
PH.D. THESIS IN

INDUSTRIAL AND INFORMATION ENGINEERING

DEEP CONVOLUTIONAL
NEURAL NETWORKS FOR

IMAGE SUPER-RESOLUTION

PHD CANDIDATE:

Rao Muhammad Umer

SUPERVISOR:

Prof. Christian Micheloni

PhD Cycle XXXIII — A.Y. 2020-2021

Abstract

Recently, image super-resolution methods have attained impressive performance by us-

ing deep convolutional neural networks (DCNNs). In this work, we describe the algo-

rithmic advances and results obtained by the proposed methods in the image Super-

Resolution field. First, we propose a series of Single Image Super-Resolution (SISR)

methods for effective and efficient super-resolution tasks. We initially propose a deep

feed-forward CNNs method that follows the realistic degradation model by handling

the blur kernels of different sizes and different noise levels in an unified network. Next,

we propose a deep iterative residual CNNs method that follows the image observation

(physical) model by exploiting the powerful image regularization and large-scale op-

timization techniques with the residual learning. Then, we propose an efficient deep

iterative CNNs method that solves the SR task by cascading the deep residual denoiser

networks.

Second, we propose SR approaches for the Real-World super-resolution problem.

For this purpose, we first propose a deep residual GAN-based SR approach with an

adversarial training the network for the pixel-wise supervision of the generated realistic

LR/HR pairs. Next, we propose a deep cyclic GAN-based SR method by translating the

LR to HR domain and vice versa in an end-to-end manner. After that, we incorporate

the learnable adaptive sinusoidal non-linearities into the LR and SR network, whose

parameters are optimized during the network training.

Finally, we explore the multi image super-resolution (MISR) problems. We first

i

propose a deep star GAN-based SR method by training the network with a single model

to super-resolve the LR images for the multiple LR degradation domains. Next, we

propose a deep iterative burst SR method that adopts the burst photography pipeline

by following the image observation (physical) model. Lastly, we discuss the broader

impact, limitations of the current research work, and possible future research dimensions

in the image super-resolution field.

ii

List of Publications

Main author:

Works with the main contribution by the author:

1. Rao Muhammad Umer, and Christian Micheloni. “RBSRICNN: Raw Burst

Super-Resolution through Iterative Convolutional Neural Network”. Advances in

Neural Information Processing Systems (NeurIPS) Workshops, December 06–14,

2021, Australia.
[︀
CORE2021 rating = A⋆

]︀
2. Rao Muhammad Umer, Asad Munir, and Christian Micheloni. “A Deep

Residual Star Generative Adversarial Network for multi-domain Image Super-

Resolution”. In proceedings of the 6th International Conference on Smart and

Sustainable Technologies, Sept. 08–11, 2021, Croatia.
[︀
CORE2021 rating = B

]︀
3. Rao Muhammad Umer, Gian Luca Foresti, and Christian Micheloni. “Deep

Iterative Residual Convolutional Network for Single Image Super-Resolution”. In

proceedings of the IEEE International Conference on Pattern Recognition (ICPR),

Jan 10–15, 2021, Italy.
[︀
CORE2021 rating = B

]︀
4. Rao Muhammad Umer, Gian Luca Foresti, and Christian Micheloni. “Deep

Generative Adversarial Residual Convolutional Networks for Real-World Super-

Resolution”. In proceedings of the IEEE/CVF Conference on Computer Vision

iii

and Pattern Recognition (CVPR)Workshops, June 14–19, 2020, USA.
[︀
CORE2021

rating = A⋆
]︀

5. Rao Muhammad Umer, and Christian Micheloni. “Deep Cyclic Generative

Adversarial Residual Convolutional Networks for Real Image Super-Resolution”.

In proceedings of European Conference on Computer Vision (ECCV) Workshops,

August 24–28, 2020, UK.
[︀
CORE2021 rating = A⋆

]︀
6. Rao Muhammad Umer, Gian Luca Foresti, and Christian Micheloni. “Deep

Super-Resolution Network for Single Image Super-Resolution with Realistic Degra-

dations”. In 13𝑡ℎ International Conference on Distributed Smart Cameras (ICDSC),

Sept. 9—11, 2019, Italy.
[︀
CORE2021 rating = B

]︀

Co-author:

In the following works, the author contributed to specific parts:

1. Goutam Bhat, Martin Danelljan, Radu Timofte, and others. “NTIRE 2021 Chal-

lenge on Burst Super-Resolution: Methods and Results”. In proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Workshops, June 19–25, 2021, USA.
[︀
CORE2021 rating = A⋆

]︀
2. Andreas Lugmayr, Martin Danelljan, Radu Timofte, and others. “NTIRE 2020

Challenge on Real-World Image Super-Resolution: Methods and Results”. In pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR) Workshops, June 14–19, 2020, USA.
[︀
CORE2021 rating = A⋆

]︀
3. Pengxu Wei, Hannan Lu, Radu Timofte, Liang Lin, Wangmeng Zuo, and others.

“AIM 2020 Challenge on Real Image Super-Resolution: Methods and Results”.

In proceedings of European Conference on Computer Vision (ECCV) Workshops,

August 24–28, 2020, UK.
[︀
CORE2021 rating = A⋆

]︀
iv

4. Kai Zhang, Martin Danelljan, Yawei Li, Radu Timofte and others. “AIM 2020

Challenge on Efficient Super-Resolution: Methods and Results”. In proceedings

of European Conference on Computer Vision (ECCV) Workshops, August 24–28,

2020, UK.
[︀
CORE2021 rating = A⋆

]︀

v

Acknowledgements

After gratitude and thanks to God (Allah) Almighty, I must first thank my PhD su-

pervisor Professor Christian Micheloni, who guided me through many emails, meetings,

brain-storming sessions, and discussions over the three years of PhD. I am happy that

I had a chance to learn and collaborate with him. His continuous guidance made me

progress through my research work smoothly and his support was always there whenever

I stuck somewhere in finding the relevant technical help. I do hope to continue to have

him as a mentor and friend in the future as well.

I am also thankful to my PhD collaborators, especially Asad Munir for fruitful

discussions and suggestions with him during the three-year long journey.

I am also grateful to the Machine Learning and Perception Lab, University of Udine

for creating a unique environment for research and learning.

Finally, I would like to express my gratitude for my family and this work could not

be completed without my family support.

Lastly, I would like to thank the PhD scholarship from the University of Udine for

their funding for my PhD studies. I am grateful for this scholarship for the university

fees, monthly stipends, learning resource allowances, and conference funding that it

provided for my research work to be possible. I also thank the university PhD office for

their administrative support.

vi

Contents

1 Introduction 1
1.1 Image Super-Resolution . 1
1.2 Motivation . 2
1.3 Categorization . 4

1.3.1 Single Image Super-Resolution (SISR) 4
1.3.2 Multi-Image Super-Resolution (MISR) 5

1.4 Overview . 6

2 Super-Resolution Background 8
2.1 Classical SR Methods . 8

2.1.1 Nearest-Neighbor . 8
2.1.2 Bilinear . 10
2.1.3 Bicubic . 10

2.2 Deep Learning based SR methods . 10
2.3 Real-World SR methods . 11
2.4 Video SR methods . 12

3 Single Image Super-Resolution 13
3.1 Deep Feed-Forward CNNs for SISR . 13

3.1.1 Proposed Methodology . 16
3.1.2 Network Architecture . 19
3.1.3 Experimental Setup . 21
3.1.4 Limitations . 27

3.2 Deep Iterative CNNs for SISR . 27
3.2.1 Proposed Method . 30
3.2.2 Experiments . 35

3.3 Deep Efficient CNNs for SISR . 40
3.3.1 Proposed method . 40
3.3.2 Experiments . 42
3.3.3 Discussion and Limitations . 44

vii

4 Real-World Super-Resolution 45
4.1 Deep Generative Adversarial Residual Convolutional Networks for Real-

world SR . 45
4.1.1 Proposed Methodology . 49
4.1.2 Domain Learning . 53
4.1.3 Super-Resolution Learning . 54
4.1.4 Experiments . 57

4.2 Deep Cyclic Generative Adversarial Residual Convolutional Networks for
Real-Image SR . 64
4.2.1 Proposed SR Learning Approach 66
4.2.2 Experiments . 70

4.3 Real Image Super-Resolution using GAN with deep adaptive Sinusoidal
Non-linearities . 77
4.3.1 Proposed Methodology . 80
4.3.2 Experimental Results . 84

5 Multi-Image Super-Resolution 90
5.1 A Deep Residual Star Generative Adversarial Network for multi-domain

Image SR . 90
5.1.1 Proposed Method . 92
5.1.2 Experiments . 95

5.2 Deep Iterative Convolutional Neural Networks for Raw Burst Super-
Resolution . 99
5.2.1 Proposed Method . 102
5.2.2 Proposed Burst SR Network (BSRICNN) 105
5.2.3 Experiments . 107
5.2.4 Discussion and Limitations . 111

6 Conclusion 113
6.1 Broader Impact . 113
6.2 Future Works . 114
6.3 Conclusion . 114

viii

List of Tables

3.1 The Average PSNR/SSIM SR results comparison of our method with the
others on the test benchmark datasets, i.e., Set5, Set14, and Urban100.
The best performance is shown in red and the second best performance
is shown in blue. 24

3.2 Computational time (Unit : seconds) comparison of our method with
the other SISR methods. The best performance is shown in red and the
second best performance is shown in blue. 25

3.3 The settings of input LR and corresponding HR patch sizes during the
network training. 35

3.4 The impact of iterative (K) and feedback (FB) steps on ISRResCNet on
the scale factor ×4. The average PSNR/SSIM values are evaluated on
Set5 testset. The best performance is shown in red. 38

3.5 Average PSNR/SSIM values for the scale factors ×2, ×3, and ×4 with
the bicubic degradation model. The best performance is shown in red
and the second best performance is shown in blue. 38

3.6 The quantitative SR results (×4 upscale) comparison of our method with
the others over the DIV2K validation set (100 LR images) and AIM 2020
Efficient SR challenge testset [117] (100 LR images). The best perfor-
mance is shown in red. 43

4.1 Top section: ×4 SR quantitative results comparison of our method over
the DIV2K validation-set (100 images) with added two known degrada-
tion i.e., sensor noise (𝜎 = 8) and JPEG compression (𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 30)
artifacts. Middle section: ×4 SR results with the unknown corruptions
in the RWSR challenge track-1 (validation-set) [77]. Bottom section: ×4
SR comparison with the unknown corruptions in the RWSR challenge
series [76, 77]. The arrows indicate if high ↑ or low ↓ values are desired.
The best performance is shown in red. 59

ix

4.2 Final testset results for the RWSR challenge Track-1. The top section in
the table contains ours (MLP-SR) with other methods that are ranked
in the challenge. The middle section contains participating approaches
that deviated from the challenge rules, whose results are reported for ref-
erence but not ranked. The bottom section contains baseline approaches.
Participating methods are ranked according to their Mean Opinion Score
(MOS). 62

4.3 This table reports the quantitative results of our method over the DIV2K
validation set (100 images) with unknown degradation for our ablation
study. The arrows indicate if high ↑ or low ↓ values are desired. The best
performance is shown in red. 62

4.4 The ×4 SR quantitative results comparison of our method with others
over the DIV2K validation-set (100 images). Top section: SR results
comparison with added sensor noise (𝜎 = 8) and compression artifacts
(𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 30) in the validation-set. Middle section: SR results with the
unknown corruptions (e.g., sensor noise, compression artifacts, etc.) in
the validation-set provided in the RWSR challenge series [76, 77]. Bottom
section: SR results with the real image corruptions in the validation-set
and testset provided in the AIM 2020 Real Image SR challenge [108] for
the track-3. The arrows indicate if high ↑ or low ↓ values are desired.
The best performance is shown in red and the second best performance
is shown in blue. 71

4.5 Final Testset results for the Real Image SR (×4) challenge Track-3 [108].
The table contains ours (MLP SR) with other methods that are ranked
in the challenge. The participating methods are ranked according to their
weighted Score of the PSNR and SSIM given in the AIM 2020 Real Image
SR Challenge [108]. 74

4.6 This table reports the quantitative results of our method over the DIV2K
validation set (100 images) with unknown degradation for our ablation
study. The arrows indicate if high ↑ or low ↓ values are desired. The best
performance is shown in red. 76

4.7 ×4 SR quantitative results comparison of our method over the DIV2K
validation-set (100 images) with added two known degradations i.e., sen-
sor noise (𝜎 = 8) and JPEG compression (𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 30) artifacts. Bottom
section: ×4 SR results comparison with the unknown corruptions in the
RWSR challenge series (validation-set) [77]. The arrows indicate if high
↑ or low ↓ values are desired. The best performance is shown in red and
the second best performance is shown in blue. 85

4.8 The table reports the quantitative results of our method over the DIV2K
validation set (100 images) with unknown degradation for our ablation
study. The arrows indicate if high ↑ or low ↓ values are desired. The best
performance is shown in red. 88

x

5.1 ×4 SR quantitative results comparison of our method with others over the
DIV2K (100 images of validation-set) and RealSR (93 images of testset)
that are total 393 images of the testset with the four LR degradation. The
arrows indicate if high ↑ or low ↓ values are desired. The best performance
is shown in red and the second best performance is shown in blue. . . . 96

5.2 This table reports the quantitative SR results of our method over the
DIV2K and RealSR validation-set (20 images, not used during the train-
ing phase) with the four LR domains (i.e., Bicubic, Bilinear, Nearest,
Real) for our ablation study. The arrows indicate if high ↑ or low ↓
values are desired. The best performance is shown in red. 98

5.3 We compare our method with the common evaluation metrics (PSNR /
SSIM / LPIPS). The quantitative SR results (×4 upscale) are shown over
the synthetic and real Burst SR test sets. The arrows indicate if high ↑
or low ↓ values are desired. The best performance is shown in red and
the second best performance is shown in blue. 108

5.4 The participating methods results on the synthetic test set from Track-1
in the Burst SR Challenge, in terms of PSNR, SSIM, and LPIPS. 109

5.5 The participating methods results on BurstSR test set from Track-2 in the
Burst SR Challenge. The PSNR, SSIM, and LPIPS scores are computed
after spatial and color alignment of the network prediction to the ground
truth. 109

5.6 Impact of different number of input burst frames (𝐵) and number of
iterative steps (𝐾). The quantitative results are reported on the synthetic
burst testset. The arrows indicate if high ↑ or low ↓ values are desired.
The best performance is shown in red. 111

xi

List of Figures

1.1 SISR problem. The LR image is a small, blurred and noisy, while SR
image is a large and sharp. Traditional upscaling methods fail to recover
the sharp image. 2

1.2 Image SR categorization. The SR is divided into the Single Image (SISR)
and Multi-Image (MISR). The SISR is further categorized into the effec-
tive and efficient SISR. The MISR is also further categorized into the
burst and explorable SR. 4

2.1 Visual comparison of the classical SR methods on the ×4 upscaling factor.
The Nearest-Neighbor upscaling causes aliasing artifacts especially along
edges, the Bilinear upscaling produces a smoothed/blurred image, and
the Bicubic upscaling (usually opted) produces some sharpening artifacts
or invalid values along edges. The ↓ and ↑ represent the downscaling and
upscaling process. 9

3.1 SRWDNet architecture. The proposed network takes the input LR image,
blur kernel k (top right corner in the LR input), noise sigma 𝜎, and up-
scaling factor s, and reconstructs the output SR image. The LR image
has 𝑊 ×𝐻×𝐶 dimensions, while the SR image has s𝑊 × s𝐻×𝐶, where
𝐶 is the number of channels of the input image, and s is the upscaling
factor. 19

3.2 10 randomly generated blur kernels for the (a) training and (b) testing
phase according to [11]. 23

3.3 The visual comparison of other SISR methods with ours for the scale
factor ×2 on Set5. The blur kernel is shown on the upper-right corner of
the LR image. 25

3.4 The visual comparison of other SISR methods with ours for the scale
factor ×3 on Set14. The blur kernel is shown on the upper-right corner
of the LR image. 26

3.5 The visual comparison of other SISR methods with ours for the scale
factor ×4 on Set14. The blur kernel is shown on the upper-right corner
of the LR image. 26

xii

3.6 The proposed iterative SISR approach as described in Algorithm 1. Given
an LR image (y) and an initial estimate (x0), each network’s stage ERD
(Encoder-Resnet-Decoder) produces a new estimate x(𝑘+1) from the pre-
vious step estimate x(𝑘). A single optimizer is used for all network stages
with shared structures and parameters by 𝐾 steps. 28

3.7 The architecture of ERD (Encoder-Resnet-Decoder) blocks used in the
proposed ISRResCNet. The z𝑘 is the LR noisy observation, refer to the
Eq. (3.30). The ℛ(.) corresponds to the regularizer learning part, refer to
the Eq. (3.30). The Prox layer inside the Decoder computes the proximal
map with the noise standard deviation 𝜎, refer to the Eq. (3.31). The
x(𝑘+1) is the new solution SR estimate. 34

3.8 Average PSNR/SSIM performance (Set5 on ×4) of proposed ISRResCNet
and ISRResCNet+ after each iterative step (K). 37

3.9 Visual comparison of our method with the other state-of-art methods on
the ×4 upscaling factor. 39

3.10 The structure of our proposed iterative SR approach. We cascade the
ResDNet to the 𝐾 stages. The first stage takes the LR (y) image and the
intermediate stages refine the estimated SR solution until the last stage.
The loss ℒ(.) function is jointly minimized with respect to all network
stages. 40

3.11 The architecture of ResDNet. Each ResDNet block contains the Upsam-
ple layer, the Non-linearities (RBFs) is sandwitched between the Conv
and TConv layers which have shared parameters, the Proj layer com-
putes the proximal map with noise sigma 𝜎, finally the clipping layer is
applied to enforce the pixel values between 0 and 255. 41

4.1 ×4 Super-resolution comparison of the proposed SRResCGAN method
with the ESRGAN [106] and ESRGAN-FS [31] by the unknown artifacts
for the ‘0815’ image (DIV2K validation-set). Our method has better
results to handle sensor noise and other artifacts, while the others have
failed to remove these artifacts. 47

4.2 The structure of the proposed SR approach setup. In the Domain Learn-
ing part, we learn the domain distribution corruptions in the source do-
main (x) by the network G𝑑, where our goal is to map images from z
to x, while preserving the image content. Here B denotes the bicubic
downscaling operator which is applied on the clean HR target domain
(y) images. In the SR Learning part, we trained the network G𝑆𝑅 in a
GAN framework by using generated LR (x̂) images from the G𝑑 network
with their corresponding HR images. 48

4.3 The architectures of Generator and Discriminator networks. The 𝑘, 𝑐, 𝑠
denote the kernel size, number of filters, and stride size. 56

4.4 Visual comparison of our method with other state-of-art methods on the
NTIRE2020 RWSR (track-1) validation set at the ×4 super-resolution. . 60

xiii

4.5 Visual comparison of our method with other state-of-art methods on the
NTIRE2020 RWSR (track-2: Smartphone Images) test set [77] at the ×4
super-resolution. 61

4.6 Visual comparison of our method with other state-of-art methods on the
NTIRE2020 RWSR (track-1: Image Processing Artifacts) testset [77] at
the ×4 super-resolution. 63

4.7 The super-resolution results at the ×4 upscaling factor of the state-of-art–
ESRGAN, the proposed SRResCycGAN+ with respect to the ground-
truth images. SRResCycGAN+ has successfully remove the visible arti-
facts, while the ESRGAN has still artifacts due to data bias between the
training and testing images. 65

4.8 The structure of our proposed SR approach setup. We trained the net-
work G𝑆𝑅 in a GAN framework, where our goal is to map images from
the LR (y) to the HR (x), while maintaining the domain consistency
between the LR and HR images. 66

4.9 Visual comparison of our method with the other state-of-art methods on
the DIV2K validation set at the ×4 super-resolution. 73

4.10 Visual comparison of our method with the other state-of-art methods on
the AIM 2020 Real Image SR (track-3) validation set at the ×4 super-
resolution upscaling factor. 75

4.11 Visual comparison of our method with the other state-of-art methods on
the AIM 2020 Real Image SR (track-3) test set at the ×4 super-resolution
upscaling factor. 76

4.12 The structure of our proposed SR approach setup. In the LR Learning
part, we learn the degradation/corruptions in the source domain data
(x) by the network G𝐿𝑅 in a GAN framework, where our goal is to map
images from clean domain y to corrupted domain x, while preserving the
input image content. In the SR Learning part, we trained the network
G𝑆𝑅 in a GAN framework by using generated LR (x̂) images from the
G𝐿𝑅 network with their corresponding HR images to super resolve the
LR images. 79

4.13 The structure of proposed LR learning architecture. The Sine denotes
sinusoidal activation layer with 64 output feature maps. 81

4.14 The structure of proposed SR learning architecture. The Sine denotes
sinusoidal activation layer with 64 output feature maps. 82

4.15 Visual SR comparison of our method with the other state-of-art methods
on the DIV2K validation set at the ×4 upscaling factor. 86

5.1 The Multi-domain SR proposed scheme, where a single generatorG learns
the mappings among multiple domains i.e., LR/HR to LR/HR. 91

xiv

5.2 The structure of our proposed SR2 *GAN setup. G takes an input as
both the source image (y) and target domain label and generates a fake
target image (ŷ). G tries to reconstruct the fake source image (y′) from
the fake target image (ŷ) given the source domain label. D learns to
discriminate between real and fake target images and classify the real
target images to its corresponding domain. In this way, the G tries to
generate fake target images indistinguishable from real target images and
classifiable as target domain images by the D. 93

5.3 Visual comparison of our method with other state-of-art methods on ×4
super-resolution. 97

5.4 An image from the Zurich RAW to RGB Dataset [44] (testset), where we
present (a) the ground truth HR reference image of size 384 × 384 × 3,
(b) the input LR bursts of size (𝑊 ×𝐻×𝐶×𝐵) 48×48×4×14, and (c)
the Burst SR output of size 384 × 384 × 3 of our network (BSRICNN).
All images are converted from raw sensor space to sRGB for visualization
purpose. 101

5.5 The structure of our proposed iterative Burst SR scheme. Given an LR
burst images (y𝑖), each network’s stage produces a new estimate x(𝑘+1)

from the previous step estimate x(𝑘). A single optimizer is used for all
network stages with shared structures and parameters. 101

5.6 SR visual comparison of the proposed BSRICNN method with the ex-
isting Burst SR methods on the real-world BurstSR testset at the ×4
upscaling factor. All images are converted from the raw sensor space to
sRGB for visualization purpose. 110

5.7 Imprecise warp matrix. All images are converted from raw sensor space
to sRGB for visualization purpose. 111

xv

List of Abbreviations

AWGN Additive White Gaussian Noise

ADMM Alternating Direction Method of Multipliers minimization method

BPTT Back-Propagation Through Time

BN Batch Normalization

CNN Convolutional Neural Network

CPU Central Processing Unit

CT Computerized Tomography

ConvNets Convolutional Neural Networks

CFA Color Filter Array

DNN Deep Neural Network

DCNNs Deep Convolutional Neural Networks

DCT Discrete Cosine Transform

DA Data Augmentation

DSLR Digital Single-Lens Reflex, High resolution camera

FLOPs Floating Point Operations Per second

FB Feedback

GAN Generative Adversarial Network

GT Ground Truth

GPU Graphics Processing Unit

HR High Resolution

xvi

HD High Definition

HQS Half Quadratic Splitting minimization method

JPEG Image Compression technique

LR Low Resolution

LPIPS Learned Perceptual Image Patch Similarity Measure

LReLU Leaky Rectified Linear Unit

MISR Multi Image Super Resolution

MRI Magnetic Resonance Imaging

MSE Mean Squared Error

MOS Mean Opinion Score

MOA Mixture Of Augmentation

MFSR Multi-Frame Super-Resolution

MM Majorization-Minimization optimization scheme

NPU Neural Processing Unit

PSNR Peak Signal-to-Noise Ratio Measure

PGM Proximal Gradient Descent Method

PReLU Parametrized Rectified Linear Unit

PET Positron Emission Tomography

ResNet Residual Network

RGB Red-Green-Blue, channels in a digital representation of an image

ReLU Rectified Linear Unit, a popular activation function

RU Residual Unit

RBFs Radial Basis Functions

Re-ID Re-Identification

RWSR Real-World Super-Resolution

RAM Random Access Memory

SISR Single Image Super Resolution

xvii

SSIM Structural Similarity Measure

SPECT Single Photon Emission Computed Tomography

TBPTT Truncated Back-Propagation Through Time

VSR Video Super-Resolution

YCbCr Color space, one luminance component and two chroma components

xviii

1
Introduction

1.1 Image Super-Resolution

The goal of image super-resolution (SR) is to restore a high-resolution (HR) image from

its low-resolution (LR) counterpart by adding the lost high frequencies and rich texture

details. The LR image is small, blurred and noisy, while the SR image is large and

has sharp image details as shown in Fig. 1.1. The traditional upscaling methods fail to

recover the sharp image.

Mathematically, the image SR problem is described as a linear forward observation

model with the following image degradation process:

y = (H * x) ↓s +𝜂, (1.1)

where y is an observed LR image, H is a down-sampling operator that convolves (*) with

a latent HR image x and resizes it by a scaling factor s, and 𝜂 is considered as an i.i.d

additive white Gaussian noise of variance 𝜎2, i.e., 𝜂 ∼ 𝒩
(︀
0, 𝜎2

)︀
. The recovery of latent

HR image (x) from the observed LR image (y), is also indicated as a Inverse Problem

1

small &
blurred
noisy

Large but blurry Large & Sharp

Super-Resolution

Low-resolution

Figure 1.1: SISR problem. The LR image is a small, blurred and noisy, while SR image
is a large and sharp. Traditional upscaling methods fail to recover the sharp image.

in Imaging. The operator H is usually ill-conditioned or singular due to the presence of

noise, whose exact realization is unknown. Moreover, there could exist multiple possible

HR images resulting into the same downscaled LR image that makes the image SR part

of a highly ill-posed nature of the inverse problem.

1.2 Motivation

Image SR problem is a fundamental low-level computer vision and image processing

problem with various important applications in e.g., satellite imaging, medical imaging,

astronomy, remote sensing, surveillance, image compression, environment and climate

change monitoring, mobile photography, image / video enhancement, and security and

surveillance imaging, etc. With the increasing amount of HR image / video data on

the internet, there is a great demand for storing, transferring, and sharing such large

sized data with low cost of storage and bandwidth resources. Moreover, the HR images

are usually downscaled to easily fit into display screens with different resolution, while

retaining visually plausible information. The downscaled LR counterpart of the HR

can efficiently utilize lower bandwidth, save storage, and easily fit to various digital dis-

2

plays. However, some details are lost and sometimes visible artifacts appear when users

downscale and upscale the digital contents. Modern computing and algorithm advances

bring computational photography new modes of capture, post-processing, storage, and

sharing in an effective and efficient manner.

In the last decade, most of the photos are taken using built-in smartphone cam-

eras, where the resulting LR image is inevitable and undesirable due to their physical

limitations. It is of great interest to restore sharp HR images because some captured

moments are difficult to reproduce. Moreover, modern computational photography aims

to generate DSLR like images with smartphone cameras.

In the security and surveillance field, particular in the case of distributed cameras

networks [90], the possibility to transfer low resolution images is an essential feature

that allows to share visual content for detection [30], classification [88], analysis [32]

and network management [22]. In the person re-identification (Re-ID) [37], it is dif-

ficult to match the LR probes with the HR gallery images. To solve the resolution

mismatch problem, the existing Re-ID methods typically recover missing HR details for

low-resolution probes by super-resolution methods that greatly benefit the identification

task.

In the medical imaging field, the inherent noise from the imaging device / environ-

ment lies in the different modality of medical imaging. The image SR provides high-

quality clear images to facilitate intelligent data analysis tasks for other sub-problems

like classification, detection, and segmentation. A broad spectrum of the image SR

applications exist in e.g., PET/SPECT, X-ray, CT [79], MRI [6], Ultrasound [6], Mi-

croscopy Imaging [87], Medical Pathology [3], etc. In medical pathology [3], using the

SR image as the proxy for its plausibility, one can infer a low chance of pathology due

the emerging artifacts when forcing the pathological form.

In the environmental field, the image SR is an important task for satellite monitoring

(i.e., depends upon reliable imagery) of human impacts on the planet like deforestation

3

SR

Explorable

SISR MISR

Effective Efficient Burst

Figure 1.2: Image SR categorization. The SR is divided into the Single Image (SISR)
and Multi-Image (MISR). The SISR is further categorized into the effective and efficient
SISR. The MISR is also further categorized into the burst and explorable SR.

to monitor climate change and environment.

1.3 Categorization

The Image SR methods can be classified into the main categories shown in Fig. 1.2. The

SISR methods are further divided into two branches depending upon their effectiveness

and efficiency performance. The MISR methods are also divided into two categories

depending upon the one-to-many mapping (i.e., LR to HR) and vice-versa.

1.3.1 Single Image Super-Resolution (SISR)

1.3.1.1 Effective SISR

The goal of effective SISR is to improve PSNR/SSIM or perceptual quality for known

degradation (usually bicubic). It accounts the development of non-blind SISR meth-

ods for realistic degradation, blind SISR methods with kernel estimation, designing a

practical degradation model for blind SISR, and unpaired learning methods for real-

world super-resolution. Since the SISR is normally solved by learning from examples

i.e., pairs of HR patches and the corresponding LR image patches, the performance of

the SR method largely relies on the quality of the image patches collected. It is required

4

to design active learning paradigm to find the most informative / useful image patches

to be used as the examples for the SISR.

1.3.1.2 Efficient SISR

The goal of efficient SISR is to super-resolve the LR image to the HR image by the scale

factor s (i.e., ×2,×3,×4, or higher) with a deep network that reduces one or several

factors such as runtime, parameters, FLOPs, activations and memory usage, while at

least maintaining PSNR/SSIM of a certain baseline model.

