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Abstract. The manufacturing capabilities available today for microchannels make it possible 

to produce in a comparatively easy, quick and cheap way several cross-sections, possibly 

allowing modifications of the macro-geometry. Another way is smoothing the corners of 

polygona cross-sections: this eliminates low-gradient areas and increases transport phenomena, 

i.e. frictional losses and heat transfer. Several ways of assessing the relative performance of the 

new shape in comparison to the original have been suggested over the years, among which are 

Performance Evaluation Criteria (PEC), as proposed by Bergles and Webb. PEC are based on a 

first-law analysis and aim at extremising the thermal power, heat exchange area, inlet 

temperature difference or pumping power under varying constraints. In this work equilateral 

triangular microchannels with uniform wall temperature are considered, through which a liquid 

flows in fully-developed, steady laminar regime. The cross-sectional area has its corners 

progressively rounded, and the velocity and temperature profiles are determined, in order to 

compute the Poiseuille, Nusselt and Stanton numbers, which are then employed in computing 

the objective functions for some PEC. 

1.  Introduction 

Micro heat exchangers (MHXs) consist of several microchannels of various shape and surface texture 

which exhibit high area-to-volume ratios and high heat transfer coefficients, which makes them 

candidates for the removal of high specific heat fluxes, as is the case e.g. in microchips [1-3]. The 

capability of such microchannels to be manufactured in several shapes and their modularity provide a 

wide portfolio of options for enhancement of the heat transfer process, albeit at the expenses of high 

pressure drops, even in the higher range of the laminar regime, so much more so if the fluid is a liquid 

[4-6] Several strategies may be adopted for heat transfer enhancement in heat exchangers, as 

thoroughly discussed in [7], but promoting turbulence through inserts of various shape inside 

microchannels makes the modification of channel morphological characteristics a much more viable 

option [8-9]. This work aims at investigating the effect of changing the base cross-sectional geometry 

(triangular) of a microchannel by smoothing its corners. Thus, optimization of channel cross-sectional 

geometry is employed in this work. No viscous dissipation is considered, and Performance evaluation 

criteria (PEC) are used in order to determine heat transfer enhancement under defined constraints 

[7,10], and are sometimes coupled to second-law analyses [11]. This work complements other 

investigations by the same authors which dealt with other micro-geometries or boundary conditions 

[12-14], considered viscous dissipation [15,16] or electro-osmotic effects [17-19]. 
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The effect of smoothing the corners of a square duct under H1 and H2 thermal boundary conditions 

on the Poiseuille and Nusselt numbers was investigated by [8, 9] and the numerical results used to 

evaluate the optimal geometrical configuration according to PECs criteria and entropy generation. In 

[12] the Poiseuille and Nusselt numbers was numerically computed as a function of the corners 

rounding radius of various cross-sectional geometry subjected to H1 boundary conditions, assuming 

negligible viscous heating. The effect of viscous heating on heat transfer performance was 

investigated, in terms of Nusselt number, in [4, 6, 15]. Here, a microchannel with a triangular cross-

section and sides of equal length with rounded corners is considered. The flow is assumed Newtonian, 

laminar, fully developed and with negligible viscous heating. Uniform temperature is imposed at the 

walls. 

The velocity and temperature fields are computed to obtain the Poiseuille and Nusselt numbers, 

which are in turn employed in the objective functions of the PEC, following the same approach as [9-

13], in order to estimate the influence of the geometry of the cross-section. Results for a selection of 

PEC are shown and commented. 

2.  Statement of the problem 

The geometry investigated is that of a triangular microchannels with sides of equal length, a, whose 

sharp corners are progressively rounded, with a radius of curvature rc, to a limiting non-dimensional 

value Rc,max=
rc

a⁄ =1/(2√3), Fig.1. Ten different values of Rc are considered. The walls of the duct 

have a uniform temperature Tw. The fluid flowing within the channel is incompressible, Newtonian, 

with thermodynamic and transport properties independent of temperature and pressure. The flow 

regime is pressure-driven, laminar and fully developed and viscous heating is of no significance. 

Forced convection is the predominant heat transfer mode and no axial conduction occurs in the fluid. 

