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Abstract. This paper explores the possibility of estimating the acoustic pressure field resulting
from the vibrations of thin structures using photogrammetric techniques. In particular, the
performance of measurement systems using two or more cameras to estimate the displacement
of 3D markers placed on the surface of a plate are analyzed by simulation. The projection of
the markers on the image plane of each camera is calculated assuming a perfectly calibrated
system, in which the errors in the 3D reconstruction of the marker positions are substantially
determined by the intrinsic pixellation intrinsic to the measurement process. The acoustic
pressure in space is finally calculated, starting from the position of the markers, by means
of the Rayleigh integral. The accuracy of the estimate is evaluated by varying the geometry
of the cameras setup, their resolution and their number. The results presented show that the
estimation of the acoustic radiation is substantially more accurate than the accuracy with which
the vibration is estimated. The effect is due to the smoothing operation intrinsically linked to
the Rayleigh integration procedure. This study demonstrates the effectiveness of optical systems
with multiple, relatively low-cost low-resolution cameras for the measurement of the acoustic
pressure field generated by flexural vibrations of distributed structures.

1. Introduction
Measuring the sound radiation of mechanical devices or the transmission of sound through wall
structures is an extremely challenging task, requiring rather expensive setups and sophisticated
sound detection probes. Acoustic radiation and sound transmission are in fact normally
measured both in the vicinity of the structure and in special acoustic rooms. In the first
case, the radiated sound field is measured in a few specific points with microphones, or sound
level meters [1–3]. Alternatively, certain portions of the radiated sound field can be measured
with sound intensity probes, which typically rely on microphones and hot wire transducers
to measure the sound pressure and velocity of acoustic particles at a point [1–5]. In more
recent schemes, acoustic cameras are employed, which use microphone arrays to measure the
noise coming from the vibrating structure, calculating its characteristics with beamforming
techniques [6,7]. The measurements carried out in situ, near the vibrating structure, are however
often influenced by the impossibility of determining with certainty the operating conditions of
the radiant source, by the noise sources external to the structure and by the low repeatability of
the measurement configuration [1–3]. In the second case, accurate quantitative measurements
of sound radiation by machinery or sound transmission by masonry structures are carried out
in complex and expensive test setups, which normally involve rather large reverberant and/or
anechoic rooms, equipped with microphones placed in well defined positions, established by



AIVELA 2021
Journal of Physics: Conference Series 2041 (2021) 012013

IOP Publishing
doi:10.1088/1742-6596/2041/1/012013

2

international guidelines [1–5,8]. For example, the sound power radiated by machines is normally
measured in large reverberant environments [9]. Alternatively, the transmission of sound through
wall structures is measured in reverberant-reverberant or reverberant-anechoic environments,
where the tested structure is mounted on an opening in a common wall between the two
environments [10].

This paper presents a simulation study on a multi-view videogrammetry setup for the estimate
of the sound radiation onto free-field produced by the flexural vibrations of a baffled plate
structure excited by an harmonic point force at its fundamental natural frequency. Measuring
sound radiation fields is a rather challenging task, both because of their three-dimensional nature
and because of their typical frequency content, which, even for low audio frequencies, reaches
a few kHz. This study proposes a new approach, where the sound field is reconstructed from
the flexural vibration of the structure measured with a multi-view videogrammetry setup. More
specifically, the sound field is derived from a finite sum approximation of the Rayleigh integral
formula for sound radiation. As shown in Fig. 1, the plate is thus discretised into a regular
mesh of radiating elements. The centres of the elements are detailed on the plate by small
circular markers, which form a regular grid of measurement points, whose transverse vibrations
are measured by the multiple cameras using 3D point tracking. To guarantee convergence to
the Rayleigh integral, a rather dense mesh of elements, that is of target points, is considered,
whose vibrations can be effectively measured at once by the videocameras. The study assumes
the setup is calibrated in such a way as the optic, positioning, etc. parameters of the cameras
are taken into account. The cameras are modelled with a classical pinhole model, and the
transverse vibration displacement at the plate marker points is reconstructed from triangulation
of the views recorded by the whole set of cameras, which, for each marker point, is based on
the minimisation of the sum of the squared geometric distances between the measured and the
projected image points in the N -cameras. The sound vibration measurement is affected by the
errors, primarily due to pixelisation in the photo sensor, introduced by the vibration estimate
and by the approximation of the Rayleigh integral. The paper illustrates how the accuracy of
the free-field sound radiation estimate varies with respect to: a) the distance of the cameras
from the plate; b) the opening angle between pairs of cameras, c) the resolution of the cameras
and d) the number of cameras.

