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Abstract. Periodic solutions of delay equations are usually approximated as

continuous piecewise polynomials on meshes adapted to the solutions’ profile.

In practical computations this affects the regularity of the (coefficients of the)
linearized system and, in turn, the effectiveness of assessing local stability by

approximating the Floquet multipliers. To overcome this problem when com-

puting multipliers by collocation, the discretization grid should include the
piecewise adapted mesh of the computed periodic solution. By introducing a

piecewise version of existing pseudospectral techniques, we explain why and

show experimentally that this choice is essential in presence of either strong
mesh adaptation or nontrivial multipliers whose eigenfunctions’ profile is un-

related to that of the periodic solution.

1. Introduction. Periodic solutions and their asymptotic stability are among the
prime interests in the study of dynamical systems. In the case of delay differen-
tial equations (DDEs) these solutions are usually approximated with continuous
piecewise polynomials determined by collocating a corresponding boundary value
problem (BVP) on the period interval [6, 20]. Then, as an accomplished standard
(e.g., as in DDE-BIFTOOL1 [21, 27]), the partition of the period interval is adapted
to the profile of the solution, moving away from uniform (for mesh adaptation see
[5, 20]). Eventually, the local stability is assessed by computing the characteristic
multipliers,2 relying on Floquet theory and on the principle of linearized stability,
see [17, 22] for DDEs and [11] for renewal equations (REs).

Recently, Borgioli et al. [7] proposed a generalization of the collocation approach
of DDE-BIFTOOL to compute Floquet multipliers of linear time-periodic DDEs,
possibly with discontinuous coefficients. They comment in section 4 that the points
where the coefficients are not differentiable should be included in the collocation
grid. Accordingly, we highlight that when the linear system comes from linearizing
a nonlinear problem around a numerically computed periodic solution, the resulting
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coefficients are in general only continuous, even for smooth problems, being the ap-
proximated solution a continuous piecewise polynomial. This may deteriorate the
convergence of the computated multipliers, as it happens, e.g., for the pseudospec-
tral collocation methods for DDEs [13], for REs [9] and for coupled REs and DDEs
[10]. All these methods construct a matrix discretizing the monodromy operator by
using a single polynomial on the whole domain interval.

Therefore, in this work we first recast the cited methods in a piecewise fashion,
discretizing the monodromy operator on a grid including the adapted partition of
the period interval from the given numerical periodic solution. Then, with reference
to the convergence analysis in [9, 10, 13, 14], we explain why this choice is not only
necessary to prevent order reduction or even loss of convergence, but also computa-
tionally convenient in the case of strongly adapted partitions. Moreover, we discuss
also the case of poor approximation of nontrivial multipliers whose eigenfunctions
have large oscillations unrelated to the profile of the computed periodic solution
[30]. This leads to an increase of the error constants and a denser collocation grid
is thus required. In this respect, we show experimentally that this new grid should
always be a refinement of the adapted mesh of the periodic solution: uniform grids
with the same amount of nodes may fail to reach the desired accuracy. The method
we obtain applies to DDEs, REs and coupled REs and DDEs, with both discrete
and distributed constant delays.

In this paper, after a summary in section 2 of the theoretical and numerical
aspects related to approximating periodic solutions and studying their stability by
computing the Floquet multipliers, we show in section 3 an example of the difficulties
encountered by the non-piecewise method [13]. Then, in section 4, we illustrate the
piecewise reformulation, discuss its convergence, show with a simple DDE that order
reduction may occur if the adapted partition is not taken into account and eventually
repair the failure described in the previous section. In section 5 we provide other
numerical experiments confirming the expected convergence behavior, the better
performance in the case of solutions on strongly adapted partitions of the period
interval, the suitability for multipliers relevant to eigenfunctions with smooth yet
large oscillations and, finally, the versatility with respect to the classes of delay
equations.

MATLAB codes implementing the described method are available at http://

cdlab.uniud.it/software.

2. Background. In the following we summarize Floquet theory and local stability
(section 2.1), the numerical computation of periodic solutions (section 2.2) and the
computation of the Floquet multipliers (section 2.3), also introducing the necessary
notations. We restrict to DDEs and give references for REs and coupled equations.

2.1. Floquet theory and local stability of periodic solutions. Let dY be a
positive integer, τ a positive real and |·| any norm in finite dimension. We consider
DDEs

y′(t) = G(yt) (1)

for G : Y → RdY , Y := C([−τ, 0],RdY ) with norm ∥ψ∥Y := maxθ∈[−τ,0]|ψ(θ)|, and
yt(θ) := y(t+ θ) for θ ∈ [−τ, 0].

Assume that (1) has an ω-periodic solution ȳ. Linearizing (1) around ȳ leads to
the linear ω-periodic DDE

y′(t) = DG(ȳt)yt (2)

http://cdlab.uniud.it/software
http://cdlab.uniud.it/software
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for DG the Fréchet derivative of G. Let U(t, s) : Y → Y , t ≥ s, be the associated
evolution operator, i.e.,

U(t, s)ψ = y(·; s, ψ)t,
where y(·; s, ψ) is the solution of the initial value problem (IVP) for (2) with ys = ψ
(the IVP is well-posed in the periodic case, see, e.g., [22, Theorems 2.2.1, 2.2.2 and
2.2.3] and [28, Theroem 3.7 and Remark 3.8]). The Floquet multipliers (simply mul-
tipliers in the sequel) are the eigenvalues of the monodromy operators U(t + ω, t),
and they are independent of t [17, Theorem XIII.3.3]. Note that 1 is always a
multiplier (usually called trivial), since (2) is the linearization of a DDE around
a periodic solution [17, Theorem XIV.2.6]. As is well known, the multipliers can
give information on the local stability of ȳ through the principle of linearized sta-
bility. Namely, if G is a C1 function and the trivial multiplier is simple, then ȳ
is asymptotically stable if all the nontrivial multipliers are inside the unit circle;
on the contrary, if there exists a nontrivial multiplier outside the unit circle, then
ȳ is unstable (for a proof follow [17, Theorems XIV.3.3 and XIV.4.5], with their
hypotheses satisfied thanks to [17, Exercise XIII.2.3 and section XIV.3]).

