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Primary Sjögren’s syndrome (pSS) is a chronic autoimmune disease resulting from the
inflammatory infiltration of exocrine glands, mainly salivary and lacrimal glands, leading to
secretory dysfunction and serious complications including debilitating fatigue, systemic
autoimmunity, and lymphoma. Like other autoimmune disorders, a strong interferon (IFN)
signature is present among subsets of pSS patients, suggesting the involvement of innate
immunity in pSS pathogenesis. NCR3/NKp30 is a natural killer (NK) cell-specific activating
receptor regulating the cross talk between NK and dendritic cells including type II IFN
secretion upon NK-cell activation. A genetic association between single-nucleotide
polymorphisms (SNPs) in the NCR3/NKp30 promoter gene and a higher susceptibility
for pSS has been previously described, with pSS patients most frequently carrying the
major allele variant associated with a higher NKp30 transcript and IFN-g release as a
consequence of the receptor engagement. In the present study, we combined RNA-
sequencing and histology from pSS salivary gland biopsies to better characterize NKp30
(NCR3) and its ligand B7/H6 (NCR3LG1) in pSS salivary gland tissues. Levels of NCR3/
NKp30 were significantly increased both in salivary glands and in circulating NK cells of
pSS patients compared with sicca controls, especially in salivary glands with organized
ectopic lymphoid structures. In line with this observation, a strong correlation between
NCR3/NKp30 levels and salivary gland infiltrating immune cells (CD3, CD20) was found.
Furthermore, NCR3/NKp30 levels also correlated with higher IFN-g, Perforin, and
Granzyme-B expression in pSS SGs with organized ectopic lymphoid structures,
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suggesting an activation state of NK cells infiltrating SG tissue. Of note, NKp30+ NK cells
accumulated at the border of the inflammatory foci, while the NKp30 ligand, B7/H6, is
shown to be expressed mainly by ductal epithelial cells in pSS salivary glands. Finally,
immunomodulatory treatment, such as the B-cell depleting agent rituximab, known to
reduce the infiltration of immune cells in pSS SGs, prevented the upregulation of NCR3/
NKp30 within the glands.
Keywords: Sjögren’s syndrome, salivary gland, NK cell, NKp30, epithelial cell, B7/H6
INTRODUCTION

Primary Sjögren’s syndrome (pSS) is a chronic autoimmune
exocrinopathy characterized by an immune response within the
salivary and lachrymal glands leading to the loss of secretory
function of exocrine glands, or sicca syndrome (1). Sjögren’s
syndrome (pSS) is commonly associated with the development of
circulating autoantibodies, such as those targeting the
ribonucleoproteins Ro/SSA and La/SSB (i.e., anti-Ro/SSa and
anti-La/SSB autoantibodies), and rheumatoid factor (RF) (2).
Besides oral and ocular manifestations, and the development of
circulating autoantibodies, the main histopathologic hallmark of
the disease is the development of lymphomonocytic infiltration
within the glands, with inflammatory aggregates (foci) organized
around central salivary and lachrymal ducts (3). Although the
ductal epithelial cells (ECs) are the target of inflammation within
the salivary glands (SGs), they also act as unconventional antigen-
presenting cells, expressing immuno-modulatorymolecules able to
promote immune-cell recruitment and activation, namely,
dendritic cells (DCs), natural killer (NK) cells, and T cells, which
results in EC apoptosis (4).

he role of adaptive immunity in the pathogenesis of pSS has
been well established; however, far less is known about the
contribution of innate immunity and its interaction with
adaptive immunity. Earlier gene expression profiling studies
showed upregulation of a type I interferon (IFN) signature in
patients with pSS (5–9), suggesting the involvement of the innate
arm of the immune system in the disease pathogenesis. This
occurs mainly in response to the enhanced apoptosis of SG EC,
which is thought to be triggered following a viral/infectious insult
(10). Animal models of pSS also indicate a crucial role for type II
IFN in the disease pathogenesis (11, 12).

The role of NK cells in pSS remains unclear. Although animal
models of pSS have not directly implicated NK cells in disease
pathogenesis, resident NK cells as well as NK cells infiltrating from
the peripheral compartment are readily activated in experimental
sialoadenitis (13, 14).While most of the data published to date that
investigated the number and/or the functional impairment of the
NK cell compartment in patients with pSS led to contradictory
results (15–17), recent publications suggest a critical role ofNKcells
as mediators of both type II and type I IFN functions (18, 19).

NK cell activation is regulated by a delicate balance between
activating and inhibitory receptors and triggered by the
engagement of their activating receptors with their cognate
ligands. In the context of pSS, NK cell activation is thought to
org 2
be facilitated by engagement of the natural cytotoxicity receptor
(NCR) NKp30 with its ligand B7 homolog 6 (B7/H6), also known
as natural killer cell cytotoxicity receptor 3 ligand 1 (NCR3LG1)
(18). B7/H6 is a human-specific B7 family member that binds to
and activates the NKp30 receptor. B7/H6 is typically not expressed
on normal human tissues, but it has been described in primary
tumors or upregulated under inflammatory conditions, mainly
induced upon stimulation by ligands of toll-like receptors or pro-
inflammatory cytokines (20). Several B7 superfamily
costimulatory molecules, which also include CD80 (B7.1), CD86
(B7.2) or ICOSL, and PDL1 (21), are enhanced on the surface of
SG EC in pSS patients, supporting their function as antigen-
presenting cells, which results in priming of DC and T-cell
activation (22–25).