1.3.2 Multi-Image Super-Resolution (MISR)

1.3.2.1 Explorable SR

The goal of explorable SR is to learn a stochastic mapping (one-to-many) that is capable

of sampling from the space of plausible HR images given an LR image. Due to the ill-

posed nature of the image SR problem, infinitely many HR images can be downsampled

to the same LR image. The explorable SR method must be able to generate an arbitrary

number of SR images with meaningful diversity, and each individual SR prediction

should be consistent with the input LR image. The development of SR span learning

methods enables us to explore the abundance of plausible solutions that can be applied

to other computer vision tasks e.g., image decompression, deblurring, dehazing, etc.

1.3.2.2 Burst SR

The Burst SR is the task of fusing several LR frames to produce a single HR image.

The existing SISR methods have limited performance to recover high frequency details

through learned single image priors. The multi-frame super-resolution (MFSR) aims

to recover the latent HR image using multiple LR frames by exploiting the additional

signal information.

5

1.4 Overview

In this dissertation, we propose the methods for image super-resolution, in particular

the SISR, real-world SR, and multi-image SR tasks.

In Chapter 2, we provide the relevant background for the image super-resolution

and describe commonly used classical methods, deep learning based methods, and real-

world methods for image and video super-resolution problems.

In Chapter 3, we address the problem of single-image SR. We first propose the

SRWDNet that follows the realistic degradation model. Next, we design the iterative

SISR network by exploiting the powerful image regularization and large-scale optimiza-

tion techniques. After that, we propose an efficient SISR approach that solves the SR

task as a sub-solver of the image denoising by cascading residual denoiser networks.

In Chapter 4, we specifically address the problem of real-world SR. In this re-

gard, we propose the SRResCGAN approach by solving the problem into two stages,

domain-learning and SR-learning. In the domain-learning stage, we generate the real-

istic LR/HR pairs. In the SR-learning stage, we train the SR network by feeding the

generated realistic LR data with their corresponding HR images. Next, we propose the

SRResCycGAN approach by eliminating the domain-learning stage and train the LR

and SR network in an end-to-end fashion by translating the LR to HR domain and

vice-versa. Finally, we incorporate learnable adaptive sinusoidal non-linearties into the

LR and SR network to further enhance the SR performance.

In Chapter 5, we propose the SR approaches for multi-image SR tasks. In this

regard, we propose SR2 *GAN scheme to super-resolve the LR images from the multiple

LR degradation domains. Furthermore, we design the BSRICNN network that follows

the physical model of burst photography pipeline to learn the image priors from the

input LR bursts.

Finally, inChapter 6, we conclude our proposed works of the image super-resolution.

6

We discuss the broader impact of image SR in a wide range of applications, especially

mobile computational photography. We also identify the remaining research challenges

and discuss the future research work in the existing SR problems.

7

2
Super-Resolution Background

2.1 Classical SR Methods

The classical SR methods include bicubic, bilinear, and nearest-neighbor image upscal-

ing. Since these methods are interpretable and easy to implement, some of them are

still widely used in image-related applications. These traditional methods have pros and

cons depending on their image interpolation process.

2.1.1 Nearest-Neighbor

In the Nearest-Neighbor interpolation algorithm, the value of a pixel is selected by the

distance between the pixel and its nearest neighbor point, and it does not consider the

values of neighboring points at all, thus yielding a piecewise-constant value. It is very

simple to implement and is usually used in real-time 3D rendering for selecting the

color values of a textured surface. It can lead to several artifacts such as aliasing and

stair-case effect, especially along the edges, as shown in the Fig. 2.1.

8

Nearest Neighbor

bilinear

GT bicubic

LR

Upscaling

x4↓ x4↑

x4↑

x4↑

Figure 2.1: Visual comparison of the classical SR methods on the ×4 upscaling factor.
The Nearest-Neighbor upscaling causes aliasing artifacts especially along edges, the Bi-
linear upscaling produces a smoothed/blurred image, and the Bicubic upscaling (usually
opted) produces some sharpening artifacts or invalid values along edges. The ↓ and ↑
represent the downscaling and upscaling process.

9

2.1.2 Bilinear

In the bilinear interpolation algorithm, the value of a pixel is the linear interpolation

first in one direction, and then again in the other direction. The output is a weighted

average of all pixels within the support. It does not suffer from aliasing as the nearest-

neighbor interpolation, but it can cause blurring artifacts along the edges as shown in

the Fig. 2.1.

2.1.3 Bicubic

In image-related applications, the bicubic interpolation is usually opted over the bilinear

or nearest-neighbor in image resampling process. In contrast to the bilinear interpola-

tion, which only considers 4 pixels (2×2) into account, the bicubic interpolation takes

16 pixels (4×4) into account. It produces sharper images than the bilinear interpolation

as further pixels get lower weights, but it is computationally more expensive and can

cause sharpening artifacts along the edges due to the characteristics of the weighting

function as shown in the Fig. 2.1.

2.2 Deep Learning based SR methods

In recent years, various deep learning-based SR methods have been introduced into the

image super-resolution field. Initially, learning-based upscaling methods are developed

in the image SR field. First, transposed convolution layer performs the transformation

opposite than a normal convolution layer and is used to upscale the image resolution.

Next, Pixelshuffle [92] layer is another learnable upscaling layer, which generates a plu-

rality of channels by convolution at first and then reshaping them, and is used to many

existing deep learning based SR methods to upscale the feature maps in the reconstruc-

tion phase. Besides that, the preliminary deep learning based method (SRCNN) [23]

is proposed to solve the SISR task by shallow CNN-based network and adopts the

10

bicubic downsampling for the LR/HR pairs. By following that, various SISR methods

have been proposed such as a very deep network (VDSR) [51] with residual learning

approach, an efficient sub-pixel convolutional network (ESPCNN) [92], an enhanced

deep SR (EDSR) [69] network that modifies ResNet for enhancement, an iterative resid-

ual convolutional network (IRCNN) [120] that solves the SISR problem by using a

plug-and-play framework, a deep CNN-based super-resolution with multiple degrada-

tion (SRMD) [122], a feedback network (SRFBN) [68] based on feedback connections

and recurrent neural network like structure. These methods mostly rely on the PSNR-

based metric with blurry results, while they do not preserve the visual quality with

respect to human perception. Moreover, the above mentioned methods are deeper or

wider CNN networks to learn non-linear mapping from LR to HR with a large number

of training samples, while neglecting the real-world settings.

2.3 Real-World SR methods

Another category of the image SR is to obtain or generate training data (i.e., LR/HR

pairs) close enough to real data and then train a unified network in a GAN-framework [36]

to produce realistic SR images. A preliminary attempt was made by Ledig et al., who

proposed SRGAN [106] method to produce more perceptually plausible SR results. Fol-

lowing which, several real-world SISR approaches have been proposed, such as ESR-

GAN [106] that achieves the state-of-art perceptual performance to further improve

the SRGAN architecture, ESRGAN-FT [75] that describes the effects of bicubic down-

sampling and separate degradation learning for super-resolution, and ESRGAN-FS [31]

that uses the DSGAN to learn degradation by training the network in an unsupervised

way, and also modified the ESRGAN training scheme. Moreover, the real-world chal-

lenge series [76, 77, 108] have been introduced that propose a benchmark protocol for

the real-world image corruptions. However, the above methods still suffer unpleasant

11

artifacts, do not generalize well to other real images captured by different cameras,

inaccurate degradation estimations, or mismatch between the degradation model and

imaging device.

2.4 Video SR methods

Video Super-Resolution (VSR) aims to restore a high-resolution video from its corre-

sponding low-resolution version. It has been successfully applied in many computer

vision applications, such as video surveillance and HD-television. Since the significant

improvements of the image super-resolution task over the past few years thanks to deep

learning, it encourages the research community to further attempt the more challenging

video super-resolution problems. Initially, the video SR task is thought as a simple ex-

tension of the image SR problem, but recent studies [13, 95, 89, 105, 45, 96, 16, 14, 74]

address the problem by following pipeline as (1) feature extraction, (2) feature align-

ment, (3) feature fusion, and (4) feature reconstruction. The challenges arise in the

design of the feature alignment and fusion stage, when the video frames contain large

motion, occlusion, and severe blurring. To get the SR video results, one has to ac-

curately align multiple video frames in the feature space and then effectively fuse the

aligned features for the reconstruction.

12

3
Single Image Super-Resolution

3.1 Deep Feed-Forward CNNs for SISR

Most of the existing CNNs-based SISR methods usually take an assumption that a LR

image is only a bicubicly downsampled version of an HR image. However, the true

degradation (i.e., the LR image is a bicubicly downsampled, blurred, and noisy version

of an HR image) of the LR image goes beyond the widely used bicubic assumption, which

is an highly ill-posed nature of inverse problems. To address this issue, we propose the

Super-Resolution Wiener deblurring Network (SRWDNet) that works for blur kernels

of different sizes and different noise levels in an unified residual CNN-based denoiser

network, which significantly improves a practical CNN-based super-resolver for real

applications. The proposed method uses the more realistic degradation model in contrast

to the existing methods. We split the SISR problem into joint deblurring, denoising,

and super-resolution tasks, and then solve it by training the end-to-end network with

proximal gradient descent optimization in an iterative manner. Extensive experimental

results show that the proposed method is feasible for the more realistic degradations

and outperforms the existing SISR methods in terms of PSNR/SSIM as well as the

13

computational cost.

The preliminary attempt was made to solve the SISR task with CNN-based SR

network in SRCNN [23], where a three-layer convolutional neural network was pro-

posed. In the extension of the SRCNN, Kim et al.proposed a very deep super-resolution

(VDSR) [51] network with the residual learning approach. To improve the efficiency of

CNN-based networks, the efficient subpixel convolutional network (ESPCNN) [92] was

proposed to take bicubicly LR input and introduced an efficient subpixel convolution

layer to upscale the LR feature maps to an HR image at the end of the network. While

achieving the fair performance, the above methods take into account of the simpler

degradation model (i.e., usually bicubic, refers to Eq. (3.1)), which hinders the effi-

ciency of practical SR applications due to the mismatch of image degradation models.

Beyond the widely used bicubic degradation models in the CNN-based methods,

there is an interesting approach to solve SISR task by using model-based optimization

frameworks [17, 62, 63, 120]. Besides that, an accurate estimate of the blur kernel plays

a more important role than the sophisticated image priors, pointed in [25]. Since then,

several methods have been proposed to tackle LR images that go beyond bicubic degra-

dation to solve the energy function induced by the Eq. (3.2). Zhang et al.proposed an

iterative residual convolutional network (IRCNN) [120] to solve SISR problem by using

a plug-and-play framework. Zhang et al.proposed a deep CNN-based SR network with

multiple degradation (SRMD) [122], which takes two degradation parameters (i.e., blur

kernel k, and 𝜎) as the inputs to the network, but they only consider Gaussian blur

kernels with fixed kernel width. The above SISR methods have three main limitations

to drop their performance in the realistic scenario. First, (1) they have difficulty in

complex (e.g. motion) blur kernel estimation with arbitrary dimensions. Second, (2)

they are usually designed for Gaussian blur kernels with fixed kernel dimension and thus

cannot tackle the severely blurred LR image effectively. Third, (3) they do not handle

the different blur kernels and multiple noise levels within a unified network by training

14

an end-to-end fashion.

The most widely used image forward observation model with the following degrada-

tion is given as:

y = x ↓𝑠, (3.1)

where the LR image y is degraded bicubicly from a clean HR image. However, this

simple degradation gives inferior results in many practical SR applications. Another

more realistic degradation model in which the LR image y is mathematically described

as a blur kernel k convolved with the latent sharp HR image x, then the subsequent

downsampling operation is applied on the blurred image, and further corrupted by an

additive white Gaussian noise. The image forward observation model for this degrada-

tion process is given as:

y = (k * x) ↓𝑠 + n, (3.2)

where * denotes the convolution operator, ↓𝑠 is a down-sampling operator with scale

factor 𝑠, and n ∈ 𝒩
(︀
0, 𝜎2

)︀
denotes an i.i.d. additive white Gaussian noise (AWGN)

term with known standard deviation 𝜎 (i.e., noise level). The Eq. (3.2) refers to a general

degradation model for the SISR problem. The common choices of the blur kernels (k)

are an isotropic or anisotropic Gaussian blur kernel with standard deviation of the fixed

kernel width [122]. The more realistic choice is the motion blur kernels with arbitrary

size. The most popular choice of the downsampling is to use the bicubic downscaling

operator. Since the LR images also contain noise, where the simple case is to take the

assumption of AWGN with non-blind noise levels 𝜎, but the more complex case is to

consider AWGN with blind noise levels 𝜎. Due to the unknown noise levels and the loss

of high-frequency details, this makes the SISR problem an highly ill-posed nature of the

inverse problem, and therefore it is an active and challenging research topic in low-level

image processing, computer vision, mobile vision, and computational photography.

The contributions of our proposed SRWDNet method are as follows:

15

1. We follow the more realistic degradation model (refers to the Eq. (3.2)) than simple

bicubic degradation model for SISR, which also considers blur kernels of arbitrary

sizes and blind noise level to take the advantage of the existing deblurring methods

for blur kernel estimation and denoising.

2. The SRWDNet is proposed to solve the SISR task which goes beyond bicubic

degradation model and restores the HR image from the LR with the complex

degradation.

3. The proposed SRWDNet is well designed as an iterative optimization scheme which

aims to solve the forward observation model by minimization of the energy func-

tion.

3.1.1 Proposed Methodology

3.1.1.1 Problem Formulation

The modified degradation model of the Eq. (3.2) can be written as:

y = k * (x ↓𝑠) + n, (3.3)

where, ↓𝑠 is the bicubic downsampler with the scaling factor 𝑠. The Eq. (3.3) corresponds

to a deblurring problem followed by the SR with general degradation. This model

has distinctive advantages over the general degradation model (3.2) as it estimates the

blur kernel efficiently from the existing deblurring methods and holds the degradation

assumptions of the general model.

After finalizing the suitable degradation model, we formally define the objective

function according to the variational framework of Eq. (3.3), and it is given as follows:

x̂ = argmin
𝑥

1

2𝜎2
‖y − k * (x ↓𝑠)‖22 + 𝜆𝜙(x), (3.4)

16

where, 1
2𝜎2 ‖y − k * (x ↓𝑠)‖22 is the data fidelity (log-likelihood) term that quantifies

the proximity of the solution to the observations, while 𝜙(x) is the regularization term

associated with the image prior, 𝜎 is the unknown noise level i.e., belongs to AWGN,

and 𝜆 is the trade-off parameter between the data fidelity and regularization term. The

CNN-based inference models usually correspond to the energy function for the discrim-

inative learning, where the degradation model is defined by the training LR/HR pairs.

It demonstrates that the existing CNN-based SISR trained network with the bicubic

degradation (refers to Eq. (3.1)) has limited performance for real SR applications.

3.1.1.2 Optimization Strategy

In this section, we briefly give an overview of the optimization strategy for our network

training. By referring to the Eq. (3.4), we want to recover the underlying image x as

the minimizer of the objective function as:

x̂ = argmin
𝑥

E(x), (3.5)

As the energy function E(·) consists of the data fidelity term and regularizer term, which

is given as:

x̂ = argmin
𝑥

D(x;k,y, ↓s) + 𝜆𝜙(x), (3.6)

The overall objective function (3.4) can be formally rewritten as a constrained optimiza-

tion form:

x̂ = arg min
𝑎⩽𝑥⩽𝑏

1

2𝜎2
‖y − k * (x ↓𝑠)‖22 + 𝜆𝜙(x)⏟ ⏞

f(x)

, (3.7)

To solve the Eq. (3.7), there are several modern convex optimization schemes for large-

scale problems such as Split-Bregman [35], HQS method [33], ADMM [12], Primal-dual

algorithms [15], and Proximal methods [85]. In this work, we solve the Eq. (3.7) by

using the Proximal Gradient Method (PGM) [85], which is a generalization of gradient

17

descent algorithm. The PGM [85] deals with the optimization of a function that is not

fully differentiable, but it can be split into a smooth and a non-smooth part. To do so,

we first rewrite the Eq. (3.7) as:

x̂ = argmin
𝑥

f(x) + i𝑐(x), (3.8)

where, ic is the indicator function of the convex set C ∈ {x ∈ R𝑚 : a ⩽ x𝑘 ⩽ b,∀𝑘}.

The gradient of f(x) is computed as:

∇xf(x) =
1

𝜎2
K𝑇 (K(x ↓𝑠)− y) + 𝜆Ψ(x), (3.9)

where, K is the matrix version (i.e., usually convolution matrix) of degradation blur

kernel k and K𝑇 is the transpose convolution of the K. Thus, the solution of the

Eq. (3.8) is computed in an iterative fashion by using the following update rule:

x𝑡 ↓𝑠= Prox𝛾𝑡ic

(︀
x(𝑡−1) ↓𝑠 −𝛾𝑡∇xf(x(𝑡−1))

)︀
, (3.10)

where 𝛾𝑡 is the step-size and Prox𝛾𝑡ic is the proximal operator [85] related to the indi-

cator function ic, which can be defined as:

Proxℎ(z) = argmin
𝑥∈C

1

2
‖x− z‖22 + ℎ(x), (3.11)

Since proximal map Prox𝛾𝜎2 gives the regularized solution of a Gaussian denoising

problem, so finally we have the following form of our solution:

x𝑡 =
(︀
Prox𝛾𝑡𝜎2

(︀
(1− 𝛾𝑡K𝑇K)(x(𝑡−1)) ↓𝑠 + 𝛾𝑡K𝑇y − 𝜆𝛾𝑡Ψ(x𝑡−1)

)︀)︀
↑𝑠, (3.12)

where ↑𝑠 is the upscaling operator. Thus, we design the network by unrolling S stages

of Eq. 3.12 between the LR input and the SR output. For the proposed network, the

18

W x H x C sW x sH x C

PR
el

u+
C

on
v

Tc
on

v

+

PR
el

u+
C

on
v

C
on

v

*, C, H, W *, C x s2 , H, W

M
ul

ti-
W

ie
ne

r
Fi

lte
rin

g
 *, C, H, W

-

Pr
oj

, C x s2 , H, W, C, H, W *, C, H, W

C
lip

pi
ng

C
ro

pp
in

g

U
ps

ca
lin

g

, C, s x H, s x W, C x s2 , H, W *, C x s2 , H, W

LR Input SR Output

Denoising

σ

UpscalingDeconvolution

RU(Residual Unit)

Figure 3.1: SRWDNet architecture. The proposed network takes the input LR image,
blur kernel k (top right corner in the LR input), noise sigma 𝜎, and up-scaling factor
s, and reconstructs the output SR image. The LR image has 𝑊 ×𝐻 × 𝐶 dimensions,
while the SR image has s𝑊 × s𝐻 ×𝐶, where 𝐶 is the number of channels of the input
image, and s is the upscaling factor.

objective function is minimized by discriminative learning as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

argmin
Θ
ℒ(Θ) =

𝑆∑︀
𝑠=1

1
2‖x̂

𝑠
𝑇 − x𝑠

𝑔𝑡‖22

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x𝑠
0 = I𝑠0

𝑢𝑝𝑑𝑎𝑡𝑒 x𝑠
𝑡 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝐸𝑞. (3.12),

𝑡 = 1 . . . 𝑇

(3.13)

where, Θ = {Θ}𝑡=𝑇
𝑡=1 , and I0 is the initial value of the regularizer term. It can be noted

that the above loss function only depends upon the final iteration T, where the network

parameters in all stages S are optimized simultaneously. This minimization training

strategy is usually called joint training, similar to as done in [63, 17, 91].

3.1.2 Network Architecture

The proposed network architecture for the non-blind SISR is shown in the Fig. 3.1. The

input of our network is LR image y with the corresponding blur kernel k, noise sigma

𝜎, and scaling factor s. Our network first applies deconvolution operation to the LR

blurry and noisy input via the deconvolution module, estimates the noise variance by

the denoising module, and finally reconstructs the HR image by the upscaling module.

19

3.1.2.1 Deconvolution module
In our proposed network, the deconvolution module is the learnable Wiener Filtering

layer as shown in the Fig. 3.1. In Wiener filtering layer, we formulate the following

objective function as:

x̂ = argmin
𝑥

1

2
‖y −Kx‖22 +

𝛼

2
‖Gx‖22, (3.14)

where, y is the LR observed image, K is the blur kernel, and G is the regularization

kernel, and both (i.e., K and G) are considered as the circulant matrices. In case of

multiple regularization kernels, the equation 3.14 can be written as:

x̂ = argmin
𝑥

1

2
‖y −Kx‖22 +

𝛼

2

𝑑∑︁
𝑖=1

‖G𝑖x‖22⏟ ⏞
f(x)

, (3.15)

where, 𝐺𝑖 plays the role of multiple regularization filters and the closed-form solution

of the Eq. 3.15 is computed by the Wiener deconvolution technique [110]. So, we learn

the Eq. (3.15) as following form in the Wiener filtering layer:

x̂ = ℱ(y , k , 𝜎; Θ), (3.16)

Where Θ denotes the trainable regularization kernel weights by gradient descent update

rule in the network. Here, we compute the gradient of f(x) as:

∇xf(x) = K𝑇 (Kx− y) + 𝛼

𝑑∑︁
𝑖=1

G𝑇
𝑖 G𝑖x (3.17)

After rearranging the Eq. (3.17), we have the following closed-form solution as:

x̂ = (K𝑇K+ 𝛼

𝑑∑︁
𝑖=1

G𝑇
𝑖 G𝑖)

−1K𝑇y, (3.18)

20

where, we take 𝛼← 𝑒𝛼 (i.e., [0.0001, 0.01]) to ensure the positivity of the regularization

weights. The weights of Wiener Convolution layer (i.e., Θ) are 24 output features map

with kernel size 5×5 by initializing the discrete cosine transform (DCT) basis, which

are updated according to PGM (refers to the Eq. (3.12)).

3.1.2.2 Denoising module

Since there are many image denoising neural networks such as DnCNN [119], IRCNN

[120], and UDNet [63], we use UDNet [63] as a residual CNN denoiser, which helps to

efficiently approximate the proximal map of our final solution (3.12). In the Fig. 3.1, the

architecture of the denoising module consists of the Conv and TConv layers that have

64 feature maps by 7 × 7 kernel size with 𝐶 ×𝐻 ×𝑊 tensors, where 𝐶 is the number

of channels of the input image y. We use five Residual Unit (RU) blocks, which are

sandwich by Conv and TConv layers. Each RU block has two convolution layers, each

of 64 feature maps by kernel support of 3 × 3 filter size, and each convolution layer is

preceded by the parametrized rectified linear unit (PReLU) [38]. In our proposed net-

work, the denoising module can be replaced by the other CNN-based denoiser networks,

which exhibits the similar characteristics like UDNet [63].

3.1.2.3 Upscaling module

Finally, in the upscaling module, we use the efficient sub-pixel convolution [92] layer to

convert multiple latent features of dimension 𝑠2𝐶 ×𝐻 ×𝑊 to the single SR image of

size 𝑠𝑊 × 𝑠𝐻 × 𝐶.

3.1.3 Experimental Setup

The experimental performance of our proposed network is measured by the peak signal-

to-noise ratio (PSNR) and structural similarity (SSIM) measure. In the further sub-

sections, we provide the details of our network training parameters setting, trainset,

21

testset, comparison with other SISR methods, and computational cost of our proposed

method.

3.1.3.1 Network training parameters setting

To train the network, the image patch size is set to 256 × 256 by center cropping the

LR image. We train the network for 50 epochs. We use the ADAM [52] optimizer with

a single batch size for training on the loss function as described in the section 3.1.3.2.

We set the learning rate as 10−3 and ADAM optimizer parameters as 𝛽1 = 0.9 and

𝛽2 = 0.999. We set the weight decay to 10−4, and the amsgrad flag as True for the

optimizer.

3.1.3.2 Loss function

In the training phase, we opt the following loss function which consists of content loss

and gradient loss as:

ℒ = ℒ𝑐 + ℒ𝑔𝑟𝑎𝑑, (3.19)

where, ℒ𝑐 is the mean squared error (MSE) between the GT image (x) and the estimated

SR image (x̂), and is computed as:

ℒc(x𝑖, x̂𝑖; Θ) = ‖x̂𝑖 − x𝑖‖22, (3.20)

The ℒ𝑔𝑟𝑎𝑑 is to minimize the gradient discrepancy between the GT image and the

estimated SR image, and is computed as:

ℒgrad(x𝑖, x̂𝑖; Θ) = ‖∇𝑣x̂𝑖 −∇𝑣x𝑖‖22 + ‖∇ℎx̂𝑖 −∇ℎx𝑖‖22, (3.21)

where, ∇𝑣 and ∇ℎ denote the operators calculating the image directional derivatives in

the horizontal and vertical directions, respectively. The ℒ𝑔𝑟𝑎𝑑 helps to produce sharp

22

(a)

(b)

Figure 3.2: 10 randomly generated blur kernels for the (a) training and (b) testing phase
according to [11].

image details.

3.1.3.3 Training dataset

We use BSDS500 [2] dataset for the network training. We split the training dataset

into 400 HR GT images for training and 100 HR GT images for the validation. The

Fig. 3.2 shows the 10 randomly generated motion blurred kernels for training and testing

according to [11], whose blur kernel size ranges from 11×11 to 31×31 pixels. To generate

the downsampled, blurred, and noisy LR image image patches, we bicubicly downsample

the GT images with scaling factors s (i.e., ×2,×3,×4), then convolve the downsampled

images with the motion blur kernels k, and add Gaussian noises with 1%, 2%, 3%,

and 5% noise standard deviation. We uniformly sample kernel size from the range

[11, 13, 15, 17, 19, 21, 23, 27, 29, 31] and noise levels from the interval [1%, 2%, 3%, 5%],

which helps to learn a more versatile model to handle diverse data.

3.1.3.4 Testing datasets

We evaluate the proposed method on the well-known SISR benchmark testing datasets,

i.e., Set5 [100], Set14 [100], and Urban100 [39], that are independent of the training

set. The LR images are generated according to subsection 3.1.3.3. We generate 50 LR

images (i.e., 5 GT images × 10 blur kernels) for the Set5, 140 LR images (i.e., 14 GT

images × 10 blur kernels) for the Set14, and 1000 LR images (i.e., 100 GT images × 10

23

Table 3.1: The Average PSNR/SSIM SR results comparison of our method with the
others on the test benchmark datasets, i.e., Set5, Set14, and Urban100. The best
performance is shown in red and the second best performance is shown in blue.

Dataset
Degradation Settings Bicubic VDSR(CVPR) [51] TNRD(TPAMI) [17] IRCNN(CVPR) [120] SRMD(CVPR) [122] SRWDNet(Ours)

Scale
Factor

Kernel
size

Down-
sampler

Noise
Level

Average PSNR / SSIM

Set5
×2

11× 11 to
31× 31

Bicubic 1% 19.30 / 0.5070 19.24 / 0.4767 19.41 / 0.4937 19.00 / 0.4545 17.94 / 0.4414 23.13 / 0.5870

×3
11× 11 to
31× 31

Bicubic 1% 17.90 / 0.4668 17.86 / 0.4431 17.90 / 0.4765 17.63 / 0.4171 17.40 / 0.4311 21.00 / 0.5025

×4
11× 11 to
31× 31

Bicubic 1% 17.01 / 0.4496 16.97 / 0.4296 17.21 / 0.4609 16.74 / 0.4053 16.72 / 0.4263 20.58 / 0.5036

Set14
×2

11× 11 to
31× 31

Bicubic 1% 18.85 / 0.4419 18.80 / 0.4147 18.99 / 0.4453 18.59 / 0.3981 17.15 / 0.3772 21.28 / 0.5120

×3
11× 11 to
31× 31

Bicubic 1% 17.74 / 0.4127 17.70 / 0.3900 17.52 / 0.4726 17.49 / 0.3722 17.24 / 0.3858 19.25 / 0.4042

×4
11× 11 to
31× 31

Bicubic 1% 16.99 / 0.4012 16.97 / 0.3818 17.10 / 0.4509 16.75 / 0.3651 16.73 / 0.3842 19.10 / 0.4109

Urban100
×2

11× 11 to
31× 31

Bicubic 1% 17.30 / 0.4007 17.25 / 0.3729 17.58 / 0.4336 17.01 / 0.4235 15.23 / 0.3357 19.81 / 0.4914

×3
11× 11 to
31× 31

Bicublic 1% 16.44 / 0.3773 16.41 / 0.3539 16.45 / 0.4802 16.14 / 0.3523 15.85 / 0.3538 17.98 / 0.3810

×4
11× 11 to
31× 31

Bicubic 1% 15.89 / 0.3694 15.87 / 0.3491 16.23 / 0.4608 15.95 / 0.3478 15.65 / 0.3601 17.65 /0.3744

blur kernels) for the Urban100.

3.1.3.5 Comparison with the SISR methods

We compare our proposed method with the traditional bicubic upscaling method (i.e., im-

resize Matlab function) and other CNN-based SISR methods including VDSR [51],

TNRD [17], IRCNN [120], and SRMD [122]. The IRCNN [120] and SRMD [122] can

take degraded image y, blur kernel k, and noise level 𝜎 as the input, while VDSR [51]

and TNRD [17] can take degraded image y and noise level 𝜎 as the input to the network.

The various degradation settings have been considered under the same experimental sit-

uations. We run all source codes of the comparison methods with the default parameter

settings for all experiments.

The Table 3.1 reports the results in terms of Average PSNR and SSIM on the test-

ing benchmark datasets. Our method outperforms against the others SISR methods.

Our method gets much cleaner and HR images with fine texture details without blur

artifacts, while the others methods suffer from oversmoothed images and unpleasant

artifacts. Fig. 3.3 shows the visual comparison of our method with others for ×2 upscal-

ing factor of the LR image with motion blur kernel. The VDSR produces unpleasant

blurred results due to the bicubic degradation assumption which deviates from the true

24

PSNR/SSIM ×2 (21.33/0.5465) (21.25/0.5200)
(a) Ground-truth (b) LR (c) Bicubic (d) VDSR

(21.39/0.5323) (21.23/0.5000) (19.61/0.4689) (26.06/0.6817)
(e) TNRD (f) IRCNN (g) SRMD (h) SRWDNet(ours)

Figure 3.3: The visual comparison of other SISR methods with ours for the scale factor
×2 on Set5. The blur kernel is shown on the upper-right corner of the LR image.

one. The TNRDS also produce unpleasant results due to mismatch of realistic degrada-

tion model. Since the IRCNN and SRMD follow the true degradation assumption, the

SRMD produce more visually pleasant results than IRCNN. The SRMD has still blur-

ring artifacts due to opt simple Gaussian blur kernel with fixed width. Even though the

input LR image is severely degraded by the complex degradation, our method achieves

higher performance in both quantitatively and qualitatively than other methods due to

obeying the more realistic degradation model.