Similar results hold also for REs

x(t) = F (xt)

with F : X → RdX , X = L1([−τ, 0],RdX ) with norm ∥φ∥X :=
∫ 0

−τ
|φ(θ)|dθ and dX

a positive integer. Thanks to the Riesz representation theorem for L1 (see, e.g., [26,
p. 400]), the linearization around a possible periodic solution x̄ has the form

x(t) =

∫ 0

−τ

C(t, θ)xt(θ) dθ,

with C : R × [−τ, 0] → RdX×dX a measurable function, periodic in t. Monodromy
operators and relevant multipliers are defined as in the case of DDEs and the prin-
ciple of linearized stability holds unchanged under mild regularity assumptions on
F (viz. F is C1 and globally Lipschitz continuous; the proof follows [17, Theorems
XIV.3.3 and XIV.4.5], with their hypotheses satisfied thanks to [9, 11]).

Finally, for coupled equations{
x(t) = F (xt, yt),

y′(t) = G(xt, yt),
(3)

where F : X × Y → RdX , G : X × Y → RdY and X and Y are as above with
∥(φ,ψ)∥X×Y := ∥φ∥X + ∥ψ∥Y , a Floquet theory is currently missing, but it is
reasonable to expect the validity of similar results.

2.2. Numerical computation of periodic solutions. In applications, exact pe-
riodic solutions of DDEs are in general unknown, so numerical methods are needed.
These typically consist in solving BVPs via piecewise orthogonal collocation [6, 20].
Very recently, this methodology has been extended and applied to REs for the first
time in [8], but a systematic treatment for DDEs, REs and coupled equations ap-
peared only in [1]. Concerning the convergence, the only available rigorous error
analysis can be found in [3] for DDEs and in [2, 4] for REs. Here we just summarize
from [20] the main aspects of this numerical scheme in the case of DDEs, which
corresponds to the one implemented in DDE-BIFTOOL. For the extension to REs
and coupled equations see [1].
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Assume again that (1) has a periodic solution ȳ, unknown together with its period
ω. By rescaling the time through the map sω : R → R defined as sω(t) := t/ω, we
can look at ȳ as the solution of the BVP

y′(t) = ωG(ỹt ◦ sω), t ∈ [0, 1],

y(0) = y(1),

ϕ(y) = 0,

(4)

where ϕ is a scalar (usually linear) function imposing a phase condition to remove
translational invariance [19] and ỹt is defined as

ỹt(θ) := y(t+ θ + k), t+ θ ∈ [−k,−k + 1], k ∈ N,

exploiting the periodicity to evaluate the solution in [−1, 0] as required by the
presence of the delay.

Let L and m be positive integers. Consider a partition of [0, 1] through 0 = t0 <
t1 < · · · < tL = 1 and define the set of continuous piecewise m-degree polynomials

ΠL,m :=
{
p ∈ C([0, 1],RdY ) | p↾[ti,ti+1]

∈ Πm, i ∈ {0, . . . , L− 1}
}
,

where Πm is the set of RdY -valued polynomials of degree at most m. The piecewise
collocation approach consists in looking for p ∈ ΠL,m and w ∈ R satisfying

p′(ζi,j) = wG(p̃ζi,j ◦ sw), j ∈ {1, . . . ,m}, i ∈ {0, . . . , L− 1},
p(0) = p(1),

ϕ(p) = 0,

(5)

for a choice of m collocation nodes ζi,j per interval, with ti ≤ ζi,1 < · · · < ζi,m ≤
ti+1, i ∈ {0, . . . , L−1}, typically the zeros of some family of orthogonal polynomials
(e.g., Gauss–Legendre or Chebyshev).

As for the convergence of the method, it is shown in [3] that, for G sufficiently
smooth, the collocation error p − ȳ in the space of bounded measurable functions
vanishes with order m for L → ∞ for the finite elements method (FEM, the most
commonly adopted). For the spectral elements method (SEM), i.e., for m → ∞
and fixed L, experimental evidence of spectral accuracy [29] is reported in [1], but
no proof is available.

With regards to the implementation, (5) is recast as a system of nonlinear equa-
tions by using a suitable representation of the collocation polynomial. The stan-
dard choice is the Lagrange form, defined by the basis of Lagrange polynomials
ℓi,0, . . . , ℓi,m at the equidistant nodes zi,j := ti + jhi/m, for i ∈ {0, . . . , L − 1},
j ∈ {0, . . . ,m} and hi := ti+1 − ti. The resulting system is typically solved by
resorting to Newton’s method, with a favorable arrow-shaped structure of the re-
sulting Jacobian matrix (see [19] for a clear exposition in the case of ODEs).

As a final essential remark, we highlight again that standard implementations
(as in DDE-BIFTOOL) make use of mesh adaptation: starting from a uniform
partition of [0, 1], the distribution of the L intervals is adapted to the solution’s
profile in order to control the overall error [20]. As we will base our collocation
approach on the adapted mesh resulted from approximating ȳ, we introduce the
ratio ρ between the lengths of the largest and smallest intervals in the adapted
partition as an indicator of how far it is from uniform.3 We anticipate that our

3Observe that ρ ≥ 1 and ρ = 1 if and only if the partition is uniform.
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approach does not perform any further adaptation on the solution’s adapted mesh
that it receives in input.