It has been postulated that the inflammatory environment
generated within the SGs following the initial insult, presumed
viral or environmental, results in the upregulation of the NK cell
ligand B7/H6 on SG EC (26) and DC, leading to the activation of
NK cells, which in turn produce type II IFN (mainly IFN-g). DC,
in particular plasmacytoid DC, can also produce type I IFN and
interleukin-12 (IL-12), a potent NK and T-cell activator and
IFN-g inducer, which perpetuates the local inflammation (that
leads to EC destruction and exposure of autoantigens) (19).

More recently, B7/H3 was also found to be upregulated on SG
EC in pSS patients, promoting inflammation by activating the
NF-kB pathway which results in increased levels of interleukin-6
(IL-6) and tumor necrosis factor-alpha (TNFa) enhancing the
apoptosis of SG EC (27). TNFa has been shown to be the main
inflammatory stimuli able to induce the B7/H6 upregulation in
the SG EC cell line (18).

A case–control study found an association between pSS and
two single-nucleotide polymorphisms (SNPs) (rs11575837 and
rs27366191) in the promoter region of the NCR3 locus, encoding
for the NKp30 activating receptor (18). An independent study in
a Scandinavian cohort confirmed the association between the
rs11575837 SNP and anti-Ro/SSA and anti-La/SSB positivity in
patients with pSS. The rs11575837 SNP was shown to be
protective for pSS development, as it was reported to be less
frequent in patients with pSS compared to controls, and it was
linked to a reduced transcription of NCR3. pSS patients were
shown to carry most frequently the major allele for rs11575837
SNP, associated with a higher NKp30 transcript and IFN-g
release, as a consequence of the receptor engagement. In line
with genetics findings, NKp30 was described to be upregulated
on circulating NK cells in pSS patients (18).
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Despite the association between the SNPs in the NCR3/NKp30
promoter gene and pSS susceptibility, alongside the upregulation of
NKp30oncirculatingNKcells, the expressionof the receptor and its
ligand within pSS SG is still poorly characterized.

To this aim, in the present study, we combined RNA-
sequencing and SG histology as well as peripheral blood flow
cytometry to characterize the expression of NKp30 and its ligand
B7/H6 in pSS patients. Furthermore, we studied the effects of an
immunomodulatory treatment with the B-cell depleting agent,
rituximab, on their expression at tissue level.
MATERIALS AND METHODS

Patient Samples
Samples were collected from healthy donors (HDs), patients with
pSS, and non-specific chronic sialadenitis (sicca, NSCS). The
diagnosis of pSS was made according to the 2002 revised
classification criteria of the American–European Consensus
Group (28). Demographic, clinical, and laboratory data of the
patients enrolled in this study are provided in Supplementary
Table S1.

For flow-cytometry analysis, blood was collected from
patients with pSS (n = 23) and from healthy donors (HDs)
(n = 20), respectively, from the Rheumatology Clinic, University
of Udine (Italy) and Humanitas Clinical and Research Center,
Milan (Italy). pSS patients were selected based on their salivary
histopathology, recruiting 11 patients with labial salivary gland
inflammatory infiltration, 7 with myoepithelial sialadenitis
(MESA), and 5 non-Hodgkin’s MALT lymphoma in the
parotid salivary glands. The HDs consisted of women without
symptoms or signs of xerostomia or xerophthalmia, or any
history of autoimmune rheumatic diseases.

For RNA sequencing analysis, labial SG biopsies from
patients with pSS (n = 24) and NSCS (n = 17) were obtained
from the Dental Clinic, Barts and The London School of
Medicine and Dentistry at Barts Health NHS Trust.

From the TRACTISS trial (ISRCTN: 65360827/European
Clinical Trials database no. 2010-021430-64) cohort (29, 30),
26 pSS patients gave consent for labial SG biopsies at baseline,
weeks 16 and 48. Following randomization to Rituximab or
placebo, patients received two 1,000-mg cycles of Rituximab/
placebo at baseline and week 24.

All patients gave written informed consent and approval was
obtained by local ethics committees.

RNA Extraction and Bulk RNA Sequencing
on Labial SG Tissue
RNAwas extracted using RNeasyMicro Kit (Qiagen) following the
manufacturer’s instructions. The RNA samples were quantified
using Qubit 2.0 Fluorometer (Invitrogen) and RNA integrity was
checked with Agilent TapeStation (Agilent Technologies).

RNA sequencing libraries were prepared using the NEBNext
Ultra RNA Library Prep Kit for Illumina. Briefly, mRNA was first
enriched with Oligod(T) beads. Enriched mRNAs were
fragmented for 15 min at 94°C. First-strand and second-strand
Frontiers in Immunology | www.frontiersin.org 3
cDNA were subsequently synthesized. cDNA fragments were
end repaired and adenylated at 3’ends, and universal adapters
were ligated to cDNA fragments, followed by index addition and
library enrichment by PCR with limited cycles. The sequencing
library was validated on the Agilent TapeStation (Agilent
Technologies) and quantified by using Qubit 2.0 Fluorometer
(Invitrogen) as well as by quantitative PCR (KAPA Biosystems).