We also provide the additional results comparison on test benchmark datasets for

the upscaling factors ×3 and ×4. The Fig. 3.4 and 3.5 shows the visual comparison

of our method with others. Our method gets much cleaner images by preserving fine

texture details on the higher scale factors as well.

Table 3.2: Computational time (Unit : seconds) comparison of our method with the
other SISR methods. The best performance is shown in red and the second best perfor-
mance is shown in blue.

Degradation Scenario VDSR TNRD IRCNN SRMD SRWDNet(Ours)

image size: 500× 480,
motion blur kernel: 31× 31,
𝜎= 1%, upscaling factor = ×4

1.573 19.573 30.561 0.305 0.593

25

PSNR/SSIM ×3 (16.04/0.2910) (15.65/0.2547)
(a) Ground-truth (b) LR (c) Bicubic (d) VDSR [51]

(15.70/0.3221) (15.65/0.2516) (15.00/0.2509) (20.25/0.4899)
(e) TNRD [17] (f) IRCNN [120] (g) SRMD [122] (h) SRWDNet(ours)

Figure 3.4: The visual comparison of other SISR methods with ours for the scale factor
×3 on Set14. The blur kernel is shown on the upper-right corner of the LR image.

PSNR/SSIM ×4 (17.19/0.4903) (17.16/0.4669)
(a) Ground-truth (b) LR (c) Bicubic (d) VDSR [51]

(17.37/0.4817) (17.16/0.4640) (17.15/0.4942) (21.99/0.4707)
(e) TNRD [17] (f) IRCNN [120] (g) SRMD [122] (h) SRWDNet(ours)

Figure 3.5: The visual comparison of other SISR methods with ours for the scale factor
×4 on Set14. The blur kernel is shown on the upper-right corner of the LR image.

3.1.3.6 Running time

Our proposed method performs well in terms of computational cost efficiency with other

SISR methods, which is favorable for practical SR applications. Table 3.2 shows the test

execution time of all SR methods with specific image degradation scenario, measured on

hardware environment with the following specifications as CPU memory: 32GB, GPU

26

memory: 8GB Nvidia Quadro. The testing time of all methods is measured on GPU.

3.1.4 Limitations

Our method is capable of producing the HR images from severely degraded noisy LR

images with complex degradation. However, the main limitation of our method is the

unpleasant results when there is a strong presence of noise i.e., 3%, 5%, or more. More-

over, we train different networks with their respective scaling factors, which limits the

performance of our model with the other scaling factor. MDSR [70] approach is one

possible solution to tackle multiple scaling factors within the same network, but it has

not tackled multiple degradations.

3.2 Deep Iterative CNNs for SISR

The deep CNNs-based SISR methods focus on designing deeper or wider models to

learn the nonlinear mapping between the LR inputs and the HR outputs. These existing

SISR methods do not take into account the image observation (physical) model and thus

require a large number of network’s trainable parameters with a great volume of training

data. To address these issues, we propose a deep Iterative Super-Resolution Residual

Convolutional Network (ISRResCNet) that exploits the powerful image regularization

and large-scale optimization techniques by training the network in an iterative manner

with a residual learning approach. Our model requires few trainable parameters in

comparison to other competing methods. Our method achieves excellent SR results in

terms of PSNR/SSIM and visual quality by following the real-world settings for limited

memory storage and cpu power requirements for the mobile/embedded deployment.

By referring to the general degradation model (3.2), the SISR is described as a linear

27

Encoder

Resnet

D
ecoder

Encoder

Resnet

D
ecoder

Encoder

Resnet

D
ecoder

x0 x1 x2 x(k-1)
x(K)

y

ERD ERD ERD

(LR)

(SR)

Figure 3.6: The proposed iterative SISR approach as described in Algorithm 1. Given
an LR image (y) and an initial estimate (x0), each network’s stage ERD (Encoder-
Resnet-Decoder) produces a new estimate x(𝑘+1) from the previous step estimate x(𝑘).
A single optimizer is used for all network stages with shared structures and parameters
by 𝐾 steps.

forward observation model with the following image degradation process:

y = Hx̃+ 𝜂, (3.22)

where y ∈ R𝑁/𝑠2 is an observed LR image (here 𝑁 = 𝑚 × 𝑛 is typically the total

number of pixels in an image), H ∈ R𝑁/𝑠×𝑁/𝑠 is a down-sampling operator (usually a

bicubic, circulant matrix) that resizes an HR image x̃ ∈ R𝑁 by a scaling factor 𝑠 and 𝜂

is considered as an additive white Gaussian noise (AWGN) with standard deviation 𝜎.

The operator H is usually ill-conditioned or singular due to the presence of unknown

noise (𝜂) that makes the SISR of a highly ill-posed nature of inverse problems. Since,

due to ill-posed nature, there are many possible solutions, regularization is required to

select the most plausible ones.

Generally, SISR methods can be classified into three main categories, i.e., interpo-

lation based methods, model-based optimization methods, and discriminative learning

methods. Interpolation-based methods i.e., nearest-neighbor, bilinear, and bicubic in-

terpolators are efficient and simple, but have very limited reconstruction image quality

(refer to Chapter 2 for more details). Model-based optimization [24] methods have

28

powerful image priors to reconstruct high-quality clean images, but require hundreds of

iterations to achieve acceptable performance, thus making these methods computation-

ally expensive. Model-based optimization [121, 102] methods with the integration of

deep CNNs priors can improve efficiency, but due to hand-crafted parameters, they are

not suitable for end-to-end deep learning methods. On the other hand, discriminative

learning [51, 69, 114, 47, 73, 68, 80] methods have attracted significant attentions due

to their effectiveness and efficiency for SISR performance by using deep CNNs. This

work is inspired by discriminative and residual learning approaches with powerful image

priors and large-scale optimization schemes in an iterative manner for an end-to-end

deep CNNs to solve SISR problem.

The visualization of our proposed iterative SISR approach is shown in Figure 3.6,

where the LR input (y) is given to the network and then the network reconstructs the

SR output. A single optimizer is used for all network stages with shared structures and

parameters. Our contributions in this section are in three-fold as follows:

1. We propose an end-to-end deep iterative Residual CNNs for image super-resolution.

In contrast to the existing deep SISR networks, our proposed method strictly fol-

lows the image observation (physical) model (refers to Eq. (3.22)), and thus it

is able to achieve better reconstruction results even with few network’s trainable

parameters (refers to Table 3.4).

2. A deep SISR network is proposed to solve image super-resolution in an iterative

manner by minimizing the discriminative loss function with a residual learning

approach.

3. The proposed ISRResCNet is inspired by powerful image regularization and large-

scale optimization techniques that have been successfully used to solve general

inverse problems in the past.

29

3.2.1 Proposed Method

3.2.1.1 Problem Formulation

By referencing to equation (3.22), the recovery of x from y mostly relies on the varia-

tional approach for combining the observation and prior knowledge, and is given as the

following objective function:

J(x) = argmin
x

1

2
‖y −Hx‖22 + 𝜆ℛ(x), (3.23)

where 1
2‖y − Hx‖22 is the data fidelity (also known as log-likelihood) term that mea-

sures the proximity of the solution to the observations, ℛ(x) is the regularization term

that is associated with image priors, and 𝜆 is the trade-off parameter that governs the

compromise between the data fidelity and the regularizer term. Interestingly, the vari-

ational approach has a direct link to the Bayesian approach and the derived solutions

can be described by either as penalized maximum likelihood or as maximum a posteriori

(MAP) estimates [7, 28]. Thanks to the recent advances of deep learning, the regularizer

(i.e., ℛ(x)) is employed by deep convolutional neural networks (ConvNets) [101] that

have powerful image priors capabilities.

3.2.1.2 Objective Function Minimization Strategy

Besides the proper selection of the regularizer and formulation of the objective function,

another important aspect of the variational approach is the minimization strategy that

will be used to get the required solution. In the literature, there are several modern

convex optimization schemes for large-scale machine learning problems, such as Split-

Bregman [35], HQS method [33], ADMM [12], Primal-dual algorithms [15], etc. In our

work, we solve the under study problem (3.23) by using the Majorization-Minimization

(MM) framework [42] because J(x) is too complicated to manipulate (i.e., convex func-

30

tion but possibly non-differentiable). In MM [42, 29, 65] approach, an iterative algorithm

for solving the minimization problem

x̂ = argmin
x

J(x), (3.24)

takes the form

x(𝑘+1) = argmin
x

Q(x;x(𝑘)), (3.25)

where, Q(x;x(𝑘)) is the majorizer of the function J(x) at a fixed point x(𝑘) by satisfying

the following two conditions:

Q(x;x(𝑘)) > J(x), ∀x ̸= x(𝑘) and Q(x(𝑘);x(𝑘)) = J(x(𝑘)). (3.26)

Here, we want to upper-bound the J(x) by a suitable majorizer Q(x;x(𝑘)), and instead

of minimizing the actual objective function (3.24) due to its complexity, we minimize

the majorizer Q(.) to produce the next estimate x(𝑘+1). By satisfying the properties

of the majorizer given in Eq. (3.26), iteratively minimizing Q(.;x(𝑘)) also decreases the

actual objective function J(.) [42]. Thus, we can write a quadratic majorizer for the

complete objective function (3.23) as the following form:

Q(x;x(𝑘)) =
1

2
‖y −Hx‖22 + 𝜆Qℛ(x;x(𝑘)), (3.27)

To start an initial estimate x0, we have:

Qℛ(x;x0) =
1

2
(x− x0)

𝑇 [𝛼I−H𝑇H](x− x0), (3.28)

where Qℛ(.) is a distance function between x and x0. In order to get a valid majorizer

Qℛ(.), we need to satisfy two conditions in Eq. (3.26) as Qℛ(x;x0) > 0, ∀x ̸= x0

and Qℛ(x;x0) = 0. This suggests that 𝛼I −H𝑇H must be a positive definite matrix,

31

which only holds if 𝛼 > ‖H𝑇H‖2. The parameter 𝛼 depends upon the largest eigen-

value of H𝑇H, but, in most image restoration cases [29] such as inpainting, deblurring,

demosaicking[55], and super-resolution, it approximately equals to one (𝛼 ≈ 1). Based

on the above discussion, we can write the overall majorizer as:

Q(x;x0) =
1

2/𝛼
‖x− z‖22 + 𝜆ℛ(x) + 𝑐𝑜𝑛𝑠𝑡., (3.29)

where z = x0 +
1
𝛼H

𝑇 (y −Hx0), and the constant does not depend on x and thus it is

irrelevant to the optimization task.

Finally, we proceed with the MM optimization scheme to iteratively minimize the

quadratic majorizer function Q(.) by the following formulation:

x̂(𝑘) = argmin
x

Q(x;x𝑘)

= argmin
x

1

2
‖y −Hx‖22 + 𝜆Qℛ(x;x𝑘)

= argmin
x

1

2/𝛼
‖x− z𝑘‖22 + 𝜆ℛ(x)

= Prox(𝜆/𝛼)ℛ(.)(z
𝑘)

(3.30)

where z𝑘 = z𝑘+H𝑇 (y−Hz𝑘) and Prox(.) is the proximal operator [85], which is defined

as:

PC(z) = argmin
x∈C

1

2𝜎2
‖x− z‖22 +

𝜆

𝛼
ℛ(x). (3.31)

It can be noted that the above Eq. (3.31) is treated as the objective function of a denois-

ing problem, where z is the noisy observation with noise level 𝜎. In this way, we heavily

rely on employing a deep denoising neural network to get the required estimate x̂(𝑘) by

unrolling the MM scheme as 𝐾 finite steps. Another thing to notice in Eq. (3.30), is

that we decouple the degradation operator H from x and now we need to tackle it with

a less complex denoising problem. However, obtaining the resulting solution x̂(𝑘) from

32

Algorithm 1: The proposed SISR iterative approach. The ERD structure and
parameters are shared across all iterative steps.

Input : y: LR input, H: Down-sampling operator, H𝑇 : Up-sampling
operator, 𝐾: iterative steps, w ∈ R𝐾 : extrapolation weights, 𝜎:
estimated noise, 𝜆, 𝛼: projection parameters

Initialization: x(0) = H𝑇y, H𝑇 : Bilinear kernel;

z(1) = x(0) +H𝑇 (y −Hx(0));
for 𝑘 ← 1 to 𝐾 do

Extrapolation step: z(𝑘+1) = x(𝑘) +w(k)(x(𝑘) − x(𝑘−1));

Proximal step (ERD-block): x̂(𝑘) = Prox(𝜆/𝛼)ℛ(.)(z
𝑘 +H𝑇 (y −Hz𝑘));

end

Output: x𝐾 : SR output

Eq. (3.30) can be computationally expensive since it demands 𝐾 times the parameters

of the employed denoiser and can exhibit the slow convergence [4, 54]. To avoid this

hurdles, we adopt the similar strategy as done in [55], where the trainable extrapolation

weights w(k) are learnt directly from the training data instead of the fixed ones [67].

Moreover, the convergence of our proposed method is sped up by adopting the continu-

ation strategy [71]. Our overall proposed method is shown in Fig. 3.6 and also described

in the Algorithm 1, where the input settings, initialization, extrapolation steps, and

proximal steps are defined. Our proposed Algorithm 1 has a close connection with other

proximal algorithms such as ISTA [19] and FISTA [5] that require the exact form of the

employed regularizer such as Total Variation / Hessian Schatten-norm [65]. However,

in our case, the regularizer is learned implicitly from the training data (i.e., non-convex

form), and therefore our algorithm acts as an inexact form of proximal gradient descent

steps.

3.2.1.3 Network Architecture

The proposed network architecture for super-resolution is shown in Fig. 3.6. Given

an LR image (y) and an initial estimate (x0), each network’s stage ERD (Encoder-

Resnet-Decoder) produces a new estimate x(𝑘+1) from the previous step estimate x(𝑘).

The Algorithm 1 describes the inputs, initial conditions, and desired updates for each

33

+

σ

+ -

Tc
on

v
5x

5

Pr
ox

C
lip

pi
ng

C
on

v
3x

3
(C

=6
4)

PR
el

u

C
on

v
3x

3
(C

=6
4)

PR
el

u

C
on

v
3x

3
(C

=6
4)

C
on

v
3x

3
(C

=6
4)

PR
el

u

PR
el

u

ResnetEncoder Decoder

ERD

PR
el

u
C

on
v

1x
1

(C
=6

4)

Feedback(FB)

C
on

v
5x

5

C
on

ca
t

 (C
=1

28
)

(C
=6

4)

(C
=3

)

(C
=3

)

(C
=3

)

(LR) (SR)

Figure 3.7: The architecture of ERD (Encoder-Resnet-Decoder) blocks used in the pro-
posed ISRResCNet. The z𝑘 is the LR noisy observation, refer to the Eq. (3.30). The
ℛ(.) corresponds to the regularizer learning part, refer to the Eq. (3.30). The Prox
layer inside the Decoder computes the proximal map with the noise standard deviation
𝜎, refer to the Eq. (3.31). The x(𝑘+1) is the new solution SR estimate.

network stage. The ERD structure and parameters are shared across all iterative steps.

Finally, a single optimizer is used to minimize the ℓ1-Loss between the estimated latent

SR image (x(𝑘)) and ground-truth (GT) (x(𝑔𝑡)) after k-steps as:

argmin
Θ
ℒ(Θ) =

1

2

𝑁∑︁
𝑛=1

‖x𝑘
𝑛 − x𝑔𝑡

𝑛 ‖1 (3.32)

where 𝑁 is the mini-batch size and Θ are the trainable parameters of our network.

Fig. 3.7 shows the ERD block used in the network. In ERD network, both Encoder

(Conv) and Decoder (TConv) layers have 64 feature maps of 5 × 5 kernel size with

𝐶 × 𝐻 ×𝑊 tensors, where 𝐶 is the number of channels of the input image. Resnet

consists of 5 residual blocks with two Pre-activation Conv layers, each of 64 feature maps

with kernels support 3×3, and the pre-activation is the parametrized rectified linear unit

(PReLU)[38] with 64 out feature channels. The Resnet also contains the Feedback (FB)

path after 5 resblocks with an initial concatenation pre-activation Conv layer by 1× 1

kernel support that maps 128 features channels to 64 to feed into resblocks. The Prox

layer [64] inside the Decoder computes the proximal map for Eq. (3.31) with given noise

standard deviation 𝜎 and handle the data fidelity and prior terms. The noise realization

is estimated in the intermediate Resnet that is sandwiched between the Encoder and

Decoder. The estimated residual image after Decoder is subtracted from the LR input

34

image. Finally, the clipping layer incorporates our prior knowledge about the valid

range of image intensities and enforces the pixel values of the reconstructed image to

lie in the range [0, 255]. Reflection padding is also used before all Conv layers to ensure

slowly-varying changes at the boundaries of the input images. Our ERD structure can

also be described as the generalization of one stage TNRD [17] and UDNet [64] that

have good reconstruction performance for the image denoising problem.

3.2.1.4 Network Training via TBPTT

Due to the iterative nature of our SISR approach, the network parameters are updated

using back-propagation through time (BPTT) algorithm by unrolling 𝐾 steps to train

the network, which is previously used in recurrent neural networks training such as

LSTMs. However, it is computationally expensive by increasing the number of iterative

steps 𝐾, so both 𝐾 and mini-batch (𝑁) size are upper-bound on the GPU memory.

Therefore, to tackle this problem, we use the Truncated Backpropagation Through Time

(TBPTT) algorithm as done in [55] to train our network, where the sequence is unrolled

into a small number of 𝑘-steps out of total𝐾 and then the back-propagation is performed

on the small 𝑘-steps. Furthermore, we compute the ℓ1-Loss with respect to GT images

after 𝑘 iterative steps according to Eq. (3.32).

Table 3.3: The settings of input LR and corresponding HR patch sizes during the
network training.

Scale factor LR Patch size HR Patch size
×2 60× 60 120× 120
×3 50× 50 150× 150
×4 40× 40 160× 160

3.2.2 Experiments

3.2.2.1 Data augmentation

We use DIV2K[1] dataset that contains 800 HR images for training. We take the input

LR image patches as a bicubic downsample (i.e., regarded as a standard degradation)

35

with their corresponding HR image patches. We augment the training data with random

vertical and horizontal flipping, and 90∘ rotations. Moreover, we also consider another

effective data augmentation technique, called MixUp [116]. In Mixup, we take randomly

two samples (x𝑖,y𝑖) and (x𝑗 ,y𝑗) in the training HR/LR set (X̃,Y) and then form a new

sample (x̃,y) by interpolation of the pair samples by following the same degradation

model (3.22) as done in [27]. This simple technique encourages our network to support

linear behavior among training samples.

3.2.2.2 Technical details

We use the RGB input LR and corresponding HR patches with different patch sizes

according to the upscaling factor as listed in Table 3.3. We train the network for 300

epochs with a batch size of 4 using the Adam optimizer with parameters 𝛽1 = 0.9,

𝛽2 = 0.999, and 𝜖 = 10−8 without weight decay to minimize the ℓ1-Loss (3.32). We

use the method of Kaiming He [38] to initial the Conv weights and bias to zero. The

learning rate is initially set to 10−3 for the first 100 epochs and then multiplies by 0.5

for every 50 epochs. We set the number of iterative steps (𝐾) to 20 and feedback steps

(FB) to 4 for our method. The extrapolation weights w ∈ R𝐾 are initialized with

w𝑡 = 𝑡𝑘−1
𝑡𝑘+2

,∀1 ≤ 𝑡 ≤ 𝐾, and then further fine-tuned on the training data as done in

[55]. The projection layer parameter 𝜎 is estimated according to [72] from the input LR

image. We initialize the projection layer parameter 𝛼 on a log-scale value from 𝛼𝑚𝑎𝑥 = 2

to 𝛼𝑚𝑖𝑛 = 1 and then further fine-tuned during the training via back-propagation. To

further enhance the performance of our network, we use a self-ensemble strategy [99]

(denoted as ISRResCNet+), where the LR inputs are flipped/rotated and the SR results

are aligned and averaged for enhanced prediction.

36

1 5 10 15 20
Number of iterative steps (K)

25.0
25.5
26.0
26.5
27.0
27.5
28.0
28.5
29.0
29.5
30.0
30.5
31.0
31.5

PS
NR

ISRResCNet
ISRResCNet+

(a) PSNR vs. K

1 5 10 15 20
Number of iterative steps (K)

0.75

0.80

0.85

0.90

SS
IM

ISRResCNet
ISRResCNet+

(b) SSIM vs. K

Figure 3.8: Average PSNR/SSIM performance (Set5 on ×4) of proposed ISRResCNet
and ISRResCNet+ after each iterative step (K).

3.2.2.3 Evaluation metrics and SR benchmarks

We evaluate the trained model under the Peak Signal-to-Noise Ratio (PSNR) and Struc-

tural Similarity (SSIM) metrics on four benchmark datasets: Set5 [8], Set14 [115],

B100 [78], and Urban100 [40]. In order to keep a fair comparison with existing net-

works, the quantitative SR results are only evaluated on 𝑌 (luminance) channel of the

transformed 𝑌 𝐶𝑏𝐶𝑟 color space.

3.2.2.4 Ablation study of iterative (K) and feedback (FB) steps

For our ablation study, we evaluate our proposed ISRResCNet and ISRResCNet+ per-

formance on Set5 benchmark dataset at ×4 upscaling factor. Table 3.4 shows the aver-

age PSNR/SSIM performance after iterative steps (𝐾) and feedback (FB) steps. Our

trained model achieves better performance (PSNR/SSIM) by increasing the number of

iterative steps 1 to 20 with the shared network parameters (i.e., 380K) without using

FB steps (see in Fig. 3.8 and Table 3.4). When the FB connections introduce into our

network, the model converges in the less number of iterative steps (i.e., 10) with bet-

ter reconstruction results by requiring a few additional parameters (i.e., +8K) because

these error feedback connections [68] after residual blocks provide strong early recon-

37

Table 3.4: The impact of iterative (K) and feedback (FB) steps on ISRResCNet on the
scale factor ×4. The average PSNR/SSIM values are evaluated on Set5 testset. The
best performance is shown in red.
Feedback
steps (FB)

Iterative
steps (K)

#Params
(×103)

ResBlocks
(D)

Feature-Maps
(F)

ISRResCNet ISRResCNet+

✗ 10 380 5 64 31.44 / 0.8855 31.59 / 0.8876
✗ 20 380 5 64 31.56 / 0.8874 31.69 / 0.8891
✓ 10 388 5 64 31.63 / 0.8890 31.77 / 0.8908

Table 3.5: Average PSNR/SSIM values for the scale factors ×2, ×3, and ×4 with the
bicubic degradation model. The best performance is shown in red and the second best
performance is shown in blue.

Dataset Scale Bicubic
SRCNN [23] VDSR [51] EDSR-baseline [69] RISR [47] SRFBN-S [68] ISRResCNet ISRResCNet+
(ECCV-2014) (CVPR-2016) (CVPR-2017) (ICPR-2018) (CVPR-2019) (Ours) (Ours)

Set5
×2 33.55 / 0.9304 36.16 / 0.9509 37.30 / 0.9573 37.59 / 0.9605 37.63 / 0.9590 37.39 / 0.9597 37.67 / 0.9596 37.79 / 0.9600
×3 30.35 / 0.8686 32.28 / 0.9020 33.50 / 0.9197 34.18 / 0.9270 33.91 / 0.9234 33.99 / 0.9252 34.08 / 0.9251 34.20 / 0.9258
×4 28.39 / 0.8109 29.99 / 0.8519 31.20 / 0.8818 31.89 / 0.8932 31.58 / 0.8870 31.76 / 0.8914 31.63 / 0.8890 31.77 / 0.8908

Set14
×2 30.05 / 0.8701 31.81 / 0.9033 32.84 / 0.9121 33.21 / 0.9177 33.16 / 0.9133 33.04 / 0.9157 32.89 / 0.9144 33.06 / 0.9155
×3 27.40 / 0.7763 28.70 / 0.8151 29.54 / 0.8323 29.91 / 0.8421 29.91 / 0.8338 29.72 / 0.8376 29.63 / 0.8365 29.76 / 0.8381
×4 25.86 / 0.7056 26.92 / 0.7427 27.75 / 0.7688 28.20 / 0.7820 28.19 / 0.7707 28.05 / 0.7785 27.99 / 0.7757 28.08 / 0.7776

B100
×2 29.51 / 0.8439 31.07 / 0.8838 31.83 / 0.8949 32.03 / 0.8996 32.01 / 0.8968 31.87 / 0.8972 31.98 / 0.8974 32.03 / 0.8980
×3 27.19 / 0.7399 28.17 / 0.7799 28.80 / 0.7971 29.03 / 0.8056 28.92 / 0.7996 28.90 / 0.8015 28.91 / 0.8014 28.96 / 0.8024
×4 25.96 / 0.6698 26.70 / 0.7029 27.27 / 0.7252 27.53 / 0.7365 27.37 / 0.7270 27.41 / 0.7321 27.40 / 0.7301 27.44 / 0.7313

Urban100
×2 26.84 / 0.8409 29.01 / 0.8885 30.67 / 0.9129 31.81 / 0.9271 31.06 / 0.9168 31.27 / 0.9208 31.29 / 0.9205 31.45 / 0.9220
×3 24.44 / 0.7359 25.82 / 0.7874 27.09 / 0.8271 28.05 / 0.8524 27.41 / 0.8338 27.60 / 0.8418 27.57 / 0.8409 27.70 / 0.8432
×4 23.13 / 0.6593 24.11 / 0.7051 25.14 / 0.7522 25.98 / 0.7850 25.41 / 0.7595 25.66 / 0.7725 25.56 / 0.7682 25.65 / 0.7705

struction ability. Since these error feedbacks are beneficial on the higher scale (×4), so

we report the quantitative results in the Table 3.5 with feedback steps at ×4 upscaling

factor, while the others (×2,×3) are without feedback steps with 20 iterative steps. It

can also be noted (see Fig. 3.8) that a few iterative steps (e.g. 5) are enough to obtain

excellent SR results with the performance trade-off between quantitative results and the

computation time of our method.

3.2.2.5 Comparison with the state-of-art methods

We compare our method with other state-of-art SISR methods including SRCNN [23],

VDSR [51], EDSR [69], RISR [47], and SRFBN [68], whose source codes are available

online except for RISR method for which the quantitative results are directly taken

from the paper. We run all source codes with default parameters settings through

all experiments. We report the quantitative results of our method with others in the

Table 3.5. Our method exhibits better improvement in PSNR and SSIM compared to

other methods, except the EDSR. Since the EDSR has a much deeper network containing

38

HR LR Bicubic SRCNN

VDSR EDSR SRFBN ISRResCNet+

'butterfly' GT from Set5

HR LR Bicubic SRCNN

VDSR EDSR SRFBN ISRResCNet+

'img_092' GT from Urban100

Figure 3.9: Visual comparison of our method with the other state-of-art methods on
the ×4 upscaling factor.

16 residual blocks with 1.5𝑀 parameters, while our model contains 5 residual blocks with

380𝐾 parameters, which is a much lighter model than EDSR with slightly performance

difference in the PSNR (i.e., +0.12𝑑𝐵 on Set5) at ×4 upscaling factor. Despite that,

the parameters of the proposed network are much less than the other state-of-art SISR

networks, which makes it suitable for deployment in mobile devices where memory

storage and cpu power are limited as well as good image reconstruction quality (see

section 3.2.2.4).

Regarding the visual quality, Fig. 3.9 shows the visual comparison of our method

with other SR methods for a high (×4) upscaling factor. The proposed method success-

fully reconstructs the good textures regions, sharp edges, and finer details of SR image

compared to the other methods.

39

3.3 Deep Efficient CNNs for SISR

We propose a light-weight deep iterative SR learning method (ISRResDNet) that solves

the SR task as a sub-solver of the image denoising by the residual denoiser networks. The

proposed method super-resolved the LR image to the SR image by the high upscaling

factor ×4 which reduces the several factors such as #parameters, #Conv (depths of

the network), and FLOPs, while getting the PSNR/SSIM close to the baseline model,

refer to the Table 3.6. It is inspired by the powerful inherent non-local self-similarity

property of natural images and the efficient proximal gradient optimization technique

to solve general inverse problems.

RBFs x1 x2 x(k-1)
x(K)y

ResDNet

C
on

v

TC
on

v

ResDNet ResDNet

shared params

RBFs

C
on

v

TC
on

v

shared params

RBFs

C
on

v

TC
on

v

shared params
(LR) (SR)

Figure 3.10: The structure of our proposed iterative SR approach. We cascade the
ResDNet to the 𝐾 stages. The first stage takes the LR (y) image and the intermediate
stages refine the estimated SR solution until the last stage. The loss ℒ(.) function is
jointly minimized with respect to all network stages.

3.3.1 Proposed method

The proposed iterative SR approach is shown in the Fig. 3.10. We unroll the ResDNet

into 𝐾 stages, where each stage performs the PGM [85] updates. Here, y is an input

LR image, x𝐾 is a final estimated SR image, and x𝑔𝑡 is the corresponding ground

truth image. We learn the different parameters in each stage by jointly minimizing

the loss ℒ(Θ) function with respect to all network parameters Θ. However, in each

ResDNet stage, the convolution layer (i.e., Conv) and its transposed convolution layer

(i.e., TConv) share the same parameters.

40

σ

-

TC
on

v
5x

5

Pr
oj

U
ps

am
pl

e

C
lip

pi
ng

LR SRN
on

-
Li

ne
ar

iti
es

(R
B

Fs
)

ResDNet

C
on

v
5x

5

(C
=7

4)

(C
=3

)

(C
=7

4)

(C
=3

)

(C
=3

)

(C
=3

)

shared parameters

Figure 3.11: The architecture of ResDNet. Each ResDNet block contains the Upsample
layer, the Non-linearities (RBFs) is sandwitched between the Conv and TConv layers
which have shared parameters, the Proj layer computes the proximal map with noise
sigma 𝜎, finally the clipping layer is applied to enforce the pixel values between 0 and
255.