2.3. Numerical computation of the Floquet multipliers. The approach to
computing the multipliers presented in [13, 14] for DDEs, [9] for REs and [10] for
coupled equations is based on the non-piecewise discretization of a generic evolution
operator following the relevant IVP, and it can thus be applied to approximate the
spectrum of any such operator. In this sense, this approach is more general than
those used, e.g., in DDE-BIFTOOL or in [7], which explicitly exploit the structure
of the periodic BVP (for other differences, see Remark 1 below). In this section we
describe the discretization for DDEs presented in [13]. We refer the reader to the
cited works and to [23] for the extension to REs and coupled equations.

Consider then (2) and the relevant evolution operator T := U(s+ω, s) for s ∈ R
and ω ≥ 0. We apply pseudospectral collocation techniques to obtain a finite-
dimensional approximation of T , by first conveniently reformulating it as follows.
Define the function spaces Y + := C([0, ω],RdY ) and Y ± := C([−τ, ω],RdY ) with
the corresponding uniform norms. Let V : Y × Y + → Y ± be the operator which,
given an initial function ψ on [−τ, 0] and the function z prescribed by the right-hand
side of (2) on [0, ω], constructs the solution of (2) on [−τ, ω] as

V (ψ, z)(t) :=

ψ(0) +
∫ t

0

z(σ) dσ, t ∈ [0, ω],

ψ(t), t ∈ [−τ, 0].

Let also Fs : Y
± → Y + be the operator defined as

(Fsv)(t) := DG(ȳs+t)vt, t ∈ [0, ω],

which basically applies to its argument the action of the right-hand side of (2) (with
the time shifted by s so that the initial time is 0). Finally, T can be reformulated
as

Tψ = V (ψ, z∗)ω, (6)

where z∗ ∈ Y + is the solution of the fixed point equation

z = FsV (ψ, z), (7)

which exists and is unique in the same conditions as the solutions of (2). Observe
that z∗ is the derivative of the solution of (2) with initial function ys = ψ.

Let now M and N be positive integers. We consider partitions of [−τ, 0] and
[0, ω] respectively defined by −τ = θM < · · · < θ0 = 0 and 0 ≤ t1 < · · · < tN ≤ ω.

The discretization of Y is YM := RdY (M+1), with elements Ψ = (Ψ0, . . . ,ΨM ) for
Ψm ∈ RdY , m ∈ {0, . . . ,M}. We introduce the restriction operator RM : Y → YM
given by RMψ := (ψ(θ0), . . . , ψ(θM )) and the prolongation operator PM : YM → Y

as the discrete Lagrange interpolation operator PMΨ(θ) :=
∑M

m=0 ℓm(θ)Ψm, θ ∈
[−τ, 0], where ℓ0, . . . , ℓM are the Lagrange polynomials relevant to the nodes in
[−τ, 0]. Observe that

RMPM = IYM
, PMRM = LM , (8)

where LM : Y → Y is the Lagrange interpolation operator that associates to a
function ψ ∈ Y the M -degree RdY -valued polynomial LMψ such that LMψ(θm) =
ψ(θm) for m ∈ {0, . . . ,M}. The discretization of Y + goes similarly by introducing
Y +
N , R+

N , P+
N and L+

N according to the partition of [0, ω].
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Following (6) and (7), the discretization of T is the finite-dimensional operator
TM,N : YM → YM defined as

TM,NΨ := RMV (PMΨ, P+
NZ

∗)ω, (9)

where Z∗ ∈ Y +
N is the solution of the fixed point equation

Z = R+
NFsV (PMΨ, P+

NZ) (10)

for the given Ψ ∈ YM (for the well-posedness see [13]). The eigenvalues of TM,N

are then computed with standard methods and considered as approximations of the
multipliers.

The convergence of the approximated multipliers has been proved in the cited
works, and it holds under mild regularity assumptions on the ranges of V and Fs

(see, e.g., [13, Theorem 3.3 and Proposition 4.5]). We summarize the main aspects
in the following. Let µ ∈ C \ {0} be an eigenvalue of T with generalized eigenspace
E , finite algebraic multiplicity ν and ascent l. Let ∆ be a neighborhood of µ such
that µ is the only eigenvalue of T in ∆. Then there exists a positive integer N such
that, for any N ≥ N and any M ≥ N , TM,N has in ∆ exactly ν eigenvalues µM,N,j

for j ∈ {1, . . . , ν}. Moreover, if for each ψ ∈ E the function z∗ that solves (7) is of
class Cp for some p ≥ 1, then

max
j∈{1,...,ν}

|µM,N,j − µ| = o
(
N

1−p
l

)
.

The result states that the order of convergence of the multipliers depends on the
smoothness of the (derivative z∗ of the) solution of the IVP for (2) exiting from an
eigenfunction of µ. Indeed, the approach collocates exactly this function z∗ on the
period interval, and thus the error basically depends on the relvant interpolation
procedure through the operators R+

N , P+
N and L+

N . This is the crucial point, and
to simplify the following explanation let us assume that G in (1) is smooth, so that
also ȳ is smooth (as periodicity combined with the smoothing effect of DDEs cancels
possible breaking points). Then, if we linearize (1) around the exact ȳ, it turns out
that the coefficients of (2) are smooth and, as a consequence, so are the concerned
eigenfunctions and the relevant functions z∗.4 Then the order of convergence is
infinite, which is coherent with the expectation that pseudospectral methods ex-
hibit spectral accuracy [29]. On the contrary, if we linearize around a numerically
computed ȳ, the coefficients of (2) are only continuous (yet piecewise analytic), and
this lack of global smoothness can deteriorate the convergence behavior as we show
in the next section.