Libraries were sequenced on Illumina HiSeq 4000, using 2×150
bp paired end configuration, 50 million reads/sample. One
mismatch was allowed for index sequence identification (Genewiz).

Immunohistochemistry on SG Tissue
Immunohistochemistry (IHC) was performed on formalin-fixed
and paraffin-embedded tissue sections of labial SG biopsies. After
deparaffinization, sections were pretreated for 15 min in the
pressure cooker with tris-EDTA buffer (10 mM tris, 1 mM
EDTA, pH 9, Dako) for NKp30 and B7/H6, citrate buffer (pH
6.0, Dako) for CD20, CD138, and CD3, or Proteinase-K (Dako)
for CD21 antigens. Endogenous peroxidase activity was inhibited
with 3% hydrogen peroxide (Dako) for 10 min. Tissue sections
were incubated with the primary antibodies (Supplementary
Table S2) for 1 h, followed by HRP-conjugated secondary
antibody and developed with 3,3′-Diaminobenzidine (DAB,
Dako). The sections were counterstained with Harris’s
hematoxylin and mounted. Positive controls for both NKp30
and B7/H6 are shown in Supplementary Figure S1.

The assessment of the inflammation in the labial salivary gland
biopsies and the histological identification of ELS is based on the
IHC staining for T cells (CD3), B cells (CD20), the presence of
follicular dendritic cell (FDC) network (CD21), and plasma cells
(CD138). The ELS is defined as at least one infiltrate with clear B/T
cell compartmentalization in discrete areas and presence of FDC
within the B-cell area, suggestive of germinal center presence
(Supplementary Figure S2). Inflammation in the labial salivary
gland is scored with a semi-quantitative grading system, which
classifies the periductal inflammatory aggregates into four
histologic groups (from 0 to 3) according to the size and the
degree of lymphoid organization based on B- and T-cell
segregation and presence of CD21+ FDC network (31).

Blood Sample Processing
Venous blood samples were collected in potassium-
ethylenediaminetetraacetic acid (K-EDTA) anticoagulant. The
samples were processed within 24 h of collection. Peripheral
blood mononuclear cells (PBMCs) were isolated after Ficoll
density gradient centrifugation. The PBMCs were washed twice
with PBS and then stored at −80°C in freezing medium [90%
fetal bovine serum (FBS), 10% dimethylsulfoxide (DMSO)] until
further analysis.

Flow Cytometry
Flow-cytometry analysis was performed on 43 frozen samples of
PBMCs. After thawing, cells were stained with Zombie Aqua
Live/Dead kit (BioLegend) for 15 min, washed, and incubated for
10 min with human Fc TruStain FcX (BioLegend). Cells were
stained for surface antigens combined in a seven-color panel
(CD14, CD3, CD20, CD56, CD16, and NK-receptor). Cells were
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split in up to five tubes, one for each NK-receptor (NKp46,
NKp44, NKp30, NKG2D, and DNAM-1) with 1 million cells per
tube. Antibodies used are listed in Supplementary Table S3.
Cells were acquired using a FACS Canto II (BD Biosciences) flow
cytometer and analyzed with FlowJo V.2 software.

Statistical and Bioinformatics Analysis
Differences in quantitative variables between two groups were
analyzed by Mann–Whitney two-tailed U test or Student’s t-test,
as appropriate after assessing the distribution of the data using
the Shapiro–Wilk test and QQ plots. For multiple comparison,
Kruskal–Wallis test with Dunn’s post-hoc correction or one-way
ANOVA was used. p-values less than 0.05 were considered
significant. Statistical analyses, including the analysis of flow-
cytometry data, were performed using GraphPad Prism 9.0
(GraphPad Software, La Jolla, CA, USA).

RNA sequencing data were analyzed with R (v.4.0.4) software.
The heatmap with unsupervised clustering was generated using
the ComplexHeatmap (v.2.6.2) package using Euclidean distance
and complete linkage method for clustering, annotating pre-
selected genes of interest (Figure 1). Violin plots were generated
through the ggplot2 package.

The differential gene expression analysis was evaluated using
the R package DESeq2 (v.1.30.1). False discovery rate (FDR) was
applied using Storey’s q-value with a cutoff of q < 0.05 used to
significantly define differentially expressed genes (DEGs). In this
analysis, pseudogenes were removed, and the linear model was
adjusted by gender used as covariate (Figures 1 and 4). The
DEGs for Figure 1A analysis are listed in Supplementary
Table S4.

For the TRACTISS cohort data (Figure 4), a gene level
longitudinal analysis was performed fitting a mixed effects
linear model through the R package glmmSeq (v.0.1.0). Gene
dispersions were calculated through the following formula:

Dispersioni = (variancei −meani)=mean2i

Size factors were estimated using the estimateSizeFactorsFor
Matrix function from DESeq2 (v.1.30.1).