The outcome of this study indicates that the vibration measurement errors produced by the
image pixelisation in the cameras compensate over the grid of target points so that the estimate
of the radiated sound field with the Rayleigh integral formulation results comparatively more
accurate than the measured radiation field. This suggests that the proposed method to estimate
sound radiation of distributed structures based on flexural vibration measurements with multi-
view videogrammmetry has a great potential.

2. Plate sound radiation into free-field
This section introduces the sound radiation model of a thin flat rectangular plate mounted on
a rigid baffle. Assuming the classical plate theory [62], the time-harmonic flexural displacement
of the plate at position x, y can be described by

w (x, y, t) = Re
{
w (x, y, ω) ejωt

}
, (1)

where

w (x, y, ω) =
∞∑
n=1

wn (x, y, ω) =
∞∑
n=1

φn (x, y) qn (ω). (2)

Here, φn (x, y) and qn (ω) are respectively the shape functions and the complex amplitudes of
the flexural natural modes. For a simply supported plate, considering the world Cartesian
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Figure 1. Model problem for the measurement of flexural vibration of a baffled simply supported
plate, and of the resulting sound vibration at p(xf , yf , zf ).

coordinates, the shape functions are given by [11,12] (see Fig. 1)

φn (x, y) = 2 sin

(
kn1

Lx + 2x

2

)
sin

(
kn2

Ly + 2y

2

)
,

where, Lx, Ly are the surface dimensions of the plate and kn1 = n1π
Lx
, kn2 = n2π

Ly
are the bending

wavenumbers in x and y directions, being n1 = 1, 2, . . . , and n2 = 1, 2, . . . , the modal indices
for the n-th mode. Also, the complex modal amplitudes are given by

qn (ω) =
φn(xF , yF )F0

M [ω2
n + j2ζωnω − ω2]

,

being F (xF , yF , t) = Re
{
F0e

jωt
}

the harmonic transverse point force applied at position xF , yF .
Table 1 reports the characteristics of the simulated plate.

Table 1. Geometry and physical properties of the plate setup.

Parameter Value

Lateral dimensions Lx = 668 [mm], Ly = 443 [mm]
Thickness h = 19.8 [mm]

Density ρ = 7200
[
kg/m3

]
Young’s modulus E = 14× 1010

[
N/m2

]
Poisson ratio ν = 0.31 [−]
Modal damping ratio ζ = 0.02 [−]
Position of the force xF = 55 [mm] yF = 23 [mm]
Grid of markers Nx ×Ny = 15× 10
Dimensions of the mesh elements dx = 44.5 [mm] , dy = 44.3 [mm]

In general, the response w (x, y, t) at each frequency will be controlled by the modes with
natural frequencies ωn close to the excitation frequency. When the plate is excited at the natural
frequency of the first few natural modes, the response can therefore be expressed in terms of the
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modal contribution of the resonant mode only, so that

w (x, y, t) ' Re
{
wn (x, y, ω) ejωt

}
= Re

{
wn0 (x, y, ω) ej(ωt+ϕn0(ω))

}
. (3)

Similarly, the sound pressure field generated at position (xf , yf , zf ) by the time-harmonic flexural
vibration of the baffled plate can be expressed as

p (xf , yf , zf , t) = Re
{
p (xf , yf , zf , ω) ejωt

}
,

where the complex amplitude p (xf , yf , zf , ω) is given by the so-called Rayleigh integral [13],
which, considering the notation shown in Figure 1 and the approximation in (3), allows to write

p (xf , yf , zf , t) ' Re

{
jωρ0
2π

∫
S

wn0 (x, y, ω) e−jkR

R
dSej(ωt+ϕn0(ω))

}
(4)

= Re

{
jωρ0
2π

|qn (ω)|
∫
S

φn (x, y) e−jkR

R
dS ej(ωt+ϕn0(ω))

}
. (5)

Here, k = ω/c0 is the acoustic wavenumber, where ρ0 and c0 are the density and speed of sound
for air. Finally, S = LxLy is the surface area of the plate and R is the distance between the
position (x, y, 0) on the plate and the position in the free-field (xf , yf , zf ) .

In practice, we can compute Eq. (5) numerically by discretising the plate surface into
NxNy elements, associated to a set of markers whose displacements are estimated through
triangulation, on the basis of their noisy pixel positions in the images acquired by a set of
cameras. To obtain a reasonable approximation of the integral, in our simulations we set
Nx × Ny = 5 × 10, as reported in Table 1. Assuming we are observing the pressure field at
time instants where the displacement is maximum, the computation of Eq. (5) will be affected
by an error, corresponding to the noisy ŵn0 (x, y, ω) estimate obtained with the N cameras.
A detailed analysis of the flexural vibration field estimate of a plate structure with multiple
cameras is reported in [13].

