic concepts

A peculiar feature of HDAC3 is its interaction with nuclear receptor
co-repressor 1 (NCOR1) and silencingmediator of retinoic acid and thy-
roid hormone receptor (SMRT/NCOR2) (Fig. 4). These partners are fun-
damental for the stabilization of HDAC3 and the maturation of catalytic
activity (Emmett & Lazar, 2019). Structural studies have revealed the
contribution of inositol tetraphosphate (Ins(1,4,5,6)P4 or IP4) in
stabilizing the interactions between NCOR2 and HDAC3. Other
subunits of the complex are TBL1X and TBL1XR1 (Fig. 4). These two
proteins contain WD repeats involved in histone recognition and inter-
action with the ubiquitylation machinery (Yoon et al., 2003). Interest-
ingly, somatic mutations of TBL1XR1 are observed in the most
aggressive B-cell lymphomas. Mutant TBL1XR1 shifts the repressive
SMRT/HDAC3 complex from binding BCL6 to BACH2 TFs. This switch
in partner binding results in an epigenetic reset that impairs the plasma
cell differentiationprogramand instead impinges an immaturememory
B cell fate. These cells preferentially return to the germinal center to
drive lymphomagenesis. (Venturutti et al., 2020).

Mice deficient for Hdac3 do not develop because of defects at the
gastrulation stage (Emmett & Lazar, 2019). Interestingly, some catalyti-
cally independent activities of Hdac3 were observed in liver, a feature
common to class IIa HDACs (Sun et al., 2013). The generation of
tissue-specific deletions of Hdac3 in mice has revealed the critical role
of this deacetylase in several contexts (Emmett & Lazar, 2019).
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5.2. HDAC3 in cancer

In pediatric rhabdomyosarcomas the HDAC3/NCOR1/NCOR2 com-
plex acts as a differentiation brake. Its deletion reactivates the
MYOD1-dependent myogenic program. HDAC3 was identified by a
CRISPR/Cas9-based phenotypic screen of class I and class II HDAC
genes. Interestingly, the downregulation of HDAC4, albeit to a lesser
extent, also promoted the myogenic program (Phelps, Bailey,
Vleeshouwer-Neumann, & Chen, 2016). In principle, selective inhibition
of HDAC3 could be therapeutic in rhabdomyosarcomas. A similar effect
of HDAC3 as an antagonist for the activation of enhancers involved in
tumorigenesis has been observed in B-cell lymphomas (Höpken,
2017). Follicular lymphomas and diffuse large B-cell lymphomas fre-
quently accumulate mutations in epigenetic regulators, including the
HATs CREBBP and EP300 (Morin et al., 2011). CREBBP silencing in mu-
rine and human cells triggers the depletion of H3K27ac marks at en-
hancers and changes in gene expression that are very similar to
signatures characterizing human lymphomas with CREBBP mutations.
These CREBBP lymphomas strictly rely on HDAC3 to reduce H3K27ac
signals. HDAC3 is recruited to critical enhancers via the BCL6/NCOR2
complex to promote lymphomagenesis (Jiang et al., 2017). A general an-
tagonistic activity of the NCOR1/HDAC3 complex in regulating H3K27ac
turnover at genomic loci under the supervision of CREBBP or EP300was
confirmed by additional studies (Basu et al., 2020). An interplay that is
also engaged as adaptive response to pan-HDACIs (Minisini et al.,
2022). It is important to note that these HATs can be coopted, in differ-
ent cancer contexts, to sustain the transcriptional addiction required for
cell fitness (Hogg et al., 2021). Tumors in which, mutations that specif-
ically inactivate HAT enzymatic activity are the driving oncogenic le-
sions, should benefit from treatment with isoform specific HDAC
inhibitors.

A pro-oncogenic role of HDAC3 has also been identified in leukemo-
genesis. In acute promyelocytic leukemia (APL), HDAC3 contributes to
the repressive influence of the oncogenic fusion protein PML-RARα.
Moreover, down-modulation of Hdac3 or its inhibition supported the
differentiation of PML-RARα-expressing cells (Mehdipour et al., 2017).

Not surprisingly, HDAC3, similar to other HDACs and other epige-
netic regulators, can exert antiproliferative effects. For example, in com-
plex with CBX4, HDAC3 may act as a tumor suppressor. CBX4
(polycomb chromobox protein 4) is a partner of the polycomb repres-
sive complex (PRC), PRC1. In colorectal carcinoma, CBX4negatively reg-
ulates cancer metastasis by repressing RUNX2 transcription. HDAC3
provides H3K27 deacetylase activity at the RUNX2 promoter, where it
is recruited by binding with CBX4 (Wang et al., 2016).

5.3. HDAC3 and the epigenetic-independent activities

Epigenetic independent activity of HDAC3 has been associated with
breast cancer cell metastasis. HDAC3 can deacetylate the Forkhead box
(FoxO) TF FoxO3, due to the bridging function of the protein Geminin.
FoxO3 stimulates Dicer transcription and miRNA biogenesis. Dicer
level is critical for the metastatic process of breast cancer cells. HDAC3,
which promotes deacetylation of FoxO3 and downregulation of Dicer,
aids metastatic potential (Zhang et al., 2017). Another non-histone tar-
get of HDAC3 that plays a role in cancer is DNA methyltransferase
1 (DNMT1). In multiple myeloma (MM), HDAC3 deacetylates DNMT1,
thereby increasing its stability. In addition, DNMT1 transcription is stim-
ulated by MYC, whose stability is reduced after inhibition by HDAC3.
Therefore, HDAC3 can control DNMT1 levels in two different ways:
i) directly by deacetylating it and ii) indirectly by stabilizing MYC.
DNMT1 is required tomaintain the proliferation ofMM. Thus, inhibiting
both HDAC3 and DNMT1 with their respective inhibitors will have a
more potent anti-proliferative effect (Harada et al., 2017). Certainly,
this dual epigenetic targetingmay influence additional antiproliferative
mechanisms and further enhance antitumor surveillance by the im-
mune system (Chiappinelli et al., 2015). Another non-histone target of
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HDAC3 is NICD1 (Notch1 intracellular domain). As described above for
DNMT1, HDAC3 deacetylates NICD1 and controls its stability to sustain
Notch signaling (Ferrante et al., 2020). Since aberrant Notch signaling
is critical for T-cell acute lymphoblastic leukemia (T-ALL) and chronic
lymphocytic leukemia (CLL), these tumors represent other potential ap-
plication of HDAC3-selective inhibitors (Fig. 3).

