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Mathematics is the reign of objects which do not exist in the physical world. For, no perfect square or
circle exist in our daily experience. Therefore, every mathematical entity can be considered a fiction and
the criteria according to which the property of existence is ascribed to a mathematical object have to be
specified. Actually, the mathematicians have always shared the opinion that, e.g., a circle or “the number
3” exist, whereas something like “a round square” does not. However, there are objects whose ontological
status was not completely clarified until the 19th century. Among them, someone is fundamental in the
daily mathematical work, such as the imaginary numbers and the infinitesimal and infinite quantities.
Along the history of mathematics, the term “fiction” has been assigned to these entities rather than to a
square, a circle, or “the number 3”. Among the scholars who developed a profound – though not always
completely clear – speculation on the concept of mathematical fiction, Leibniz deserves a particular place
because he was the inventor of several mathematical fictions and also thoroughly reflected on their nature.
The literature on Leibniz’s concept of mathematical fiction is vast and deep. Within this context, the
paper under review by Esquisabel and Raffo Quintana is worth of a special mention for the care and
refinement with which the authors have addressed this not easy subject.
In the Introduction they specify their analysis to be based on three different concepts of possibil-
ity/impossibility. The first one in given by the principle of contradiction: the already mentioned round
square cannot exist because it is self-contradictory. Thus, it is not an admissible fiction. The two other
criteria of not-existence are more subtle and concern respectively: 1) irrepresentability; 2) not-conformity
with architectonical principles. In the second section, entitled “Symbolic knowledge, symbolic cognition
and fictions”, the authors specify important details of Leibniz’s theory of ideas. In their context the crucial
concept is that of symbolic notion: it is a sensible sign whose feature is given by its function as a support
for cognition. The main goal of the paper is so expressed by Esquisabel and Raffo Quintana: “Using this
framework, we propose to elucidate the notion of fiction in terms of a symbolic notion without denotation”
(p. 617). In the third section “Fiction and symbolic notion”, the authors, in the light of the examination
they develop along the whole section, specify the thesis already anticipated in the Introduction: the ac-
tually infinitesimal and infinite quantities are impossible (namely without a denotation) fictions because
they are geometrically irrepresentable or because they violate Leibniz’s architectonical principles (p. 620).
After these three general sections, starting from the fourth one “Leibniz and the fictionality of infinitary
concepts”, the authors address a more specific analysis of the way in which Leibniz conceived and used the
infinitesimal and infinite quantities. First of all, they refer to an interesting letter addressed by Leibniz
to Des Bosses on 11 March 1706 where Leibniz asserted that the infinitesimal quantities are, as the imag-
inary roots, useful fictions of the mind. For, they short the thinking process and the discovery, without
implying any mistake. He also clarifies that such fictions (interpretable as actual infinitesimal) can be
replaced by potentially infinitesimal quantities. The authors provide the reader with further evidences
where Leibniz confirms this instrumental and pragmatic orientation, already pointed out in an interest-
ing paper published by Arthur in 2009 (p. 622. For the notion of fiction in Leibniz the reader can also
see [P. Bussotti, The complex itinerary of Leibniz’s planetary theory. Physical convictions, metaphysical
principles and Keplerian inspiration. Cham: Birkhäuser/Springer (2016; Zbl 1354.01002), pp. 50–53]. For
the concept of fiction in Newton, also compared with Leibniz’s, see [R. Pisano and P. Bussotti, “The
Fiction of Infinitesimals in Newton’s Works. On the Metaphorical use of Infinitesimals in Newton”, in:
Isonomia – Epistemologica, vol. 9. Special issue entitled Reasoning, Metaphors and Science, edited by F.
Marcacci M. G. Rossi, pp. 141–160]). However, Leibniz expressed many doubts on the ontological status
of such infinitesimal quantities (p. 622). The authors refer to two examples of the way in which Leibniz
used the infinite and infinitesimal quantities. It is worth referring to the first one, at least. The situation
(pp. 623–625) can be summarized like this: consider a general hyperbola ymxn = a. Then consider the
rectangle obtained projecting a point of the hyperbola on the two coordinate axes. Imagine the projection
on the abscissa y to be infinitely small and that on the ordinate x infinitely long. Leibniz argued that
if m < n the area of the rectangle is infinite, if m > n, it is infinitesimal and if m = n, it is finite. The
authors refer here to the fundamental contributions of Knobloch. The second example concerns the rules
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of differentiation.
After having offered the two mentioned examples, Esquisabel and Raffo Quintana in the fifth section
entitled “Mathematical fictions and impossibility” (pp. 627–629) connect the problem of the ontological
status of the mathematical fictions with that of mathematical existence. They recall that, according
to Leibniz, the criterion of existence is possibility and the lack of contradiction indicates possibility.