3. Simulation results
The objective of the simulations presented here is to evaluate the accuracy of the estimation
of the acoustic pressure field using various experimental setups, in which parameters such as
the distance of the cameras from the plate, their geometric arrangement, the resolution of
the cameras and their number are varied. Particular attention is dedicated to the possibility
of improving the estimation of the acoustic field obtained by means of low spatial resolution
cameras, simply by increasing their number. In fact, [13] shows that the use of multiple cameras
significantly improves the vibration estimation, thus allowing a favorable trade-off between
spatial and temporal resolution in applications, like that considered here, where the frequencies
of interest may require a high camera frame rate. As mentioned, the considered system uses an
optical measurement scheme of the plate vibration, and calculates the corresponding acoustic
pressure in space using the Rayleigh integral. The sound pressure reference is calculated on the
basis of the models presented in Section 2, while its estimate is calculated by approximating
the Rayleigh integral with a finite sum of Nx × Ny contributions, and using the displacement
estimate obtained from the images in the cameras as described in [13]. The displacements are
affected by errors due to the pixelisation and the process of reconstructing the 3D position of
the points.

In the following, the accuracy of the vibration measurement is studied considering the
following root mean square error over the Nt = Nx×Ny grid of plate marker points Pi = (xi, yi)

Ew =

√
1
N

∑Nt
i=1 (wi − ŵi)2

wmax
100 (% rel.to wmax) . (6)
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In this equation, wi = w (xi, yi, t) , ŵi = ŵ (xi, yi, t) are respectively the actual and estimated
transverse displacements and wmax = maxi=1,··· ,N {|w (xi, yi, t)|} is the maximum actual
transverse displacement, at the time instants where the displacement is maximum. Similarly, the
accuracy of the sound pressure estimate is analysed considering the root mean square error over
the two grids of monitoring points Pf,i = (xf,i, yf,i, zf,i), located at two grids of M = Mx ×My

monitoring points arranged on vertical planes XZ and Y Z passing through the centre of the
plate (see Fig. 2). As a result,

Ep =

√
1
M

∑M
i=1 (pi − p̂i)2

pmax
100 (% rel.to pmax) . (7)

Here pi = p (xf,i, yf,i, zf,i, t) , p̂i = p̂ (xf,i, yf,i, zf,i, t) are respectively the actual and estimated
sound pressures and pmax = maxi=1,··· ,M {|w (xf,i, yf,i, zf,i, t)|} is the maximum actual acoustic
pressure.

The results of the sound radiation estimates will be presented in a standard framework,
where each figure shows on the top a table with the values of the parameters kept fixed for
the simulation, and then (a) a sketch of the measurement setup with highlighted the parameter
being considered; (b) the reference (top maps), best estimate (middle maps) and worst estimate
(bottom maps) sound pressure fields on the vertical XZ and Y Z planes passing through the
centre of the plate; (c) the average error in percent with respect to the maximum radiated sound
pressure defined in Eq. (7) (coloured bars).

First, the effect of the distance of a pair cameras from the centre of the plate on the of the
radiated sound field is investigated (see Fig. 3). As shown in the top of the figure, the cameras
have a low spatial resolution of 320×180 and are positioned at fixed azimuthal θ and elevation φ
angles and at increasingly larger distances d. The cameras are positioned with a small elevation
angle φ = 25 DEG and azimuthal angles θ = 60, 120 DEG such that the two cameras are
separated by an opening angle α = 60 DEG.

Figure 2. Definition of the planes XZ and Y Z on which the sound radiation has been
calculated.

Fig. 3 shows that the sound field estimated from the vibration field measured with the cameras
reproduces quite accurately the actual radiation field for all camera distances. Indeed, the
bar plot (c) reports rather low average errors Ep given respectively by 0.8%, 3.5%, 6.5%, 2%.
Interestingly, in this case the average error does not rise monotonically with distance. For
instance, when the vibration measurement is made with the cameras at the farthest distance
d=1500 mm from the centre of the plate, the mean error of the sound field estimated in the XZ
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Radial 
distance 
d (mm) 

Elevation 
angle 
𝝓 (DEG)

Azimuth
angle 
𝜽 (DEG)

Aperture 
angle
𝜶 (DEG)

Resolution
(pixel)