RNA-seq data have been deposited in the ArrayExpress
database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under
accession number E-MTAB-10517.
RESULTS

NKp30 Is Upregulated in Sjogren’s
Syndrome Salivary Glands
Bulk-RNA sequencing analysis was performed on labial salivary
glands biopsies from NSCS and pSS patients. Unsupervised
clustering showed a segregation of NK cell genes together with
B- and T-cell gene signatures in pSS patients (Figure 1A),
suggesting an enrichment of NK cells in salivary glands with a
higher inflammatory infiltration. The list of DEGs is reported in
Supplementary Table S4. Focusing on the expression of the
natural cytotoxicity receptor (NCR) family, we looked at the
expression level of NCR1 (NKp46, CD335), NCR2 (NKp44,
CD336), and NCR3 (NKp30, CD337). Although these
Frontiers in Immunology | www.frontiersin.org 4
molecules have no homology, they have been grouped as
NCRs based on the similarities in their expression profile, their
oligomeric structures, and their function (32).

NCR3 gene showed a significantly higher expression in pSS
salivary gland tissues compared to the NSCS glands, while NCR1
and NCR2 genes did not show a differential expression between
the two groups (Figure 1B). NCR3 upregulation in pSS patients
compared to NSCS within salivary gland tissue was confirmed
using qPCR (Supplementary Figure S3B). NCR3 expression was
higher in pSS patients with circulating autoantibodies, such as
rheumatoid factor (RF), but not anti-SSA/Ro and anti-SSB/La
(Figure 1C). No significant correlation was found between NCR3
and clinical parameters reflecting B-cell hyper-activation, such as
peripheral blood immunoglobulins (IgG, IgM, and IgA) or
complement (C3 and C4). Of note, however, NCR3 showed
strong correlations with salivary gland inflammatory markers,
such as semi-quantitative scores for B (CD20) and T (CD3) cells
in pSS labial salivary glands (Figure 1D). These correlations were
specific for NCR3, as they were not observed for NCR1 and
NCR2 (Figure 1D).

The quantification of salivary gland infiltration of B (CD20) and
T (CD3) cells also identified inflammatory infiltrate organization in
ectopic lymphoid structures (ELS), (Supplementary Figure S2).
Based on the salivary gland histology, pSS patientswere classified as
ELS positive or negative, according to the presence or absence of
segregated foci in the salivary glands (33).Anupregulation ofNCR3
(alongside NCR1) characterized salivary glands with a higher
inflammatory infiltration and ELS organization (Figure 1E),
confirmed by qPCR (Supplementary Figure S3C). NCR3 showed
a higher expression among the two NCR receptors (Figure 1E).
Next, we analyzed gene–gene correlations and observed a strong,
positive correlation between NCR3 and GZMB, PRF1, and IFNG,
encoding respectively for Granzyme-B, Perforin, and IFN-g.
Importantly, the correlations were exclusively present in pSS
salivary glands with ELS (Figure 1F). On the other hand, NCR2
did not correlate with these NK cell effector mediators and NCR1
showed a weak correlation with PRF1 and IFNG (Supplementary
Figure S4A), suggesting thatNKcell activation inpSS SGs ismainly
driven by NKp30 engagement.

NKp30 and B7/H6 Localization in
Salivary Glands
Having observed an upregulation of NCR3 gene expression in
pSS salivary glands, we then looked at the localization of NKp30+
NK cells and its ligand B7/H6 in SG tissues, stratified according
to the severity of the inflammatory infiltrates. Staining for
NKp30 (Figure 2A) revealed increased numbers of tissue-NK
cells in pSS salivary glands displaying a higher degree of
inflammation and ELS formation (Figures 2B, C), compared
to NSCS patients. In pSS patients, these NKp30+ NK cells
accumulated mainly at the border of the inflammatory
foci (Figure 2A).