Akt1 is another non-histone target of HDAC3 mediated de-
acetylation (Long et al., 2017; Yan et al., 2018). The Speckle-type POZ
protein (SPOP), the substrate-binding adaptor of the CULLIN3-RBX1
E3 ubiquitin ligase complex, is the most frequently mutated gene in
human primary prostate cancer. Thesemutations lead to abnormal acti-
vation of the androgen receptor (AR) and AKT-mTORC1 signaling path-
ways (Blattner et al., 2017). HDAC3 deacetylates lysine 14 and 20 of Akt
(Long et al., 2017; Yan et al., 2018). Mechanistically, HDAC3 interacts
with AKT at the plasma membrane and facilitates polyubiquitylation
of the lysine-63-chain and phosphorylation of AKT, by deacetylation.
HDAC3 is the only class I/II HDAC that promotes AKT phosphorylation.
Also in this context, the use of a relatively specific HDAC3 inhibitor
(RGFP966, Fig. 3) shows promising anti-tumor activities in a preclinical
model of prostate cancer (Yan et al., 2018). Fig. 6 summarizes some of
the pro-oncogenic and tumor suppressive actions of HDAC3.

5.4. HDAC3 and the immunotherapy

The PD-1/ PD-L1 axis is hijacked by cancer cells to counteract im-
mune activation, allowing the tumor to escape the immune response.
PD-1 is generally expressed on tumor-infiltrating T cells,while its ligand
(PD-L1) is often highly expressed on tumor to inhibit tumor-infiltrating
T cell activation and cytotoxicity. (Constantinidou, Alifieris, & Trafalis,
2019). In B-cell lymphomas, HDAC3 is recruited by BCL6 as part of a
complex with NCOR1/NCOR2 to the PD -L1 promoter. Consistent with
this, silencing of HDAC3 promotes PD-L1 expression. More generally,
upregulation of PD-L1 is a common feature of the response to HDACIs
(Minisini et al., 2022). Importantly, the HDAC3-specific inhibitor
RGFP966 (Fig. 3) impairs the growth of B-cell lymphomas in which
PD-L1 was deleted, but not that of WT cells. This result indicates an im-
portant mechanism of resistance to HDACIs therapy in vivo in PD-L1. In
the presence of PD-L1, RGFP966 acted synergistically with anti PD-L1
therapy to suppress tumor growth (Deng et al., 2019). There are further
links between HDAC3 and immune-mediated elimination of cancer
cells. HDAC3 represses gene programs associated with CD8 T-cells dif-
ferentiation and cytotoxicity, by buffering H3K27ac levels at relative
promoters (Tay et al., 2020). Hence, further efforts should be planned
to isolate new potent HDAC3 inhibitors to facilitate immunotherapy in
cancer.

The role of the BCL6-HDAC3 axis as an important oncogenic element
has been observed in B-cell lymphomas characterized by CREBBPmuta-
tions (Jiang et al., 2017). The use of BRD4097 (Fig. 3), a new HDAC3-
selective inhibitor, (Wagner et al., 2016), confirmed the oncogenic ad-
diction for HDAC3 in these tumors. An addiction validated in primary
patient-derived xenograft models of DLBCL (diffuse large B-cell lym-
phoma). HDAC3 is not only involved in the repression of CREBBP-
target genes, but also controls the interferon response and expression
of antigen presentation genes, thus restoring the immune surveillance.
Practically, HDAC3 inhibition is sufficient to restore the capacity of
tumor-infiltrating lymphocytes to kill DLBCL cells in a major histocom-
patibility complex (MHC) class I and II dependent manner, and to
synergize with PD-L1 blocking antibodies (Mondello et al., 2020).

5.5. HDAC3, the DNA Damage Response (DDR) and the genome stability

As described above for HDAC1/2, there is emerging evidence for a
link betweenDNA damage, HDACs, epigenetic remodeling, and DNA re-
pair. Similar observations apply to HDAC3 when assembled in classical
complex with NCOR1/NCOR2. Preliminary studies have shown that
HDAC3 affects genome instability. The efficiency of both HR and NHEJ
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repair pathways is reduced in the absence of Hdac3, and in these null
cells the number of chromosome breaks and gaps observed in mitosis
is increased. This genomic instability activates oncogenic signalling
pathways and impairs p53 activities, leading to early onset of spontane-
ous hepatocellular carcinoma inHdac3-/-mice. (Bhaskara et al., 2010). In
the liver Hdac3 exerts a non-redundant deacetylase activity against
H3K9ac, which is accompanied by an increase in H3K9me3 (Ji et al.,
2019). Regulation of H3K9ac/H3K9me3 turnover is one of the first
steps in the DSB repair pathway and allows binding of HAT Tip60 to
DSB foci. Tip60 engagement is important to recruit other factors of the
DDR (Mir et al., 2021). In general, relaxation of chromatin facilitates
local recruitment of repair factors.

Not only DSBs require the intervention of HDACs for efficient repair.
For example, UV irradiation induces cyclobutane-pyrimidine dimers
(CPD), which are repaired via the nucleotide excision repair (NER)
pathway. The dynamics of H3K14 acetylation are important for the ini-
tiation of NER (Niida et al., 2018). HDAC3, likeHDAC1/2, can control this
acetylation, and its depletion impairs DNA repair, leading to CDP accu-
mulation. The dynamics of H3K14ac may be critical for the temporal re-
cruitment of elements of the repair machinery (Nishimoto et al., 2020).