 

Figure 1: Triangular duct with rounded corners. 

 

In order to compute the Poiseuille and Nusselt numbers, Po and Nu respectively, which are needed 

by the objective functions to be employed in the first-law optimization, the velocity and temperature 

fields for the fully developed flow must be determined. This is accomplished by casting the governing 

equations for momentum and energy conservation in non-dimensional form, Eqs. (1) and (2) 
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Using the non-dimensional quantities defined below, Eq. (3): 
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Where x is the axial coordinate, y and z the coordinates related to the channel’s cross-section, Dh 

the hydraulic diameter. The bulk velocity is ub, whereas u is the velocity component along the channel 

axis, p is the pressure and  the fluid viscosity in Pa·s. The local fluid temperature is T, whilst Tb and 

Tw are the bulk and wall temperatures respectively. The boundary conditions are no slip of the fluid at 

the wall, i.e. uw
* =0 and uniform wall temperature, i.e. ϑw=0. 

The equations are then solved numerically with an approach detailed in [19]. Knowledge of u* and 

ϑ
*
 allows computation of the Nu and Po; details can be found in [13,16,19]; these quantities are then 

employed to compute the objective functions needed by the PEC chosen for the optimization. In 

general, the use of PEC allows the achievement of one of the goals listed below: 

- maximise heat transfer, Q̇; 

- minimise heat transfer surface, A; 

- minimise the inlet temperature difference between the bulk fluid and walls, ΔTi=Tw-Tb,i; 

- minimise the pumping power P, which is the same as minimising the pressure drop, Δp. 
The objective functions are the functional expressions for Q̇, A, ΔTi and P, which are dependent on six 

quantities, namely the shape of the channel cross-section, the channel length, L, the mass flowrate ṁ, 
the pumping power, P, the heat flux, Q̇, and inlet temperature, ΔTi.The number of channels, N, would 

also be an independent variable, but is not relevant for the case of a single microchannel. 

Objective functions compare the value of a reference configuration to the one obtained by changing 

the optimisation parameter (the non-dimensional radius of curvature, in the present case) and the ratios 

of the two quantities are denoted by a superscript. For the heat flux the expression is  

Q̇
'
=

Q̇
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=∆Ti
'∙ṁ' 

1-e
-4 

Nu
Re Pr

 
L

Dh

1-e
-4 (

Nu
Re Pr

 
L

Dh
)

ref

=∆Ti
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                   (4) 

 

Where Ph is the heated perimeter, Re the Reynolds number, St is the Stanton number, St=
Nu

RePr
 . For 

the pumping power, the objective function, where  A𝑐is the cross-sectional area, is  

P'=
P

(P)ref

=
(f Re)'  ṁ'2 L'

 Ac
'  Dh

'2
                                                          (5) 

2.1.  Geometrical constraints 

The reference configuration corresponds to a cross-section with sharp corners (Rc=0). It is easily seen 

that the expression for Dh, A𝑐,and Ph, all depend on both the non-dimensional radius of curvature and 

the length of the cross-section side, a’. This behaviour is not shared by the Poiseuille and Nusselt 

numbers, which are independent of the length a. If the objective functions are to be optimised with 

respect to Rc, four different cases must be treated, each with a different geometrical constraint which 

eliminates any dependence on the length a, see Table 1. 

 

Geometric constraint a/aref ratio 

a

aref

=1 

a

aref

=1 
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Table 1 – Constrained geometrical parameters (left) and corresponding expression of a’ (right). 

 

For each PEC the choice of the geometrical constraint determines one expression of the objective 

function. 

In the following section, some examples of PECs are given, after showing examples of velocity and 

temperature fields and the Poiseuille and Nusselt numbers as a function of the radius of curvature. 

 

3.  Results and discussion 

 

Figure 2a shows the velocity distribution over the cross-section in the case of sharp corners, whilst 

Fig. 2b shows the same quantity when the corners are smoothed at half the maximum allowable radius 

of curvature. 

 

 
(a)        (b) 

Figure 2: Velocity profile for Rc=0 (a) and Rc=Rc,max/2 (b). 

 

The maximum velocity is in the barycentric position in both cases, but when Rc=0 the value is higher. 