Cytokines including IL-12, IL-15, and IL-18 are critical
regulators of NK cell activation, while others such as IL-2 and
IL-21 have been described to modulate the receptor repertoire of
NK cells, including NCR members such as NKp46 (34). We
wondered whether similar pro-inflammatory stimuli might be
September 2021 | Volume 12 | Article 706737
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FIGURE 1 | NCR3 gene is upregulated in pSS salivary glands with higher inflammatory infiltration. (A) Heatmap showing Z-score of NK, B-, and T-cell related genes
from RNA sequencing analysis of labial salivary gland biopsies of Sicca (n = 17) and pSS (n = 24) patients. Color sets on top of the heatmap identify the presence
(pos) or absence (neg) of circulating anti-nuclear (ANA), anti-Ro (aRo), and anti-La (aLa) antibodies, ectopic lymphoid structures (ELS) in the glands, and circulating
immunoglobulin (Ig) levels (IgG, IgA, and IgM). Each square is a sample/patient. (B) Expression on natural cytotoxicity receptor (NCR) genes: NCR1 (NKp46), NCR2
(NKp44), and NCR3 (NKp30) between NSCS (sicca) and pSS salivary glands. Mann–Whitney U t-test statistics. (C) NCR3 (NKp30) gene expression level in SS
patients segregated by the presence (pos) or absence (neg) of circulating auto-antibodies, such as rheumatoid factor (RF), anti-SSA/Ro (aRo), and anti-SSB/La (aLa).
Mann–Whitney U t-test statistics. (D) Correlation matrix between NCR1 (NKp46), NCR2 (NKp44), NCR3 (NKp30), NCR3LG1 (B7/H6) gene expression level,
circulating level of immunoglobulins (IgG, IgA, IgM), complement (C3, C4), EULAR Sjögren’s syndrome (SS) disease activity index (ESSDAI), and histological semi-
quantitative score for CD3, CD20, and CD138. Graph shows NSCS and pSS patients. Spearman correlation coefficient, R (color denotes the strength of the
correlation) and p-value, FDR correction for multiple comparison. *p < 0.05, **p < 0.01, ***p < 0.001. (E) NCR3 (NKp30) gene expression level in NSCS (sicca) and
pSS salivary glands, segregated by the presence (ELS pos) or absence (ELS neg) of ectopic lymphoid structures within SG. Statistical analysis by Kruskal–Wallis test
with Dunn’s multiple comparison correction. (F) Spearman correlation analysis between NCR3 with GZMB, PRF1, and IFNG in pSS patients segregated for the
presence of ELS. Spearman correlation coefficient, R and p-value, *p < 0.05, **p < 0.01, ***p < 0.001. NSCS, non-specific chronic sialadenitis; SS, Sjogren’s
syndrome; ELS, ectopic lymphoid structures; ns, not significant.
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FIGURE 2 | NKp30 and B7/H6 localization in salivary gland tissues. (A) Representative images of immunohistochemistry staining for NKp30 in NSCS (n = 6) and SS
(n = 12) labial salivary gland biopsies. Arrowhead: NKp30+ cells. (B, C) Quantification (mean count per field) of NKp30+ cells in labial SG biopsies of NSCS and SS
(B), segregated by the presence of ELS (C). Mann–Whitney U t-test statistics in (B) and Kruskal–Wallis test with Dunn’s multiple comparison correction (C). All
graphs represent median with interquartile range. *p < 0.05, **p < 0.01, ***p < 0.001. (D) Correlation matrix between NCR1 (NKp46), NCR2 (NKp44), and NCR3
(NKp30) with IL12A, IL15, IL18, IL2, and IL21 gene expression levels from bulk-RNA sequencing of SG tissues. Graph shows NSCS (n = 17) and pSS (n = 24)
patients. Spearman correlation coefficient, R (color denotes the strength of the correlation) and p-value, FDR correction for multiple comparison. *p < 0.05, **p <
0.01, ***p < 0.001. (E) Spearman correlation analysis between NCR3 with IL12A, IL15, IL18, IL2 and IL21 in pSS patients (n = 24) segregated by the presence of
ELS. Spearman correlation coefficient, R and p-value, *p < 0.05, **p < 0.01, ***p < 0.001. (F) NCR3LG1 (B7/H6) gene expression level in NSCS (n = 17) and pSS
(n = 24) salivary glands (top graph), and NSCS with pSS segregated by the presence (ELS pos) or absence (ELS neg) of ectopic lymphoid structures within SG
(bottom graph). Mann–Whitney U t-test statistics and Kruskal–Wallis test with Dunn’s multiple comparison correction respectively. (G) Representative images of
immunohistochemistry staining for B7/H6 in labial salivary gland biopsies of SS with different degrees of inflammation (I, II, and III) and NSCS (IV). Arrowhead: B7/H6 +
cells. ns, not significant.
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responsible for NKp30 (NCR3) and to a lesser extent NKp46
(NCR1) upregulation within pSS SG. Accordingly, we observed a
strong correlation of NCR1 with IL-15 and IL-21 in pSS SGs
(Figure 2D), confirming previous findings on the effect of IL-21
in inducing NKp46 upregulation on PBMCs (34). Interestingly,
NCR3 strongly correlates with IL12-A, IL-15, IL-18, IL-2, and IL-
21 in SGs tissue (Figure 2D). Stratifying the pSS cohort based on
ELS organization, these correlations were only observed in SG
with ELS (Figure 1E), with IL-18 and IL-21, the latter known to
be associated with ELS organization (33), showing the strongest
correlations. These correlations were not observed for NCR2
(Supplementary Figure S4B).

Looking at the expression of NKp30 receptor ligand
(NCR3LG1, B7/H6), RNA sequencing did not show any
differential expression between NSCS or pSS salivary gland
tissues regardless of inflammatory infiltration (Figure 2F),
suggesting a ubiquitous expression within salivary gland tissue.
Consistent with the transcriptomic data, B7/H6 appeared to be
expressed primarily by ductal epithelial cells (Figure 2G) in both
NSCS and pSS salivary glands with and without inflammatory
foci. Of note, B7/H6 expression was also found in some
mononuclear cells, some of them morphologically identified as
plasma cells, previously described only in cervical cancer (35)
(Supplementary Figure S1A).

NKp30 Upregulation on Circulating NK
Cells Is Independent From Salivary
Gland Histology
Immuno-phenotypic characterization of circulating NK cells was
performed on pSS patients and gender-matched controls. The
NK-cell receptor repertoire was analyzed on total circulating
NK-cell and NK subsets by flow cytometry. NK cells were
identified as viable lymphocytes prior to the exclusion of
CD14+ (monocytes), CD20+ (B cells), and CD3+ (T and NK-
T cells) and gated on CD56+ population (NK cells). Based on the
CD56 and CD16 expression, the main circulating NK cell subsets
were identified as CD56bright (CD56++CD16-) and CD56dim
(CD56+CD16+), respectively (Figure 3A).