Remark 1. We observe that the approach we presented, in the case of DDEs,
collocates the derivative of the solution of the IVP, i.e., the solution z∗ of (7),
while DDE-BIFTOOL and [7] collocate the solution of the periodic BVP (4): this
may lead to slight differences in the experimental results even if using the same
collocation grids. As a further difference, we observe that the approach in [7] does
not discretize the monodromy operator (if not explicitly required), but recovers the
multipliers from a generalized eigenvalue problem. We note that we can follow the
same alternative as well by separating the right-hand sides of (9) and (10) with
respect to the variables Ψ and Z. More comments are given at the end of section 4.

4About the regularity of the eigenfunctions see respectively [13] for DDEs and [11] for REs.
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3. An expected failure. To exemplify the approach described in section 2, let us
consider the delay logistic equation

y′(t) = ry(t)(1− y(t− 1)). (11)

To compute its periodic solutions we use DDE-BIFTOOL.5 Let LDB and mDB be,
respectively, the number of pieces and the degree of the piecewise polynomials ap-
proximating such solutions. We consider the solutions for r ∈ {1.6, 2.3, 3} (Figure 1)
computed with LDB ∈ {20, 30, 40} and mDB ∈ {2, 4, 6}.

0 1 2 3

0

2

4

6

8
r = 1.6, ω ≈ 4.020

r = 2.3, ω ≈ 4.894

r = 3, ω ≈ 7.067

Figure 1. Periodic solutions (rescaled to period 1) of (11) com-
puted by DDE-BIFTOOL with LDB = 30 and mDB = 6.

In order to compute the relevant Floquet multipliers, we linearize (11) around a
generic solution ȳ, obtaining

y′(t) = r(1− ȳ(t− 1))y(t)− rȳ(t)y(t− 1),

and apply the method of [13], implemented as eigTMN in the codes6 accompanying
[14], varying M = N . We measure the error on both the trivial multiplier 1 and
the dominant nontrivial multiplier (µ ≈ 0.8972 for r = 1.6, µ ≈ 0.1831 · 10−2 for
r = 2.3 and µ ≈ 0.8037 · 10−16 ± 0.1198 · 10−15i for r = 3).

Figure 2 shows eigTMN’s errors as functions of M = N varying LDB, mDB and r
individually while keeping the others constant; for reference, they depict also DDE-
BIFTOOL’s errors on the same multipliers. For the trivial multiplier (panels A–D)
we eventually observe a convergence with infinite order with a barrier comparable
to DDE-BIFTOOL’s errors. However, as r increases (panel D), an initial phase of
exponential rise appears, with errors exceeding 107 in the worst case of r = 3. This
makes choosing an appropriate value for M = N difficult. As for the nontrivial
multiplier (panels E–H), for r = 1.3 and r = 2.6 the convergence is similar, albeit
lacking the initial exponential phase in the latter case, while for r = 3 eigTMN fails
to reach DDE-BIFTOOL’s accuracy with reasonable values of M = N . In all cases
we observe also that the influence of LDB on the error barrier is very limited, while
the influence of mDB and r is more significant. For comparison, note that in this
experiment eigTMN’s grid has up to 201 nodes, while DDE-BIFTOOL’s has 181.

Evidently, eigTMN has difficulties in dealing with this kind of problems. We
observe that as r increases the solution (Figure 1) transforms into a spike followed
by a plateau, with larger and more sudden variations of the derivatives. In such a
case, if the solution’s mesh is adapted, it progressively moves away from uniform.
As an example, Figure 3 shows the partitions of the period interval for the solutions
of Figure 1. The remedy we propose in section 4 is to discretize the evolution

5For all computations with DDE-BIFTOOL we use version 3.2a.
6http://cdlab.uniud.it/software

http://cdlab.uniud.it/software
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101
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r = 1.6, mDB = 4

LDB = 20

LDB = 30

LDB = 40

20 30 100

10−10

10−8

10−6

M = N

100 101 102
10−15

10−7

101

M = N

r = 1.6, LDB = 30

mDB = 2

mDB = 4

mDB = 6

100 101 102
10−16

10−4

108

M = N

LDB = 30, mDB = 6

r = 1.6

r = 2.3

r = 3

A B

C D

100 101 102
10−11

10−5

101

M = N

r = 1.6, mDB = 4

LDB = 20

LDB = 30

LDB = 40

20 30 100

10−10

10−8

10−6

M = N

100 101 102
10−15

10−7

101

M = N

r = 1.6, LDB = 30

mDB = 2

mDB = 4

mDB = 6

100 101 102
10−16

10−8

100

M = N

LDB = 30, mDB = 6

r = 1.6

r = 2.3

r = 3

E F

G H

Figure 2. Absolute errors of eigTMN, varying M = N , on the
trivial (A–D) and dominant nontrivial (E–H) multipliers of (11)
linearized around the solutions computed by DDE-BIFTOOL. The
gray horizontal lines show DDE-BIFTOOL’s errors on the same
multipliers. The reference values for the nontrivial multipliers are
computed by DDE-BIFTOOL with LDB = 60 and mDB = 10.
eigTMN’s errors eventually decay with infinite order with barriers
comparable to DDE-BIFTOOL’s errors, except for the nontrivial
multiplier with r = 3 (H), which seems to need even higherM = N .
For the trivial multiplier, as r increases (D), the errors initially rise
exponentially (exceeding 107 for r = 3), complicating the choice of
M = N .
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0 ωr = 1.6, ρ ≈ 1.57

0 ωr = 2.3, ρ ≈ 5.12

0 ωr = 3, ρ ≈ 8.45

Figure 3. Partitions of [0, ω] for the periodic solutions of Figure 1,
showing mesh adaptation as performed by DDE-BIFTOOL. The
vertical lines show the uniform partition.

operators on a collocation grid which includes the endpoints of the partition of the
period interval on which the periodic solution has been computed. In the following
we will talk about more or less adapted solutions and we will refer to the ratio ρ
introduced at the end of section 2.2 to indicate how far from uniform their meshes
have been adapted.