3.3.1.1 Network Architecture

The Fig. 3.11 shows the network architecture of ResDNet, which is the modified form of

the UDNet [64] denoiser network. The LR image (y) is upsampled by the Bilinear kernel

with Upsample layer, where the choice of the upsampling kernel is arbitrary. Both the

Conv and TConv layers have 74 feature maps of 5 × 5 kernel size with 𝐶 × 𝐻 ×𝑊

tensors, where 𝐶 is the number of channels of the input image. The RBFs [64] layer

contains the RBF-mixture with truncated Gaussian basis functions and serves as the

powerful approximator for high accuracy arbitrary non-linear functions. The trainable

projection layer [64] computes the proximal map with the estimated noise standard

deviation 𝜎 and handles the data fidelity and prior terms. The noise realization is

estimated in the intermediate RBFs that are sandwiched between Conv and TConv.

The estimated residual features map is subtracted from the upsampled LR input image.

Finally, the clipping layer incorporates our prior knowledge about the valid range of

image intensities and enforces the pixel values of the reconstructed image to lie in the

range [0, 255]. Symmetric padding is also used before Conv layer to ensure slowly varying

changes at the boundaries of the input images. Our proposed ResDNet structure can

also be described as the TNRD [17] and UDNet [64] that have good reconstruction

performance for image denoising problem.

41

3.3.1.2 Network Losses

For the SR learning, we train the proposed ISRResDNet with the following training loss

functions:

ℒ = ℒ1 + ℒ𝑡𝑣 (3.33)

where, these losses are defined as follows:

Content loss (ℒ1): It preserves the image content and is defined as:

ℒ1(x
𝐾 ,x𝑔𝑡) =

1

𝑁

𝑁∑︁
𝑖

‖x𝐾
𝑖 − x𝑔𝑡

𝑖 ‖1 (3.34)

where, 𝑁 is represents the size of mini-batch and x𝐾 is the final estimated SR image of

the last stage of the network.

TV (total-variation) loss (ℒ𝑡𝑣): It focuses to minimize the gradient discrepancy and

produce sharpness in the output SR image and is defined as:

ℒ𝑡𝑣(x
𝐾 ,x𝑔𝑡) =

1

𝑁

𝑁∑︁
𝑖

(︀⃦⃦
∇ℎx

𝐾
𝑖 −∇ℎx

𝑔𝑡
𝑖

⃦⃦
1
+
⃦⃦
∇𝑣x

𝐾
𝑖 −∇𝑣x

𝑔𝑡
𝑖

⃦⃦
1

)︀
(3.35)

Here, ∇ℎ and ∇𝑣 denote the horizontal and vertical gradients of the images.

3.3.2 Experiments

3.3.2.1 Training Data

We use DIV2K [1] dataset that contains 800 HR images and Flickr2K [97] dataset

that contains 2650 HR images for training. We take the input LR images as a bicubic

downsampled to their corresponding HR images. We augment the training data with

random vertical and horizontal flipping, and 90∘ rotations. The validation dataset

contains 100 LR images with bicubic degradation from the DIV2K data. The test

dataset contains 100 LR images provided in the AIM 2020 Efficient SR challenge [117].

42

Table 3.6: The quantitative SR results (×4 upscale) comparison of our method with
the others over the DIV2K validation set (100 LR images) and AIM 2020 Efficient SR
challenge testset [117] (100 LR images). The best performance is shown in red.

Efficient SR methods
PSNR
(Val.)

PSNR
(Test)

SSIM
(Val.)

#Params
(M)

depths
(#Conv)

Runtime
(Val.)(s)

#FLOPs
(G)

#Activations
(M)

Memory
(M)

MSRResNet (Baseline) 29.00 28.70 0.8199 1.517 37 0.114 166.36 292.55 610
ISRResDNet (ours) 27.89 27.77 0.7898 0.047 10 1.313 50.66 351.27 1064

3.3.2.2 Training description

We use DIV2K dataset that contains 800 HR images with their corresponding LR images

for training, provided in the AIM 2020 Challenge on Efficient Super-Resolution [117].

We further use the Flickr2K [98] dataset consisting of 2650 high-resolution images. At

training time, we set the input LR patch sizes as 40× 40 with their corresponding HR

patch sizes as 160 × 160. We train the network for 300 epochs with a batch size of 16

using Adam optimizer with parameters 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8 without

weight decay to minimize the loss (4.15). The learning rate is initially set to 10−3 for

the first 100 epochs and then multiplies by 0.5 for every 50 epochs. The projection layer

parameter 𝜎 is estimated according to [72] from the input LR image. We unroll the

network into 𝐾 stages, where we set 𝐾 as 5.

3.3.2.3 Quantitative Results

The Table 3.6 shows the quantitative results of our method over the DIV2K validation-

set and testset (100 images) with bicubic degradation provided in the AIM 2020 Efficient

SR challenge [117], and comparison to the baseline SR method.

3.3.2.4 Technical details

We implemented our method with Pytorch 1.5.0. The experiments are performed under

Windows 10 with i7-8700 CPU with 32GB RAM and on NVIDIA Quadro P4000 GPU

with 8GB memory. The running time at test time per image (on GPU in seconds) is

shown in the Table 3.6.

43

3.3.3 Discussion and Limitations

We have higher the number of activations (i.e., a better correlation to the Memory and

the Runtime as described in [117]) than the Baseline method due the K iterative stages

of our method, while we have better other factors, i.e., the number of parameters, the

depth of the network, and the number of FLOPs. Since the automatic differentiation [86]

requires more memory than available on commercial graphical processing units (GPUs),

vanilla automatic differentiation can be replaced with memory-efficient techniques [49]

to solve the memory usage issue.

44

4
Real-World Super-Resolution

4.1 Deep Generative Adversarial Residual Convolu-

tional Networks for Real-world SR

Most current deep learning based SISR methods focus on designing deeper / wider

models to learn the nonlinear mapping between LR inputs and HR outputs from a

large number of paired (LR/HR) training data. They usually take as assumption that

the LR image is a bicubic down-sampled version of the HR image. However, such

degradation process is not available in real-world settings i.e., inherent sensor noise,

stochastic noise, compression artifacts, possible mismatch between image degradation

process and camera device. It reduces significantly the performance of current SISR

methods due to real-world image corruptions. To address these problems, we pro-

pose a deep Super-Resolution Residual Convolutional Generative Adversarial Network

(SRResCGAN) to follow the real-world degradation settings by adversarial training the

model with pixel-wise supervision in the HR domain from its generated LR counterpart.

The proposed network exploits the residual learning by minimizing the energy-based ob-

45

jective function with powerful image regularization and convex optimization techniques.

We demonstrate our proposed approach in quantitative and qualitative experiments

that generalize robustly to real inputs and it is easy to deploy for other down-scaling

operators and mobile/embedded devices.

By referring to the general degradation model (3.2), the SISR is described as a linear

forward observation model by the following image degradation process:

y = Hx̃+ 𝜂, (4.1)

where, y is an observed LR image, H is a down-sampling operator (usually bicubic,

circulant matrix) that resizes an HR image x̃ by a scaling factor 𝑠 and 𝜂 is considered

as an additive white Gaussian noise with standard deviation 𝜎. However, in real-world

settings, 𝜂 also accounts for all possible errors during the image acquisition process that

include inherent sensor noise, stochastic noise, compression artifacts, and the possible

mismatch between the forward observation model and the camera device. The operator

H is usually ill-conditioned or singular due to the presence of unknown noises (𝜂) that

makes the SISR to the highly ill-posed nature of inverse problems.

Recently, numerous works have addressed the task of SISR using deep CNNs for their

powerful feature representation capabilities. The designed SISR methods [23, 51, 92, 69,

69, 120, 122, 68, 102] mostly rely on the PSNR-based metric by optimizing the ℒ1/ℒ2

losses with blurry results, while they do not preserve the visual quality with respect to

human perception. Moreover, the above mentioned methods are deeper or wider CNN

networks to learn non-linear mapping from LR to HR with a large number of training

samples, while neglecting the real-world settings.

For the perception SR task, a preliminary attempt was made by Ledig et al. [106],

who proposed the SRGAN method to produce perceptually more pleasant results. To

further enhance the performance of the SRGAN, Wang et al. [106] proposed the ESR-

46

GT ESRGAN ESRGAN-FS SRResCGAN SRResCGAN+

Figure 4.1: ×4 Super-resolution comparison of the proposed SRResCGAN method with
the ESRGAN [106] and ESRGAN-FS [31] by the unknown artifacts for the ‘0815’ image
(DIV2K validation-set). Our method has better results to handle sensor noise and other
artifacts, while the others have failed to remove these artifacts.

GAN model to achieve the state-of-art perceptual performance. Despite their success,

the previously mentioned methods are trained with HR/LR image pairs using the bicu-

bic down-sampling and thus limited performance int real-world settings. More recently,

Lugmayr et al. [75] proposed a benchmark protocol for the real-world image corruptions

and introduced the real-world challenge series [76] that described the effects of bicubic

downsampling and separate degradation learning for super-resolution. Later on, Fritsche

et al. [31] proposed the DSGAN to learn degradation by training the network in an un-

supervised way, and also modified the ESRGAN as ESRGAN-FS to further enhance it

performance in real-world settings. However, the above methods still suffer unpleasant

artifacts as shown in Fig. 4.1. Our approach takes into account the real-world settings

by increasing its applicability.

Since there are many visible corruptions in the real-world images, the current state-

of-the-art SISR methods often fail to produce convincing SR results as shown in the

Fig. 4.1. Most of the existing SR methods rely on the known degradation operators

47

SR Learning

Encoder

Resnet

D
ecoder

GSR

Dyy

Resnet

Gd

Dxx

z = B(y)

C
on

v

C
on

vz

Domain Learning

ŷx̂

Figure 4.2: The structure of the proposed SR approach setup. In the Domain Learning
part, we learn the domain distribution corruptions in the source domain (x) by the
network G𝑑, where our goal is to map images from z to x, while preserving the image
content. Here B denotes the bicubic downscaling operator which is applied on the clean
HR target domain (y) images. In the SR Learning part, we trained the network G𝑆𝑅 in
a GAN framework by using generated LR (x̂) images from the G𝑑 network with their
corresponding HR images.

such as bicubic with paired LR and HR images in the supervised training, while other

methods do not follow the image observation (physical) model (refers to Eq. (4.1)).

Three major problems arise in the existing SR methods: (1) the first is to train the

deeper/wider (lots of model’s parameters) networks from a huge volume of training

data, (2) the second is not to generalize well for natural image characteristics due to

follow the known bicubic down-sampling degradation, and (3) it is not easy to deploy

to the current generation of smartphone cameras due to lots of network parameters

and memory footprints. Therefore, we focus on a robust SISR method that is useful to

improve the quality of images in such real-world settings.

In this work, we propose SR learning method (SRResCGAN) that strictly follows the

image observation (physical) model (refers to Eq. (4.1)) to overcome the challenges of

real-world super-resolution and is inspired by powerful image regularization and large-

scale optimization techniques to solve general inverse problems (i.e., easy to deployable

for other downscaling operators). The visualization of our proposed SISR approach

setup is shown in the Fig. 4.2. Due to the unavailability of the paired (LR/HR) data,

we train firstly the domain learning network (G𝑑) to generate the LR images with same

characteristics as the corrupted source domain (x). We aim to learn the distribution

(real-world) mapping from bicubically down-sampled images (z) of HR images (y) to

48

the source domain images (x), while preserving the image content. In the second part,

the SR network (G𝑆𝑅) is trained in a GAN framework [36] by using generated LR (x̂)

images with their corresponding HR images with pixel-wise supervision in the clean HR

target domain (y).

We evaluate our proposed SR method on multiple datasets with synthetic and natural

image corruptions. We use the Real-World Super-resolution (RWSR) dataset [77] to

show the effectiveness of our method through quantitative and qualitative experiments.

Finally, we also participated in the NTIRE2020 RWSR challenges (track-1 and track-2)

associated with the CVPR 2020 workshops. Table 4.2 shows the final testset results of

the track-1 of our method (MLP-SR) with others, while we only provide the visual

comparison of the track-2 since no ground truth (GT) is available (refers to Fig. 4.5),

and the quantitative results of the track-2 are in the challenge report [77].

4.1.1 Proposed Methodology

4.1.1.1 Problem Formulation

By referencing to the equation (4.1), the recovery of x from y mostly relies on the

variational approach for combining the observation and prior knowledge, and is given

as the following objective function:

Ê(x) = argmin
x

1

2
‖y −Hx‖22 + 𝜆R𝑊 (x), (4.2)

where 1
2‖y−Hx‖22 is the data fidelity term, R𝑊 (x) is regularization term, and 𝜆 is the

trade-off parameter that governs the compromise between data fidelity and regularizer

terms.

A generic form of the regularizers in the literature [17, 64, 102, 83] is given as below:

R𝑊 (x) =

𝐾∑︁
𝑘=1

𝜌𝑘(L𝑘x), (4.3)

49

where L corresponds to the first or higher-order differential linear operators such as

gradient, while 𝜌(.) denotes a potential functions such as ℓ𝑝 vector or matrix norms that

acts on the filtered outputs [58]. Thanks to the recent advances of deep learning, the

regularizer (i.e.,R𝑊 (x)) is employed by deep convolutional neural networks (ConvNets),

whose parameters are denoted by W, that have the powerful image priors capabilities.

Besides the proper selection of the regularizer and formulation of the objective func-

tion, another important aspect of the variational approach is the minimization strategy

that will be used to get the required solution. In the next subsection 4.1.1.2, we briefly

explain the minimization approach to get the solution of the objective function (4.2).

4.1.1.2 Objective Function Minimization Strategy

The proper optimization strategy is employed to find W that minimizes the energy-

based objective function to get the required latent HR image. So, we want to recover

the underlying image x as the minimizer of the objective function in Eq. (4.2) as:

x̂ = argmin
x∈x̃

Ê(x), (4.4)

By referencing the Eqs. (4.2) and (4.3), we can write it as:

x̂ = argmin
x

1

2
‖y −Hx‖22 + 𝜆

𝐾∑︁
𝑘=1

𝜌𝑘(Lkx), (4.5)

Since it is reasonable to require constraints on the image intensities such as non-

negativity values (i.e., 𝛼 = 0, 𝛽 = +∞) that arise in the natural images, Eq. (4.5)

can be rewritten in a constrained optimization form:

x̂ = argmin
𝛼≤x≤𝛽

1

2
‖y −Hx‖22 + 𝜆

𝐾∑︁
𝑘=1

𝜌𝑘(Lkx), (4.6)

50

To solve the Eq. (4.6), there are several modern convex optimization schemes for large-

scale machine learning problems, such as HQS method [33], ADMM [12], and Proximal

methods [85]. In our work, we solve the under study problem in (4.6) by using the

Proximal Gradient Method (PGM) [85], which is a generalization of the gradient descent

algorithm. PGM deals with the optimization of a function that is not fully differentiable,

but it can be split into a smooth and a non-smooth part. To do so, we rewrite the

problem in (4.6) as:

x̂ = argmin
x

1

2
‖y −Hx‖22 + 𝜆

𝐾∑︁
𝑘=1

𝜌𝑘(Lkx)⏟ ⏞
F(x)

+𝜄𝑐(x), (4.7)

where, 𝜄𝑐 is the indicator function on the convex set C ∈ {x ∈ R𝑁×𝑁 : ∀𝑘, 𝛼 ⩽ x𝑘 ⩽ 𝛽}.

In [64], Lefkimmiatis proposed a trainable projection layer that computes the proximal

map for the indicator function as:

𝜄𝑐(x, 𝜀) =

⎧⎪⎨⎪⎩ 0 , 𝑖𝑓 ‖x‖2 ⩽ 𝜀

+∞ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(4.8)

where, 𝜖 = 𝑒𝛼𝜎
√
𝐶 ×𝐻 ×𝑊 − 1 is the parametrized threshold, in which 𝛼 is a trainable

parameter, 𝜎 is the noise level, and 𝐶 × 𝐻 ×𝑊 is the total number of pixels in the

image.

Thus, the solution of the problem in (4.7) is given by the PGM by the following update

rule:

x𝑡 = Prox𝛾𝑡𝜄𝑐

(︁
x(𝑡−1) − 𝛾𝑡∇xF(x

(𝑡−1))
)︁
, (4.9)

where, 𝛾𝑡 is a step-size and Prox𝛾𝑡𝜄𝑐 is the proximal operator [85], related to the
indicator function 𝜄𝑐, that is defined as:

PC(z) = argmin
x∈C

1

2𝜎2
‖x− z‖22 + 𝜄𝑐(x), (4.10)

51

The gradient of the F(x) is computed as:

∇xF(x) = H𝑇 (Hx− y) + 𝜆

𝐾∑︁
𝑘=1

Lk
𝑇𝜑𝑘(Lkx), (4.11)

where, 𝜑𝑘(.) is the gradient of the potential function (𝜌𝑘). By combining the Eqs. (4.9),

(4.10) and (4.11), we have the final form of our solution as:

x𝑡 = PC

(︃
(1− 𝛾𝑡H𝑇H)x(𝑡−1) + 𝛾𝑡H𝑇y − 𝜆𝛾𝑡

𝐾∑︁
𝑘=1

Lk
𝑇𝜑𝑘(Lkx

(t−1))

)︃
, (4.12)

The formulation in Eq. (4.12) can be thought as performing one proximal gradient

descent inference step at starting points y and x(0) = 0, which is given by:

x = PC

(︃
H𝑇y − 𝛼

𝐾∑︁
𝑘=1

Lk
𝑇𝜑𝑘(Lky)

)︃
, (4.13)

where, 𝛼 = 𝜆𝛾 corresponds to the projection layer trainable parameter, Lk
𝑇 is the

adjoint filter (i.e., transpose convolution) of Lk, and H𝑇 represents the up-scaling op-

eration.

Thus, we design the generator network (G𝑆𝑅, refers to Fig. 4.3-(a)) according to

Eq. (4.13), where 𝜑𝑘(.) corresponds to a point-wise non-linearity (i.e., PReLU) ap-

plied to convolution feature maps. It can be noted that most of the parameters in

Eq. (4.13) are derived from the prior term of Eq. (4.2), which leads to the proposed

generator network representing most of its parameters as image priors. To learn the

valid weights of regularization parameters, the weights should be zero-mean and fixed-

scale constraints. To tackle this, we use the same parametrization technique proposed

in [64]. Our generator network structure can also be described as the generalization of

one stage TNRD [17], UDNet [64], and SRWDNet [102] that have good reconstruction

performance for the image denoising problem.

52

4.1.2 Domain Learning

To learn the domain distribution corruptions from the source domain (x), we train the

network G𝑑 (see in the Fig. 4.2) in a GAN framework [36] as done in DSGAN [31] with

the following loss function:

ℒG𝑑
= ℒ𝑐𝑜𝑙𝑜𝑟 + 0.005 · ℒ𝑡𝑒𝑥 + 0.01 · ℒ𝑝𝑒𝑟 (4.14)

where, ℒ𝑐𝑜𝑙𝑜𝑟,ℒ𝑡𝑒𝑥,ℒ𝑝𝑒𝑟 denote the color loss (i.e., ℒ1 loss focuses on the low frequency

of the image), texture/GAN loss (i.e., focus on the high frequencies of the image),

and perceptual loss (i.e., VGG-based loss, refer to section 4.1.3.1 for more details),

respectively.

4.1.2.1 Network architectures

The generator network (G𝑑) consists of 8 Resnet blocks (two Conv layers and PReLU

activations in between) that are sandwiched between two Conv layers. All Conv layers

have 3×3 kernel support with 64 feature maps. Finally, sigmoid non-linearity is applied

on the output of the G𝑑 network. While, the discriminator network (Dx) consists of

a three-layer convolutional network that operates on a patch level [46, 66]. All Conv

layers have 5 × 5 kernel support with feature maps from 64 to 256 and also applied

Batch Normalization (BN) and Leaky ReLU (LReLU) activations after each Conv layer

except the last Conv layer that maps 256 to 1 features.

4.1.2.2 Training description

We train the G𝑑 network with image patches 512×512, which are bicubically downsam-

pled with MATLAB imresize function. We randomly crop source domain images (x) by

128× 128 as done in [31]. We train the network for 300 epochs with a batch size of 16

using Adam optimizer [52] with parameters 𝛽1 = 0.5, 𝛽2 = 0.999, and 𝜖 = 10−8 without

53

weight decay for both generator and discriminator to minimize the loss in (4.14). The

learning rate is initially set to 2 × 10−4 for first 150 epochs and then linearly decay to

zero after the remaining (i.e., 150) epochs as done in [31].

4.1.3 Super-Resolution Learning

4.1.3.1 Network Losses

To learn the super-resolution for the target domain, we train the proposed (G𝑆𝑅) net-

work in a GAN framework [36] with the following loss functions:

ℒ𝐺𝑆𝑅
= ℒper + ℒGAN + ℒ𝑡𝑣 + 10 · ℒ1 (4.15)

where these loss functions are defined as follows:

Perceptual loss (ℒper): It focuses on the perceptual quality of the output image and

is defined as:

ℒper =
1

𝑁

𝑁∑︁
𝑖

ℒVGG =
1

𝑁

𝑁∑︁
𝑖

‖𝜑(G𝑆𝑅(x̂𝑖))− 𝜑(y𝑖)‖1 (4.16)

where, 𝜑 is the feature extracted from the pretrained VGG-19 network at the same

depth as ESRGAN [106].

Texture loss (ℒGAN): It focuses on the high frequencies of the output image and is

defined as:

ℒGAN = ℒRaGAN =− Ey [log (1−Dy(y,G𝑆𝑅(x̂)))]

− Eŷ [log (Dy(G𝑆𝑅(x̂),y))]

(4.17)

where, Ey and Eŷ represent the operations of taking average for all real (y) and fake

(ŷ) data in the mini-batches respectively. We employed the relativistic discriminator

used in the ESRGAN [106] that provides the relative GAN score of real HR and fake

54

SR image patches and is defined as:

Dy(y, ŷ)(𝐶) = 𝜎(𝐶(y)− E[𝐶(ŷ)]) (4.18)

where, 𝐶 is the raw discriminator output (see in the Fig. 4.3-(b)) and 𝜎 is the sigmoid

function.

Content loss (ℒ1): It is defined as:

ℒ1 =
1

𝑁

𝑁∑︁
𝑖

‖G𝑆𝑅(x̂𝑖)− y𝑖‖1 (4.19)

where, 𝑁 is represents the size of mini-batch.

TV (total-variation) loss (ℒ𝑡𝑣): It focuses to minimize the gradient discrepancy and

produce sharpness in the output image and is defined as:

ℒ𝑡𝑣 =
1

𝑁

𝑁∑︁
𝑖

(‖∇ℎG𝑆𝑅 (x̂𝑖)−∇ℎ (y𝑖) ‖1+

‖∇𝑣G𝑆𝑅 (x̂𝑖)−∇𝑣 (y𝑖) ‖1)

(4.20)

where, ∇ℎ and ∇𝑣 denote the horizontal and vertical gradients of the images, and 𝑁 is

the size of mini-batch.

4.1.3.2 Network Architectures

Figure 4.3 shows the network architectures of both Generator (G𝑆𝑅) and Discriminator

(Dy).

Generator (G𝑆𝑅): We design the generator network according to the optimization

update formula in (4.13). In the G𝑆𝑅 network (refers to Fig. 4.3-(a)), both Encoder

(Conv, refers to Lk filters) and Decoder (TConv, refers to Lk
𝑇 filters) layers have 64

feature maps of 5×5 kernel size with 𝐶×𝐻×𝑊 tensors, where 𝐶 is the number of chan-

nels of the input image. Inside the Encoder, LR image (y) is upsampled by the Bilinear

55

+

σ

+ -
C

on
v

5x
5

Tc
on

v
5x

5

Pr
oj

C
lip

pi
ng

SR

C
on

v
3x

3
PR

el
u

C
on

v
3x

3
PR

el
u

C
on

v
3x

3

C
on

v
3x

3

PR
el

u

PR
el

u

ResnetEncoder Decoder

GSR

U
ps

am
pl

e

(C
=6

4)

(C
=3

)

(C
=3

)

(C
=3

)

(C
=6

4)

(C
=6

4)

(C
=6

4)

(C
=6

4)

(C
=3

)
y

LR

x

Eq.(4.13) Eq.(4.10)

Eq.(4.13)

(a) Generator.

fa
ke

 S
R

C
on

v0
-0

Dy

(k
3c
64
s1
)

LR
el

u

C
on

v0
-1

(k
4c
64
s2
)

B
N

LR
el

u

C
on

v1
-0

(k
3c
12
8s
1)

B
N

LR
el

u

C
on

v1
-1

(k
4c
12
8s
2)

B
N

LR
el

u

C
on

v2
-0

(k
3c
25
6s
1)

B
N

LR
el

u

C
on

v2
-1

(k
4c
25
6s
2)

B
N

LR
el

u

C
on

v3
-0

(k
3c
51
2s
1)

B
N

LR
el

u

C
on

v3
-1

(k
4c
51
2s
2)

B
N

LR
el

u

C
on

v4
-0

(k
3c
51
2s
1)

B
N

LR
el

u

C
on

v4
-1

(k
4c
51
2s
2)

B
N

LR
el

u

re
al

 H
R LR

el
u

FC FC

H
R

/S
R

?

(c
10
0)

(c
1)

(b) Discriminator.

Figure 4.3: The architectures of Generator and Discriminator networks. The 𝑘, 𝑐, 𝑠
denote the kernel size, number of filters, and stride size.

kernel with Upsample layer (refers to the operation H𝑇y), where the choice of the up-

sampling kernel is arbitrary. Resnet consists of 5 residual blocks with two Pre-activation

Conv layers, each of 64 feature maps with kernels support 3 × 3. The pre-activations

(refers to the learnable non-linearity functions 𝜑𝑘(.)) are the parametrized rectified lin-

ear unit (PReLU) with 64 out feature channels support. The trainable projection (Proj)

layer [64] (refers to the proximal operator PC) inside Decoder computes the proximal

map with the estimated noise standard deviation 𝜎 and handles the data fidelity and

prior terms. Moreover, the Proj layer parameter 𝛼 is fine-tuned during the training

via a back-propagation. The noise realization is estimated in the intermediate Resnet

that is sandwiched between Encoder and Decoder. The estimated residual image after

Decoder is subtracted from the LR input image. Finally, the clipping layer incorporates

our prior knowledge about the valid range of image intensities and enforces the pixel

values of the reconstructed image to lie in the range [0, 255]. Reflection padding is also

used before all Conv layers to ensure slowly-varying changes at the boundaries of the

input images.

56

Discriminator (Dy): The Figure 4.3-(b) shows the architecture of discriminator net-

work that is trained to discriminate real HR images from generated fake SR images. The

raw discriminator network contains 10 convolutional layers with kernel support 3 × 3

and 4 × 4 of increasing feature maps from 64 to 512 followed by Batch Normalization

(BN) and leaky ReLU as done in SRGAN [60].

4.1.3.3 Training description

At the training time, we set the input LR patch size as 32× 32. We train the network

for 51000 training iterations with a batch size of 16 using Adam optimizer [52] with

parameters 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8 without weight decay for both generator

and discriminator to minimize the loss in (4.15). The learning rate is initially set to

10−4 and then multiplies by 0.5 after 5K, 10K, 20K, and 30K iterations. The projection

layer parameter 𝜎 is estimated according to [72] from the input LR image. We initialize

the projection layer parameter 𝛼 on a log-scale values from 𝛼𝑚𝑎𝑥 = 2 to 𝛼𝑚𝑖𝑛 = 1 and

then further fine-tune during the training via a back-propagation.

4.1.4 Experiments

4.1.4.1 Training data

We use the source domain data (x: 2650 HR images) that are corrupted with unknown

degradation e.g. sensor noise, compression artifacts, etc. and target domain data (y:

800 clean HR images) provided in the NTIRE2020 Real-World Super-resolution (RWSR)

Challenge track1 [77]. We use the source and target domain data for training the G𝑑

network to learn the domain corruptions, while due to unavailability of paired LR/HR

data, we train the G𝑆𝑅 network (refers to section-4.3.1.3) with generated LR data (�̂�)

from the G𝑑 network (refers to section-4.1.2) with their corresponding HR target (y)

images.

57

4.1.4.2 Data augmentation

We take the input LR image patches as generated by the domain learning G𝑑 network

(refers to section 4.1.2) with their corresponding HR image patches. Due to the network

training efficiency, we take the LR/HR patches and also we assume that the patch based

degradation is same as in the whole image. We augment the training data with random

vertical and horizontal flipping, and 90∘ rotations. Moreover, we also consider another

effective data augmentation technique, called MixUp [116]. In Mixup, we take randomly

two samples (x𝑖,y𝑖) and (x𝑗 ,y𝑗) in the training LR/HR set (X̃,Y) and then form a new

sample (x̃,y) by interpolations of the pair samples by following the same degradation

model (3.22) as done in [27]. This simple technique encourages our network to support

linear behavior among training samples.

4.1.4.3 Technical details

We implemented our method with Pytorch. The experiments are performed under

Windows 10 with i7-8750H CPU with 16GB RAM and on NVIDIA RTX-2070 GPU

with 8GB memory. It takes about 28.57 hours to train the model. The run time per

image (on GPU) is 0.1289 seconds for the testset. To further enhance the fidelity, we

use a self-ensemble strategy [99] (denoted as SRResCGAN+) at the test time, where the

LR inputs are flipped/rotated and the SR results are aligned and averaged for enhanced

prediction.