Among all activating receptors analyzed, NKp30 was the only
one upregulated on circulating NK cells in pSS patients
compared with controls, whereas NKp46, NKp44, NKG2D,
and DNAM-1 activating NK cell receptors were not
significantly different. NKp30 upregulation was confirmed in
terms of both frequency and receptor density (mean fluorescence
intensity, MFI) (Figures 3B, D). NKp30 expression level was
higher in the NK cell compartment overall, with an increased
expression on both CD56bright and CD56dim subsets
(Figures 3C, E).

Given the selective NKp30 upregulation in SG tissue of pSS
and the NCR evolvement in tumor surveillance, we investigated
whether the NKp30 expression on circulating NK cells
(expressed both as frequency and MFI) was different according
to the presence of SG inflammatory infiltration (regardless of the
ELS organization), myoepithelial sialadenitis (MESA) pre-
lymphomatous lesions, or non-Hodgkin’s MALT lymphoma in
SS parotid SG. The NKp30 expression on peripheral NK cells was
Frontiers in Immunology | www.frontiersin.org 7
comparable between patients with salivary gland inflammatory
infiltration with no feature of lymphomatous lesions,
myoepithelial sialadenitis (MESA), or non-Hodgkin’s MALT
lymphoma in the parotid SG (Figures 3F, G).

Rituximab Prevents NKp30 Upregulation in
Sjogren’s Syndrome Salivary Glands
As we showed that the NKp30 upregulation in the SG tissue is
associated with higher SG infiltration with features of ectopic
germinal centers (GC), we evaluated whether treatment with
rituximab, which was shown to modulate GC response in the SG
(36), could also affect NKp30 receptor and/or B7/H6 ligand
expression within pSS salivary glands.

Available RNA sequencing data of labial SG biopsies from the
TRACTISS cohort of pSS (29) were used for a longitudinal
analysis of NCR3 (NKp30) and NCR3LG1 (B7/H6) genes.
When analyzing labial SG biopsies, no differences were
observed in the expression of NCR3/NKp30, NCR3LG1/B7H6,
GZMB, and IFNG at baseline between placebo and rituximab-
treated patients (Figure 4A). Of note, in matched labial SG
biopsies analysis at three different time points (baseline, week 16,
and week 48),NCR3 appears as one of the DEGs between placebo
and rituximab at 48 weeks (Figure 4B). When looking at changes
in the expression level in the three sequential biopsies (baseline,
week 16, and week 48), NCR3 expression increased over time in
the placebo group, while a trend towards reduction was observed
in the rituximab-treated group, with a similar pattern to GZMB
and IFNG gene expression (Figure 4C). These data suggest that
rituximab prevents the upregulation of NKp30 in pSS SG, while
also reducing effector mediators of NK cell activation. On the
contrary, NCR3LG1 (B7/H6) showed no changes over time
within pSS SG tissue or as an effect of rituximab treatment.
Rituximab prevents the worsening of SG inflammation. Placebo-
treated labial SGs showed a worsening of inflammation
highlighted by the increment of B-cell density, development of
new FDC networks, and a higher ectopic GC prevalence at week
48, compared to RTX-treated patients (37).
DISCUSSION

Our findings focused on the NK cell-specific activating receptor
NKp30 and its ligand B7/H6 within SGs, the target tissue of the
autoimmune response in pSS. We showed a higher expression of
the NCR3 gene, which encodes for NKp30, in pSS SG biopsies
compared with NSCS, which strongly correlates with the degree
of glandular inflammation, as higher levels were specifically
observed in patients with SG ELS. Moreover, using NKp30
staining, we were able to localize NKp30+ NK cells outside the
inflammatory infiltrates within the glands.

Although we did not find a correlation between NKp30
expression and specific autoantibody production (SSA/Ro and
anti-SSB/La) or peripheral blood immunoglobulins, both
markers of B-cell hyperactivation, NKp30 was associated with
the presence of ELS within SG. In addition, we demonstrated an
activation status of the NK cells within the glands as evidenced
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FIGURE 3 | NKp30 expression on circulating NK cells. (A) Flow-cytometry gating strategy for the identification of NK cells and NK cell subsets (CD56dim and
CD56bright) in the peripheral blood for receptor repertoire expression analysis. (B–E) Comparison of NK cell receptor expression between healthy donors (HDs)
(n = 20) and SS (n = 23) PBMCs, expressed as frequency (B, C) and mean fluorescence intensity (D, E), on total NK cells and NK cell subsets, respectively.
(F, G) NKp30 expression on total NK cells [as frequency (F) and MFI (G)] in the pSS cohort segregated by SG histopathology: SG inflammatory infiltration with no
feature of lymphomatous lesions (SS), myoepithelial sialadenitis (SS-MESA), and parotid non-Hodgkin’s MALT lymphoma (SS-NHL). The dotted line shows the average
of the HD group. Each dot represents one sample/patient. Median with interquartile range in red. Mann–Whitney U t-test. **p < 0.01, ***p < 0.001.
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by the upregulation of the genes encoding for the effector
mediators perforin, granzyme-B, and IFN-g. The production of
perforin and granzyme-B is associated with a cytotoxic function
of NK cells whereas IFN-g defines a regulatory/inflammatory
function (38).

Next, detailed immuno-phenotyping of circulating NK cells
showed the selective upregulation only of the NKp30 activating
receptor on both CD56bright and CD56dim NK cells,
confirming a previous finding reporting an upregulation of
NKp30 expression on circulating NK cells in pSS (26); this was
independent of the severity of the local inflammation within SG.