Therefore, though in nature, to follow Leibniz’s example, no perfect pentagon exists, it is a possible
object and, hence, it has a mathematical existence. Leibniz establishes, thence, a rather clear criterion.
However, as to “the fictionality of infinitary objects [he] reveals a more prudent attitude” (p. 629). Here
the concepts of paradoxicality and improbability come into play. They are far more nuanced and not
easily interpretable concepts. The authors claim that “This suggests the idea that for Leibniz both the
existence and the mathematical possibility or impossibility are not a matter of absolute opposition but
they do to some extent admit degrees” (p. 629).
The following fundamental sixth section “Three concepts of mathematical possibility and impossibility”
(pp. 629–637) is dedicated to clarify such assertion. In this section the authors clarify furtherly the nature
of the couple possibility/impossibility beyond the concepts whose existence is not possible because of
the contradiction principle. As already stressed, a second kind of impossibility is given by the lack of
representability. So, for example, “the infinitely small abscissa of our first example can be represented
only analogically by a finite abscissa” (p. 630). The imaginary roots are also affected by this kind of
impossibility. The four following pages are devoted to clarify this particular notion of impossibility:
objects such as the imaginary roots of an equation are impossible because they cannot be represented
geometrically. Nonetheless, they are the result of operations which are mathematically thinkable and
legitimate (p. 633). Therefore, if they are useful to solve specific problems, they must be used, which is
not the case with self-contradictory objects.
The third kind of impossibility is the most subtle and connects Leibniz’s conception of mathematics with
his metaphysics. The authors reiterate that, according to Leibniz, a mathematical object is a fiction,
is not really existing if its existence is not compatible with the architectonical principles of sufficient
reason and of continuity. For, on more than one occasion, Leibniz claimed that infinitary objects do
not exist because they are not consistent with the principle of sufficient reason (p. 635). The authors
offer an interesting example in this regard, which they explain perspicuously (ibidem): Leibniz refused to
consider the motion as a series of successive infinitesimal leaps because this conception would violate the
principle of sufficient reason. This clarified, it is to point out that Leibniz, in this case too, recognised
the utilization of these mathematical fictions to be useful and legitimate. Furthermore, they have to be
regarded as not-existing unless a convincing proof of their existence be exhibited (p. 637). Therefore, his
attitude was rather prudent.
In the seventh section entitled “The reconsidered concept of mathematical fiction” (pp. 638–642) the
authors summarize their view on the notion of mathematical fiction as an object lacking of denotation: in
Leibniz, we have fiction1, referred to self contradictory entities; fiction2, referred to irrepresentable entities;
fiction3 referred to entities lacking of denotation because they violate architectonical principles of Leibniz’s
metaphysics. After that Esquisabel and Raffo Quintana speak of the way in which mathematical fictions
can be expressed (pp. 638–639): 1) verbal or written common language; 2) specific symbols as those of the
infinitesimal calculus; 3) analogical and semiotic diagrammatic representation, such that the geometrical
one through which the infinite and infinitesimal quantities are represented in a system of coordinates as
if they were finite. As a conclusive step of their research, the authors analyse what Leibniz named “in
appearance imaginary quantities”. They enter the play while solving the irreducible algebraic equations
of three degree, which have three real solutions but in whose resolutive formula imaginary numbers
appear. In regard the authors write: “Thus, the concept of an ‘in appearance imaginary quantity’ or of
an ‘in appearance impossible quantity’ seems to imply an objection against our interpretation, for these
quantities seem ultimately to refer to real quantities, since imaginary quantities are put in equivalence
with real quantities”. (p. 639). In the light of two passages by Leibniz, Esquisabel and Raffo Quintana
interpret the “in appearance imaginary quantities” as a synctatic procedure of symbolic nature. The
expression of real roots through such quantities is a new mathematical operation (p. 640). Therefore,
such quantities do not conflict with the interpretation offered of Leibniz’s mathematical fictions. It seems
to me that this brief part on the “in appearance imaginary quantities” is the less convincing of the whole
paper. As a matter of fact, these quantities do not need a specific treatment within the general picture
described by the authors. For, it is a usual procedure that mathematical fictions are used to obtain results
concerning real quantities. This is extremely common in the infinitesimal calculus. Therefore, it is not
completely clear to me the necessity to dedicate a specific consideration to the “in appearance imaginary
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quantities”.
The “Concluding remarks” and the “References” follow.
This paper is very valuable. It is refined from a conceptual point of view and offers new insight in a difficult
question such as the nature of mathematical fictions in Leibniz. The distinction between three kinds of
fictions is noteworthy and surely deserves to be furtherly discussed and clarified. Thus, the authors also
offer material for further researches on this subject.
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