4.1.4.4 Evaluation metrics

We evaluate the trained model under the Peak Signal-to-Noise Ratio (PSNR), Structural

Similarity (SSIM), and LPIPS [124] metrics. The PSNR and SSIM are distortion-based

measures that correlate poorly with actual perceived similarity, while LPIPS better

correlates with human perception than the distortion-based/handcrafted measures. As

LPIPS is based on the features of pretrained neural networks, so we use it for the

58

Table 4.1: Top section: ×4 SR quantitative results comparison of our method over
the DIV2K validation-set (100 images) with added two known degradation i.e., sensor
noise (𝜎 = 8) and JPEG compression (𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 30) artifacts. Middle section: ×4
SR results with the unknown corruptions in the RWSR challenge track-1 (validation-
set) [77]. Bottom section: ×4 SR comparison with the unknown corruptions in the
RWSR challenge series [76, 77]. The arrows indicate if high ↑ or low ↓ values are
desired. The best performance is shown in red.
Dataset (HR/LR pairs) SR methods #Params PSNR↑ SSIM↑ LPIPS↓ Artifacts
Bicubic EDSR [69] 43𝑀 24.48 0.53 0.6800 Sensor noise (𝜎 = 8)
Bicubic EDSR [69] 43𝑀 23.75 0.62 0.5400 JPEG compression (quality=30)
Bicubic ESRGAN [106] 16.7𝑀 17.39 0.19 0.9400 Sensor noise (𝜎 = 8)
Bicubic ESRGAN [106] 16.7𝑀 22.43 0.58 0.5300 JPEG compression (quality=30)
CycleGAN [75] ESRGAN-FT [75] 16.7𝑀 22.42 0.55 0.3645 Sensor noise (𝜎 = 8)
CycleGAN [75] ESRGAN-FT [75] 16.7𝑀 22.80 0.57 0.3729 JPEG compression (quality=30)
DSGAN [31] ESRGAN-FS [31] 16.7𝑀 22.52 0.52 0.3300 Sensor noise (𝜎 = 8)
DSGAN [31] ESRGAN-FS [31] 16.7𝑀 20.39 0.50 0.4200 JPEG compression (quality=30)
DSGAN [31] SRResCGAN (ours) 380𝐾 25.46 0.67 0.3604 Sensor noise (𝜎 = 8)
DSGAN [31] SRResCGAN (ours) 380𝐾 23.34 0.59 0.4431 JPEG compression (quality=30)
DSGAN [31] SRResCGAN+ (ours) 380𝐾 26.01 0.71 0.3871 Sensor noise (𝜎 = 8)
DSGAN [31] SRResCGAN+ (ours) 380𝐾 23.69 0.62 0.4663 JPEG compression (quality=30)
DSGAN [31] SRResCGAN (ours) 380𝐾 25.05 0.67 0.3357 unknown (validset) [77]
DSGAN [31] SRResCGAN+ (ours) 380𝐾 25.96 0.71 0.3401 unknown (validset) [77]
DSGAN [31] ESRGAN-FS [31] 16.7𝑀 20.72 0.52 0.4000 unknown (testset) [76]
DSGAN [31] SRResCGAN (ours) 380𝐾 24.87 0.68 0.3250 unknown (testset) [77]

quantitative evaluation with features of AlexNet [124]. The quantitative SR results are

evaluated with the 𝑅𝐺𝐵 color space.

4.1.4.5 Comparison with the state-of-art methods

We compare our method with other state-of-art SR methods including EDSR [69], ESR-

GAN [106], ESRGAN-FT [75], and ESRGAN-FS [31]. Table 4.1 shows the quantitative

results comparison of our method over the DIV2K validation-set (100 images) with two

known degradation (i.e., sensor noise, JPEG compression) as well as unknown degrada-

tion in the RWSR challenge series [76, 77]. Our method results outperform in term of

PSNR and SSIM compared to other methods, while in the case of LPIPS, we are slightly

behind the ESRGAN-FS (i.e., sensor noise (𝜎 = 8), JPEG compression (𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 30)),

but ESRGAN-FS has the worst PSNR and SSIM values. We have much better LPIPS

(+0.08) than the ESRGAN-FS (winner of AIM2019 RWSR challenge [76]) with un-

known artifacts. The ESRGAN-FT has a good LPIPS value, but it achieved the worst

PSNR and SSIM scores. Despite that, the parameters of the proposed G𝑆𝑅 network are

much less (i.e., ×44) than the other state-of-art SISR networks, which makes it suitable

59

for deployment in mobile/embedded devices where memory storage and CPU power are

limited as well as good image reconstruction quality.

GT EDSR

'0829' original LR image from DIV2K val-set

ESRGAN

ESRGAN-FS SRResCGAN SRResCGAN+

GT EDSR

'0896' original LR image from DIV2K val-set

ESRGAN

ESRGAN-FS SRResCGAN SRResCGAN+

Figure 4.4: Visual comparison of our method with other state-of-art methods on the
NTIRE2020 RWSR (track-1) validation set at the ×4 super-resolution.

Regarding the visual quality, Fig. 4.4 shows the qualitative comparison of our method

with other SR methods on the ×4 upscaling factor (validation-set). In contrast to the

existing state-of-art methods, our proposed method produces very good SR results that

are reflected in the PSNR/SSIM/LPIPS values, as well as the visual quality of the

reconstructed images with almost no visible corruptions.

4.1.4.6 Visual comparison on the Real-World smartphone images

We also evaluate our proposed method on the real-world images captured from the

smartphone provided in the RWSR challenge track-2 [77] (testset). We use the our

pretrained model (refers to section-4.3.1.3) without any fine-tuning from the source

domain data of the smartphone images for getting the SR results. Since there are no

GT images available, we only compare the visual comparison as shown in the Fig. 4.5.

ESRGAN still produces strong noise presence artifacts, while the EDSR produce less

60

EDSR

'00003' original LR image from
NTIRE2020 RWSR mobile test-set

ESRGAN ESRGAN-FS

SRResCGAN SRResCGAN+

EDSR

'00080' original LR image from
NTIRE2020 RWSR mobile test-set

ESRGAN ESRGAN-FS

SRResCGAN SRResCGAN+

Figure 4.5: Visual comparison of our method with other state-of-art methods on
the NTIRE2020 RWSR (track-2: Smartphone Images) test set [77] at the ×4 super-
resolution.

noisy, but more blurry results due the PSNR-based metric. ESRGAN-FS produces sharp

images and less amount of corruptions due to fine-tuning of the source domain images

(i.e., extra training efforts). In contract, our method has still produced satisfying results

by reducing the visible corruptions without any extra fine-tuning effort.

4.1.4.7 The NTIRE2020 RWSR Challenge

We also participated in the NTIRE2020 Real-World Super-Resolution (RWSR) Chal-

lenge [77] associated with the CVPR 2020 workshops. The goal of this challenge is to

super-resolve (×4) images from the Source Domain (corrupted) to the Target Domain

(clean). We train firstly the domain learning model (G𝑑) on the corrupted source do-

main dataset to learn visible corruptions, and after that train the SR learning model

(G𝑆𝑅) on the clean target domain dataset with their correspond generated LR pairs

from the (G𝑑) model (refers to the sections-4.1.2 and 4.3.1.3 for more details). Ta-

61

Table 4.2: Final testset results for the RWSR challenge Track-1. The top section in the
table contains ours (MLP-SR) with other methods that are ranked in the challenge.
The middle section contains participating approaches that deviated from the challenge
rules, whose results are reported for reference but not ranked. The bottom section
contains baseline approaches. Participating methods are ranked according to their Mean
Opinion Score (MOS).

Team PSNR↑ SSIM↑ LPIPS↓ MOS↓
Impressionism 24.67 (16) 0.683 (13) 0.232 (1) 2.195 (1)
Samsung-SLSI-MSL 25.59 (12) 0.727 (9) 0.252 (2) 2.425 (2)
BOE-IOT-AIBD 26.71 (4) 0.761 (4) 0.280 (4) 2.495 (3)
MSMers 23.20 (18) 0.651 (17) 0.272 (3) 2.530 (4)
KU-ISPL 26.23 (6) 0.747 (7) 0.327 (8) 2.695 (5)
InnoPeak-SR 26.54 (5) 0.746 (8) 0.302 (5) 2.740 (6)
ITS425 27.08 (2) 0.779 (1) 0.325 (6) 2.770 (7)
MLP-SR 24.87 (15) 0.681 (14) 0.325 (7) 2.905 (8)
Webbzhou 26.10 (9) 0.764 (3) 0.341 (9) -
SR-DL 25.67 (11) 0.718 (10) 0.364 (10) -
TeamAY 27.09 (1) 0.773 (2) 0.369 (11) -
BIGFEATURE-CAMERA 26.18 (7) 0.750 (6) 0.372 (12) -
BMIPL-UNIST-YH-1 26.73 (3) 0.752 (5) 0.379 (13) -
SVNIT1-A 21.22 (19) 0.576 (19) 0.397 (14) -
KU-ISPL2 25.27 (14) 0.680 (15) 0.460 (15) -
SuperT 25.79 (10) 0.699 (12) 0.469 (16) -
GDUT-wp 26.11 (8) 0.706 (11) 0.496 (17) -
SVNIT1-B 24.21 (17) 0.617 (18) 0.562 (18) -
SVNIT2 25.39 (13) 0.674 (16) 0.615 (19) -
AITA-Noah-A 24.65 (-) 0.699 (-) 0.222 (-) 2.245
AITA-Noah-B 25.72 (-) 0.737 (-) 0.223 (-) 2.285
Bicubic 25.48 (-) 0.680 (-) 0.612 (-) 3.050
ESRGAN Supervised 24.74 (-) 0.695 (-) 0.207 (-) 2.300

ble 4.2 provides the final ×4 SR results for track-1 (testset) of our method (MLP-SR)

with others. The final ranking is based on the Mean Opinion Score (MOS) [77]. Our

method remains among the top 8 best solutions. We also provide the visual comparison

of our method with others on the track-1 testset in the Fig. 4.6. Our method produces

sharp images without any visible corruptions, while the others suffer image corruptions.

Table 4.3: This table reports the quantitative results of our method over the DIV2K
validation set (100 images) with unknown degradation for our ablation study. The
arrows indicate if high ↑ or low ↓ values are desired. The best performance is shown in
red.

SR methods SR Generator Loss combinations (ℒ𝐺𝑆𝑅
)

unknown artifacts
PSNR↑ SSIM↑ LPIPS↓

SRResCGAN ℒper + ℒGAN + 10 · ℒ1 25.48 0.69 0.3458
SRResCGAN ℒper + ℒGAN + ℒ𝑡𝑣 + 10 · ℒ1 25.40 0.69 0.3452
SRResCGAN ℒper + w𝐻 * ℒGAN + ℒ𝑡𝑣 + 10 · ℒ1 25.05 0.67 0.3357

62

EDSR

'0907' original LR image from
NTIRE2020 RWSR test-set

ESRGAN ESRGAN-FS

SRResCGAN SRResCGAN+

EDSR

'0924' original LR image from
NTIRE2020 RWSR test-set

ESRGAN ESRGAN-FS

SRResCGAN SRResCGAN+

Figure 4.6: Visual comparison of our method with other state-of-art methods on the
NTIRE2020 RWSR (track-1: Image Processing Artifacts) testset [77] at the ×4 super-
resolution.

4.1.4.8 Ablation Study

For our ablation study, we compare the different combinations of losses of the proposed

SR learning model (G𝑆𝑅). We consider the LPIPS measure for its better visual correla-

tion with the human perception. Table 4.3 shows the quantitative results of our method

over the DIV2K validation-set (track-1) [77] with unknown degradation. We first train

the SR model with combination of the losses (ℒper,ℒGAN,ℒ1) similar to ESRGAN. Af-

ter that, we add ℒ𝑡𝑣 to the previous combinations, and train the model again, we obtain

little a bit better LPIPS with sharp SR images. Finally, when we apply the high-pass

filter (w𝐻) weights to the output image to compute the GAN loss (ℒGAN) focus on the

high-frequencies with the previous combinations during training the network, we get the

best LPIPS value (i.e., +0.01 improvement to the previous variants) with more realistic

63

SR images. Therefore, we opt the last one as the final combination of loss functions for

our model (G𝑆𝑅) training and used for the evaluation in section 4.1.4.5.

4.2 Deep Cyclic Generative Adversarial Residual Con-

volutional Networks for Real-Image SR

The deep learning based SISR methods mostly train their models in a clean data domain

where the LR and HR images come from noise-free settings (i.e., same domain) due

to the bicubic downsampling assumption. However, such degradation process is not

available in real-world settings. We consider a deep cyclic network structure to maintain

the domain consistency between the LR and HR data distributions, which is inspired by

the recent success of CycleGAN in image-to-image translation applications. We propose

the Super-Resolution Residual Cyclic Generative Adversarial Network (SRResCycGAN)

by training with a generative adversarial network (GAN) framework for the LR to HR

domain translation in an end-to-end manner. Our method achieves excellent SR results

in terms of the PSNR/SSIM values as well as visual quality compared to the existing

state-of-art methods.

Numerous works have been proposed towards the task of SISR that are based on

deep CNNs either on PSNR values [51, 69, 120, 122, 113, 68, 123, 102, 83] or on visual

quality [61, 106, 75, 31, 81]. The SR methods mostly rely on the known degradation

operators such as bicubic (i.e., noise-free) with paired LR and HR images (same clean

domain) in the supervised training, while other methods do not follow the image ob-

servation (physical) model (refer to Eq. (4.1)). In the real-world settings, the input LR

images suffer from different kinds of degradation or LR is different from the HR domain.

Under such circumstances, these SR methods often fail to produce convincing SR results.

In the Fig. 4.7, we show the results of the state-of-art deep learning method–ESRGAN

on the noisy input image. The degraded ESRGAN SR result is due to the difference of

64

Ground Truth ESRGAN SRResCycGAN+

Figure 4.7: The super-resolution results at the ×4 upscaling factor of the state-of-art–
ESRGAN, the proposed SRResCycGAN+ with respect to the ground-truth images.
SRResCycGAN+ has successfully remove the visible artifacts, while the ESRGAN has
still artifacts due to data bias between the training and testing images.

training and testing data domains. The detailed analysis of the deep learning-based SR

models on the real-world data can be found in the recent literature [75, 31].

In this work, we propose a SR learning method (SRResCycGAN) that overcomes the

challenges of real image super-resolution. It is inspired by CycleGAN [126] structure

which maintains the domain consistency between the LR and HR domains. It is also

inspired by powerful image regularization and large-scale optimization techniques to

solve general inverse problems in the past. The scheme of our proposed real image SR

approach setup is shown in the Fig. 4.8. The G𝑆𝑅 network takes as input the LR image

and produces the SR as output with the supervision of the SR discriminator network

Dx. For the domain consistency between the LR and HR, the G𝐿𝑅 network reconstructs

the LR image from the SR output with the supervision of the LR discriminator network

Dy.

We evaluate our proposed SR method on multiple datasets with synthetic and nat-

ural image corruptions. We use the Real-World Super-resolution (RWSR) dataset [77]

to show the effectiveness of our method through quantitative and qualitative experi-

65

Encoder

Resnet

D
ecoder

Resnet

GLR

C
on

v

C
on

v

y

y′

GSR

LR

ŷ

Fake SR

LR reconst.

Dy Dx

Real HR

x

Figure 4.8: The structure of our proposed SR approach setup. We trained the network
G𝑆𝑅 in a GAN framework, where our goal is to map images from the LR (y) to the HR
(x), while maintaining the domain consistency between the LR and HR images.

ments. Finally, we also participated in the AIM2020 Real Image Super-resolution Chal-

lenge [108] for the Track-3 (×4 upscaling) associated with the ECCV 2020 workshops.

Table 4.5 shows the final testset SR results for the track-3 of our method (MLP SR)

with others as well as the visual comparison in the Fig. 4.10 and Fig. 4.11.

4.2.1 Proposed SR Learning Approach

The proposed Real Image SR approach setup is shown in the Fig. 4.8. The SR generator

network G𝑆𝑅 borrowed from the SRResCGAN [82] is trained in a GAN [36] framework

by using the LR (y) images with their corresponding HR images with pixel-wise super-

vision in the clean HR target domain (x), while maintaining the domain consistency

between the LR and HR images. In the next coming sections 4.2.1.1, 4.2.1.2, and

4.2.1.3, we present the details of the network architectures, network losses, and training

descriptions for the proposed SR setup.

66

4.2.1.1 Network Architectures

SR Generator (GSR): We use the SR generator GSR network which is basically an

Encoder-Resnet-Decoder like structure as done SRResCGAN [82]. In the GSR network,

both Encoder and Decoder layers have 64 convolutional feature maps of 5×5 kernel size

with 𝐶 ×𝐻 ×𝑊 tensors, where 𝐶 is the number of channels of the input image. Inside

the Encoder, LR image is upsampled by the Bicubic kernel with Upsample layer, where

the choice of the upsampling kernel is arbitrary. Resnet consists of 5 residual blocks

with two Pre-activation Conv layers, each of 64 feature maps with kernel support 3× 3,

and the pre-activation is the parametrized rectified linear unit (PReLU) with 64 output

feature channels. The trainable projection layer [64] inside the Decoder computes the

proximal map with the estimated noise standard deviation 𝜎 and handles the data

fidelity and prior terms. The noise realization is estimated in the intermediate Resnet

that is sandwiched between Encoder and Decoder. The estimated residual image after

Decoder is subtracted from the LR input image. Finally, the clipping layer incorporates

our prior knowledge about the valid range of image intensities and enforces the pixel

values of the reconstructed image to lie in the range [0, 255]. The reflection padding is

also used before all the Conv layers to ensure slowly varying changes at the boundaries

of the input images.

SR Discriminator (Dx): The SR discriminator network is trained to discriminate the

real HR images from the fake HR images generated by the GSR. The raw discriminator

network contains 10 convolutional layers with kernel support 3×3 and 4×4 of increasing

feature maps from 64 to 512 followed by Batch Normalization (BN) and leaky ReLU as

done in SRGAN [61].

LR Generator (GLR): We adapt the similar architecture as done in [113] for the

down-sampling which is basically a Conv-Resnet-Conv like structure. We use 6 residual

blocks in the Resnet with 3 convolutional layers at the head and tail Conv, while the

stride is set to 2 in the second and third head Conv layers for the down-sampling

67

purpose.

LR Discriminator (Dy): The LR discriminator network consists of a three-layer

convolutional network that operates on the patch level as done in PatchGAN [46, 66].

All the Conv layers have 5 × 5 kernel support with feature maps from 64 to 256 and

also applied the Batch Normalization (BN) and Leaky ReLU (LReLU) activation after

each Conv layer except the last Conv layer that maps 256 to 1 features.

4.2.1.2 Network Losses

To learn the image super-resolution, we train the proposed SRResCycGAN network

with the following loss functions:

ℒ𝐺𝑆𝑅
= ℒper + ℒGAN + ℒ𝑡𝑣 + 10 · ℒ1 + 10 · ℒcyc (4.21)

where these losses are defined as follows:

Perceptual loss (ℒper): It focuses on the perceptual quality of the output image and

is defined as:

ℒper =
1

𝑁

𝑁∑︁
𝑖

ℒVGG =
1

𝑁

𝑁∑︁
𝑖

‖𝜑(G𝑆𝑅(y𝑖))− 𝜑(x𝑖)‖1 (4.22)

where, 𝜑 is the feature extracted from the pretrained VGG-19 network at the same

depth as ESRGAN [106].

Texture loss (ℒGAN): It focuses on the high frequencies of the output image and it is

defined as:

Dx(x, ŷ)(𝐶) = 𝜎(𝐶(x)− E[𝐶(ŷ)]) (4.23)

68

Here, 𝐶 is the raw discriminator output and 𝜎 is the sigmoid function. By using the

relativistic discriminator [106], we have:

ℒGAN = ℒRaGAN =− Ex [log (1−Dx(x,G𝑆𝑅(y)))]

− Eŷ [log (Dx(G𝑆𝑅(y),x))]

(4.24)

where, Ex and Eŷ represent the operations of taking average for all real (x) and fake

(ŷ) data in the mini-batches respectively.

Content loss (ℒ1): It is defined as:

ℒ1 =
1

𝑁

𝑁∑︁
𝑖

‖G𝑆𝑅(y𝑖)− x𝑖‖1 (4.25)

where, 𝑁 represents the size of mini-batch.

TV (total-variation) loss (ℒ𝑡𝑣): It focuses to minimize the gradient discrepancy and

produces sharpness in the output SR image, and it is defined as:

ℒ𝑡𝑣 =
1

𝑁

𝑁∑︁
𝑖

(‖∇ℎG𝑆𝑅 (y𝑖)−∇ℎ (x𝑖)‖1 + ‖∇𝑣G𝑆𝑅 (y𝑖)−∇𝑣 (x𝑖)‖1) (4.26)

Here, ∇ℎ and ∇𝑣 denote the horizontal and vertical gradients of the images.

Cyclic loss (ℒcyc): It focuses to maintain the cyclic consistency between LR and HR

domain and it is defined as:

ℒ𝑐𝑦𝑐 =
1

𝑁

𝑁∑︁
𝑖

‖G𝐿𝑅(G𝑆𝑅(y𝑖))− y𝑖‖1 (4.27)

SSIM loss (ℒssim): It incorporates the structure similarity [125] of the output image

and is defined as:

ℒ𝑠𝑠𝑖𝑚 = 1− 1

𝑁

𝑁∑︁
𝑖

SSIM(ŷ𝑖,x𝑖) (4.28)

69

MSSSIM loss (ℒmsssim): It incorporates the variations of image resolution and viewing

conditions, and is defined as:

ℒ𝑚𝑠𝑠𝑠𝑖𝑚 = 1− 1

𝑁

𝑁∑︁
𝑖

MSSSIM(ŷ𝑖,x𝑖) (4.29)

where, MSSSIM is the Multi-Scale SSIM [125] loss.

4.2.1.3 Training description

In the training phase, we set the input LR patch size as 32×32 with their corresponding

HR patches. We train the network in an end-to-end manner for 51000 training iterations

with a batch size of 16 using Adam optimizer with parameters 𝛽1 = 0.9, 𝛽2 = 0.999,

and 𝜖 = 10−8 without weight decay for generators (GSR & GLR) and discriminators

(Dx & Dy) to minimize the loss in Eq. (4.21). The learning rate is initially set to 10−4

and then multiplies by 0.5 after 5K, 10K, 20K, and 30K iterations. The projection layer

parameter 𝜎 is estimated according to [72] from the input LR image.

4.2.2 Experiments

4.2.2.1 Training data

We use the source domain data (ỹ: 2650 HR images) that are corrupted with two known

degradation, e.g., sensor noise, compression artifacts as well as unknown degradation,

and target domain data (x: 800 clean HR images from the DIV2K [1]) provided in

the NTIRE2020 Real-World Super-resolution (RWSR) Challenge [77] for the track-1.

We use the source and target domain data for training the GSR network under the

different degradation scenarios. The LR data (y) with similar corruption as in the

source domain is generated from the down-sample GAN network (DSGAN) [31] with

their corresponding HR target domain (x) images. Furthermore, we use the training

data (i.e., y: 19000 LR images, x: 19000 HR images) provided in the AIM2020 Real

70

Table 4.4: The ×4 SR quantitative results comparison of our method with others over
the DIV2K validation-set (100 images). Top section: SR results comparison with added
sensor noise (𝜎 = 8) and compression artifacts (𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 30) in the validation-set.
Middle section: SR results with the unknown corruptions (e.g., sensor noise, compression
artifacts, etc.) in the validation-set provided in the RWSR challenge series [76, 77].
Bottom section: SR results with the real image corruptions in the validation-set and
testset provided in the AIM 2020 Real Image SR challenge [108] for the track-3. The
arrows indicate if high ↑ or low ↓ values are desired. The best performance is shown in
red and the second best performance is shown in blue.

SR methods #Params
sensor noise (𝜎 = 8) compression artifacts (𝑞 = 30)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
EDSR [69] 43.0𝑀 24.48 0.53 0.6800 23.75 0.62 0.5400
ESRGAN [106] 16.7𝑀 17.39 0.19 0.9400 22.43 0.58 0.5300
ESRGAN-FT [75] 16.7𝑀 22.42 0.55 0.3645 22.80 0.57 0.3729
ESRGAN-FS [31] 16.7𝑀 22.52 0.52 0.3300 20.39 0.50 0.4200
SRResCGAN [82] 380𝐾 25.46 0.67 0.3604 23.34 0.59 0.4431
SRResCycGAN (ours) 380𝐾 25.98 0.70 0.4167 23.96 0.63 0.4841
SRResCycGAN+ (ours) 380𝐾 26.27 0.72 0.4542 24.05 0.64 0.5192

unknown corruptions [77]
SRResCGAN [82] 380𝐾 25.05 0.67 0.3357
SRResCycGAN (ours) 380𝐾 26.13 0.71 0.3911
SRResCycGAN+ (ours) 380𝐾 26.39 0.73 0.4245

real image corruptions [108]
SRResCycGAN (ours, valset) 380𝐾 28.6239 0.8250 -
SRResCycGAN (ours, testset) 380𝐾 28.6185 0.8314 -

Image SR Challenge [108] for the track-3 (×4 upscaling) for training the SRResCycGAN

(refers to the section-4.2.2.4).

4.2.2.2 Technical details

We implemented our method in the Pytorch. The experiments are performed under

Windows 10 with i7-8750H CPU with 16GB RAM and on the NVIDIA RTX-2070 GPU

with 8GB memory. It takes about 25 hours to train the network. The run time per

image (on the GPU) is 4.54 seconds for the AIM2020 Real Image SR testset. To further

enhance the fidelity, we use a self-ensemble strategy [99] (denoted as SRResCycGAN+)

at the test time, where the LR inputs are flipped/rotated and the SR results are aligned

and averaged for enhanced prediction.

4.2.2.3 Comparison with the state-of-art methods

We compare our method with other state-of-art SR methods including EDSR [69], ESR-

GAN [106], ESRGAN-FT [75], ESRGAN-FS [31], and SRResCGAN [82], whose source

71

codes are available online. The two degradation settings (i.e., sensor noise, JPEG com-

pression) have been considered under the same experimental situations for all methods.

We run all the original source codes and trained models by the default parameters set-

tings for the comparison. The EDSR is trained without the perceptual loss (only ℒ1) by

a deep SR residual network using the bicubic supervision. The ESRGAN is trained with

the ℒperceptual, ℒGAN, and ℒ1 by a deep SR network using the bicubic supervision. The

ESRGAN-FT and ESRGAN-FS apply the same SR architecture and perceptual losses

as in the ESRGAN using the two known degradation supervisions. The SRResCGAN

is trained with the similar losses combination as done in the ESRGAN using the two

known degradation supervisions. We train the proposed SRResCycGAN with the sim-

ilar losses combination as done in the ESRGAN and SRResCGAN with the additional

cyclic loss by using the bicubic supervision.

We evaluate the trained model under the Peak Signal-to-Noise Ratio (PSNR), Struc-

tural Similarity (SSIM), and LPIPS [124] metrics, refer to the section 4.1.4.4 for more

details of the evaluation metrics. Table 4.4 shows the quantitative results comparison

of our method over the DIV2K validation-set (100 images) with two known degradation

(i.e., sensor noise, JPEG compression), the unknown degradation in the NTIRE2020

Real-World SR challenge series [77], and the validation-set and testset in the AIM2020

Real Image SR Challenge [108]. Our method results outperform in terms of PSNR

and SSIM compared to the other methods, while in the case of LPIPS, we have com-

parable results to others. In the case of sensor noise (𝜎 = 8) and JPEG compression

(𝑞 = 30) in the top section of the Table 4.4, the ESRGAN has the worst performance

in terms of the PSNR, SSIM, and LPIPS among all methods. It also depicts the visual

quality in Fig. 4.9. The EDSR has better performance to the noisy input, but it pro-

duces more blurry results. These are due to the domain distribution difference by the

bicubic down-sampling during the training phase. The ESRGAN-FT and ESRGAN-FS

have much better performance due to overcoming the domain distribution shift prob-

72

'0815' image from DIV2K val-set

GT EDSR ESRGAN ESRGAN-FS

SRResCGAN SRResCGAN+ SRResCycGAN SRResCycGAN+

Figure 4.9: Visual comparison of our method with the other state-of-art methods on
the DIV2K validation set at the ×4 super-resolution.

lem, but they have still visible artifacts. The SRResCGAN has better robustness to the

noisy input, but still has lower PSNR and SSIM due to lacking the domain consistency

problem. The proposed method has successfully overcome the challenge of the domain

distribution shift in both degradation settings, which depicts in both quantitative and

qualitative results. In the middle section of the Table 4.4, for the unknown degradation

in the NTIRE2020 Real-World SR challenge [77], the SRResCycGAN has much better

PSNR/SSIM improvement, while the LPIPS is also comparable with the SRResCGAN.

In the bottom section of the Table 4.4, we also report the validation-set and testset SR

results in the AIM2020 Real Image SR Challenge [108] for the track-3. Despite that,

the parameters of the proposed G𝑆𝑅 network are much less, which makes it suitable

for deployment in mobile/embedded devices where memory storage and CPU power are

limited as well as good image reconstruction quality.

Regarding the visual quality, Fig. 4.9 shows the qualitative comparison of our method

with other SR methods at the ×4 upscaling factor on the validation-set [77]. In con-

trast to the existing state-of-art methods, our proposed method produces excellent SR

results that are reflected in the PSNR/SSIM values, as well as the visual quality of the

reconstructed images with almost no visible corruptions.

73

Table 4.5: Final Testset results for the Real Image SR (×4) challenge Track-3 [108]. The
table contains ours (MLP SR) with other methods that are ranked in the challenge.
The participating methods are ranked according to their weighted Score of the PSNR
and SSIM given in the AIM 2020 Real Image SR Challenge [108].