The impact of HDAC3 on genome stability can also be exploited from
a therapeutic perspective. Melanomas with BRAF mutations can be
treatedwith BRAF/MEK inhibitors. However, a consistent number of pa-
tients do not respond to or develop resistance to these therapies. Deple-
tion of HDAC3 (but not HDAC1/2 or 6) potently cooperates with these
inhibitors to kill melanoma cells. Interestingly, BRAF/MEK inhibitors in
combination with entinostat (a preferred HDAC1/2/3 inhibitor)
synergize to induce DNA damage and suppress expression of DDR
genes involved in both HR and NHEJ (Maertens et al., 2019).
6. HDAC8

6.1. Basic concepts

HDAC8 is included in class I of HDACs but is themost divergent com-
pared to HDAC1/2/3. HDAC8 has the shorter carboxy-terminal tail,
which is phosphorylated by PKA and can utilize either Zn2+ or Fe2+

for catalysis (Gantt, Gattis, & Fierke, 2006). The HDAC8 gene is located
on the X chromosome, near the X inactivation center, and encodes a
377 amino acid long protein (Hu et al., 2000; Lee, Sengupta, Villagra,
Rezai-Zadeh, & Seto, 2006; Somoza et al., 2004; Van den Wyngaert
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et al., 2000). The HDAC8 protein is localized primarily in the nucleus,
where it acts as a transcriptional repressor and shows a rather ubiqui-
tous expression (Buggy et al., 2000; Hu et al., 2000). HDAC8 catalyzes
the deacetylation of histone substrates (H3/H4) with an efficiency that
can be influenced by distal protein-protein interactions or by acetyl-
lysine chain accessibility (Castañeda et al., 2017). HDAC8 deacetylates
also nonhistone proteins such as TP53 and ERR-α (Deardorff et al.,
2012; Qi et al., 2015; Wilson, Tremblay, Deblois, Sylvain-Drolet, &
Giguère, 2010; Yan et al., 2013). Particularly critical is the deacetylation
of SMAC3, which gives HDAC8 a critical and unique role in regulating
cohesin function. HDAC8 catalyzes the deacetylation of SMC3, which is
required for efficient recycling of the cohesin complex (Deardorff
et al., 2012). Missense mutations in HDAC8 are responsible for Cornelia
de Lange Syndrome (CdLS) and associated spectrum disorders. Patients
suffering for this genetic disorder are characterized by congenital anom-
alies which consist of distinctive facial features, upper limb abnormali-
ties, intellectual disability, and other symptoms (Dowsett et al., 2019).
In addition to dysfunctions in HDAC8, CdLS is caused by mutations in
genes encoding the cohesion structural proteins SMC1A, SMC3 and
RAD21 or the cohesin assembly factor NIBPL (Avagliano et al., 2020;
Watrin, Kaiser, & Wendt, 2016).

The cohesin complex is organized in a ring-like structure that can
hold twoDNAhelices together. This complex is important for the spatial
organization of the genome and the segregation of chromosomes and
influences several genome-related functions, from gene expression to
DNA repair (Broughm et al., 2012; Haarhuis, Elbatsh, & Rowland,
2014; Singh, McKinney and Gerton, 2020; Lee, Sengupta, Villagra,
Rezai-Zadeh and Seto, 2006). Dysfunction or alteration of HDAC8, as
well as its targeting by specific inhibitors, could have a broader effect
via control of cohesin dynamics (Dasgupta, Antony, Braithwaite, &
Horsfield, 2016; Yamauchi et al., 2011). Another element of variability
that should be considered is the presence of somatic mutations of the
cohesin subunits in a variety of human cancers (Hill, Kim, & Waldman,
2016).
6.2. HDAC8 and cancer

HDAC8 is frequently overexpressed in different tumor types
(Lehmann et al., 2014; Moreno et al., 2010; Oehme et al., 2009). In neu-
roblastoma, HDAC8 correlates with poor overall survival, and its knock-
out leads to increased cell differentiation and cell cycle arrest (Oehme
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et al., 2009). More generally, HDAC8 affects cell proliferation in different
tumor types (Vannini et al., 2004). Accordingly, the blockade of HDAC8
by a specific inhibitor, (PCI-34051, Fig. 3), decreases cell growth and
causes apoptosis in T-cell derived tumor lines (Balasubramanian et al.,
2008). HDACIs can repress the binding between HDAC8 and Yin Yang
1 (YY1), restoring the acetylation of YY1 TF that causes the suppression
of mutant TP53 transcription in triple negative breast cancer (Wang
et al., 2016).

Several crosses between TP53 and HDAC8 have been discovered. In
AML, characterized by an inversion in chromosome 16, HDAC8 forms
a complex with the fusion protein CBFB-SMMHC (CM) and TP53. CBFB
is a partner of RUNX1, while SMMHC encodes a smooth muscle myosin
heavy chain. In this way, HDAC8 inactivates TP53 by deacetylation. Re-
markably, the CM fusion does not interact with other class I members.
Importantly, deletion of HDAC8 significantly reduces the incidence of
AML and treatment with a HDAC8 inhibitor increases the sensitivity of
AML cells to chemotherapy in both mice and patients. (Qi et al., 2015).

The ability of HDAC8 to affect TP53 activities may also lead to some
dark effects in normal cells. Hdac8 is highly expressed in long-term he-
matopoietic stem cells (LT-HSCs). Here, Hdac8 interacts with Tp53 and
Hdac8-deficient LT-HSCs exhibit hyperacetylation and activation of
TP53, causing increased apoptosis under various stress conditions. Con-
sequently, hematopoietic progenitor cells defective in Hdac8 are im-
paired for long-term serial repopulation activity in vivo (Hua et al.,
2017).