4. A reasonable piecewise remedy. Let the partition of [0, ω] (as opposed to
[0, 1] in section 2.2) for the given numerical ω-periodic solution be defined by 0 =
t0 < t1 < · · · < tL = ω. As already noted in section 2.2, as collocation nodes the
zeros of some family of orthogonal polynomials are usually chosen. In our approach
we collocate the operator also at the interval endpoints, which may need to be
added to the collocation nodes. Let them be 0 = c0 < · · · < cM = 1 in the interval
[0, 1]; for each i ∈ {0, . . . , L − 1} and j ∈ {0, . . . ,M} we define hi := ti+1 − ti and
ti,j := ti + hicj . In our case, the collocation nodes typically are of Chebyshev type.

The interval [−τ, 0] too is partitioned according to the solution’s mesh. Assume
that ω ≥ τ . The collocation nodes in [−τ, 0] are defined by subtracting ω to the
nodes in [0, ω]. The leftmost resulting piece of [−τ, 0], however, requires special
attention, since −τ may not coincide with one of the partition points. Among
the possible ways of treating it, the default choice of our implementation is to use
c0, . . . , cM to define new collocation nodes in the leftmost piece of [−τ, 0], indepen-
dently of the corresponding nodes in [0, ω]. An example of the described collocation
grid is depicted in Figure 4. If instead ω < τ , the interval [−τ, 0] is partitioned
in subintervals of length ω (with the leftmost possibly being smaller), each in turn
partitioned according to the mesh of the numerical solution as described above. For
more details on the discretization, as mentioned in section 2.3, we refer the reader
to [9, 13] and, in particular for the piecewise approach, to [12].

−ω 0 ω−τ

Figure 4. Example collocation grid with ω > τ , L = 4 and M =
3. Ticks mark ti and ti − ω, the cross marks −τ , dots mark the
grid points.

The discretization of the function spaces and of the operator T is now almost
identical to the one in section 2.3, the only, but fundamental, difference being
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that the restriction, prolongation and Lagrange interpolation operators (now RL,M ,
PL,M and LL,M , and R+

L,M , P+
L,M and L+

L,M ), act in a piecewise way. We can thus

obtain the discretization T pw
L,M of T as

T pw
L,MΨ := RL,MV (PL,MΨ, P+

L,MZ
∗)ω,

Z = R+
L,MFsV (PL,MΨ, P+

L,MZ).

Recalling Remark 1, we note that the generalized eigenvalue problem possibly de-
riving from the piecewise version of the method results in sparse matrices, whose
structure may be exploited for computational efficiency.

We implemented the method in the code eigTMNpw.7 In the following we always
use the default options; see eigTMNpw’s help for more details. To avoid confusion
with the discretization parameters of DDE-BIFTOOL (LDB and mDB) and eigTMN

(M = N), the number of pieces and the degree of the piecewise polynomials used in
the collocation of the monodromy operator, respectively L and M in this section,
will be denoted as Lpw and Mpw. Moreover, where Lpw is chosen to be the same
as that of the given numerical periodic solution, it is intended that the solution’s
mesh in [0, ω] is used for eigTMNpw as well, unless otherwise indicated.

4.1. About the convergence. The differences in the formulation of the piecewise
approach with respect to the non-piecewise approach of [9, 11, 13, 14, 23] are essen-
tially limited to the restriction, prolongation and interpolation operators. Most of
the proofs of convergence in the cited works only depend on the essential properties
(8) for the operators on [0, ω] (R+

L,M , P+
L,M and L+

L,M ), which are preserved in this
new approach. We thus expect the relevant convergence analysis to hold unchanged
but for the underlying interpolation error that is at the basis of the convergence of
the approximated multipliers as explained at the end of section 2.3 before Remark 1.
Indeed, as the interpolation process relies now on piecewise polynomials, we expect
a convergence of finite order (proportional to the degree M of the piecewise poly-
nomials) when using the FEM and spectral accuracy [29] when using the SEM. Of
course, this holds true only if the endpoints of the adapted partition of the period
interval of the computed periodic solution are included in the collocation grid, so
that interpolating polynomials are correctly used over pieces where the function to
be interpolated is smooth. Otherwise, as anticipated in section 2.3 and as shown
experimentally in section 3, the overall convergence may be deteriorated.

This is illustrated by the next example, concerning the equation

x′(t) = (1− |mod(t, 2)− 1|)x(t− 1), (12)

whose coefficient is piecewise linear, has period 2 and is not differentiable at integer
values of t. Figure 5 shows the errors on the dominant multiplier (µ ≈ 2.0133) when
the partition of [0, 2] does (Lpw = 2) or does not (Lpw = 1) contain 1: indeed, in
the former case the order of convergence is infinite, while in the latter it is finite.