This is due to fluid stagnation at the sharp corners, which does not occur when they are smoothed; this 

implies that local gradients are larger in the latter case, as confirmed by the temperature distribution, 

Fig. 3. The larger gradients at the smoothed corners of the cross-section signal an increase in transport 

phenomena, which is captured by the trends of the Poiseuille and Nusselt numbers, plotted in Fig. 4. It 
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should be noted that the maximum increase in Po is below 20%, and that the Poiseuille number 

remains almost constant for Rc>0.15, whereas the Nusselt number increases monotonically with Rc up 

to about 45% more than the value it attains for the base cross-section. It should also be pointed out that 

the local value of the Nusselt number along the heated perimeter varies sharply, with maxima at the 

midpoint of each side and minima at the corners, but for sharp corners the minima are close to zero 

and increase steadily with Rc; the maxima, conversely, increase at first, reaching a maximum at around 

half Rc,max,. 

 
(a)        (b) 

Figure 3: Temperature profile for Rc=0 (a) and Rc=Rc,max/2 (b). 

 

For larger radii, the straight portion of the sides shortens and the maximum Nusselt drops below the 

value for Rc=0, but the average value increases, hence the trend of Fig. 4b.  

 

 
(a)        (b) 

Figure 4: Poiseuille number (a) and Nusselt number (b) as a function of Rc. 

 

3.1.  PEC optimisation 

Once the Poiseuille and Nusselt numbers are determined, PEC optimization can be carried out using 

algebraic expressions such as, Eqs.(4) and (5) [13], some cases are presented below. If most quantities 

are normalized using the corresponding values for the base geometry (Rc=0), some reference values 

had to be assumed for the Reynolds number (Reref=5), the Prandtl number (Pr=7 throughout), the 

channel length (L=5 mm) and its hydraulic diameter (Dh,ref=100 m). Since the two objective 
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functions depend on five different quantities, three of them must be kept constant in turn. The triplet of 

variables which do not change as Rc is varied determines the kind of PEC which is applied. 

3.1.1.  FG2a. Maximisation of the heat transfer (so-called FG1a PEC) under fixed inlet temperature 

difference, length and mass flowrate and minimisation of Ti if Q̇, L and ṁ are kept constant (called 

FG1b PEC) show that the radius of curvature has no practical influence and is therefore neglected 

here. The PEC FG2a involves maximisation of the heat transfer with Ti, L and P constant. After 

some calculations it can be demonstrated that Eq.(4) becomes 

Q'̇ =C1 (
a

aref

)
2 1-e

- 
C2

(
a

aref
)

2

C3

                                                                 (6) 

 

Where C1, C2 C3 are functions of the radius of curvature only, and therefore independent of a/aref. 

Because of this, the value of Q'̇  is dependent on the geometrical constraint chosen from those in Table 

1. This is clearly shown in the four plots of Fig. 5a, which represent the different trends of the heat 

flux as the radius of curvature is varied: when the side length is kept constant, the increase is moderate 

at best, with a maximum around 9% at Rc0.25. For all other cases the trend is monotonous and has its 

extreme value (a minimum for Dh= constant, a maximum in the two remaining instances) for the 

highest radius of curvature; it should be remarked that the cross section becomes circular then. 

3.1.2.  FG2b. The mirror case to FG2a is FG2b, where the minimum inlet temperature difference is 

sought for fixed heat flux, channel length and pumping power. Again, after some algebraic 

manipulations, Eq.(4) can be cast into the form of Eq. (7): 

 

∆Ti
' =

1

C1 (
a

aref
)

2

C3

1-e

- 
C2

(
a

aref
)

2

=Q'̇ -1                                                           (7) 

 

As is to be expected, the trends shown in Fig. 5b are the reverse of the previous criterion, and the 

configuration yielding the best results (for maximum radius of curvature) is the one with constant 

heated perimeter. In this case the reduction is dramatic, with Ti dropping to 50% of the reference 

value for Rc0.2 and decreasing further to 35% of the original for the maximum radius of curvature. 