In breast cancer, TGF-β signaling correlates with stemness and me-
tastasis via oligomerization of SMAD3/4. In this scenario HDAC8 is an
important player since its inhibition suppresses cancer metastasis and
chemotherapy resistance. HDAC8 can bind the SMAD3/4 complex and
supplies its epigenetic influence, by creating a repressive environment
at the SIRT7 promoter. SIRT7, is an important antagonist of the TGF-β
signaling, by promoting SMAD4 degradation. (Tang et al., 2020).

6.3. HDAC8 and resistance to therapy

In addition to the role of HDAC3 in melanoma described above,
HDAC8 supports another mechanism of therapy resistance. The
anti-BRAF/MEK therapy can promote expression of HDAC8, which
in turn suppresses expression of the pro-apoptotic gene BIM and
causes resistance in melanoma cell lines. Mass spectrometry-based
phosphoproteomic analysis revealed thatHDAC8 regulatesmultiple sig-
naling pathways, of which the MAPK pathway is important for resis-
tance. Mechanistically, HDAC8 deacetylates c-Jun to enhance its
transcriptional activity. Moreover, concomitant treatment with a
HDAC8 inhibitor (Fig. 3) and a BRAF inhibitor (PLX4720) restores effi-
cacy in inhibiting tumor growth and melanoma phenotype in vivo.
(Emmons et al., 2019).

Another example of possible involvement of HDAC8 in treatment re-
sistance was recently discovered in AML. Here, HDAC8 is upregulated
after treatment with quizartinib, an inhibitor of FMS-like receptor tyro-
sine kinase 3 (FLT3). The combination of quizartinib with the HDAC8
inhibitor 22d (Fig. 3), greatly reduces AML cell survival. This resistance
depends on the deacetylase activity of HDAC8 against TP53 described
above. Indeed, their interaction increases after treatment with
quizartinib and leads to inactivation of TP53, which allows leukemia
cell survival. On the other hand, simultaneous treatment with both
inhibitors increases TP53 acetylation and activity. Upregulation of
HDAC8 during FLT3 therapy is mediated by TFs FOXP2 and FOXP3
(Long et al., 2020).

7. Class IIa HDACs

7.1. Basic concepts

The class IIa subfamily includes HDAC4, HDAC5, HDAC7 and HDAC9.
In contrast to all other family members, class IIa HDACs are
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characterized by a large molecular weight (120-135 kDa) required for
the interaction with: i) various TFs, with MEF2 family members being
the best characterized, ii) other co-repressors important for the repres-
sive activity of these HDACs (Fig. 2). In vertebrates, this subfamily is
characterized by limited catalytic activity, mainly due to the replace-
ment of a tyrosine (Y) with a histidine (H) residue in the enzymatic
pocket (Lahm et al., 2007). In principle, class IIa HDACs should be able
to bind acetylated lysine without hydrolyzing it directly or with very
low kinetics. It has been suggested that class IIa HDACs may act as
readers of acetylated lysine, directing other HDAC subtypes (Fig. 4) to
complete the deacetylation steps (Brancolini, Di Giorgio, Formisano, &
Gagliano, 2021; Di Giorgio & Brancolini, 2016). Another important fea-
ture of these HDACs is the different levels of regulation, with 14-3-3-
dependent control of nuclear cytoplasmic shuttling (Fig. 2) playing an
important role in various adaptive responses and during differentiation
(Di Giorgio & Brancolini, 2016). Although several studies have reported
a role of class IIa HDACs in cancer, they cannot be unambiguously clas-
sified as tumor suppressors or oncogenes, and their contribution to can-
cer development might vary from context to context.
7.2. Class IIa HDACs and pro-oncogenic activities

Several research groups have reported a role for class IIa HDACs in
regulating cancer cell proliferation. In MM, a severe malignancy with
poor survival, MIR145-3p promotes apoptosis by downregulating
HDAC4. Conversely, silencing of HDAC4 leads to upregulation of the
pro-apoptotic BH3-only protein BCL2L11/BIM and causes inactivation
of mTORC1, two actions that lead to alterations in autophagy flux and
cell death (Wu et al., 2020). An activity that could be relevant in the
clinic to strengthen the therapeutic efficiency of bortezomib, a MM-
specific drug. The cytoplasmic pool of HDAC4 has been reported to be
involved in the control of autophagy and apoptosis (Zhang, Qi, Yin and
Yang, 2019). Since apoptosis and autophagy can be induced by a wide
range of cellular stresses, defining the direct and indirect actions of
HDAC4 is essential in this context.

There are other examples linking HDAC4 to tumorigenesis. In naso-
pharyngeal carcinoma (NPC), HDAC4 levels are significantly higher in
neoplastic areas compared to normal tissue. High HDAC4 expression
predicts poor overall survival and progression-free survival of patients.
In a model of NPC cells, HDAC4 stimulates cell cycle progression and in-
duces epithelial-to-mesenchymal transition, ultimately promoting
tumor growth and metastasis in vivo (Cheng et al., 2021).