Team Name PSNR↑ SSIM↑ Weighed score↑
Baidu 31.3960 0.8751 0.7099(1)
ALONG 31.2369 0.8742 0.7076(2)
CETC-CSKT 31.1226 0.8744 0.7066(3)
SR-IM 31.1735 0.8728 0.7057
DeepBlueAI 30.9638 0.8737 0.7044
JNSR 30.9988 0.8722 0.7035
OPPO CAMERA 30.8603 0.8736 0.7033
Kailos 30.8659 0.8734 0.7031
SR DL 30.6045 0.8660 0.6944
Noah TerminalVision 30.5870 0.8662 0.6944
Webbzhou 30.4174 0.8673 0.6936
TeamInception 30.3465 0.8681 0.6935
IyI 30.3191 0.8655 0.6911
MCML-Yonsei 30.4201 0.8637 0.6906
MoonCloud 30.2827 0.8644 0.6898
qwq 29.5878 0.8547 0.6748
SrDance 29.5952 0.8523 0.6729
MLP SR 28.6185 0.8314 0.6457
RRDN IITKGP 27.9708 0.8085 0.6201
congxiaofeng 26.3915 0.8258 0.6187

4.2.2.4 The AIM 2020 Real Image SR Challenge

We participated in the AIM2020 Real Image Super-Resolution Challenge [108] for the

track-3 (×4 upscaling) associated with the ECCV 2020 workshops. The goal of this

challenge is to learn a generic model to super-resolve LR images captured in practical

scenarios with more complex degradation than bicubic downsampling. In that regard,

we propose the SRResCycGAN to super-resolve the LR images with the real-world

settings. We use the pretrained model GSR taken from the SRResCGAN [82] (excellent

perceptual quality) and further fine-tune it on the training data provided in the AIM

2020 Real Image SR challenge with the proposed SR scheme as shown in the Fig. 4.8

by using the following training losses:

ℒ𝐺𝑆𝑅
= ℒGAN + ℒ𝑡𝑣 + 10 · ℒ1 + ℒ𝑠𝑠𝑖𝑚 + ℒ𝑚𝑠𝑠𝑠𝑖𝑚 + 10 · ℒcyc (4.30)

74

'LR_006' image from the val-set

LR EDSR ESRGAN

ESRGAN-FS SRResCGAN SRResCycGAN

'LR_015' image from the val-set

LR EDSR ESRGAN

ESRGAN-FS SRResCGAN SRResCycGAN

Figure 4.10: Visual comparison of our method with the other state-of-art methods on the
AIM 2020 Real Image SR (track-3) validation set at the ×4 super-resolution upscaling
factor.

Since the final ranking is based on the weighted score of the PSNR and SSIM given in

this challenge, we adopt the above losses combination where we neglect the ℒper and use

the ℒ𝑠𝑠𝑖𝑚 and ℒ𝑚𝑠𝑠𝑠𝑖𝑚, defined in the section 4.2.1.2, whose incorporate the structure

similarity [107] as well as the variations of image resolution and viewing conditions for

the output image. Table 4.5 provides the final ×4 SR testset results for the track-3 of

our method (MLP SR) with others participants. Our proposed method (MLP SR)

is ranked in the top 20 solutions among other participants.

We also provide the visual comparison of our method with the state-of-art methods

on the track-3 validation-set and testset in the Fig. 4.10 and Fig. 4.11. Our method

produces sharp images without any visible corruptions and achieves comparable visual

results with the other methods.

75

'LR_019' image from the testset

LR EDSR ESRGAN

ESRGAN-FS SRResCGAN SRResCycGAN

'LR_050' image from the testset

LR EDSR ESRGAN

ESRGAN-FS SRResCGAN SRResCycGAN

Figure 4.11: Visual comparison of our method with the other state-of-art methods on
the AIM 2020 Real Image SR (track-3) test set at the ×4 super-resolution upscaling
factor.

Table 4.6: This table reports the quantitative results of our method over the DIV2K
validation set (100 images) with unknown degradation for our ablation study. The
arrows indicate if high ↑ or low ↓ values are desired. The best performance is shown in
red.
SR method Cyclic Path Network structure PSNR↑ SSIM↑ LPIPS↓
SRResCycGAN ✗ y → GSR → ŷ 25.05 0.67 0.3357
SRResCycGAN ✓ y → GSR → ŷ → GLR → y′ 26.13 0.71 0.3911
SRResCycGAN+ ✓ y → GSR → ŷ → GLR → y′ 26.39 0.73 0.4245

4.2.2.5 Ablation Study

For our ablation study, we design two variants of the proposed network structure with

cyclic path or not. The first network structure (i.e., y→ GSR → ŷ) takes the LR input

to the GSR and produces the SR output by the supervision of the SR discriminator

network Dx without the cyclic path (GLR & Dy) as shown in the Fig. 4.8. Corre-

76

spondingly, we minimize the total loss in the Eq. (4.21) without the ℒcyc. The second

network structure (i.e., y → GSR → ŷ → GLR → y′) takes the LR input to the GSR

and produces the SR output by the supervision of the SR discriminator network Dx.

After that, the SR output fed into the GLR and reconstructs the LR output by the

supervision of the LR discriminator network Dy, refers to the Fig. 4.8. Accordingly,

we minimize the total loss in the Eq. (4.21). Table 4.6 shows the quantitative results

of our method over the DIV2K validation-set [77] with the unknown degradation. We

found that in the presence of the cyclic path, we get the significant improvement of the

PSNR/SSIM i.e., +1.34/+0.06 for the first variant. It suggests that the cyclic structure

gives the benefits to handle complex degradation such as noise, blurring, compression

artifacts, etc., while the other structure lacks this due to the domain difference between

LR and HR.

4.3 Real Image Super-Resolution using GAN with

deep adaptive Sinusoidal Non-linearities

Most of the state-of-the-art SISR methods have attained excellent performance by using

deep residual neural networks with ReLU / PReLU activation functions. The typical

bicubic downscaling process imposes great challenges to restore the high resolution im-

age details from the downscaled LR images due to the significant loss of high-frequency

information. Moreover, the current deep network architectures with ReLU/PReLU ac-

tivation functions are incapable of modeling the underlying signals with fine details for

image restoration tasks, thus reducing the restoring performance of the current SISR

methods in real-world settings. To address these issues, we propose the GAN-based

SRResCSinGAN approach with learnable adaptive sinusoidal nonlinearities, whose pa-

rameters are optimized during the network training. The proposed scheme solves the

problem by modeling the LR and HR processes with sinusoidal activations that robustly

77

fit the complicated signals such as natural images. We train the generalized SR model

in a GAN framework by synthesizing the more realistic LR/HR data instead of the

traditional bicubic or existing deep learning based downsampling method. Our method

achieves better SR results in terms of PSNR/SSIM values and comparable LPIPS values

as well as visual quality compared to the existing state-of-art methods.

The SR methods [51, 69, 120, 122, 113, 68, 123, 102, 83] mostly rely on the PSNR-

based metric by optimizing the ℒ1/ℒ2 losses with blurry results in a supervised way,

while they do not preserve the visual quality with respect to human perception. For

the perception SR task, the GAN-based SR methods [61, 106, 75, 31, 81, 84] have been

proposed to solve the real-world SR problem. However, the above methods still suffer

unpleasant artifacts and under performed often fail to produce convincing SR results.

Moreover, in the past decades, numerous works have been investigated, with a variety

of possible activation functions, such as sigmoid, ReLU, Tanh, PReLU, RBF, and many

more. The preferred choice that has emerged over the years is the ReLU activation

unit due to promoting sparsity of the feature maps and the faster training of very deep

networks. The continuous and piecewise linear functions have proven as a universal ap-

proximation of complex signals such as natural images. Recent works have demonstrated

the potential to robustly outperform ReLU by using alternative activation functions for

image reconstruction / restoration tasks, such as deep spline activations [104] and pe-

riodic nonlinearities like sinusoidal [93]. Motivated by the continuous and differentiable

periodic nonlinearities (sinusoidal) that are capable of representing fine details in the

signals better than ReLU, we explored deep residual networks with sinusoidal nonlin-

earities.

The scheme of the proposed SISR approach setup is shown in the Fig. 4.12. Due

to the unavailability of realistic paired (LR/HR) data, we train firstly the LR network

(G𝐿𝑅) to generate LR images with the same degradation/corruption as in the source

domain (x). We aim to learn the realistic data distribution mapping from bicubically

78

GLR GSR
y

Dyy

LR Learning SR Learning

Dxx

ŷx̂
(HR) (fake

LR)

(Real
LR)

x̂
(fake
LR)

(Real
HR)

(fake
SR)

Figure 4.12: The structure of our proposed SR approach setup. In the LR Learning part,
we learn the degradation/corruptions in the source domain data (x) by the networkG𝐿𝑅

in a GAN framework, where our goal is to map images from clean domain y to corrupted
domain x, while preserving the input image content. In the SR Learning part, we trained
the network G𝑆𝑅 in a GAN framework by using generated LR (x̂) images from the G𝐿𝑅

network with their corresponding HR images to super resolve the LR images.

down-sampled images (z) of HR images to the source domain images, while preserving

the input image content. In the second part, the SR network (G𝑆𝑅) is trained in a

GAN framework [36] by using generated LR (x̂) images from the G𝐿𝑅 network with

their corresponding HR images to super-resolve the LR images.

We evaluate our proposed SR method on the Real-World Super-resolution (RWSR)

dataset [77] to show the effectiveness of our approach through quantitative and quali-

tative experiments. In this work, we extend our work SRResCGAN [81] to significantly

improve the reconstruction quality in terms of the PSNR and SSIM. In details, the

extensions are:

1. We propose an end-to-end deep SRResCSinGAN for real image super-resolution.

In contrast to [81] and the existing deep SISR networks, our generated LR/HR

data pairs, instead of using traditional bicubic downsampling or an existing deep

downsampling network like DSGAN, achieve better reconstruction results in terms

of PSNR/SSIM/LPIPS (refer to Tables 4.7 and 4.8).

2. A modified version of the network (i.e., both LR and SR learning models) that

better models the underlying signals in the deep Resnet exploiting the sine non-

linearities instead of the ReLU/PReLU activations.

79

4.3.1 Proposed Methodology

4.3.1.1 ResNet with Sinusoidal Non-linearities

We can describe the overall explicit compositional structure of the L-layer deep residual

network (ResNet) with the following formulation:

f𝑅𝑒𝑠𝑁𝑒𝑡(x) = ((𝑓𝐿 ∘ 𝜎𝐿 ∘ 𝑓𝐿−1) (x𝐿−1) + x𝐿−1) ∘ · · · ∘

((𝑓2 ∘ 𝜎1 ∘ 𝑓1) (x) + x) ,

(4.31)

Here, 𝑓 is the affine transformation (i.e., Conv layer) defined by the weight matrix W

and the biases b applied to the input as:

𝑓(x) = W * x+ b (4.32)

And followed by the sine nonlinearity [93] 𝜎 applied to the resulting vector 𝑓 as:

𝜎(𝑓) = 𝑠𝑖𝑛 (𝜔0.W𝑓) (4.33)

Where 𝜔0 is the scalar frequency factor, which is a hyperparameter. The derivative of

the sine is a cosine (i.e., the phase-shifted sine) for the backpropagation. The weights of

the Sine layer are updated during the training via the stochastic gradient descent steps

by minimization of the loss function. To initialize the weights (W) of the Sine layer, we

use the same initialization technique proposed in [93], where we draw the weights with

W𝑖 ∼ 𝒰(−
√︀

6/𝑛,
√︀

6/𝑛) which ensures that the input to each sine activation is normal

distributed with a unit standard deviation.

80

+
C

on
v

3x
3

C
on

v
3x

3

fa
ke

 L
R

C
on

v
3x

3

C
on

v
3x

3
Si

ne

Resnet

(C
=3

)

(C
=6

4) +

C
on

v
3x

3

C
on

v
3x

3
Si

ne

(C
=6

4)

PR
el

u
(C

=6
4)

H
R

do
w

n
sa

m
pl

e
(C

=3
)

GLR

Figure 4.13: The structure of proposed LR learning architecture. The Sine denotes
sinusoidal activation layer with 64 output feature maps.

4.3.1.2 LR Learning Model

Network Architectures: By referencing to the section 4.3.1.1, we replace the PReLU

activations with the sine nonlinearities in the Resnet structure. The modified LR gener-

ator network (G𝐿𝑅) (see Fig. 4.13) consists of 8 Resnet blocks (two Conv layers and Sine

nonlinearities layer in between them) that are sandwiched between two Conv layers. All

Conv layers have 3×3 kernel support with 64 feature maps. Finally, sigmoid nonlinear-

ity is applied on the output of the G𝑑 network. While, the discriminator network (Dx)

consists of a three-layer convolutional network that operates on a patch level [46, 66].

All Conv layers have 5 × 5 kernel support with feature maps from 64 to 256 and also

applied Batch Normalization (BN) and Leaky ReLU (LReLU) activations after each

Conv layer except the last Conv layer that maps 256 to 1 features.

Network Losses: To learn the degradation/corruptions from the source domain (x),

we train the modified network G𝐿𝑅 in a GAN framework [36] as done in DSGAN [31]

with the following loss functions:

ℒG𝑑
= ℒ𝑐𝑜𝑙𝑜𝑟 + 0.005 · ℒ𝑡𝑒𝑥 + 0.01 · ℒ𝑝𝑒𝑟 (4.34)

where, ℒ𝑐𝑜𝑙𝑜𝑟,ℒ𝑡𝑒𝑥,ℒ𝑝𝑒𝑟 denote the color loss (i.e., ℒ1 loss focuses on the low frequency

of the image), texture/GAN loss (i.e., focus on the high frequencies of the image), and

perceptual (VGG-based) loss, respectively.

81

+

σ

+ -

C
on

v
5x

5

TC
on

v
5x

5

Pr
oj

C
lip

pi
ng

fa
ke

 L
R

fa
ke

 S
R

C
on

v
3x

3
Si

ne

C
on

v
3x

3
Si

ne

C
on

v
3x

3

C
on

v
3x

3

Si
ne

Si
ne

ResnetEncoder Decoder
U

ps
am

pl
e

(C
=6

4)

(C
=3

)

(C
=3

)

(C
=3

)

(C
=6

4)

(C
=6

4)

(C
=6

4)

(C
=6

4)

(C
=3

)

GSR

Figure 4.14: The structure of proposed SR learning architecture. The Sine denotes
sinusoidal activation layer with 64 output feature maps.

Training description: We train the G𝐿𝑅 network with image patches 512×512, which

are bicubically downsampled with MATLAB imresize function. We randomly crop the

source domain images (x) by 128 × 128 as done in [31]. We set the 𝜔0 = 30 for the

Sine layer. We train the network for 300 epochs with a batch size of 16 using Adam

optimizer [52] with parameters 𝛽1 = 0.5, 𝛽2 = 0.999, and 𝜖 = 10−8 without weight decay

for both generator and discriminator to minimize the loss in (4.34). The learning rate

is initially set to 2.10−4 for the first 150 epochs and then linearly decay to zero after

the remaining (i.e., 150) epochs as done in [31].

4.3.1.3 SR Learning Model

Network Architectures: We use the SR generator GSR network (see Fig. 4.14) which

is an Encoder-Resnet-Decoder like structure as does SRResCGAN [81] with the modified

Resnet structure by introducing the sine nonlinearities (refer to section 4.3.1.1). In the

GSR network, both Encoder and Decoder layers have 64 convolutional feature maps of

5 × 5 kernel size with 𝐶 × 𝐻 ×𝑊 tensors, where 𝐶 is the number of channels of the

input image. Inside the Encoder, LR image is upsampled by the Bicubic kernel with

Upsample layer, where the choice of the upsampling kernel is arbitrary. Resnet consists

of 5 residual blocks with two Pre-activation Conv layers, each of 64 feature maps with

kernel support 3×3, and the preactivation is the Sine nonlinearities layer with 64 output

feature channels. The trainable projection layer [64] inside the Decoder computes the

82

proximal map with the estimated noise standard deviation 𝜎 and handles the data

fidelity and prior terms. The noise realization is estimated in the intermediate Resnet

that is sandwiched between Encoder and Decoder. The estimated residual image after

Decoder is subtracted from the LR input image. Finally, the clipping layer incorporates

our prior knowledge about the valid range of image intensities and enforces the pixel

values of the reconstructed image to lie in the range [0, 255]. The reflection padding is

also used before all Conv layers to ensure slowly varying changes at the boundaries of

the input images.

The SR discriminator network (Dy) is trained to discriminate the real HR images

from the fake HR images generated by theGSR. The raw discriminator network contains

10 convolutional layers with kernels that support 3 × 3 and 4 × 4 of increasing feature

maps from 64 to 512 followed by Batch Normalization (BN) and leaky ReLU as done

in SRGAN [61].

Network Losses: To learn the image super-resolution for the target domain (y), we

train the modified network G𝑆𝑅 in a GAN framework as done in SRResCGAN [81] with

the following loss function:

ℒ𝐺𝑆𝑅
= ℒper + ℒGAN + ℒ𝑡𝑣 + 10 · ℒ1 (4.35)

where ℒ𝑝𝑒𝑟,ℒ𝐺𝐴𝑁 ,ℒ𝑡𝑣,ℒ1 denote the perceptual (VGG-based) loss, the texture/GAN

loss (i.e., focus on the high frequencies of the image), the total variation loss (focus to

minimize the gradient discrepancy and produce sharpness), and the content loss (i.e., ℒ1

loss focus on the low frequencies of the image), respectively.

Training description: At the training time, we set the input LR patch size as 32×32.

We train the network for 51000 training iterations with a batch size of 16 using Adam

optimizer [52] with parameters 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8 without weight decay

for both generator and discriminator to minimize the loss in (4.35). We set the 𝜔0 = 30

83

for the Sine layer. The learning rate is initially set to 10−4 and then multiplies by 0.5

after 5K, 10K, 20K, and 30K iterations. The projection layer parameter 𝜎 is estimated

according to [72] from the input LR image. We initialize the projection layer parameter

𝛼 on a log-scale values from 𝛼𝑚𝑎𝑥 = 2 to 𝛼𝑚𝑖𝑛 = 1 and then further fine-tune during

the training via back-propagation.

4.3.2 Experimental Results

4.3.2.1 Training data preparation

We use the source domain data (x: 2650 HR images) that are corrupted with unknown

degradation, e.g., sensor noise, compression artifacts, etc., and target domain data

(y: 800 clean HR images), provided in the NTIRE-2020 Real-World Super-resolution

(RWSR) Challenge for track-1 [77]. The source domain data contains synthetic visible

corruptions that are similar to the induced corruptions by the current camera devices.

We use the source and target domain data to train theG𝐿𝑅 network and learn the degra-

dation/corruptions, while due to the unavailability of paired LR/HR data, we train the

G𝑆𝑅 network (refer to section-4.3.1.3) with the generated LR data (�̂�) from the G𝐿𝑅

network (refer to section-4.3.1.2) with their corresponding HR target (y) images.

4.3.2.2 Data augmentation

We take the input LR image patches as generated by the LR learning G𝐿𝑅 network

(refer to section 4.3.1.2) with their corresponding HR image patches. We augment the

training data with random vertical and horizontal flipping, and 90∘ rotations. More-

over, we also consider another effective data augmentation technique, called mixture of

augmentation (MOA) [112] strategy. In the MOA, a data augmentation (DA) method,

among i.e., Blend, RGB permutation, Mixup, Cutout, Cutmix, Cutmixup, and CutBlur

is randomly selected and then applied on the inputs. This MOA technique encourages

84

Table 4.7: ×4 SR quantitative results comparison of our method over the DIV2K
validation-set (100 images) with added two known degradations i.e., sensor noise (𝜎 = 8)
and JPEG compression (𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 30) artifacts. Bottom section: ×4 SR results compar-
ison with the unknown corruptions in the RWSR challenge series (validation-set) [77].
The arrows indicate if high ↑ or low ↓ values are desired. The best performance is shown
in red and the second best performance is shown in blue.
Dataset (LR/HR pairs) SR methods #Params PSNR↑ SSIM↑ LPIPS↓

sensor noise (𝜎 = 8)
Bicubic EDSR [69] 43𝑀 24.48 0.53 0.6800
Bicubic ESRGAN [106] 16.7𝑀 17.39 0.19 0.9400
CycleGAN [75] ESRGAN-FT [75] 16.7𝑀 22.42 0.55 0.3645
DSGAN [31] ESRGAN-FS [31] 16.7𝑀 22.52 0.52 0.3300
DSGAN [31] SRResCGAN [81] 380𝐾 25.46 0.67 0.3604
DSSinGAN (ours) SRResCSinGAN (ours) 380𝐾 25.50 0.69 0.3750

JPEG compression (quality=30)
Bicubic EDSR [69] 43𝑀 23.75 0.62 0.5400
Bicubic ESRGAN [106] 16.7𝑀 22.43 0.58 0.5300
CycleGAN [75] ESRGAN-FT [75] 16.7𝑀 22.80 0.57 0.3729
DSGAN [31] ESRGAN-FS [31] 16.7𝑀 20.39 0.50 0.4200
DSGAN [31] SRResCGAN [81] 380𝐾 23.34 0.59 0.4431
DSSinGAN (ours) SRResCSinGAN (ours) 380𝐾 23.70 0.63 0.4258

unknown (validset) [77]
DSGAN [31] SRResCGAN [81] 380𝐾 25.05 0.67 0.3357
DSSinGAN (ours) SRResCSinGAN (ours) 380𝐾 25.58 0.69 0.3610
DSSinGAN (ours) SRResCSinGAN+ (ours) 380𝐾 25.89 0.71 0.3769

the network to acquire more generalization power by partially blocking or corrupting

the training sample.

4.3.2.3 Technical details

We implemented our method with Pytorch. The experiments are performed under

Windows 10 with i7-8750H CPU with 16GB RAM and on NVIDIA RTX-2070 GPU

with 8GB memory. It takes about 28.57 hours to train the SR model. The run time per

image (on GPU) is 0.1659 seconds on the validation set. To further enhance the fidelity,

we use a self-ensemble strategy [99] (denoted as SRResCSinGAN+) at the test time,

where the LR inputs are flipped/rotated and the SR results are aligned and averaged

for enhanced prediction.

85

'0815' image from DIV2K val-set

GT EDSR ESRGAN ESRGAN-FS

SRResCGAN SRResCSinGAN SRResCSinGAN+

'0896' image from DIV2K val-set

GT EDSR ESRGAN ESRGAN-FS

SRResCGAN SRResCSinGAN SRResCSinGAN+

Figure 4.15: Visual SR comparison of our method with the other state-of-art methods
on the DIV2K validation set at the ×4 upscaling factor.

4.3.2.4 Comparison with state-of-the-art SR methods

We compare our method with other state-of-art SR methods including EDSR [69], ES-

RGAN [106], ESRGAN-FT [75], and ESRGAN-FS [31] and SRResCGAN [81], whose

source codes are available online. The two degradation settings (i.e., sensor noise, JPEG

compression) have been considered under the same experimental situations for all meth-

ods. We run all original source codes and trained models by the default parameters

settings for comparison. The EDSR is trained without perceptual loss (only ℒ1) by

a deep SR residual network using bicubic supervision. The ESRGAN is trained with

the ℒperceptual, ℒGAN, and ℒ1 by a deep SR network using bicubic supervision. The

ESRGAN-FT and ESRGAN-FS apply the same SR architecture and perceptual losses

as in the ESRGAN using the two known degradation supervisions. The SRResCGAN is

86

trained with the similar loss combination as done in the ESRGAN using the two known

degradation supervisions. We train the proposed SRResCSinGAN with the similar loss

combination as done in the ESRGAN and SRResCGAN with the modified Resnet struc-

ture by the sine nonlinearities.

We evaluate the trained model under the Peak Signal-to-Noise Ratio (PSNR), Struc-

tural Similarity (SSIM), and LPIPS [124] metrics, refer to the section 4.1.4.4 for more

details of the evaluation metrics. Table 4.7 shows the quantitative results comparison of

our method over the DIV2K validation-set (100 images) with two known degradations

(i.e., sensor noise, JPEG compression) as well as the unknown degradation in the RWSR

challenge dataset [77]. In the case of sensor noise, our method has better PSNR/SSIM

values compared to all existing SR methods, while we have comparable LPIPS value.

Since these are the contradicted measures (PSNR/SSIM vs. LPIPS), our objective is to

achieve a good PSNR/SSIM score, while getting the satisfactory LPIPS value. In the

case of jpeg compression artifacts, our proposed method has better PSNR/SSIM values

except the EDSR, which is slightly better PSNR, but low LPIPS value, and it has a

very deep network with 43𝑀 parameters, while our model has only 380𝐾 parameters.

Finally, in the case of unknown corruptions, our method has improved SR results in

terms of PSNR and SSIM with the modified network of our previous work i.e., SRResC-

GAN. Despite that, the parameters of the proposed G𝑆𝑅 network are much less than

the other state-of-the-art SR models.

Regarding the visual quality, Fig. 4.15 shows the qualitative comparison of our

method with the other SR methods on ×4 upscaling factor (validation-set). In con-

trast to the existing state-of-art methods, our proposed method produces excellent SR

results that are reflected in the PSNR/SSIM/LPIPS values, as well as the visual quality

of the reconstructed images with almost no visible corruptions.

87

Table 4.8: The table reports the quantitative results of our method over the DIV2K
validation set (100 images) with unknown degradation for our ablation study. The
arrows indicate if high ↑ or low ↓ values are desired. The best performance is shown in
red.

Dataset (LR/HR pairs) SR method PSNR↑ SSIM↑ LPIPS↓
Bicubic SRResCGAN 24.13 0.57 0.4853
Bicubic SRResCSinGAN 24.78 0.62 0.4365
DSGAN SRResCGAN 25.05 0.67 0.3357
DSGAN SRResCSinGAN 25.53 0.69 0.3792
DSSinGAN SRResCSinGAN 25.58 0.69 0.3610
DSSinGAN SRResCSinGAN+ 25.89 0.71 0.3769

4.3.2.5 Ablation Study

For our ablation study, we generated different LR/HR pair data to train the SR models.

We reached the better PSNR/SSIM score, while achieving good LPIPS for its better vi-

sual correlation with human perception. Table 4.8 shows the quantitative results of our

method over the DIV2K validation-set (100 images) with unknown degradation [77]. In

the top section of the table, we trained the SRResCGAN [81] method with and without

sine nonlinearities with the bicubic downsampled data (refer to section 4.3.1.3 for the SR

learning training). The SRResCGAN with sine non-linearities (i.e., SRResCSinGAN)

has achieved better results in terms of PSNR, SSIM, and LPIPS. In the middle section,

we generate the LR data from the DSGAN [31] as done in SRResCGAN [81] and then

trained the two variants of our SR model on the generated LR/HR pairs. The SRResC-

SinGAN has better SR results in terms of PSNR and SSIM, while satisfactory LPIPS

value compared to the SRResCGAN. In the bottom section, we generate the LR data

from the DSGAN with sine nonlinearities (denoted as DSSinGAN, refer to section 4.3.1.2

for the LR learning) and then finally train our proposed SRResCSinGAN method with

the generated LR/HR pairs. The SRResCSinGAN has better PSNR and LPIPS val-

ues, while the same SSIM value. To further enhance the performance, we used the

self-ensemble strategy [99] at the test time, denoted as SRResCSinGAN+. It suggests

that better generation of the LR images instead of the traditional bicubic downscaling

gives the better performance gain and also incorporating the sinusoidal non-linearites

88

instead of ReLU/PReLU activation in the resnet structure gives the improvement in the

reconstruction quality.

89

5
Multi-Image Super-Resolution

5.1 A Deep Residual Star Generative Adversarial Net-

work for multi-domain Image SR

The existing SISR methods have performance drop due to a fixed degradation settings,

i.e., usually a bicubic downscaling of low-resolution (LR) image. However, in real-world

settings, the LR degradation process is unknown which can be bicubic LR, bilinear LR,

nearest-neighbor LR, or real LR. Therefore, the most SR methods are ineffective and

inefficient in handling more than one degradation setting within a single network. To

handle the multiple degradation, i.e., refers to multi-domain image super-resolution, we

propose a GAN-based SR2 *GAN method, a novel and scalable approach that super-

resolves the LR images for the multiple LR domains using only a single model. The

proposed scheme is trained in a StarGAN like network topology with a single generator

and discriminator networks. Our method achieves excellent SR results in terms of the

PSNR/SSIM values compared to the existing SR methods.

By referencing to the the general degradation model (3.2), in the most of existing SR

90

Figure 5.1: The Multi-domain SR proposed scheme, where a single generator G learns
the mappings among multiple domains i.e., LR/HR to LR/HR.

methods, the operator H is usually known / fixed i.e., bicubic. However, in real-world

settings, the operator H is unknown that can be bicubic, bilinear, nearest-neighbor,

and real degradation kernel. In the recent years, numerous works have been addressed

toward the task of SISR that are based on DCNNs for their powerful feature representa-

tion capabilities either on PSNR values [51, 69, 120, 122, 113, 68, 123] or on perceptual

quality [61, 106, 75, 31, 81, 84]. The SR methods mostly rely on the single degradation

(i.e., usually bicubic) with paired LR and HR images in the supervised training. In

the real-world settings, the input LR image contains more complex degradation. Since

the bicubic, bilinear, and nearest-neighbor LR degradation are rarely suitable for the

real LR images, these degradations can be used for data augmentation and are indeed a

good choice for clean and sharp image super-resolution. Moreover, the Real LR domain

in the proposed method contains the LR/HR image pairs that follow the realistic phys-

ical image model instead of artificial ones. Due to such different degradation settings,

the most SR methods often fail to produce convincing SR results or train their model

independently for every pair of image domains.

Instead of learning a fixed degradation setting (e.g., bicubic LR), the proposed

SR2 *GAN takes as inputs both an image and a domain label, and learns to gener-

ate the image into the corresponding domain (LR/HR). The domain labels are encoded

91

in binary or one-hot vector to represent domain information. Fig. 5.1 illustrates an

overview of our proposed SISR approach, where a single network G learns the map-

pings among the multiple domains i.e., Bicubic LR, Bilinear LR, Nearest-Neighbor LR,

Real LR, and HR. During the training phase, we translate the source domain images into

the target domain images by randomly generate target domain labels. At the testing

phase, we fix the target domain as HR domain to generate the SR images from any blind

LR domain. The proposed scheme is inspired by the recent success of StarGAN [18] for

multi-domain image-to-image translation applications. The proposed approach (refers

to the section 5.1.1 for more details) allows us to simultaneously train for multiple

domains in a unified network.

Our contributions in this section are as follows:

1. We propose SR2 *GAN for multi-domain image super-resolution task. In con-

trast to the existing deep SISR methods, our method learns the mappings among

multiple domains within a single model.