Altogether, our results indicate that the natural cytotoxicity
receptor (NCR) NKp30 is expressed in NK cells both in the
peripheral blood and infiltrating SG tissues in SS patients.
Frontiers in Immunology | www.frontiersin.org 9
The study by Rusakiewicz et al. (26) was the first to suggest
the role of the NKp30 receptor in pSS (26). In this study, genetic
polymorphisms (rs11575837, rs2736191) residing within the
promoter region of NKp30 were associated with reduced gene
transcription and function and reduced risk of the disease. In
particular, the association between rs11575837 A allele and
disease protection was even stronger among patients whose
disease is characterized by specific autoantibody production
(anti-Ro/SSA and anti-La/SSB). Conversely, the presence of the
major G allele, which was more frequent in pSS patients than in
controls, could lead to increased levels of NKp30 mRNA
expression favoring IFN-g secretion upon triggering by ligands.

The inflammatory stimuli inducing NKp30 upregulation in
SS remains to be unraveled. In vitro studies on human NK cells
A B

C

FIGURE 4 | NKp30 and B7/H6 expression post-Rituximab treatment. (A) Baseline expression of NCR3 (NKp30), NCR3LG1 (B7/H6), GZMB, and IFNG between
placebo and rituximab salivary glands. Mann–Whitney U t-test statistics. (B) Volcano plot of DEGs using DESeq2 comparing rituximab versus placebo patients after
48 weeks of treatment. Comparison between groups using Wald test and correcting for multiple testing Storey’s q-value (q < 0.05 = significant, shown in green).
Positive values represent upregulation in rituximab and negative values denote downregulation in rituximab-treated patients compared to placebo. (C) Longitudinal
analysis fitting a mixed effects linear model of NCR3, NCR3LG1, IFNG, and GZMB genes for rituximab (21 samples, 10 individuals) and placebo (29 samples, 15
individuals). The scatter plot shows the assessed normalized expression level of each sample over time overlaid by the fitted model (in blue) with 95% confidence
intervals (fixed effects).
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showed that the upregulation of NK cell receptor part of the NCR
family, such as NKp46, and the production of effector molecules
(perforin and granzyme-A and B) is IL-21 and, to a lesser extent,
IL-2 dependent, (34) suggesting an interplay with adaptive
immunity. IL-21 has the potential to directly activate NK cell
proliferation and cytotoxic function, mediated by IL-21 receptor
signaling expressed by these cells (39). In support of the possible
interaction between innate and adaptive immunity mediated by
NK cells, in vitro studies with human NK cells showed a selective
expansion of an NK cell subset co-expressing CD86 and HLA-
DR and lacking NKp44, as the result of IL-21 stimulation. In
turn, co-stimulation of human naive CD4+ helper T cells by
HLA-DR+ NK cells induce the differentiation of uncommitted
central memory T cells (CXCR3+CCR6-CCR4-CXCR5-) (40).

Accordingly, a strong correlation of NKp30 expression with
IL-21, IL2, IL-12, IL-15, and IL-18 was found selectively in the SS
SG with a higher degree of inflammation and ELS organization
within the glands. T follicular helper (Tfh) cells are the main
source of IL-21 and are indispensable for functional GC
formation, B-cell activation, and antibody production (41).
Our group has shown that IL-21 is produced by Tfh cells
within ELS in the inflamed SS SG and supports B-cell
autoreactivity (33). Taken together, one could speculate that
the production of IL-21 within ectopic GC in the ELS of pSS
could further support Nkp30 upregulation at an advanced stage
of the disease. In line with this hypothesis, we found that
Rituximab, known to reduce ELS organization (42), was able to
prevent NKp30 upregulation in the SGs of SS patients.
Nonetheless, this observation comes from a relatively small
number of patients and will require confirmation in larger cohorts.

pSS is the prototype of autoimmune disease associated with
B-cell hyperactivity and autoantibody formation, which results
from an aberrant response of adaptive immunity following tissue
damage, self-antigen exposure, and recruitment of antigen-
presenting cells. In the early stages of the disease, an initial
insult, viral or environmental, is thought to cause EC apoptosis
and mobilization of DCs, which pick up apoptotic cells, and
activate T cells resulting in tissue damage (4).

The role of NK cells in this pathogenic process has not been
clearly defined. Most studies focused on circulating rather than
tissue-resident NK cells, mainly because of limited access to
diseased tissues. Furthermore, studies on peripheral NK cells are
confounded by the phenotypic and functional heterogeneity of
NK cells, contributing to the contradicting results (15–17). This
probably also reflects the potentially distinctive roles NK cells
play at different stages of the disease as well as different patient
cohorts. Moreover, the role of NKp30 cannot be explored in
mouse models of pSS, as NKp30 is not conserved by murine NK
cells where it exists only in the form of a pseudo gene (43).