Dysregulations in themechanisms controlling cell-fate decisions are
at the origin of the tumorigenic process. BAP1 (breast cancer type 1
BRCA1–associated protein 1) is a tumor suppressormutated in different
human cancers and particularly in uveal melanoma. To investigate
the role of Bap1 the Xenopus model was used. Loss of Bap1 leads to
transcriptional silencing of genes regulating the transition from
pluripotency-to-commitment. This repression is associated with a de-
pletion of H3K27acmarks at the corresponding promoters. As expected,
the pan-HDAC inhibitor SAHA can reverse the repressive state. Interest-
ingly, HDAC4 is the only HDAC that is significantly upregulated by the
loss of BAP1 in human uveal melanoma cells. Confirming the impor-
tance of the axis between BAP1 and HDAC4, simultaneous depletion
of BAP1 and HDAC4 in the Xenopus model can reactivate the gene
lineage commitment program and restore H3K27ac marks at the
promoters of the corresponding genes. Interestingly, this activity is
NCOR-independent, suggesting the contribution of other co-repressors
recruited by HDAC4. Finally, HDAC4 is mainly nuclear only in BAP1-
mutated uveal melanoma cells and is required for their proliferation
(Kuznetsov et al., 2019). Similar pro-proliferative activities of HDAC4,
with influences on H3K27ac levels, both at promoters and enhancers,
have been documented in leiomyosarcomas, a rare and highly malig-
nant tumor of mesenchymal origin (Di Giorgio et al., 2017; Di Giorgio
et al., 2020).
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Pro-oncogenic activities have also been documented for other class
IIa HDACs members. In pancreatic cancer KRAS is the key oncogenic
driver. Here, HDAC5 was identified with a screen aimed at defining
the molecular basis of cancer recurrence after KRAS extinction. HDAC5
remodels the microenvironment of resistant tumors and enables a
switch form neutrophil-to-macrophage infiltration (Hou et al., 2020).
The influence of class IIa on infiltrating immune cells has also important
therapeutic implications, as demonstrated using TMP195, a specific in-
hibitor of these HDACs (Fig. 3). In breast cancer, treatment with
TMP195 alters the tumor microenvironment, reduces tumor burden
and lung metastases by modulating macrophage phenotypes
(Guerriero et al., 2017).

A pro-oncogenic influence of HDAC5 on the microenvironment was
also observed in rhabdomyosarcomas. The PAX3-FOXO1 oncogenic fu-
sion downregulates the anti-tumour cytokine IL24 with the help of
HDAC5. Inhibition of PAX3-FOXO1 lowers HDAC5 levels, leading to re-
expression of IL24, which in turn acts as a tumour suppressor (Lacey
et al., 2018). IL24 appears to be a common target of class IIa HDACs
and is suppressed by HDAC7 in breast both in normal and cancer cells
(Cutano et al., 2019).

Additional studies have reported pro-oncogenic roles of HDAC7. In a
mousemodel of lung tumor, downregulation of HDAC7 significantly de-
creased the onset and burden of tumours. A pro-oncogenic activity con-
firmed also in human cells (Lei et al., 2017). The tumour promoting role
of HDAC7 has also been demonstrated in brain tumour. Here, the Zinc-
finger protein 326 up-regulates HDAC7, which in turn deacetylates
β-catenin and activates the WNT pathway (Yu, Wang, Wu, Han, &
Zhang, 2020). In MM like HDAC4, HDAC7 plays a pro-oncogenic role.
Using a CRISPR-based screening, a role for HDAC7 in enabling immune
escapehas been suggested. Inhibition of HDAC7 can increase cell surface
levels of B-cell maturation antigen (Ramkumar et al., 2020). Therefore,
the use of class IIa HDACs inhibitors, by blocking both HDAC4 and
HDAC7 could be particularly promising in MM, as they should reduce
proliferative aggressiveness and also assist the anti-neoplastic action
of the immune system.

There are relatively few studies on the role of HDAC9 in cancer. On-
cogenic potential has been demonstrated in preclinical models. HDAC9
is highly expressed in human B-cell lymphomas, and transgenic mice
overexpressing Hdac9 develop lymphoproliferations and B-cell lym-
phomas (Gil et al., 2016). Knock-out of HDAC9 in highly aggressive
leiomyosarcomas cells reduces proliferation and increases the susceptibil-
ity to cell death. MEF2-transcriptinal activity is restored, and H3K27ac
levels are augmented at specific genomic sites, frequently intergenic indi-
cating a regulation of enhancer elements (Di Giorgio et al., 2017; Di
Giorgio et al., 2020).

7.3. Class IIa HDACs and tumor suppressive activities

As described above for class I HDACs, these epigenetic regulators
may also be involved in the regulation of anti-proliferative options, de-
pending on the context. For example, mRNA levels of class IIa HDACs
have been reported to be downregulated in prostate cancer, with 7%
of patients having a mutation in HDAC5. Depletion of HDAC5 in the
PC3 cell line leads to resistance to palbociclib, a CDK4/6 inhibitor.
HDAC5 interacts with RB to provide deacetylase activity necessary for
cell cycle arrest. HDAC5 is required to deacetylate H3K27 and thereby
repress a subset of cell cycle-related pro-oncogenic genes (Zhou et al.,
2021).

TheMEF2 family TFs are important partners of class IIa HDACs. Un-
scheduled expression of MEF2C contributes to the development of T
cells malignancies, such as acute lymphoblastic leukemia (T-ALL),
and AML from myeloid cells (Di Giorgio, Hancock, & Brancolini,
2018). In AML, the serine-threonine kinases LKB1 and SIK3 (Salt-In-
ducible Kinase 3) are regulators of MEF2C. In particular, SIK3 phos-
phorylates and inactivates HDAC4, which should act as a MEF2C
repressor. In this context, the activities of LKB1 and SIK3 are critical
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for maintaining histone acetylation (H3K27ac) at MEF2C-bound en-
hancer elements. Moreover, a pan-SIK inhibitor repressed MEF2C-
dependent transcription in an HDAC4-dependent manner, opening
new therapeutic opportunities (Tarumoto et al., 2018). The same
research group demonstrated that YKL-05-099, a more specific SIK3
inhibitor, suppresses MEF2C functions by acting on HDAC4 phosphor-
ylation and localization. In this context, blocking SIK3 activity is suffi-
cient to accumulate HDAC4 in the nuclear compartment. Inhibition of
SIK3 affected proliferation of MLL-rearranged leukemia cells and pro-
longed survival in mouse models of MLL-AF9 AML (Tarumoto et al.,
2020). Although SIKs have multiple targets and their inhibition
might have an opposite effect in other circumstances in which they
act as tumor suppressors (Hollstein et al., 2019), these studies suggest
an anti-proliferative role of HDAC4 or other class IIa HDACs in AML. In
conclusion, a note of caution should be raised as these SIK inhibitors
may also target Src family kinases (Sakamoto, Bultot, & Göransson,
2018).