2. The proposed scheme requires a single generator and discriminator networks to

train efficiently for the images of multiple domains.

5.1.1 Proposed Method

5.1.1.1 Multi-domain training strategy

Our goal is to train a single network G that super-resolves the LR images from multiple

LR domains. To achieve this objective, we train the generator G to translate an input

source image y into an output target image ŷ conditioned on the target domain labels

ℓ as G(y, ℓ) → ŷ. The domain labels ℓ are encoded in binary or one-hot vector to

represent domain information. We randomly generated the target domain labels ℓ so

that the network G flexibly translates the source domain images into the target domain

images. The discriminator networkD learns to distinguish between real/fake images and

92

Figure 5.2: The structure of our proposed SR2 *GAN setup. G takes an input as both
the source image (y) and target domain label and generates a fake target image (ŷ). G
tries to reconstruct the fake source image (y′) from the fake target image (ŷ) given the
source domain label. D learns to discriminate between real and fake target images and
classify the real target images to its corresponding domain. In this way, the G tries to
generate fake target images indistinguishable from real target images and classifiable as
target domain images by the D.

also tries to minimize the domain classification error only associated with the known

domain label. The discriminator D (i.e., adapted from StarGAN [18]) produces the

probability distributions over both target images and target domain labels, D : x →

{D𝑡𝑟𝑔(x),D𝑐𝑙𝑠(x)}. Fig. 5.2 illustrates the training strategy of the proposed SR2 *GAN.

5.1.1.2 Network Architectures

Generator (G): We use the generator G network as a Encoder-Resnet-Decoder like

structure, adapted from SRResCGAN [81] which strictly follows the degradation pro-

cess (3.22). In the G network, both Encoder and Decoder layers have 64 convolutional

feature maps of 5 × 5 kernel size with 𝐶 × 𝐻 ×𝑊 tensors, where 𝐶 is the number of

93

channels of the input image. Resnet consists of 5 residual blocks with two Pre-activation

Conv layers, each of 64 feature maps with kernel support 3 × 3, and the preactivation

is the Sine nonlinearities layer with 64 output feature channels. The trainable projec-

tion layer [64] inside the Decoder computes the proximal map with the estimated noise

standard deviation 𝜎 and handles the data fidelity and prior terms.

Discriminator (D): The discriminator network (D) learns to distinguish between

real and fake images and classify the real images to its corresponding domain. The

discriminator network contains 6 convolutional layers with kernels that support 4 × 4

of increasing feature maps from 64 to 2048 followed by the leaky ReLU as done in

StarGAN [18].

5.1.1.3 Network Losses

To train the generator G and discriminator D, we use the following respective objective

loss functions:

ℒ𝐺 = ℒper + ℒGAN + ℒ𝑡𝑣 + ℒ𝑓
𝑐𝑙𝑠 + 10 · ℒ1 + 10 · ℒcyc, (5.1)

ℒ𝐷 = ℒ𝐺𝐴𝑁 + ℒ𝑟
𝑐𝑙𝑠, (5.2)

where ℒ𝑝𝑒𝑟, ℒ𝐺𝐴𝑁 , ℒ𝑡𝑣, ℒ𝑟/𝑓
𝑐𝑙𝑠 , ℒ1, and ℒ𝑐𝑦𝑐 denote the perceptual (VGG-based) loss,

texture/GAN loss, total variation loss, real/fake classification loss, content loss, and

cyclic loss respectively.

94

5.1.2 Experiments

5.1.2.1 Training data

For the training, we use DIV2K [1], Flickr2K [97], and RealSR [109] datasets that jointly

contain 22,430 high-quality HR images for image restoration tasks with rich and diverse

textures. We obtain the LR bicubic, LR bilinear, and LR nearest images by down-

sampling HR images by the scaling factor ×4 of the DIV2K and Flickr2K datasets

using the Pytorch bicubic, bilinear, and nearest kernel function. The LR real images by

the scaling factor ×4 are provided with their corresponding HR images in the RealSR

dataset. We consider the five domains as shown in Fig. 5.1. We obtain the source

domain images from the three datasets with their corresponding domain labels. We

randomly generate the target domain labels with their corresponding images from the

three datasets. We train our network in RGB color space.

5.1.2.2 Data augmentation

We augment the training data with random vertical and horizontal flipping, and 90∘

rotations. Moreover, we also consider another effective data augmentation technique,

called mixture of augmentation (MOA) [112] strategy. In the MOA, a data augmen-

tation (DA) method, among i.e., Blend, RGB permutation, Mixup, Cutout, Cutmix,

Cutmixup, and CutBlur is randomly selected and then applied on the inputs. This

MOA technique encourages the network to acquire more generalization power by par-

tially blocking or corrupting the training sample.

5.1.2.3 Training details

At the training time, we set the input image patch size as 128 × 128. We train the

network for 51000 training iterations with a batch size of 16 using Adam optimizer

with parameters 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8 without weight decay for both

95

Table 5.1: ×4 SR quantitative results comparison of our method with others over the
DIV2K (100 images of validation-set) and RealSR (93 images of testset) that are total
393 images of the testset with the four LR degradation. The arrows indicate if high ↑
or low ↓ values are desired. The best performance is shown in red and the second best
performance is shown in blue.
SR methods #Params

Bicubic Bilinear Nearest Real Average
PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓

EDSR [69] 43.0𝑀 21.33 / 0.66 / 0.3477 23.05 / 0.72 / 0.3083 19.34 / 0.56 / 0.3653 28.06 / 0.82 / 0.4182 22.95 / 0.69 / 0.3599
ESRGAN [106] 16.7𝑀 16.02 / 0.31 / 0.6008 17.25 / 0.37 / 0.5186 15.29 / 0.26 / 0.6254 27.98 / 0.82 / 0.3840 19.14 / 0.44 / 0.5322
SRResCGAN [81] 380𝐾 23.30 / 0.67 / 0.2900 24.43 / 0.70 / 0.2720 21.10 / 0.60 / 0.3044 27.96 / 0.82 / 0.3676 24.20 / 0.69 / 0.3085
SRResCycGAN [84] 380𝐾 24.56 / 0.73 / 0.3380 25.58 / 0.75 / 0.3183 21.75 / 0.63 / 0.3541 28.02 / 0.82 / 0.3827 24.98 / 0.73 / 0.3483
SR2 *GAN (ours) 380𝐾 25.52 / 0.75 / 0.4250 26.23 / 0.76 / 0.4083 22.75 / 0.66 / 0.4415 28.02 / 0.82 / 0.4353 25.63 / 0.75 / 0.4275

generator and discriminator to minimize the loss functions in the Eqs. (5.1) and (5.2).

The learning rate is initially set to 10−4 and then multiplies by 0.5 after 5K, 10K, 20K,

and 30K iterations. Our all experiments are performed with a scaling factor of ×4 for

the LR and HR images.

5.1.2.4 Comparison with the state-of-art methods

We compare our method with other state-of-art SISR methods including EDSR [69],

ESRGAN [106], SRResCGAN [81], and SRResCycGAN [84]. We compare the SR results

with one deep feed-forward residual network (i.e., EDSR) and other three GAN-based

approaches (i.e., ESRGAN, SRResCGAN, SRResCycGAN). Although there are existing

SR methods [122], [123], and [102] by handling multiple degradation settings, but they

are the non-blind SR techniques with deep feed-forward networks, while our proposed

method is a blind SR GAN-based approach. So, the comparison with [122], [123], and

[102] methods is not fair. We run all the original source codes and trained models by the

default parameters settings for the comparison. The competing methods are trained for

just one degradation setting and tested on the different ones. Unlike them, the proposed

approach can be trained with multiple degradations instead of single degradation.

We evaluate the trained model under the Peak Signal-to-Noise Ratio (PSNR), Struc-

tural Similarity (SSIM), and LPIPS [124] metrics, refer to the section 4.1.4.4 for more

details of the evaluation metrics. Table 5.1 shows the quantitative results comparison of

our method with the others over the DIV2K (100 images of validation-set) and RealSR

(93 images of testset) that are total 393 images of the testset with the four LR degra-

96

'0839' image from DIV2K val-set

GT EDSR ESRGAN

SRResCGAN SRResCycGAN SR2*GAN

(a) SR results on the LR bicubic

'sony_11_x1' image from RealSR testset

GT EDSR ESRGAN

SRResCGAN SRResCycGAN SR2*GAN

(b) SR results on the LR real

Figure 5.3: Visual comparison of our method with other state-of-art methods on ×4
super-resolution.

dation. We have excellent results in terms of PSNR and SSIM compared to the other

methods, while in the case of LPIPS, we lag by the others because our training objective

is to get better PSNR/SSIM. The reason for none of the competing methods achieved

their best performance against the bicubic down-sampling, is that the other GAN-based

approaches focus more on the perceptual quality, as good perceptual image quality re-

duces the PSNR/SSIM scores. Our model is trained with reasonably perceptual quality,

while good PSNR/SSIM, refers to section 5.1.2.5.

Regarding the visual quality, Fig. 5.3 shows the visual comparison of our method

97

Table 5.2: This table reports the quantitative SR results of our method over the DIV2K
and RealSR validation-set (20 images, not used during the training phase) with the four
LR domains (i.e., Bicubic, Bilinear, Nearest, Real) for our ablation study. The arrows
indicate if high ↑ or low ↓ values are desired. The best performance is shown in red.
SR method Domain label Conditioning (ℓ) PSNR↑ SSIM↑ LPIPS↓

SR2 *GAN (v1)
G Conditioned on only HR target domain
& used two separate Disc. (D𝑡𝑟𝑔, D𝑠𝑟𝑐)

26.95 0.75 0.3423

SR2 *GAN (v2)
G Conditioned on only HR target domain

& used one Disc. (D𝑡𝑟𝑔)
27.20 0.76 0.3176

SR2 *GAN (v3)
G Conditioned on random target domains

& used one Disc. (D𝑡𝑟𝑔)
28.09 0.78 0.3891

with other SR methods at the ×4 upscaling factor on the test-set. We have comparable

visual SR results with others.

5.1.2.5 Ablation Study

For our ablation study, we train three variants of the proposed SR2 *GAN network

structure with conditioning of the domain labels. By referencing to the Fig. 5.2, the

first network variant v1 is trained by conditioning the first branch generator G on only

HR target domain labels, while, the other branch generator G (shared weights) is con-

ditioned on the multiple LR source domain labels. We use two separate discriminators

i.e., D𝑡𝑟𝑔 for the target domain supervision, D𝑠𝑟𝑐 for the source domain supervision

in the SR2 *GAN (v1). Similarly, the second network variant v2 is trained as the v1,

but only uses one discriminator i.e., D𝑡𝑟𝑔 for the target domain supervision. Finally,

the third network variant v3 is trained by conditioning both generators G on random

domain labels and use only one discriminator D𝑡𝑟𝑔 for the real target domain supervi-

sion by minimizing the the total loss functions in the Eqs. (5.1) and (5.2). Table 5.2

shows the quantitative SR results of SR2 *GAN (v1, v2, v3) over the DIV2K and Re-

alSR validation-sets (20 images, not used during the training phase) with the four LR

domains i.e., Bicubic, Bilinear, Nearest, Real. The third network variant v3 performs

better in terms of PSNR/SSIM among others. This shows the effectiveness of random

target domain labeling and real target domain image supervision by the discriminator.

Therefore, we opt for the third version v3 and used it for the evaluation.

98

5.2 Deep Iterative Convolutional Neural Networks

for Raw Burst Super-Resolution

Modern digital cameras and smartphones mostly rely on image signal processing (ISP)

pipelines to produce realistic colored RGB images. However, compared to DSLR cam-

eras, low-quality images are usually obtained in many portable mobile devices with

compact camera sensors due to their physical limitations. Since the low-quality images

have multiple degradations i.e., sub-pixel shift due to camera motion, mosaick pat-

terns due to camera color filter array, low-resolution due to smaller camera sensors, and

the rest are corrupted by the noise, the current Single Image Super-resolution (SISR)

methods have limited performance to recover high-resolution (HR) image details from a

single low-resolution (LR) image. Burst photography pipeline with multi-frame super-

resolution (MFSR) is the most common way to deal with such a scenario that generates

the HR image from a low-quality burst of raw sensor images. In this work, we propose a

deep Burst Super-Resolution Iterative Convolutional Neural Network (BSRICNN) that

follows the burst photography pipeline as a whole by a forward (physical) model. The

proposed Burst SR scheme solves the problem with classical image regularization, convex

optimization, and deep learning techniques, compared to existing black-box data-driven

methods. The proposed network produces the final output by iterative refinement of

the intermediate SR estimates. The proposed network exploits powerful image regu-

larization, large-scale optimization, and deep learning techniques for multi-frame image

restoration. Our model requires much less parameters and 2d convolution operation in

comparison to other competing methods. Our method achieves good burst SR results in

terms of the synthetic data as well as comparable visual quality of the real-world bursts

with respect to the existing approaches.

There have been proposed numerous works towards the task of SISR [51, 69, 120,

99

122, 113, 68, 123, 102, 83] and the real SISR [61, 106, 75, 31, 81, 84, 103]. Due to the

ill-posed nature of the SISR problem, the existing methods have limited performance to

recover high frequency details through learned image priors. Besides the development

of the SISR approaches based on image priors, the recent works have demonstrated the

potential of MFSR methods that aim to fuse multiple LR views to reconstruct a HR

output. Wronski et al. [111] developed a Super-Res Zoom method, which implements

a burst processing pipeline that achieves MFSR by aligning, merging, and enhancing a

sequence of raw frames to sub-pixel accuracy. Deudon et al. [21] proposed a MFSR net-

work (i.e., HighRes-net) by aligning each input frame to a reference frame implicitly, and

then merges them using a recursive fusion method for satellite imagery. Bhat et al. [10]

developed a DeepBurstSR network for Raw Burst super-resolution task. The Deep-

BurstSR aligns deep embeddings of the input LR frames using pixel-wise optical flow

and then adaptively merges the information from all frames by using an attention-based

fusion module. Moreover, there are other approaches [34, 56, 57] based on two stage

structure which perform single-frame joint demosaicking and denoising, and after that,

one can super-resolve the resulting RGB image using the existing SISR methods. How-

ever, the deep learning based Burst SR methods are black-box data-driven approaches

with larger model size, while our proposed scheme has the merit of interpretability and

small model size.

Mathematically, the Burst SR is described as the following forward observation model

for the image degradation process:

y𝑖 = MHS𝑖(x̃) + 𝜂𝑖, 𝑖 = 1, . . . , 𝐵 (5.3)

where, y𝑖 is the observed LR burst images of total size 𝐵, M is a mosaicking operator

that corresponds to the CFA (Color Filter Array) of a camera (usually Bayer), H is

a down-sampling operator (i.e., bilinear, bicubic, etc.) that resizes an HR image x̃

by a scaling factor 𝑟, S𝑖 is an affine transformation of the coordinate system of the

100

(a) HR Reference (c) Burst SR (Ours)(b) Input LR Bursts

PSNR=36.92
SSIM=0.9545
LPIPS=0.0631

Figure 5.4: An image from the Zurich RAW to RGB Dataset [44] (testset), where we
present (a) the ground truth HR reference image of size 384× 384× 3, (b) the input LR
bursts of size (𝑊 ×𝐻 × 𝐶 × 𝐵) 48× 48× 4× 14, and (c) the Burst SR output of size
384 × 384 × 3 of our network (BSRICNN). All images are converted from raw sensor
space to sRGB for visualization purpose.

image x̃ (i.e., translation and rotation), and 𝜂𝑖 is an additive heteroskedastic Gaussian

noise related to photon shot and read noise. Due to the ill-posed nature of an inverse

problem (i.e., refer to the operator A in section-5.2.1.1), Multi-frame Super-Resolution

(MFSR) is common way to conditioning on multiple LR frames. The MFSR aims to

recover the latent HR image using multiple LR frames by exploiting the additional signal

information due to sub-pixel shifts, compared to the SISR methods, refer to Fig. 5.4.

Resnet

En
co

de
r

D
ec

od
er

z(0)x0

yi

Resnet

En
co

de
r

D
ec

od
er

z(1) Resnet

En
co

de
r

D
ec

od
er

z(k)x1 x2 x(k) x(K)

ERD

(LR Bursts)

(SR output)

Figure 5.5: The structure of our proposed iterative Burst SR scheme. Given an LR burst
images (y𝑖), each network’s stage produces a new estimate x(𝑘+1) from the previous step
estimate x(𝑘). A single optimizer is used for all network stages with shared structures
and parameters.

The proposed Burst SR scheme is shown in the Fig. 5.5. We unroll the proposed

BSRICNN into𝐾 stages, where each stage computes the refined estimate of the solution.

101

y𝑖 is an input Raw LR burst, x0 is an initial estimate, and x𝐾 is the final estimated

SR image. We learn the shared parameters across stages by jointly minimizing the loss

ℒ(Θ) function with respect to all network parameters Θ.

We evaluate our proposed approach on synthetic and real burst SR datasets. We use

the BurstSR dataset [10] to show the effectiveness of our method through quantitative

and qualitative experiments. Finally, we also participated in the NTIRE2021 Burst SR

challenges (track-1 and track-2) associated with the CVPR 2021 workshops. Table 5.4

and 5.5 show the preliminary testsets results of the track-1 and track-2 of our method

(MLP BSR) with other participants.

5.2.1 Proposed Method

5.2.1.1 Problem Formulation

To solve the Raw Burst Super-Resolution task (5.3), the recovery of x from y𝑖 mostly

relies on the variational approach for combining the observation and prior knowledge,

and the solution is obtained by minimizing the following objective function as:

x̂ = argmin
x

1

2𝜎2𝐵

𝐵∑︁
𝑖=1

‖y𝑖 −MHS𝑖(x)‖22 + 𝜆ℛ(x), (5.4)

The Eq. (5.4) can be also written in the following form:

J(x) = argmin
x

1

2𝜎2𝐵
‖y −Ax‖22 + 𝜆ℛ(x), (5.5)

where, A = MHS, the first term is a data fidelity term that measures the proximity of
the solution to the observations, the second term (i.e., ℛ(x)) is the regularization term

that is associated with image priors, and 𝜆 is the trade-off parameter that governs the

compromise between the data fidelity and the regularizer term. In this work, we propose

a deep iterative Burst SR learning method (BSRICNN, refers to Fig. 5.5) that solves

102

the Burst SR task in an iterative manner by using Majorization-Minimization (MM)

framework [42] with 𝐾 finite steps. In the next section 5.2.1.2, the proper optimization

strategy is employed to find the solution that minimizes the objective function (5.5) to

get the required latent HR image.

5.2.1.2 Majorization-Minimization (MM) Strategy

In an MM [42, 29, 65] approach, an iterative algorithm for solving the minimization

problem

x̂ = argmin
x

J(x), (5.6)

takes the form

x(𝑘+1) = argmin
x

Q(x;x(𝑘)), (5.7)

where Q(x;x(𝑘)) is the majorizer of the function J(x) at a fixed point x(𝑘) by satisfying

the following two conditions:

Q(x;x(𝑘)) > J(x), ∀x ̸= x(𝑘) and Q(x(𝑘);x(𝑘)) = J(x(𝑘)). (5.8)

Here, we want to upper-bound the J(x) by a suitable majorizer Q(x;x(𝑘)), and instead

of minimizing the actual objective function (5.5) due to its complexity, we minimize

the majorizer Q(.) to produce the next estimate x(𝑘+1). By satisfying the properties of

the majorizer given in (5.8), iteratively minimizing Q(.;x(𝑘)) also decreases the actual

objective function J(.) [42]. Thus, we can write a quadratic majorizer for the complete

objective function (5.5) as the following form:

�̃�(x;x(𝑘)) =
1

2𝜎2𝐵
‖y −Ax‖22 + 𝑔(x,x(𝑘)), (5.9)

103

To start an estimate x(𝑘), we have:

𝑔(x,x(𝑘)) =
1

2𝜎2𝐵

(︁
x− x(𝑘)

)︁𝑇 [︀
𝛼I−A𝑇A

]︀ (︁
x− x(𝑘)

)︁
, (5.10)

where, �̃�(·, ·) is a distance function between x and x(𝑘). In order to get a valid majorizer,

we need to satisfy the two conditions in Eq. (5.8) as 𝑔(x,y) > 0,∀x ̸= y and 𝑔(x,x) = 0.

This suggests that 𝛼I − A𝑇A must be a positive definite matrix, which only holds if

𝛼 > ‖A𝑇A‖2 ⇒ 𝛼 ≥ 𝐵. Finally, we proceed with the MM optimization scheme to

iteratively minimize the quadratic majorizer function Q(.) by the following formulation

as:

x̂(𝑘) = argmin
x

Q(x;x(𝑘)) = �̃�
(︁
x;x(𝑘)

)︁
+ 𝜆ℛ(x)

=
𝛼

2𝜎2𝐵
‖x− z𝑘‖22 + 𝜆ℛ(x) + 𝑐𝑜𝑛𝑠𝑡. = Prox(𝜆/𝛼𝜎2)ℛ(.)(z

𝑘)

(5.11)

where, z𝑘 = x𝑘 + A𝑇 (y − Ax𝑘) ⇒ z𝑘 = x(𝑘) + 1
𝐵

∑︀𝐵
𝑖=1 S

𝑇
𝑖 H

𝑇M𝑇
(︀
y𝑖 −MHS𝑖x

(𝑘)
)︀

(see Fig. 5.5), and the const. does not depend on x and thus it is irrelevant to the

optimization task. The Prox(.) is the proximal operator [85], which is defined as:

PC(z) = argmin
x∈C

1

2𝜎2
‖x− z‖22 +

𝜆

𝛼
ℛ(x). (5.12)

It can be noted that the Eq. (5.11) is treated as the objective function of a denoising

problem, where z is the noisy observation. So, we employ a deep denoising neural

network to get the required estimate x̂(𝑘) by unrolling the network on 𝐾 finite steps.

Moreover, in the Eq. (5.11), we decouple the degradation operator A from x and now

we need to tackle it with a less complex denoising problem. For the fast convergence

and less computationally expensive, we adopt the similar strategy as done in [56, 83, 57],

where the trainable extrapolation weights w(k) are learnt directly from the training data

instead of the fixed ones [67]. Our overall proposed Burst SR scheme is shown in the

Fig. 5.5.

104

5.2.2 Proposed Burst SR Network (BSRICNN)

5.2.2.1 Network Architecture

In the Fig. 5.5, we adapt the similar Encoder-Resnet-Decoder (ERD) architecture as

done in [83]. In each ERD block, the Encoder and Decoder have Conv and TConv

layers respectively with 64 feature maps of 5 × 5 kernel size with 𝐶 ×𝐻 ×𝑊 tensors,

where 𝐶 is the number of channels of the input image. The Resnet consists of 5 residual

blocks with two Pre-activation Conv layers, each of 64 feature maps with kernels support

3× 3, and the pre-activation is the parametrized rectified linear unit (PReLU) [38] with

64 out feature channels. There is a trainable projection layer [64] inside the Decoder

which computes the proximal map for the Eq. (5.12) with given noise standard deviation

𝜎 and handles the data fidelity and prior terms. The noise realization is estimated in the

intermediate Resnet that is sandwiched between the Encoder and the Decoder. Finally,

the clipping layer incorporates our prior knowledge about the valid range of image

intensities and enforces the pixel values of the reconstructed image to lie in the range

[0, 255]. Reflection padding is also used before all Conv layers to ensure slowly-varying

changes at the boundaries of the input images.

5.2.2.2 Network Training via TBPTT

Due to the iterative nature of our Burst SR approach, the network parameters are

updated using back-propagation through time (BPTT) algorithm by unrolling 𝐾 steps

to train the network, which is previously used in recurrent neural networks training such

as LSTMs. However, it is computationally expensive with the increase of the number of

iterative steps 𝐾, so both 𝐾 and mini-batch (𝑁) size are upper-bounded by the GPU

memory. Therefore, to tackle this problem, we use the Truncated Backpropagation

Through Time (TBPTT) algorithm as done in [56, 83] to train our network, where the

sequence is unrolled into a small number of 𝑘-steps out of total 𝐾 and then the back-

105

Algorithm 2: The proposed iterative Burst SR approach. The ERD structure
and parameters are shared across all stages.

Input : y𝑖: Raw LR burst input of size 𝐵, M, H, S: Degradation operators,
𝐾: iterative steps, w ∈ R𝐾 : extrapolation weights, 𝜎: estimated
noise, 𝛼, 𝜆: projection parameters

Initialization: x(0) = 0, z(0) = 0, x(1) = y𝑟𝑒𝑓 ;
Estimate wrapping matrix: S𝑖, 𝑖 = 1, . . . , 𝐵;
for 𝑘 ← 1 to 𝐾 do

Extrapolation step: x(𝑘+1) = x(𝑘) +w(𝑘)(x(𝑘) − x(𝑘−1));
for 𝑖← 1 to 𝐵 do

z(𝑘) = z(𝑘) + S𝑇
𝑖 H

𝑇M𝑇 (y𝑖 −MHS𝑖x
(𝑘+1));

end

Proximal step (ERD-block): x̂(𝑘+1) = ERD(x(𝑘) − z(𝑘)/𝐵, 𝜎, 𝛼, 𝜆);

end

Output: x̂𝐾 : SR output

propagation is performed on the small 𝑘-steps. The Algorithm 2 describes the inputs,

initial conditions, and desired updates for each network stage. The ERD structure

and parameters are shared across all iterative steps. Finally, a single optimizer is used

to minimize the ℓ1-Loss with respect to ground-truth images after 𝑘 iterative steps

according to Eq. (5.13)

5.2.2.3 Network Loss

During the training, we use the following function to minimize the ℓ1-Loss between the

estimated latent SR image (x(𝑘)) and ground-truth (GT) (x(𝑔𝑡)) after k-steps as:

ℒ = argmin
Θ
ℒ(Θ) =

1

2

𝑁∑︁
𝑖=1

‖x𝑘
𝑖 − x𝑔𝑡

𝑖 ‖1 (5.13)

where, 𝑁 is the mini-batch size and Θ are the trainable parameters of our network. For

computational efficiency, a single optimizer is used during the training.

106

5.2.3 Experiments

5.2.3.1 Training data

For Synthetic data, we used 46, 839 sRGB images from the Zurich RAW to RGB

dataset [44], provided in the Burst SR challenge track-1 for the training. We generate

the synthetic RAW LR bursts with their corresponding HR using the data generation

code as done in [10]. For the validation and testing phase, 1204 RAW LR synthetic

bursts have been generated by the data generation code using the sRGB images from

the test split of the Zurich RAW to RGB dataset [44]. For the evaluation of our method

on the real dataset, we use the BurstSR testset containing 639 real-world LR bursts,

provided in the Burst SR challenge track-2.

We estimate the warp matrix (i.e., S𝑖, refers to Algorithm-2 and section-5.2.1) to

align the bursts to the base/reference frame using the Enhanced Correlation Coefficient

(ECC) [26] method as done in [57] for all experiments. For those bursts whose are not

aligned by the ECC method, we keep them in the training and testing data by making

the assumption of the identity matrix.

5.2.3.2 Training description

For the training phase, we set the input Raw burst LR patch sizes as 48× 48× 4 with

their corresponding Raw HR patch sizes as 384× 384× 3 by the scaling factor ×4. We

use the LR burst size of 14. We train the network for 368k iterations with a batch size

of 2 using Adam optimizer [52] with parameters 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8

without weight decay to minimize the loss (5.13). The learning rate is set to 10−3 for

all iterations. We unroll the proposed network into 𝐾 stages, where we set 𝐾 as 10.

We implemented our method with Pytorch 1.7.1. The experiments are performed

under Windows 10 with i7-8700 CPU with 32GB RAM and on NVIDIA GeForce RTX-

3090 GPU with 24GB memory. The average running times (image per second on GPU)

107

Table 5.3: We compare our method with the common evaluation metrics (PSNR / SSIM
/ LPIPS). The quantitative SR results (×4 upscale) are shown over the synthetic and
real Burst SR test sets. The arrows indicate if high ↑ or low ↓ values are desired. The
best performance is shown in red and the second best performance is shown in blue.

Burst SR Method
#Params

[M]
#Conv2d

Synthetic data Real data Fine-tuned
on Real dataPSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DeepJoint [34]+RRDB [106] 17.26 371 33.25 0.881 0.195 42.13 0.957 0.088 ✓
DeepBurstSR [10] 5.25 48 34.48 0.905 0.118 45.17 0.978 0.037 ✓
HighRes-net [21] 1.11 25 34.30 0.891 0.170 43.99 0.972 0.051 ✓
BSRICNN (ours) 0.38 12 37.62 0.895 0.166 41.40 0.952 0.101 ✗

are 0.3350 and 0.8838 over the synthetic and real testsets, respectively.

5.2.3.3 Comparison with the Burst SR methods

We compare our method with existing Burst SR methods including DeepJoint [34] +

RRDB [106], DeepBurstSR [10], and HighRes-net [21]. In order to do a fair comparison,

the other methods are trained to perform joint denoising, demosiacking, and super-

resolution using the same training data used by our method, expect that we are not

fine-tuned the pretrained synthetic data model on the real data, while others are trained

on that.

We evaluate the trained model under the Peak Signal-to-Noise Ratio (PSNR), Struc-

tural Similarity (SSIM), and LPIPS [124] metrics, refer to the section 4.1.4.4 for more

details of the evaluation metrics. The quantitative Burst SR results are evaluated on

the raw linear sensor space. Table 5.3 shows the quantitative results of our method

over the synthetic and real Burst SR testset. We have achieved excellent PSNR on the

synthetic data, compared to DeepBurstSR method, while, lags the SSIM/LPIPS score,

even though the parameters and depth of the proposed network is much less than the

DeepBurstSR.

On the real-world burst data comparison, the DeepBurstSR outperforms the oth-

ers methods in terms of PSNR/SSIM/LPIPS, while we have a comparable SSIM score

with others, even though our method is not fine-tuned on the real data. Since the

fine-tuning [10] increases the performance, but it also further requires significant addi-

tional labelled training data that is difficult to collect in practice, and it is also more

108

computational expensive in terms of training time and hardware resources.