Returning now to the example of section 3, in particular to panels D and H of
Figure 2, we observe that the errors of eigTMNpw using the solution’s mesh are
comparable to those of DDE-BIFTOOL (Table 1). This is particularly notable for
the nontrivial multiplier with r = 3, whose convergence in the non-piecewise case
is very slow. In all other cases we also note that to reach a comparable accuracy
DDE-BIFTOOL and eigTMNpw use 181 collocation nodes, while eigTMN needs less

7http://cdlab.uniud.it/software; for historical reasons we just added the suffix pw to the
original name eigTMN.

http://cdlab.uniud.it/software
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1 10 60
10−16

10−8

100

Mpw

Lpw = 1

Lpw = 2

Figure 5. Absolute errors of eigTMNpw on the dominant multiplier
of (12), whose coefficient is not differentiable at 1. The reference
value is computed by eigTMNpw with Lpw = 2 and Mpw = 120.
When the mesh includes 1 (Lpw = 2) the convergence order is
infinite, otherwise (Lpw = 1) it is finite (precisely 2).

trivial multiplier dominant nontrivial multiplier

r DDE-BIFTOOL eigTMNpw DDE-BIFTOOL eigTMNpw

1.6 7.270× 10−12 9.353× 10−13 7.889× 10−13 8.943× 10−12

2.3 4.463× 10−10 2.444× 10−10 1.243× 10−13 6.597× 10−12

3 1.577× 10−4 3.443× 10−4 5.082× 10−16 3.960× 10−15

Table 1. Absolute errors of eigTMNpw and DDE-BIFTOOL on
the trivial and dominant nontrivial multipliers of (11) linearized
around the solutions computed by DDE-BIFTOOL with LDB = 30
and mDB = 6. eigTMNpw uses Lpw = LDB and Mpw = mDB.
The reference values for the nontrivial multipliers are computed by
DDE-BIFTOOL with LDB = 60 and mDB = 10. The errors are
comparable in magnitude.

than 120. In fact, we show in section 5.2 that the piecewise approach becomes
computationally convenient for solutions with higher values of ρ.

Finally, to close the discussion on convergence, the following observation should
be taken into due consideration, also in view of tackling the issue of possible large
oscillating eigenfunctions reported in [30]. If including the endpoints of the adapted
mesh of the computed periodic solution into the collocation grid is necessary to
preserve the desired convergence order, still the error constants relevant to each
piece depend on the derivatives of the interpolated function on that piece. When
this function is smooth but large derivatives appear, the error constants increase
and a denser discretization should be considered. However, for what explained
above, the denser grid should always be a refinement of the adapted mesh from the
periodic solution. Numerical evidence of this fact will be given in section 5.3.

5. Experimental validation. The experiments in section 5.1 show the conver-
gence properties of eigTMNpw by applying it to an equation with an explicitly known
periodic solution, which is thus only affected by rounding errors. Section 5.2 presents
the application to an extreme case of strongly adapted solution, highlighting the
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advantage of the piecewise approach. The case of eigenfunctions with oscillations
unrelated to the profile of the periodic solution, anticipated in the introduction,
is treated in section 5.3. Finally, in section 5.4 a coupled equation is considered,
confirming the versatility of the proposed piecewise pseudospectral approach also
in this piecewise reformulation.

5.1. Testing the convergence. In order to show the convergence properties of
eigTMNpw, we consider the RE with quadratic nonlinearity

x(t) =
γ

2

∫ −1

−3

x(t+ θ)(1− x(t+ θ)) dθ, (13)

which has a branch of periodic solutions with the explicit expression

x̄(t) =
1

2
+

π

4γ
+

√
1

2
− 1

γ
− π

2γ2

(
1 +

π

4

)
sin

(π
2
t
)
, (14)

as proved in [8]. To study the stability of x̄, we consider the linear RE8

x(t) =
γ

2

∫ −1

−3

(1− 2x̄(t+ θ))x(t+ θ) dθ. (15)

We use eigTMNpw to compute the multipliers relevant to (14) for γ = 4 varying Lpw

(here defining a uniform partition of [0, ω]) and Mpw.
Figure 6 show the errors on the trivial multiplier (left panels) and on the domi-

nant nontrivial multiplier (µ ≈ −0.1355, right panels), confirming our expectations
(see section 4.1): the error of the SEM (top panels) vanishes with infinite order,
while the error of the FEM (bottom panels) vanishes with finite order (sometimes
higher than the theoretical bound), increasing with Mpw.

5.2. Strongly adapted solutions. We consider the DDE
v′(t) = v(t)− v(t)3

3
− w(t) + η(v(t− τ)− v0),

w′(t) = r(v(t) + a− bw(t)),

v0 a real root of v − v3

3
− v + a

b
,

(16)

proposed by Plant in [25] to model recurrent neural feedback; its periodic solutions
were studied in [15]. Note that v0 is unique if a ̸= 0 and 0 < b ≤ 1. Figure 7 shows
a periodic solution of (16) computed by DDE-BIFTOOL on a rather extremely
adapted mesh (Figure 8, ρ ≈ 55.91): indeed it was used in [20] to demonstrate the
collocation method for computing periodic solutions with adaptive mesh selection
which became part of DDE-BIFTOOL’s foundations.

We linearize (16) around a generic solution (v̄, w̄), obtaining{
v′(t) = (1− v̄(t)2)v(t)− w(t) + ηv(t− τ),

w′(t) = rv(t)− rbw(t).

We compute the solution with DDE-BIFTOOL for different values of LDB and
mDB. For each solution we compute the relevant Floquet multipliers with eigTMN

for increasing M = N and with eigTMNpw with Lpw = LDB and Mpw = mDB.