Values

650
750
1000
1500

25 ±30 60 320´180

Figure 3. (top) setup summary; (a) distance case study; (b) comparison between ideal (i.e.
from analytical model), best and worst case (i.e. from best and worst reconstructed flexural
vibration with cameras setup) acoustic fields; (c) bar graph of the mean error.

and Y Z planes is about 2%. The average errors of the estimated sound field are comparatively
lower than the mean errors of the measured vibration field. For example, when the cameras
are placed at d=1500 mm, the average error of the measured vibration field, given by Eq. (6)
is about 26% whereas the average error of the estimated sound field is about 2% (more details
and results can be found in [13]. This is remarkable outcome, which however suggests that
photogrammetry can be suitably used to estimate the sound radiation into free-field generated
by flexural vibrations of thin flexible structures.

As a matter of fact, the calculation of the acoustic radiation via the Rayleigh integral equation
actually reduces noise, due to smoothing of the errors affecting the estimates of the structure
displacement, as highlighted in the following simplified analysis. A rough approximation of
Eq. (5) in the far field can be obtained by approximating distances R between the running point
on the plate and the far location (xf , yf , zf ) as a constant value R0, since R values become
essentially equal to the distance with the centre of the plate. Within such hypothesis, it is easy
to derive that the error in the pressure field estimate is proportional to

ep '
Np∑
i=1

ei∆S =
LxLy
Np

Np∑
i=1

ei,

where Np = NxNy is the number of grid points used to calculate the Rayleigh approximation,
located at positions (xi, yi), ∆S is the area element of the discretised plate surface, and ei is the
vibration error after displacement reconstruction with the optical system, namely

ŵn0(xi, yi, ω) = wn0(xi, yi, ω) + ei. (8)

Indeed, the average implied by Eq. (8) reduces the impact of the vibration estimation error on
the pressure field estimation.
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Other examples of pressure field estimates are reported in Figs. 4–7, which show the results
relative to different camera placements and resolutions. In particular, Fig. 7 reveals a limited
dependance of the pressure estimate from the number of cameras, in contrast to the results
obtained for the vibration estimates, where Ew monotonically changes from about 12% to 4%
when passing from 2 to 12 cameras.

Radial 
distance 
d (mm) 

Elevation 
angle 
𝝓 (DEG)

Azimuth 
angle 
𝜽 (DEG)

Aperture 
angle
𝜶 (DEG)

Resolution
(pixel)

Values 750 10

±8
±30
±55
±80

16
60
110
160

320´180

Figure 4. (top) setup summary; (a) opening angle case study; (b) comparison between ideal
(i.e. from analytical model), best and worst case (i.e. from best and worst reconstructed flexural
vibration with cameras setup) acoustic fields; (c) bar graph of the mean error.

Finally, the colour maps (b) in Fig. 8 show the typical sound radiation fields of the (2,1), (1,2)
and (3,1) mode shapes, even when they are reconstructed from the deflection shapes measured
with 2 cameras. In this case the bar plots (c) report rather small average errors of the order of
1%. The rather large errors of the order of 20% to 30% reported for the sound fields produced by
the deflection shapes resembling the (2,1) and (1,2) modes in the Y Z and XZ planes respectively
are due to the fact that the (2,1) and (1,2) mode shapes are anti-symmetric with reference to
the Y Z and XZ planes respectively, so that, due to destructive interference they produce a
negligible sound field on these two planes. Consequently, the reconstructed sound fields in these
planes are characterised by significant deviations from the theoretical ones and exhibit quite
large average errors.
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Radial 
distance 
d (mm) 

Elevation 
angle 
𝝓 (DEG)

Azimuth 
angle 
𝜽 (DEG)

Aperture 
angle
𝜶 (DEG)

Resolution
(pixel)

Values 750

5
20
40
60

±90

170
140
100
60

320´180

Figure 5. (top) setup summary; (a) opening angle case study; (b) comparison between ideal
(i.e. from analytical model), best and worst case (i.e. from best and worst reconstructed flexural
vibration with cameras setup) acoustic fields; (c) bar graph of the mean error.