 

 
(a)        (b) 

Figure 5 – Local heat transfer coefficient along the heated perimeter (a) and temperature profile (b) on 

the mid-plane.  
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3.1.3.  FN1. The FN-type criteria have minimisation of either the channel’s length or the pumping 

power as their goals. The FN1 criterion has the heat transfer, inlet temperature difference and pumping 

power as constraints, i.e. quantities that are held fixed throughout the optimisation and L as its 

objective function. Contrary to the previous cases, this leads to an expression which is not explicit in 

L’, as shown in Eq. (8): 

 L'=  

[
 
 
 
 
 

C1 (
a

aref

)
2

 
1-e

-C
C2

(
a

aref
)

2(L')

3
2 

C3

]
 
 
 
 
 
2

                                                             (8) 

In this case, care must be exerted to limit the non-dimensional quantities to physically significant 

values, lest the results become negative, therefore meaningless. This was considered when choosing 

the reference values mentioned in the opening paragraph of this section.  

Equations (6) and (8) only differ for (L')
3

2 in the exponential term; unsurprisingly, that the trend of 

L’ is similar to that of Q̇, as, results from the comparison of Figs. 5a and 6a. It is therefore concluded 

that only when the hydraulic diameter is fixed does smoothing the corner bring a benefit, and that this 

shortening of the channels is larger, the more the cross-section approaches the circular channel. 

Among the remaining constraints, geometries with fixed side exhibit little sensitivity to the radius of 

curvature, whilst a fixed heated perimeter causes a stronger increase in the channel’s length the higher 

the value of Rc. 

 

   
(a)               (b)      (c) 

Figure 6 Change in channel length for the FN criteria: FN1 (a), FN2 (b) and FN3 (c). 

3.1.4.  FN2. Another criterion to minimize the channel’s length is known as FN2; in this case the 

constraints are fixed heat flux, inlet temperature difference and mass flowrate, Q̇', ∆Tin
', ṁ' = 1. When 

theys are applied, the objective function becomes Eq. (9): 

 

L'=
 Dh

'

Ph
'
 

1

Nu'
                                                                           (9) 

Since both Dh
'  and Ph

'  are proportional to the a/aref ratio, L' is a function of Nu', which is dependent 

on Rc only: as a consequence, the four curves for the geometrical constraint all collapse onto one, as 

shown in Fig. 6b, which demonstrates how L' grows with the radius of curvature for Rc>0.1 and is 

insensitive to it for values below this threshold. 
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3.1.5.  FN3. The criterion FN3 strives to minimize the pumping power, P', under the same constraints 

as FN2, i.e. fixed heat flux, inlet temperature and mass flowrate. Again, the objective function can be 

recast accounting for the constraints, into the form provided by Eq. (10) 

 

P' =C1 (
a

aref

)
−4

                                                                      (10) 

Where C1 is a constant which depends on Rc only. The corresponding trend for the four 

geometrical constraints is shown in Fig. 6c and are essentially monotonous with the radius of 

curvature, with a sharp increase in the case of a fixed hydraulic diameter and a strong decrease in the 

case of fixed heated perimeter, the remaining cases having much smaller changes, with an increase in 

pumping power for fixed side and a decrease for fixed cross-sectional area. 

4.  Conclusions 

In this work, the Poiseuille and Nusselt numbers for the fully-developed, laminar flow of a 

Newtonian fluid through a triangular microchannel with smoothed corners and uniform wall 

temperature have been computed, and the results used in the PECs for microchannel optimisation, 

using the heat flux and the pumping power as the objective functions. It has been demonstrated that 

smoothing the corners enhances the transport phenomena, which result in augmented momentum 

transport (hence Po goes from around 53 to 64 when Rc0.10 and remains almost constant thereafter) 

and heat transfer (with Nu increasing from around 2.5 to 3.64 at Rc0.26). The values of Po and Nu 

have then been used to analyse different PECs. It has been demonstrated that one further geometrical 

constraint must be applied in most cases if the objective functions (enhanced heat flux and pumping 

power) are to be optimised as a function of the radius of curvature only. For several criteria the results 

have been presented quantitatively and commented. It is hoped that the paper can contribute some 

general indications at design level and help comprehension of the transport phenomena in triangular 

microchannels. 
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