Some tumor suppressive actions have also been reported for HDAC7.
Argonaute2 (AGO2), a component of the miRNA processing complex, is
deacetylated by HDAC7. Since AGO2 acetylation correlates with worse
prognosis in lung cancer, HDAC7 could play a role in preventing lung
cancer progression (Zhang et al., 2019). However, this report is in con-
tradiction with other studies, indicating a pro-oncogenic role of
HDAC7 in lung cancer (Lei et al., 2017). Finally HDAC7, as a factor in-
volved in B-cells differentiation, plays a pivotal role in the pathogenesis
of lymphoblastic leukaemia, characterized by t(4;11) translocation. In
this tumor low levels of HDAC7 correlate with a poor prognosis (de
Barrios et al., 2021).
7.4. The role of class IIa HDACs in treatment resistance

There is evidence for different contributions of class IIa HDACs to
resistance to cancer therapies. In hepatocellular carcinoma (HCC),
blockade of HDAC4 signaling enhances radiation-induced lethality.
This result suggests that HDAC4 may be involved in DNA repair and
therefore represents an interesting target for radiosensitization of
HCC (Tsai et al., 2018). Sorafenib, a protein kinase inhibitor, was
the first targeted therapy approved for the treatment of HCC, but re-
sistance to this agent often occurs (Llovet, Montal, Sia, & Finn, 2018).
Targeted inhibition of HDAC4 induces expression of SPRY4 (Sprouty
RTK Signaling Antagonist 4), which in turn inhibits ERK signaling and
thus sensitizes resistant HCC cells to sorafenib (Ma et al., 2021). As
mentioned previously, loss of HDAC5 in prostate cancer cells leads
to resistance to CDK4/6 inhibitors, suggesting a role for HDAC5 in
preventing drug resistance. In contrast, HDAC5 has been described
to promote tamoxifen resistance in breast cancer. HDAC5 confers
resistance to tamoxifen by mediating deacetylation and nuclear
localization of SOX9. In these cells, activation of MYC markedly
increases HDAC5 expression (Xue et al., 2019).

HDAC7 controls the phagocytic response in lymphocytic leukaemia
bymodulating acetylation and phosphorylation of a non-epigenetic tar-
get: Bruton’s tyrosine kinase (BTK). These findings highlight the role of
HDAC7 in resistance to immunotherapy (Burgess et al., 2020). HDAC9
may also contribute to resistance to endocrine therapies in breast can-
cer. Estrogen receptors (ER) are transcription factors regulated by
HDACs. HDAC9 acts as a suppressor of ER mRNA and protein levels in
tamoxifen-sensitive MCF7 breast cancer cells and inhibits ER transcrip-
tional activity. HDAC9 mRNA is highly overexpressed in tamoxifen-
resistant MCF7 cells and in ER-negative breast tumor cell lines. In a syn-
geneic model, HDAC9-overexpressing cells are less sensitive to tamoxi-
fen treatment than parental cells. Moreover, HDAC9 expression was
positively associated with genes upregulated in endocrine therapy-
resistant breast cancers, and high HDAC9 levels were associated with
worse prognosis in patients treated with tamoxifen (Linares et al.,
2019).
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7.5. Class IIa HDACs and the regulation of senescence

An important epigenetic role of class IIa in favouring the initial steps
of the tumorigenic process was recently demonstrated for HDAC4. This
deacetylase, as well as other members of the class IIa family, are down-
regulated in various forms of senescence, including oncogene-induced
senescence. During RAS-induced senescence, artificial maintenance of
HDAC4 levels can counteract cell cycle exit and reduce the expression
of CDKN1A and CDKN2A, two important senescence markers. Con-
versely, deprivation of HDAC4 halts proliferation and induces senes-
cence in low-grade cancer cells. The anti-senescence role of HDAC4 is
explained by competition with AP1/P300 to enforce H3K27ac status at
selected enhancers and super-enhancers that orchestrate the senes-
cence program (Di Giorgio et al., 2021). HDAC7 has also been reported
to be modulated during senescence and its downregulation promotes
senescence in fibroblasts (Warnon et al., 2021). Similarly, HDAC5 may
also act as a senescence antagonist. SENEBLOC, a long noncoding RNA,
blocks the induction of cellular senescence by inactivating CDKN1A.
This effect is achieved by two distinct strategies: i) by favouring
MDM2-TP53 interaction, which reduces transcriptional output at the
CDKN1A promoter, ii) by controlling HDAC5 levels, which affect H3K9
and H4K5 acetylation levels at the proximal promoter of CDKN1A (Xu
et al., 2020). An epigenetic regulation previously observed for others
class IIa and possibly mediated by MEF2 TFs (Clocchiatti et al., 2015).

7.6. Class IIa HDACs regulate cancer metabolic pathways

NAC1 (nucleus accumbens-associated protein-1) is deregulated in
various cancers. The NAC1/HDAC4/HIF-1α axis is important for the reg-
ulation of glycolysis and hypoxic adaptation in tumor cells. NAC1 can
bind HDAC4 and impedes phosphorylation of deacetylase, which pre-
vents nuclear export and causes nuclear accumulation. This leads to re-
duced HIF-1α acetylation, which promotes its stabilization and
transcriptional activity. Therefore, HDAC4may support the adaptive re-
sponse of cells to hypoxia. A role with potential impact on tumor pro-
gression (Zhang et al., 2017).

HDAC4 is also associated with de novo lipid biosynthesis. Adaptation
to the lipid requirements of cancer cells plays a critical role in the devel-
opment and progression of several cancers, including breast cancer
(Rohrig & Schulze, 2016). Seryl-tRNA synthetase (SerRS), a key gene
for protein biosynthesis, is also involved in the control of metabolism.
During evolution with vertebrates, SerRS has acquired a carboxyl-
terminal domain that contains a nuclear localization signal. In thenormal
breast, glucose controls lipid biosynthesis by regulating nuclear import of
SerRS via an acetylation switch. Once in the nuclei, SerRS can bind chro-
matin and repress the expression of genes involved in lipid metabolism.
In contrast, in breast cancer cells, SerRS acetylation and nuclear translo-
cation are strongly inhibited. HDAC4 and HDAC5 are the deacetylases
that control the acetylation and nuclear translocation of SerRS, thus
boosting lipid metabolism and cell growth (Zhao et al., 2021).