Radial 
distance 
d (mm) 

Elevation 
angle 
𝝓 (DEG)

Azimuth 
angle 
𝜽 (DEG)

Aperture 
angle
𝜶 (DEG)

Resolution
(pixel)

Values 750 25 ±30 60

320´180
640´360
1280´720
1920´1080

Figure 6. (top) setup summary; (a) resolution case study 3; (b) comparison between ideal (i.e.
from analytical model), best and worst case (i.e. from best and worst reconstructed flexural
vibration with cameras setup) acoustic fields; (c) bar graph of the mean error.
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Distance 
d (mm)

Elevation angle 
𝝓 (DEG)

Azimuth angle 
𝜽 (DEG)

Resolution
(pixel)

Values 750

15
15 / 15

15 / 15 / 15
15 / 15 / 15 / 5

15 / 15 / 15 / 5 / 5
15 / 15 / 15 / 5 / 5 / 5

k180+7
k180+ (7 / 27)

k180+ (7 / 27 / 0)
k180+ (7 / 27 / 0 / 90)

k180+ (7 / 27 / 0 / 90 / 47)
k180+ (7 / 27 / 0 / 90 / 47 / 60)

320´180 

Figure 7. (top) setup summary; (a) multiple cameras case study 4a; (b) comparison between
ideal (i.e. from analytical model), best and worst case (i.e. from best and worst reconstructed
flexural vibration with cameras setup) acoustic fields; (c) bar graph of the mean error.

Figure 8. (a) multiple cameras case study 4a; (b) comparison between best and worst
reconstructed flexural vibration with cameras setup acoustic fields; (c) histograms of the mean
error.
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4. Conclusions
In this paper, a comprehensive simulation study has been presented in order to evaluate how
the placement, resolution, and number of cameras affect the accuracy of the estimation of
the acoustic pressure generated by vibrations of mechanical structures. To this purpose, we
considered a simplified simulation arrangement, where errors are generated by pixelisation of
images taken from the cameras. The vibration field generated by a plate structure has been
considered, where 3D marker positions are reconstructed via triangulation. The pressure field
was calculated from the estimated displacement positions obtained by the camera images via the
Rayleigh integral. The objective was to assess how the quality of the vibration measurement,
with various camera setups, influences the quality of the pressure field estimation. All analyses
can be summarised in the following points with respect to the range of parameters considered:
1) the distance of the cameras influences significantly the vibration measurement and to a
much less extent the estimate of the sound radiation; 2) the angle of opening between a pair
of cameras laid on a circle parallel to and centred on the plate, such that the cameras have
a small elevation angle and variable azimuthal angle, does not influence both the vibration
measurement and sound radiation estimate; 3) the angle of opening between a pair of cameras
laid on a half-circle oriented on a vertical plane passing through the horizontal axis, such that the
cameras have a variable elevation angle and fixed azimuthal angle, moderately influence both the
vibration measurement and sound radiation estimate; 4) the spatial resolution of the cameras
has a significant effect on both the accuracy of the vibration measurement and the accuracy
of the sound radiation estimate; 5) setups with more than 2 cameras significantly increase the
accuracy of vibration measurements but does not have such an impact on the accuracy of the
sound radiation estimate. In conclusion, this study has demonstrated the effectiveness of optical
systems with multiple, relatively cheap, low-resolution cameras for the measurement of the
acoustic pressure field generated by flexural vibrations of distributed structures.

References
[1] Barron R F 2003 Industrial Noise Control and Acoustics (Marcel Dekker Inc., New York)
[2] Bies D A and Hansen C H 2009 Engineering Noise Control Theory and Practice (Spon Press, London)
[3] Fahy F 2015 Measurement of audio-frequency sound in air, in: Fundamentals of Sound and Vibration (CRC

Press)
[4] Fahy F 1995 Sound Intensity (CRC Press)
[5] Jacobsen F and de Bree H E 2017 J. Acoust. Soc. Am. 66 1510–1517
[6] Billingsley J and Kinns R 1976 J. Sound Vib. 48 485–510
[7] Merino-Mart́ınez R, Sijtsma P, Snellen M et al. 2019 CEAS Aeronaut. J. 48 197–230
[8] Comesaña D F, Steltenpool S, Korbasiewicz M and Tijs E 2015 Proceedings of EuroNoise 2015 pp 891–895
[9] 2019 Acoustics - Determination of sound power levels of noise sources (ISO 3740:2019)

[10] 2000 Acoustics - Measurement of sound insulation in buildings and of building elements using sound intensity
- Part 1: Laboratory measurements; - Part 2: Field measurements; Part 3: Laboratory measurements at
low frequencies (ISO 15186-1:2000)

[11] Reddy J N 2007 Theory and Analysis of Elastic Plates and Shells (CRC Press)
[12] Leissa A W 1969 Vibration of Plates (NASA Reference Publications, Washington)
[13] Rinaldo R, Gardonio P, Del Sal R, Dal Bo L, Turco E and Fusiello A 2021 Proceedings of the 14th Intl

Conference on Vibration Measurements by Laser and Noncontact Techniques