Table 5.4: The participating methods results on the synthetic test set from Track-1 in
the Burst SR Challenge, in terms of PSNR, SSIM, and LPIPS.

Team Name PSNR↑ SSIM↑ LPIPS↓
Noah TerminalVision SR 46.85 0.983 0.018
MegSR 46.72 0.983 0.020
Inria 44.76 0.969 0.034
TTI 44.40 0.973 0.038
BREIL 39.22 0.918 0.104
MLP BSR 37.62 0.895 0.166

Table 5.5: The participating methods results on BurstSR test set from Track-2 in the
Burst SR Challenge. The PSNR, SSIM, and LPIPS scores are computed after spatial
and color alignment of the network prediction to the ground truth.

Team Name PSNR↑ SSIM↑ LPIPS↓
MegSR 45.45 0.979 0.032
Noah TerminalVision SR B 45.26 0.978 0.026
Noah TerminalVision SR A 45.36 0.979 0.035
TTI 44.16 0.974 0.040
MLP BSR 41.40 0.952 0.101
BREIL 29.93 0.797 0.141

5.2.3.4 The NTIRE2021 Burst SR Challenge

We participated in the NTIRE2021 Burst SR Challenges, namely Synthetic (Track-1)

and Real-world (Track-2). The goal of the challenge is to super-resolve (×4) images from

real-world burst LR input. We train firstly the proposed network on the synthetic Burst

SR dataset provided in the Track-1 to jointly learn the denosining, demosaicking, and

super-resolution, and after that apply the pretrained synthetic data model on the real-

world BurstSR data provided in the Track-2. Table 5.4 and 5.5 provide the preliminary

×4 SR results for track-1 and track-2 (testset) of our method (MLP BSR) with other

participants.

5.2.3.5 Visual comparison on the Real-World LR Bursts

Regarding the visual quality, Fig. 5.6 shows the qualitative comparison of our method

with other Burst SR methods at the ×4 upscaling factor on BurstSR test-set. Our

method has still produced satisfying results on the real LR bursts without fine-tuning

109

HR GT Input LR Burst DeepBurstSR BSRICNN (Ours)

Figure 5.6: SR visual comparison of the proposed BSRICNN method with the existing
Burst SR methods on the real-world BurstSR testset at the ×4 upscaling factor. All
images are converted from the raw sensor space to sRGB for visualization purpose.

cost, while the DeepBurstSR [10] fine-tune the model on the real LR burst dataset to the

get the SR results which require extra training cost with more GPU hours consumption.

5.2.3.6 Ablation Study

For our ablation study, we compare the impact of different numbers of input burst

frames and iterative steps for the proposed Burst SR method. Table 5.6 shows the

average PSNR/SSIM/LPIPS score after iterative steps (𝐾) and LR bursts size on the

synthetic burst testset at ×4 upscaling factor. Our model is trained using a fixed number

of iterative steps of 10 and burst size of 14. Our model achieves better performance

(PSNR/SSIM/LPIPS) with the larger burst size and the number of iterative steps. It

110

Table 5.6: Impact of different number of input burst frames (𝐵) and number of iterative
steps (𝐾). The quantitative results are reported on the synthetic burst testset. The
arrows indicate if high ↑ or low ↓ values are desired. The best performance is shown in
red.

Burst Size
(𝐵)

iterative steps (𝐾 = 5) iterative steps (𝐾 = 10)
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

2 34.19 0.8790 0.2498 34.12 0.8777 0.2480
4 34.69 0.8852 0.2359 34.66 0.8842 0.2317
8 35.09 0.8887 0.2277 34.99 0.8876 0.2217
14 35.12 0.8896 0.2255 35.30 0.8903 0.2165
16 35.21 0.8907 0.2232 35.30 0.8909 0.2168
32 35.23 0.8902 0.2236 35.41 0.8909 0.2159

shows the generalization ability of our method to other input bursts and the effective

utilization of the information from multiple LR frames in order to improve Burst SR

performance.

5.2.4 Discussion and Limitations

Our proposed Algorithm 2 has a close connection with other proximal algorithms such

as ISTA [19] and FISTA [5] that require the exact form of the employed regularizer such

as Total Variation / Hessian Schatten-norm [65]. However, in our case, the regularizer

is learned implicitly from the training data (i.e., non-convex form) and therefore we do

not have any assumptions regarding the explicit form of the regularizer. Our proposed

algorithm acts as an inexact form of the proximal gradient descent step.

HR GT SR output

Figure 5.7: Imprecise warp matrix. All images are converted from raw sensor space to
sRGB for visualization purpose.

111

Since we are estimating the warping matrix by using the ECC method to align

the observations to the reference frame, sometimes its estimation is imprecise that will

introduce undesirable artifacts to the final SR result. In Fig. 5.7, we show the failure

case of our method, when we use identity matrix instead of the correct matrix estimate

by the ECC.

112

6
Conclusion

6.1 Broader Impact

Image super-resolution has a broad potential impact through a wide range of applica-

tions. These include satellite imaging, medical imaging, medicine, telescope imaging in

astronomy, portable device imaging, graphics, forensics, security and surveillance imag-

ing. In the last decade, most of the photos have been taken using built-in smartphone

cameras, where the resulting low-quality images is inevitable and undesirable due to

their physical limitations. Since the mobile cameras are small and versatile due to their

compact camera sensors, there are several key limitations [20] of the mobile phone cam-

era as compared to a DSLR i.e., small sensor size, limited aperture, noise (i.e., photon

shot and read noise) and limited dynamic range, limited depth of field due to fixed

aperture, limited zoom and color sub-sampling. As a result, the image quality is not

comparable with that of DSLR cameras. Therefore, the focus is shifted towards software

solutions of the cameras to mitigate their limitations.

113

6.2 Future Works

In the recent works [102, 83, 81, 84, 77, 109, 118], we proposed deep learning based SR

methods for effective and efficient SISR. For the burst SR, our proposed SR method has

participated to the recent CVPR-2021 challenge [9]. Recently, numerous works have

been addressed towards the task of effective and efficient SISR methods, while the ex-

plorable and burst SR tasks have received little attention due to the challenging nature

of the inverse problem. The existing SISR methods are usually not optimized for com-

mon smartphone AI hardware [43] due to the limited memory and storage constraints.

The existing SISR methods do not allow to generate the infinitely many plausible HR

images [3] vary in their textures and fine details that are consistent with the given

observed LR image.

In the future work, we are interested to explore the off-the-shelf deep learning com-

ponents such as Normalizing Flows with invertible neural network (INN) [53], energy-

based models (EBM) [59], vision transformers [50], GAN specially score-based [94],

transformer-based [41], and StyleGAN [48], and self-supervised learning approaches to

develop SR methods for the existing SR problems, in particular the explorable SR task.

6.3 Conclusion

We have witnessed many advances in the field of image super-resolution over the past

few years. The first thing we have explored the effective and efficient SR approaches. We

proposed the deep CNN model that follows the realistic degradation process. After that,

we designed the iterative SISR scheme by following the powerful image regularization

and large-scale optimization techniques with the residual learning approach. Then, we

proposed the efficient SISR approach by cascading the residual denoiser networks.

We then discussed the real-world SR problems. We proposed the deep GAN-based

114

SR approach to first generate realistic LR/HR pairs and then design the SR network

that follows the image observation (physical) model by training on the generated LR/HR

data. Next, we proposed the deep end-to-end GAN-based SR method by translating

the LR to HR domain and vice-versa. Then, we incorporated the learnable adaptive

sinusoidal non-linearities into the LR and SR learning process to further enhance the

real-world SR performance.

Finally, we explored the multi-image SR tasks. In this regard, we proposed the

deep StarGAN approach to super-resolve the LR images from the multiple different

LR degradation domains. Next, we proposed the deep iterative burst SR network that

follows the forward (physical) observation model of burst photography pipeline.

Despite the recent rapid progress attained in the image SR, there are still many

open challenges due to the hard nature of the inverse problems. The important stream

of research could be to generate diverse SR samples consistent with the input LR image

by learning the SR space. Another important research dimension is the multi-frame SR

with the increasing popularity of burst photography. Moreover, the other important

aspect of the image SR is to make the existing deep networks to optimize real-time

performance on mobile or edge NPUs.

115

Bibliography

[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-

resolution: Dataset and study. In CVPRW, pages 126–135, 2017.

[2] Pablo Andres Arbelaez, Michael Maire, Charless C. Fowlkes, and Jitendra Malik.

Contour detection and hierarchical image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 33:898–916, 2011.

[3] Yuval Bahat and Tomer Michaeli. Explorable super resolution. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

2716–2725, 2020.

[4] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm

for linear inverse problems. SIAM journal on imaging sciences, pages 183–202,

2009.

[5] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm

for linear inverse problems. SIAM journal on imaging sciences, pages 183–202,

2009.

[6] Aleksandr Belov, Joel Stadelmann, Sergey Kastryulin, and Dmitry V Dylov. To-

wards ultrafast mri via extreme k-space undersampling and superresolution. arXiv

preprint arXiv:2103.02940, 2021.

[7] Mario Bertero and Patrizia Boccacci. Introduction to inverse problems in imaging.

CRC press, 1998.

116

[8] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-

Morel. Low-complexity single-image super-resolution based on nonnegative neigh-

bor embedding. BMVC, 2012.

[9] Goutam Bhat, Martin Danelljan, Radu Timofte, et al. NTIRE 2021 challenge on

burst super-resolution: Methods and results. In CVPRW, 2021.

[10] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Deep burst

super-resolution. arXiv preprint arXiv:2101.10997, 2021.

[11] Giacomo Boracchi and Alessandro Foi. Modeling the performance of image restora-

tion from motion blur. IEEE Transactions on Image Processing, 21:3502–3517,

2012.

[12] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Dis-

tributed optimization and statistical learning via the alternating direction method

of multipliers. Found. Trends Mach. Learn., 3(1):1–122, Jan. 2011.

[13] Jose Caballero, Christian Ledig, Andrew Aitken, Alejandro Acosta, Johannes

Totz, Zehan Wang, and Wenzhe Shi. Real-time video super-resolution with spatio-

temporal networks and motion compensation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages 4778–4787,

2017.

[14] Jiezhang Cao, Yawei Li, Kai Zhang, and Luc Van Gool. Video super-resolution

transformer. arXiv preprint arXiv:2106.06847, 2021.

[15] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for

convex problems with applications to imaging. Journal of Mathematical Imaging

and Vision, 40(1):120–145, May 2011.

[16] Kelvin CK Chan, Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. Ba-

sicvsr: The search for essential components in video super-resolution and beyond.

117

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 4947–4956, 2021.

[17] Yunjin Chen and Thomas Pock. Trainable nonlinear reaction diffusion: A flexible

framework for fast and effective image restoration. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 39:1256–1272, 2017.

[18] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and

Jaegul Choo. StarGAN: Unified generative adversarial networks for multi-domain

image-to-image translation. In CVPR, pages 8789–8797, 2018.

[19] Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding

algorithm for linear inverse problems with a sparsity constraint. Communications

on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of

Mathematical Sciences, pages 1413–1457, 2004.

[20] Mauricio Delbracio, Damien Kelly, Michael S Brown, and Peyman Milanfar. Mo-

bile computational photography: A tour. arXiv preprint arXiv:2102.09000, 2021.

[21] Michel Deudon, Alfredo Kalaitzis, Israel Goytom, Md Rifat Arefin, Zhichao Lin,

Kris Sankaran, Vincent Michalski, Samira E Kahou, Julien Cornebise, and Yoshua

Bengio. Highres-net: Recursive fusion for multi-frame super-resolution of satellite

imagery. arXiv preprint arXiv:2002.06460, 2020.

[22] Bernhard Dieber, Christian Micheloni, and Bernhard Rinner. Resource-aware

coverage and task assignment in visual sensor networks. IEEE Trans. Circuits

Syst. Video Techn., 21:1424–1437, 10 2011.

[23] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep

convolutional network for image super-resolution. In ECCV, 2014.

[24] Weisheng Dong, Lei Zhang, Guangming Shi, and Xin Li. Nonlocally centralized

sparse representation for image restoration. IEEE Transactions on Image Pro-

cessing, 22:1620–1630, 2013.

118

[25] Netalee Efrat, Daniel Glasner, Alexander Apartsin, Boaz Nadler, and Anat Levin.

Accurate blur models vs. image priors in single image super-resolution. 2013 IEEE

International Conference on Computer Vision, pages 2832–2839, 2013.

[26] Georgios D Evangelidis and Emmanouil Z Psarakis. Parametric image alignment

using enhanced correlation coefficient maximization. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence (TPAMI), pages 1858–1865, 2008.

[27] Ruicheng Feng, Jinjin Gu, Yu Qiao, and Chao Dong. Suppressing model overfitting

for image super-resolution networks. IEEE Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW), pages 0–0, 2019.

[28] Mário Figueiredo, José M Bioucas-Dias, and Robert D Nowak. Majorization–

minimization algorithms for wavelet-based image restoration. IEEE Transactions

on Image processing, 16(12):2980–2991, 2007.

[29] Mário AT Figueiredo, José M Bioucas-Dias, and Robert D Nowak. Majorization–

Minimization algorithms for wavelet-based image restoration. IEEE Transactions

on Image processing, pages 2980–2991, 2007.

[30] G. L. Foresti, C. Micheloni, L. Snidaro, and C. Marchiol. Face detection for visual

surveillance. In 12th International Conference on Image Analysis and Processing,

2003.Proceedings., pages 115–120, Sep. 2003.

[31] Manuel Fritsche, Shuhang Gu, and Radu Timofte. Frequency separation for real-

world super-resolution. ICCV workshops, 2019.

[32] Jorge Garćıa, Niki Martinel, Alfredo Gardel, Ignacio Bravo, Gian Luca Foresti,

and Christian Micheloni. Modeling feature distances by orientation driven classi-

fiers for person re-identification. J. Vis. Comun. Image Represent., 38(C):115–129,

July 2016.

[33] D. Geman and Chengda Yang. Nonlinear image recovery with half-quadratic

regularization. IEEE Transactions on Image Processing, 4(7):932–946, July 1995.

119

[34] Michaël Gharbi, Gaurav Chaurasia, Sylvain Paris, and Frédo Durand. Deep joint

demosaicking and denoising. ACM Transactions on Graphics (TOG), pages 1–12,

2016.

[35] T. Goldstein and S. Osher. The split bregman method for l1-regularized problems.

SIAM Journal on Imaging Sciences, 2(2):323–343, 2009.

[36] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

In Advances in neural information processing systems (NIPS), pages 2672–2680,

2014.

[37] Ke Han, Yan Huang, Zerui Chen, Liang Wang, and Tieniu Tan. Prediction and

recovery for adaptive low-resolution person re-identification. In European Confer-

ence on Computer Vision (ECCV), pages 193–209, 2020.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet classification. 2015

IEEE International Conference on Computer Vision (ICCV), pages 1026–1034,

2015.

[39] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-

resolution from transformed self-exemplars. 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 5197–5206, 2015.

[40] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-

resolution from transformed self-exemplars. In CVPR, pages 5197–5206, 2015.

[41] Drew A Hudson and C Lawrence Zitnick. Generative adversarial transformers.

arXiv preprint arXiv:2103.01209, 2021.

[42] David R Hunter and Kenneth Lange. A tutorial on MM algorithms. The American

Statistician, pages 30–37, 2004.

120

[43] Andrey Ignatov, Radu Timofte, Maurizio Denna, Abdel Younes, Andrew Lek,

Mustafa Ayazoglu, Jie Liu, Zongcai Du, Jiaming Guo, Xueyi Zhou, et al. Real-

time quantized image super-resolution on mobile npus, mobile ai 2021 challenge:

Report. CVPRW, 2021.

[44] Andrey Ignatov, Luc Van Gool, and Radu Timofte. Replacing mobile camera isp

with a single deep learning model. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition Workshops, pages 536–537, 2020.

[45] Takashi Isobe, Xu Jia, Shuhang Gu, Songjiang Li, Shengjin Wang, and Qi Tian.

Video super-resolution with recurrent structure-detail network. In European Con-

ference on Computer Vision (ECCV), pages 645–660, 2020.

[46] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks. CVPR, pages 1125–1134, 2017.

[47] Tao Jiang, Xiaojun Wu, Zhang Yu, Wuyang Shui, Gang Lu, Shiqi Guo, Hao

Fei, and Qieshi Zhang. Recursive inception network for super-resolution. IEEE

International Conference on Pattern Recognition (ICPR), pages 2759–2764, 2018.

[48] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and

Timo Aila. Analyzing and improving the image quality of stylegan. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 8110–8119, 2020.

[49] Michael Kellman, Kevin Zhang, Jon Tamir, Emrah Bostan, Michael Lustig, and

Laura Waller. Memory-efficient learning for large-scale computational imaging.

arXiv preprint arXiv:2003.05551, 2020.

[50] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fa-

had Shahbaz Khan, and Mubarak Shah. Transformers in vision: A survey. arXiv

preprint arXiv:2101.01169, 2021.

121

[51] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution

using very deep convolutional networks. 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1646–1654, 2016.

[52] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

CoRR, abs/1412.6980, 2015.

[53] Ivan Kobyzev, Simon Prince, and Marcus Brubaker. Normalizing flows: An intro-

duction and review of current methods. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2020.

[54] Filippos Kokkinos and Stamatios Lefkimmiatis. Deep image demosaicking using a

cascade of convolutional residual denoising networks. IEEE European Conference

on Computer Vision (ECCV), pages 303–319, 2018.

[55] Filippos Kokkinos and Stamatios Lefkimmiatis. Iterative joint image demosaicking

and denoising using a residual denoising network. IEEE Transactions on Image

Processing, pages 4177–4188, 2019.

[56] Filippos Kokkinos and Stamatios Lefkimmiatis. Iterative joint image demosaicking

and denoising using a residual denoising network. IEEE Transactions on Image

Processing, pages 4177–4188, 2019.

[57] Filippos Kokkinos and Stamatis Lefkimmiatis. Iterative residual cnns for burst

photography applications. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 5929–5938, 2019.

[58] Dilip Krishnan and Rob Fergus. Fast image deconvolution using hyper-laplacian

priors. NIPS, 2009.

[59] Yann LeCun, Sumit Chopra, Raia Hadsell, Aurelio Ranzato, and Fu Jie Huang.

A tutorial on energy-based learning. 2006.

[60] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunning-

ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan

122

Wang, et al. Photo-realistic single image super-resolution using a generative ad-

versarial network. CVPR, pages 4681–4690, 2017.

[61] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunning-

ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan

Wang, et al. Photo-realistic single image super-resolution using a generative ad-

versarial network. In Proceedings of the IEEE conference on computer vision and

pattern recognition (CVPR), pages 4681–4690, 2017.

[62] Stamatios Lefkimmiatis. Non-local color image denoising with convolutional neu-

ral networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 5882–5891, 2017.

[63] Stamatios Lefkimmiatis. Universal denoising networks: A novel cnn architecture

for image denoising. 2018 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 3204–3213, 2018.

[64] Stamatios Lefkimmiatis. Universal denoising networks: A novel cnn architecture

for image denoising. CVPR, pages 3204–3213, 2018.

[65] Stamatios Lefkimmiatis, Aurélien Bourquard, and Michael Unser. Hessian-based

norm regularization for image restoration with biomedical applications. IEEE

Transactions on Image Processing, pages 983–995, 2011.

[66] Chuan Li and Michael Wand. Precomputed real-time texture synthesis with

markovian generative adversarial networks. ECCV, pages 702–716, 2016.

[67] Huan Li and Zhouchen Lin. Accelerated proximal gradient methods for nonconvex

programming. Advances in neural information processing systems (NIPS), pages

379–387, 2015.

[68] Yaoman Li, Jinglei Yang, Zheng Liu, Xiaomin Yang, Gwanggil Jeon, and Wei Wu.

Feedback network for image super-resolution. CVPR, 2019.

123

[69] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. En-

hanced deep residual networks for single image super-resolution. CVPRW, pages

1132–1140, 2017.

[70] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. En-

hanced deep residual networks for single image super-resolution. 2017 IEEE Con-

ference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages

1132–1140, 2017.

[71] Qihang Lin and Lin Xiao. An adaptive accelerated proximal gradient method and

its homotopy continuation for sparse optimization. International Conference on

Machine Learning (ICML), pages 73–81, 2014.

[72] Xinhao Liu, Masayuki Tanaka, and Masatoshi Okutomi. Single-image noise level

estimation for blind denoising. IEEE transactions on image processing, pages

5226–5237, 2013.

[73] Y. Liu, Y. Wang, N. Li, X. Cheng, Y. Zhang, Y. Huang, and G. Lu. An attention-

based approach for single image super resolution. 24th IEEE International Con-

ference on Pattern Recognition (ICPR), pages 2777–2784, 2018.

[74] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu.

Video swin transformer. arXiv preprint arXiv:2106.13230, 2021.

[75] Andreas Lugmayr, Martin Danelljan, and Radu Timofte. Unsupervised learning

for real-world super-resolution. ICCV workshops, 2019.

[76] Andreas Lugmayr, Martin Danelljan, Radu Timofte, et al. Aim 2019 challenge

on real-world image super-resolution: Methods and results. In ICCV Workshops,

2019.

[77] Andreas Lugmayr, Martin Danelljan, Radu Timofte, et al. Ntire 2020 challenge

on real-world image super-resolution: Methods and results. CVPR Workshops,

2020.

124

[78] David Martin, Charless Fowlkes, Doron Tal, Jitendra Malik, et al. A database of

human segmented natural images and its application to evaluating segmentation

algorithms and measuring ecological statistics. In ICCV, 2001.

[79] Emmanuel Moebel, Antonio Martinez-Sanchez, Lorenz Lamm, Ricardo Righetto,

Wojciech Wietrzynski, Sahradha Albert, Damien Lariviere, Eric Fourmentin, Ste-

fan Pfeffer, Julio Ortiz, et al. Deep learning improves macromolecule identification

in 3d cellular cryo-electron tomograms. bioRxiv, pages 2020–04, 2021.

[80] Rao Muhammad Umer, Gian Luca Foresti, and Christian Micheloni. Deep gener-

ative adversarial residual convolutional networks for real-world super-resolution.

In The IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, June 2020.

[81] Rao Muhammad Umer, Gian Luca Foresti, and Christian Micheloni. Deep gener-

ative adversarial residual convolutional networks for real-world super-resolution.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 438–439, 2020.

[82] Rao Muhammad Umer, Gian Luca Foresti, and Christian Micheloni. Deep gener-

ative adversarial residual convolutional networks for real-world super-resolution.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 438–439, 2020.

[83] Rao Muhammad Umer, Gian Luca Foresti, and Christian Micheloni. Deep iter-

ative residual convolutional network for single image super-resolution. In ICPR,

January 2021.

[84] Rao Muhammad Umer and Christian Micheloni. Deep cyclic generative adversar-

ial residual convolutional networks for real image super-resolution. In ECCVW,

August 2020.

125

[85] Neal Parikh and Stephen Boyd. Proximal algorithms. Found. Trends Optim.,

1(3):127–239, Jan. 2014.

[86] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary Devito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

Automatic differentiation in pytorch. Advances in Neural Information Processing

Systems (NIPS), pages 1–4, 2017.

[87] Valeriya Pronina, Filippos Kokkinos, Dmitry V Dylov, and Stamatios Lefkim-

miatis. Microscopy image restoration with deep wiener-kolmogorov filters. In

European Conference on Computer Vision (ECCV), pages 185–201, 2020.

[88] Asha Rani, Gian Luca Foresti, and Christian Micheloni. A neural tree for classifi-

cation using convex objective function. Pattern Recogn. Lett., 68(P1):41–47, Dec.

2015.

[89] Mehdi SM Sajjadi, Raviteja Vemulapalli, and Matthew Brown. Frame-recurrent

video super-resolution. In Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pages 6626–6634, 2018.

[90] J. C. SanMiguel, C. Micheloni, K. Shoop, G. Foresti, and A. Cavallaro. Self-

reconfigurable smart camera networks. Computer, 47(05):67–73, May 2014.

[91] Uwe Schmidt and Stefan Roth. Shrinkage fields for effective image restoration.

2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 2774–

2781, 2014.

[92] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz, Andrew P. Aitken,

Rob Bishop, Daniel Rueckert, and Zehan Wang. Real-time single image and video

super-resolution using an efficient sub-pixel convolutional neural network. 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

1874–1883, 2016.

126

[93] Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell,

and Gordon Wetzstein. Implicit neural representations with periodic activation

functions. In Proc. NeurIPS, 2020.

[94] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Ste-

fano Ermon, and Ben Poole. Score-based generative modeling through stochastic

differential equations. arXiv preprint arXiv:2011.13456, 2020.

[95] Xin Tao, Hongyun Gao, Renjie Liao, Jue Wang, and Jiaya Jia. Detail-revealing

deep video super-resolution. In Proceedings of the IEEE International Conference

on Computer Vision (CVPR), pages 4472–4480, 2017.

[96] Yapeng Tian, Yulun Zhang, Yun Fu, and Chenliang Xu. Tdan: Temporally-

deformable alignment network for video super-resolution. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pages 3360–3369, 2020.

[97] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei

Zhang. Ntire 2017 challenge on single image super-resolution: Methods and re-

sults. In CVPRW, pages 114–125, 2017.

[98] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei

Zhang. Ntire 2017 challenge on single image super-resolution: Methods and re-

sults. In Proceedings of the IEEE conference on computer vision and pattern

recognition workshops, pages 114–125, 2017.

[99] Radu Timofte, Rasmus Rothe, and Luc Van Gool. Seven ways to improve example-

based single image super resolution. In CVPR, pages 1865–1873, 2016.

[100] Radu Timofte, Vincent De Smet, and Luc Van Gool. A+: Adjusted anchored

neighborhood regression for fast super-resolution. In ACCV, 2014.

[101] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In

Proceedings of the IEEE conference on computer vision and pattern recognition

127

(CVPR), pages 9446–9454, 2018.

[102] Rao Muhammad Umer, Gian Luca Foresti, and Christian Micheloni. Deep super-

resolution network for single image super-resolution with realistic degradations.

In ICDSC, pages 21:1–21:7, September 2019.

[103] Rao Muhammad Umer, Asad Munir, and Christian Micheloni. A deep residual

star generative adversarial network for multi-domain image super-resolution. In

6th International Conference on Smart and Sustainable Technologies (SpliTech),

2021.

[104] Michael Unser. A representer theorem for deep neural networks. Journal of Ma-

chine Learning Research, pages 1–30, 2019.

[105] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and Chen Change Loy. Edvr:

Video restoration with enhanced deformable convolutional networks. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, 2019.

[106] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao,

and Chen Change Loy. ESRGAN: Enhanced super-resolution generative adver-

sarial networks. ECCV, 2018.

[107] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image qual-

ity assessment: from error visibility to structural similarity. IEEE Transactions

on Image Processing, 13:600–612, 2004.

[108] Pengxu Wei, Hannan Lu, Radu Timofte, et al. Aim 2020 challenge on real image

super-resolution: Methods and results. 2020.

[109] Pengxu Wei, Hannan Lu, Radu Timofte, Liang Lin, Wangmeng Zuo, et al. AIM

2020 challenge on real image super-resolution: Methods and results. In ECCVW,

August 2020.

128

[110] Norbert Wiener. Extrapolation, Interpolation, and Smoothing of Stationary Time

Series. The MIT Press, 1964.

[111] Bartlomiej Wronski, Ignacio Garcia-Dorado, Manfred Ernst, Damien Kelly,

Michael Krainin, Chia-Kai Liang, Marc Levoy, and Peyman Milanfar. Hand-

held multi-frame super-resolution. ACM Transactions on Graphics (TOG), pages

1–18, 2019.

[112] Jaejun Yoo, Namhyuk Ahn, and Kyung-Ah Sohn. Rethinking data augmenta-

tion for image super-resolution: A comprehensive analysis and a new strategy.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 8375–8384, 2020.

[113] Yuan Yuan, Siyuan Liu, Jiawei Zhang, Yongbing Zhang, Chao Dong, and Liang

Lin. Unsupervised image super-resolution using cycle-in-cycle generative adver-

sarial networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops, pages 701–710, 2018.

[114] Kun Zeng, Hong Zheng, Yanyun Qu, Xiaobo Qu, Lijun Bao, and Zhong Chen. Sin-

gle image super-resolution with learning iteratively non-linear mapping between

low-and high-resolution sparse representations. IEEE International Conference on

Pattern Recognition (ICPR), pages 507–512, 2018.

[115] Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using

sparse-representations. In International conference on curves and surfaces, pages

711–730, 2010.

[116] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. Mixup:

Beyond empirical risk minimization. International Conference on Learning Rep-

resentations (ICLR), 2018.

[117] Kai Zhang, Martin Danelljan, Yawei Li, Radu Timofte, et al. AIM 2020 challenge

on efficient super-resolution: Methods and results. In European Conference on

129

Computer Vision Workshops, 2020.

[118] Kai Zhang, Martin Danelljan, Yawei Li, Radu Timofte, Jie Liu, Jie Tang, Gang-

shan Wu, Yu Zhu, Xiangyu He, Wenjie Xu, et al. AIM 2020 challenge on efficient

super-resolution: Methods and results. In ECCVW, pages 5–40, 2020.

[119] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond

a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE

Transactions on Image Processing, 26:3142–3155, 2017.

[120] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. Learning deep cnn

denoiser prior for image restoration. 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 2808–2817, 2017.

[121] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. Learning deep CNN

denoiser prior for image restoration. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2808–2817, 2017.

[122] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Learning a single convolutional super-

resolution network for multiple degradations. 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 3262–3271, 2018.

[123] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Deep plug-and-play super-resolution

for arbitrary blur kernels. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1671–1681, 2019.

[124] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.

The unreasonable effectiveness of deep features as a perceptual metric. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 586–

595, 2018.

[125] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions for image

restoration with neural networks. IEEE Transactions on computational imaging,

pages 47–57, 2016.

130

[126] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-

to-image translation using cycle-consistent adversarial networks. In Proceedings

of the IEEE international conference on computer vision, pages 2223–2232, 2017.

131