AMPK (AMP-activated protein kinase) is an important sensor of
metabolic stress and the resulting adaptations (Ross, MacKintosh, &
Hardie, 2016). In lung cancer, low levels of AMPK promote cell prolifer-
ation and tumour growth. A decrease in AMPK affects EMT and metas-
tasis in vivo. These effects are associated with increased glycolysis,
which requires upregulation of hexokinase 2 (HK2) expression. The up-
regulation of HK2 in cells in which AMPK is downregulated depends on
HDAC4 and HDAC5 in an undefined manner (Feng et al., 2020). An op-
posing link between HDAC5 and glucose metabolism was reported by
Hendrick et al., 2017. HDAC5-depleted cells establish a coping mecha-
nism by reprogrammingmetabolic pathways to glucose and glutamine.
However, when glucose and glutamine supply is disrupted in HDAC5-
inhibited cancer cells, apoptotic cell death significantly increases and tu-
mour growth is reduced in vivo (Hendrick et al., 2017).

In renal clear cell carcinoma loss of TCA cycle enzymes expression
marks the metastatic tissues and is a peculiar feature of this type of
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tumour. This reduction correlates with and depends on the downregu-
lation of the co-activator PGC-1α. TGF-β uses HDAC7 as corepressor to
switch off the expression of TCA enzymes. Moreover, pharmacological
inhibition of TGF-β can restore TCA cycle enzymes expression and re-
duce tumour growth in vivo. Altogether, these findings provide new in-
sights into the epigenetic basis of altered mitochondrial metabolism in
renal clear cell carcinoma (Nam et al., 2021).

7.7. The role of HDAC7 in breast cancer stem cells

In the past few years HDAC7 has emerged as a regulator of cancer
stem cells (CSCs). In breast and ovarian cancers, HDAC1 and HDAC7
are specifically overexpressed in CSCs compared to non-stem-tumour-
cells. HDAC1 and HDAC7 are necessary to maintain the properties of
CSCs, and HDAC7 overexpression is sufficient to increase the CSC phe-
notype (Witt et al., 2017). Interestingly, HDAC7 levels are downregu-
lated after treatment with pan-HDACIs (Minisini et al., 2022; Witt
et al., 2017). HDAC1 and HDAC3 appear to be involved in maintaining
the high expression of HDAC7 in an undetermined manner. The
epigenomic function of HDAC7 is important in CSCs. HDAC7 binds
near TSS and to SEs of oncogenes and contributes to their transcriptional
regulation. This mechanism was particularly observed in stem-like
breast cancer cells. HDAC7 controls the deposition of H3K27ac at tran-
scription start sites (TSS) and super-enhancers. Paradoxically, HDAC7
is required to maintain H3K27ac levels at these regulatory elements.
How this is achieved, whether it is a direct or indirect effect, deserves
further work (Caslini, Hong, Ban, Chen, & Ince, 2019).

In the breast, the influence of HDAC7 on stem cell fitness was con-
firmed by further studies. HDAC7 is required for sculpturing the micro-
environment by suppressing the expression of cytokines and other
signalling regulators (Fig. 7). Moreover, in a model of RAS-induced
transformation of immortalised mammary epithelial cells, HDAC7 is re-
quired for invasion and proliferation of transformed cells. (Cutano et al.,
2019; Di Giorgio et al., 2021).

8. HDAC11

8.1. Basic concepts

HDAC11 is a quite unique member of the HDAC family that shares
homologies with both class I and II HDACs (Gao, Cueto, Asselbergs, &
Atadja, 2002). For this reason, HDAC11 alone constitutes the class IV
subfamily (Núñez-Álvarez & Suelves, 2021). The HDAC11 protein has
a molecular mass of 39 kDa, which is mainly occupied by the catalytic
domain. It is expressed in almost all tissues and at higher levels in the
brain, immune system and testis (Gao et al., 2002; Mostofa et al., 2021).

HDAC11 can deacetylate a H4-derived synthetic peptide with very
low activity, and its ability to deacetylate histones by a direct mecha-
nism remains to be demonstrated (Cao et al., 2019; Gao et al., 2002). In-
stead, HDAC11 shows strong defatty-acylase activity. It can remove long
chain fatty-acyl groups from H3K9 peptides. As mentioned earlier,
defatty-acylase activity has also been observed with other HDACs such
as HDAC8, but HDAC11 is 10,000 times more effective (Cao et al.,
2019). To add further mystery to HDAC11, mice Hdac11-/- show no sig-
nificant abnormalities (Huang et al., 2017; Sun et al., 2018; Yue et al.,
2020).

8.2. HDAC11 and cancer

As reported for other HDACs, HDAC11 expression is upregulated in
multiple carcinomas compared to healthy counterparts (Deubzer
et al., 2012; Gong, Zeng, Yi, & Wu, 2019; Liu, Wu, Jin, Chang, & Xu,
2020). Functional studies have shown that silencing of HDAC11 blocks
the cell cycle (mainly in G2/M phase) and induces abnormal mitotic
spindle formation and cell death. This evidence is more relevant in neu-
roblastoma cells characterized by MYCN amplification (Thole et al.,



Fig. 7. Class IIa HDACs in cancer cells.
Class IIa HDACs regulate proliferation, cell cycle, metabolism, senescence, and invasion/metastasis in cancer cells. While HDAC4 is primarily thought to have a tumor-promoting role,
HDAC5 andHDAC7 are associatedwith both pro-tumorigenic and tumor suppressive functions. HDAC7 also plays an important role inmaintaining stemness properties. HDAC9 is involved
in invasion/metastasis, proliferation and response to treatments.
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2017). As expected, the expression of several cell cycle-related genes is
altered in HDAC11-depleted cells, but it is unclear whether these genes
are under the direct influence of deacetylase.