8Equation (15) is not actually the linearization of (13) in L1, although it can be used to study
the stability of its equilibria. See [16, section 3.5] for details; the extension of the results therein

to periodic solutions is an open problem.
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Mpw
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10−16
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Mpw
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Lpw = 30

Lpw = 40
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10−16

10−8

100

Lpw
1 10 40

10−16

10−8

100

Lpw

Mpw = 3

Mpw = 4

Mpw = 5

Mpw = 6

Figure 6. Absolute errors of eigTMNpw on the trivial (left) and
on the dominant nontrivial (right) multipliers of (15) with γ = 4 in
(14). The reference value for the nontrivial multiplier is computed
with Lpw = 40 and Mpw = 15. The convergence order is infinite
for the SEM (top) and finite for the FEM (bottom, precisely 4, 6,
6 and 8 on the left and 4, 6, 6 and 10 on the right).

0 ω 2ω 3ω
−4

−2

0

2
v
w

Figure 7. Periodic solution of (16) with a = 0.7, b = 0.8, η = −2,
r = 0.08 and τ = 25 (ω ≈ 50.7326, v0 ≈ −1.1994), computed by
DDE-BIFTOOL with LDB = 30 and mDB = 5.

0 ωρ ≈ 55.91

Figure 8. Partition of [0, ω] for the solution of Figure 7. The
vertical lines show the uniform partition.

Figure 9 shows the corresponding errors on the trivial multiplier (top panel)
and on the dominant nontrivial multiplier (µ ≈ 0.1444 ± 0.0382i, bottom panel)
compared with DDE-BIFTOOL’s errors. For the trivial multiplier, even with M =
N = 300 the errors of eigTMN barely reach the same order of magnitude as DDE-
BIFTOOL’s worst error; for the nontrivial multiplier, the errors alternate between
largely different magnitudes, making it difficult to choose an appropriate M = N .
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On the other hand, the errors of eigTMNpw are comparable to the ones of DDE-
BIFTOOL, or even better in some cases. The piecewise approach uses 151 nodes
and the non-piecewise approach uses up to 301 nodes, which suggests that in this
case the piecewise approach is also computationally more convenient.

100 101 102
10−7

10−2

103

M = N

100 101 102
10−6

10−3

100

M = N

LDB = 20,
mDB = 3

LDB = 30,
mDB = 4

LDB = 30,
mDB = 5

eigTMN

eigTMNpw

DDE-
BIFTOOL

Figure 9. Absolute errors of eigTMN for varying M = N on the
trivial (top) and dominant nontrivial (bottom) multipliers of (16)
linearized around the solutions computed by DDE-BIFTOOL (pa-
rameters as in Figure 7), compared to the errors on the same multi-
pliers of eigTMNpw with Lpw = LDB and Mpw = mDB and, for ref-
erence, of DDE-BIFTOOL (horizontal lines). The reference value
for the nontrivial multiplier is computed by DDE-BIFTOOL with
LDB = 60 and mDB = 10. While eigTMNpw’s errors are compa-
rable with those of DDE-BIFTOOL, eigTMN’s ones either require
very large M = N to reach the desired magnitude (trivial multi-
plier) or exhibit an alternating behavior which makes choosing an
appropriate M = N difficult (nontrivial multiplier).

In section 4.1 we anticipated that the computational convenience of the piecewise
approach depends on the value of ρ. The next experiment shows that this is indeed
the case: we compute several solutions of (16) for varying τ and compare the errors
on the multipliers as computed by DDE-BIFTOOL and eigTMNpw with Lpw =
LDB = 30 and Mpw = mDB = 5, i.e., using 151 nodes, and by eigTMN with M =
N ∈ {140, . . . , 160} (we consider the mean error in this case). We first observe
in Figure 10 that ρ is almost monotonically increasing as τ varies from 1 to 25;
we can thus use τ as a proxy for ρ. In Figure 11 we observe that as τ increases
DDE-BIFTOOL and eigTMNpw are equally accurate, while eigTMN progressively
loses accuracy.

5.3. Nontrivial multipliers with oscillating eigenfunctions. As anticipated
in the introduction, an eigenfunction may present large oscillations unrelated to the
profile of the periodic solution [30]. This necessarily requires the use of a denser
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1 10 20 25
0

20

40

60

τ

ρ

Figure 10. Value of the ratio ρ for the solutions of (16) computed
by DDE-BIFTOOL with LDB = 30 and mDB = 5 for varying τ
(other parameters as in Figure 7).

1 10 20 25
10−9

10−5

10−1

τ 1 10 20 25
10−9

10−5

10−1

τ

DDE-BIFTOOL eigTMN eigTMNpw

Figure 11. Absolute errors of eigTMN and eigTMNpw, compared to
those of DDE-BIFTOOL, on the trivial (left) and dominant non-
trivial (right) multipliers of (16) linearized around the solutions
computed by DDE-BIFTOOL with LDB = 30, mDB = 5 and vary-
ing τ (other parameters as in Figure 7). In all cases Lpw = LDB and
Mpw = mDB are used for eigTMNpw, while the errors of eigTMN are
the mean error for M = N ∈ {140, . . . , 160}. The reference value
for the nontrivial multiplier is computed by DDE-BIFTOOL with
LDB = 60 and mDB = 10. eigTMNpw’s errors behave similarly to
those of DDE-BIFTOOL, while eigTMN’s ones gradually increase.

discretization grid as explained in section 4.1. A key aspect is that the denser grid
needs to be a refinement of the piecewise mesh of the numerical periodic solution,
thus including the endpoints of pieces, since at those points the coefficients of the
linearized equation are not smooth.