By analyzing human salivary gland samples from patients
with SS and sicca controls, we were able to localize NKp30+ cells
in the SGs tissue at the periphery rather than within the
inflammatory foci, where NKp46+ cell infiltration was also
described (26) using NKp46 as a pan-NK marker. The
comparison of the expression levels of NCR1/NKp46, NCR2/
NKp44, and NCR3/NKp30 showed a higher expression of
Frontiers in Immunology | www.frontiersin.org 10
NKp30 in SS salivary glands; nevertheless, the localization of
NK cells expressing different NCRs has never been compared in
SS SG. Of note, the NKp30 ligand, B7/H6, was mainly expressed
by SG EC, suggesting a direct interaction of NK cells with SG EC.
B7/H6 has been hypothesized to be expressed by apoptotic SG
EC (4), thus facilitating the direct interaction with NK cells, the
activation of NK cells, and perpetuation of inflammation within
the glands. However, no data have been reported on the
mechanism leading to the induction of B7/H6. It showed to be
induced in inflammatory conditions both in vitro and in vivo
(44). In vitro studies on human SG cell line stimulated with
inflammatory cytokines increased in SS SG, such as IL-17, IL-22,
IL-23, or TNFa, showing that the upregulation of B7/H6 is
mainly driven by TNFa (26).

Surprisingly, within SS SG, we found that B7/H6 also
expressed in the cytoplasm of plasma cells. It is interesting to
note that a previous study in a transgenic mouse model reported
that B7 H (another member of the growing B7 family, ICOSL) on
the plasma cell surface drives an increase in the number of
plasma cells secreting antigen-specific, high-affinity, class-
switched antibodies, as well as a corresponding increase in
serum concentrations of antigen-specific antibodies (45). B7/
H6 might promote similar roles in plasma cells in pSS SG;
however, future experiments will be required to elucidate the
exact function of B7/H6 expressed by plasma cells in SS SG.

NKp30 is also critical for the interaction of NK cells with DCs;
engagement of NKp30 on NK cells with its ligand B7/H6 on DCs
results in the production of IFN-g and TNFa by NK cells and
maturation of DCs and IFN-a production (46, 47). NK cells
might play a role early in the pathogenesis of pSS via interaction
with DCs, which results in DC maturation and initiation of the
adaptive immune response. A mouse model of pSS also
demonstrated an early influx of DC and NK cells in the SG
following innate immune response (13).

Finally, this is the first study to investigate the effect of
immunomodulatory treatments on NK cells and in particular
on NKp30 expression in patients with SS. We showed that
treatment with rituximab, which reduces the local
inflammatory infiltrates within the SG, can also ameliorate the
expression of NKp30 in the glands.

Overall, our observations in this study support a possible dual
role of NK cells in the inflammatory process underlying the
disease pathogenesis of SS: following an initial insult on the SGs,
NK cells interact directly with apoptotic/damaged EC possibly
through NKp30 and B7/H6, respectively, resulting in the
production of pro-inflammatory cytokines/chemokines and
influx of more effector cells. NK cells also interact with DCs
and promote their priming and maturation, which in turn leads
to further NK cell and T-cell activation and initiation of the
adaptive immunity, with the recruitment of T and B cells and
formation of local inflammatory infiltrates and ELS. This
interaction could take place either within the inflamed salivary
glands or in the draining lymph nodes. Further functional studies
exploring the receptor/ligand interaction and the mechanisms
involved in this process will be needed to better clarify the role
for NKp30 expressing NK cells in the pathogenesis of pSS.
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Supplementary Figure 1 | (A) Representative images of immunohistochemistry
staining for B7/H6 in pSS labial salivary gland biopsy and (B) human tonsil.
Arrowhead: B7/H6+ cells. (C) Representative images of double
immunofluorescence for NKp30 (yellow) and B7/H6 (green) in human tonsil.
Cell expressing both NKp30 receptor and its ligand localize mainly outside the
germinal centre in human tonsil (positive control), close to each other. The
dashed line delimit the germinal centre. LZ, Light Zone; DZ, Dark Zone.

Supplementary Figure 2 | Assessment of the degree of infiltration of SG biopsies
and ELS organization in pSS by IHC staining for T cells (CD3), B cells (CD20), the
presence of follicular dendritic cell (FDC) network (CD21) and plasma cells (CD138).
The histological identification of ELS in the labial SG biopsies is defined as at least
one infiltrate with clear B/T cell segregation and presence of FDC within B cell
aggregates, suggestive of germinal center presence.

Supplementary Figure 3 | (A) Test for normal distribution, QQ plot, for NCR3
gene expression evaluated by qPCR. Cut-off of 0.05 for normality test. (B) Violin
plots showing relative expression of NKp30 transcript from RNA extracted from
total SG tissue from SS (n=13) and NSCS (n=20) patients. Mann-Whitney U t-test
statistics. (C) NKp30 transcript expression in SS SG segregated by ELS presence
in comparison to NSCS controls. Kruskal-Wallis test with Dunn’s multiple
comparison correction. *p < 0.05, **p < 0.01, ***p < 0.001. NSCS, non-specific
chronic sialadenitis; SS, Sjogren’s Syndrome; ELS, Ectopic Lymphoid Structures.

Supplementary Figure 4 | (A) Spearman correlation analysis between NCR1
(top row) and NCR2 (bottom row) with GZMB, PRF1, IFNG and with (B) IL12A,
IL21, IL2, IL15 and IL18 gene expression levels from bulk-RNA sequencing of SG
tissues. pSS patients (n=24) segregated for the presence of ELS. Spearman
correlation coefficient, R and p value, *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001. ELS, Ectopic Lymphoid Structures; neg, negative; pos, positive.
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