An oncogenic dependence on HDAC11 has also been observed in
HCC. In a chemically induced model of liver carcinogenesis in mice,
Hdac11 is essential for cancer stem cell maintenance. Hdac11 controls
the expression of the tumor suppressor Lkb1 by regulating H3K9 acety-
lation at its promoter. Repression of Lkb1 thereby affects Ampk activa-
tion and glycolysis (Bi et al., 2021). A contribution of Hdac11 to the
regulation of energy homeostasis has been observed in other studies.
In high-fat fed mice, deletion of Hdac11 prevents obesity, insulin resis-
tance and glucose intolerance by increasing energy expenditure
through improved thermogenic capacity (Sun et al., 2018). In addition,
loss of Hdac11 promotes brown adipose tissue accumulation and func-
tion. In contrast, these mice reduce white adipose tissue deposition.
These activities require the interaction of Hdac11 with the epigenetic
reader BRD2 (Bagchi et al., 2018).

HDAC11 is also involved in tumors of the hematopoietic system. In
myeloproliferative neoplasms (MPN), selective HDAC11 inhibitors reg-
ulate the expression ofmitotic genes, causing cell cycle arrest (Yue et al.,
2020). In MM, HDAC11 regulates cell proliferation and survival by con-
trolling IRF4 acetylation. As a result, treatment of MM cells with
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elevenostan, a hydroxamic acid derivative and putative selective
HDAC11 inhibitor (Fig. 3), induces apoptosis similar to downregulation
of HDAC11. Elevenostan exhibits activity in the nanomolar range and
acts synergisticallywith bortezomib, an anti-myelomadrug, in inducing
cell death (Mostofa et al., 2021).

The contribution of HDAC11 to the metastatic process is controver-
sial and requires further investigations. HDAC11 is important for tumor-
igenesis and growth in lymph nodes, but its downregulation in the
lymph nodes leads to increased migration and colonization of distal
sites, resulting in distalmetastasis. The effect of HDAC11on cell prolifer-
ation depends on the repression of cell cycle inhibitors E2F7 and E2F8
(Leslie et al., 2019). In contrast, the authors proposed that the metasta-
sis inhibitory activity is due to the repression of ribonucleotide reduc-
tase subunit M2 (RRM2). This gene is associated with poor disease-
free survival in breast cancer and it can affect cancer proliferation, an-
giogenesis, and invasiveness (Zhang et al., 2014). According to this
view, pro-metastatic behavior is coupled with a slowing of proliferative
properties (Leslie et al., 2019). This study is another example of the am-
bivalent behavior of HDACs in cancer and another indication of adverse
effects of their selective targeting in a therapeutic perspective. In the
case of HDAC11, it is even more difficult to understand the reasons for
these seemingly contradictory effects during cancer progression
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because very little information is available about its recruitment speci-
ficity to genomic sites and whether it assembles into different
multiprotein complexes (Joshi et al., 2013).

8.3. HDAC11 and the immune system

It has been known for several years that HDAC11 negatively controls
IL-10 transcriptional activity in antigen-presenting cells and regulates
immune tolerance (Villagra et al., 2009). Recent evidence indicates
that HDAC11 levels decrease after T cell activation and mouse T cells
KO for Hdac11 exhibit an enhanced proinflammatory profile. Hdac11
binds to promoters and represses transcription of TFs Tbet and Eomes,
important regulators of inflammatory cytokines and effector molecules
production (Woods et al., 2017). Consequently, mice receiving T cells
from Hdac11 KO donors rapidly develop graft-versus-host disease. The
role of Hdac11 in regulating T cell tolerance is confirmed by its influence
on anti-tumor effect of the immune system. In a B-cell lymphoma
model, mice receiving T cells from Hdac11 KO donors show delayed
tumor growth (Woods et al., 2017). In addition to the epigenetic activ-
ity, the effect of Hdac11 on immune tolerance can also be exploited by
regulating acetylation of non-histone proteins. Hdac11 is involved in
the control of Foxp3 acetylation, and its absence in Foxp3+ Treg cells
results in enhanced suppressive activity due to the increased expression
of some T-reg-associated genes such as Tgf-β and Foxp3 (Huang et al.,
2017). As suggested above, HDAC11 is also associated with innate im-
munity and type I IFN signaling. Through de-fatty acid acylation of
SHMT2a, HDAC11 may downregulate the immune response associated
with type I IFN. (Cao et al., 2019). It is plausible that the role of
HDAC11, possibly in complex with other partners, in the control of the
proinflammatory microenvironment and humoral immune responses
is due to an amplifying effect rather than a crucial switch (Woods
et al., 2017). Nevertheless, it represents an interesting target for enhanc-
ing the anti-tumor activity of the immune system.

9. Conclusions

A discussion of the importance of HDACs in cancer is a titanic task.
We have focused attention on selected subfamilies (classes I, IIa, and
IV) that are better understood for a contribution to epigenetic regula-
tion. Although frequently implicated in cancer, they do not always in-
volve epigenetic targets. In summary, the role of HDACs in cancer is
critical and complex, with room for therapeutic intervention. We hope
that the most promising isoform-specific inhibitors will soon clinically
approved. However, we still do not understand how these enzymes
can select the right substrate in a time- and context-dependentmanner.
Another important issue is the definition of the different complexes in
which HDACs act. We have collected a lot of data about the different
HDACs and their involvement in various cancer-related functions
using siRNA, shRNA, or genome editing. Unfortunately, we know little
about the multiprotein complexes that accompany the different
HDACs in their tasks. These characterizationsmay also clarify some con-
flicting results about the biological functions of these enzymes and bet-
ter justify the use of selective inhibitors in therapy. We still need to
conduct research in this direction.We hope that this review will stimu-
late connections and new thinking among readers, and we apologize to
all colleagues working on these deacetylases for not citing their manu-
scripts due to space limitations.
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