To exemplify this fact, we turn our attention again to (16) and consider a non-
trivial multiplier (µ ≈ 0.0612 ± 0.0594i) whose eigenfunction oscillates where the
periodic solution and the eigenfunction of the trivial multiplier are almost constant
and the adapted mesh has few points (see Figure 12 and recall Figure 8). Figure 13
compares the errors of DDE-BIFTOOL with those of eigTMNpw partitioning the
period interval in three ways: using the solution’s mesh, a refinement of the latter,
and a dense but uniform mesh.9 For the nontrivial multiplier (right panel), both
denser partitions help in achieving the convergence of the multiplier, with the error
barrier of the refined one being slightly better than that of the uniform one. For the

9In the latter two cases the partitions are such that no piece is longer than five times the length
of the longest piece of the solution’s mesh.
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0 ω

−0.1

−0.05

0

0.05

µ = 1

µ ≈ 0.0612 ± 0.0594i

Figure 12. Eigenfunctions relevant to the multiplier µ of (16)
linearized around the solution computed by DDE-BIFTOOL with
LDB = 240 and mDB = 10 (parameters as in Figure 7).

4 10 60
10−10

10−5

100

LDB
4 10 60

10−10

10−5

100

LDB

DDE-BIFTOOL eigTMNpw, refined mesh

eigTMNpw, solution’s mesh eigTMNpw, uniform mesh

Figure 13. Absolute errors on the trivial multiplier (left) and on
the nontrivial multiplier µ ≈ 0.0612 ± 0.0594i (right) of (16) lin-
earized around the solutions computed by DDE-BIFTOOL with
mDB = 5 and varying LDB (parameters as in Figure 7). For
eigTMNpw [0, ω] is partitioned using the solution’s mesh, a refine-
ment of the latter (resulting in 129 ≤ Lpw ≤ 153), and a uniform
mesh with Lpw = 153 (Mpw = mDB in all cases). DDE-BIFTOOL
uses the solution’s mesh. The reference value for the nontrivial
multiplier is computed by DDE-BIFTOOL with LDB = 240 and
mDB = 10. If the eigenfunction has oscillations unrelated to the
solution’s mesh (right), using the latter seems to prevent the con-
vergence, while a denser partition allows to reach fairly small error
barriers, smaller if it is actually a refinement. For the trivial mul-
tiplier (left), the solution’s mesh is well adapted also to the eigen-
function: the error vanishes similarly with both the original and
the finer partition, while with the uniform one it reaches a barrier
larger than in the other case.

trivial multiplier (left panel), on the other hand, the uniform partition introduces an
error barrier larger than the one for the nontrivial multiplier: this is expected, since
the uniform partition is actually sparser than the adapted one where the periodic
solution and the eigenfunction of the trivial multiplier have large oscillations.

5.4. Coupled equations. The last experiment shows that the pseudospectral ap-
proach in general, and the method we described in particular, are very versatile in
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terms of equation classes. Indeed, in the previous sections we considered an RE and
a DDE, while in this section we consider a coupled equation.

In order to use an equation with a strongly adapted solution, we derive a coupled
equation from (16) by integrating the equation for w, resulting in

v′(t) = v(t)− v(t)3

3
− w(t) + η(v(t− τ)− v0),

w(t) = w(t− τ) +

∫ t

t−τ

r(v(s) + a− bw(s)) ds,

(17)

where v0 is the same as in (16).
Note that, due to the presence in the RE for w of the evaluation of w at a

specific point, (17) does not belong to the family described by (3) since the state
space for w cannot be L1. In fact (17) is an example of neutral RE. The method
described in this work has been implemented in eigTMNpw with an eye to dealing
also with neutral REs, but there is currently no proof of convergence for this case:
the numerical treatment of neutral REs is the subject of ongoing research. For
more details on neutral REs and the relevant perturbation theory see the recent
work [18].

Linearizing (17) around a generic solution (v̄, w̄), we obtain
v′(t) = (1− v̄(t)2)v(t)− w(t) + ηv(t− τ),

w(t) = w(t− τ) + r

∫ t

t−τ

v(s) ds− rb

∫ t

t−τ

w(s) ds.

We consider the same periodic solution computed with DDE-BIFTOOL in sec-
tion 5.2 with LDB = 30 and mDB = 5. The relevant Floquet multipliers are com-
puted using eigTMNpw first with Lpw = 1 for increasing Mpw to show the failure of
the non-piecewise approach, and then with Lpw = LDB and Mpw = mDB.

Figure 14 shows the corresponding errors on the trivial and dominant nontrivial
multipliers compared with DDE-BIFTOOL’s errors. We observe that the errors
of the non-piecewise approach suggest that the multipliers may begin to converge
for high values of Mpw, with the error being greater than 10−2 for all values of
Mpw ≤ 200 (except one). On the other hand, the error of the piecewise approach is
smaller than DDE-BIFTOOL’s error (in this case 151 nodes are used).

Remark 2. In [24] Luzyanina and Engelborghs compute the periodic solutions and
the corresponding multipliers with DDE-BIFTOOL and experimentally study the
convergence of the FEM. In some of their examples the trivial multiplier converges
with infinite order, while the order is finite for the nontrivial ones. We note here
that in our experience with eigTMN and eigTMNpw we never observed the supercon-
vergence of the trivial multiplier.
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eigTMNpw, Lpw = 1

eigTMNpw, Lpw = LDB
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Figure 14. Absolute errors of eigTMNpw on the trivial and domi-
nant nontrivial multipliers of (17) linearized around the solution of
(16) computed by DDE-BIFTOOL with LDB = 30 and mDB = 5
(parameters as in Figure 7). eigTMNpw is used in a nonpiecewise
fashion for varyingMpw and in a piecewise fashion with Lpw = LDB

and Mpw = mDB. The reference value for the nontrivial multi-
plier is computed by DDE-BIFTOOL for (16) with LDB = 60 and
mDB = 10. eigTMNpw’s errors are compared to those of DDE-
BIFTOOL for (16): in the piecewise case the former are even more
accurate than the latter.
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