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Abstract. Set constraints have been introduced in declarative pro-
gramming languages in the Nineties as a consequence of a broader re-
search on programming with sets and on computable set theory. General
Purpose Graphics Processing Units (GPUs), originally developed for
graphical purposes (e.g., for high definition video games), emerged re-
cently as a powerful and cheap parallel architecture, widely available in
most desktops and laptops computers. This paper presents a constraint
solver on set constraints and its parallel implementation on GPUs.
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1. Introduction

There is no doubt that the notations and the concepts underlying set theory
provide powerful instruments to address challenges in computational modeling
and resolution of complex problems. Set notations are common in most mod-
eling languages—e.g., ranging from the “old” Z language [2, 35] to the more
modern constraint-based modeling languages like Minizinc [37]. The concepts
of sets are the foundation of the formal as well as intuitive semantics of many
programming languages—e.g., the operational semantics of Answer Set Pro-
gramming [29, 30] is best intuitively described in terms of constraints over sets
of atoms. This raises the natural question of how one could directly compute
with sets.

During the Eighties, and beyond, we witnessed the development and growth
of a community of researchers, initially originating from the Courant Institute
at New York University, focused on the exploration of theoretical and practi-
cal aspects of computable set theory [24]. These theoretical results provided

1The research pursued in this paper is partially supported by Indam GNCS grants and
by Uniud PRID ENCASE.
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the foundations of a wealth of research efforts, many exploring the integra-
tion of different classes of sets as native and first-class citizens of programming
languages. In the area of imperative programming languages, the work on lan-
guages like SETL [33], and more recently JSetL [31], explored the benefits of
native set data structures to support modeling and embed non-determinism in
the imperative computation. Grounded in seminal work in the field of deduc-
tive databases (e.g., [1, 3]), computable set theory found a natural avenue of
expression within the logic programming paradigm. Initially, these concepts
inspired natural extensions of traditional Horn clause logic, e.g., as in the LPS
proposal [28], the desiderata expressed in [34], and the complex logic language
proposed in [27].

A common thread in these seminal efforts is the work of Eugenio G. Omodeo.
Omodeo represents one of those rare researchers who has been able to link the
theoretical foundations of computable set theory, as in [5], to the practical
aspects of sets in programming languages, as in [14]. His foundational work
represents the inspiration of generations of logic programming researchers and
offers the building blocks for the concepts presented in this paper.

Researchers working on embedding computational aspects of set theory in
programming languages, especially in logic programming, soon realized that
the inherent non-determinism of set operations is better accommodated by a
constraint-based framework, leading to different constraint logic programming
frameworks based on sets [14, 25, 18]. Resolution of constraints over sets leads
to complex computational challenges, as explored in the studies on set unifi-
cation [23] and disunification [17], and have been parametrically extended to
multisets and other data structures [20, 19]. Research in constraint solving
over sets can be, in broad strokes, separated along two complementary strands.
The efforts described in [14, 15, 13, 18, 21, 22, 16] offer very general approaches
to set constraints, enabling complexities such as nested sets, partially defined
sets, intensional set constructors, and even hypersets. These approaches pro-
vide very general modeling instruments, at the price of high computational
costs. Recent efforts, such as those in [8, 7], have taken advantage of imper-
ative programming features and a wealth of optimizations to allow the use
of such general constructs in solving practical challenges (e.g., verification of
security properties [6]).

The complementary direction is exemplified by the work on set constraints
by Gervet [25, 32], which restricts the focus on simpler forms of sets (e.g.,
finite, non-nested) with the advantage of enabling more efficient forms of prop-
agation and resolution. In particular, the work by Gervet explores modeling
of problems using intervals of sets, applying propagation on the corresponding
⊆-lattice. The latter approach provides effective modeling capabilities coupled
with efficient computational mechanisms.

Minizinc has emerged over the years as one of the most popular modeling
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languages in the area of constraint programming. It is the default language
adopted by the constraint programming community, where it is used in the
international constraint solvers challenge organized yearly since 2008 [36]. A
Minizinc program is compiled into a flat (unfolded) version called Flatzinc
that the various solvers participating to the competition should be capable
of interpreting. Flatzinc is a sort of Assembly for constraint programming.
Among the constraint domains Minizinc is capable of dealing with there are
finite-domains and sets in the style proposed by Gervet [25].

The overarching goal of this paper is to advance the state of the art in effi-
cient resolution of the set constraints found in Minizinc. We aim to demonstrate
the potential of parallelism to enhance efficiency and scalability of set constraint
resolution. In particular, we propose to explore the use of General Purpose
Graphics Processing Units (GPUs) in managing Minizinc set constraints—i.e.,
finite sets of integers, ranging over clearly defined ⊆-lattices. GPUs support
fine grained parallelism, particularly suitable for the manipulation of regular
data structures (e.g., matrices). GPUs have been demonstrated to be effec-
tive in various relevant areas, such as constraint reasoning, logic programming,
and satisfiability (e.g., [4, 9, 11, 12, 10]). We illustrate how different forms
of propagation for the different set constraints of Minizinc can be mapped
to GPU computations; we provide experimental assessments of the parallel
performance realized in a prototype solver that is available for download at
http://clp.dimi.uniud.it/sw/.

2. The set interval calculus

The set interval calculus [25] deals with subsets of a domain set X. In this
paper, we focus on finite sets.

Let us consider the lattice D = (℘(X ),⊆). The lattice is bounded by the
least element ∅ and by the greatest element X. Given s, t ∈ D with s ⊆ t, the
set interval [s, t] is defined as [s, t] = {z ∈ D : s ⊆ z ∧ z ⊆ t}. 1 Let us observe
that [∅,X ] = D. Moreover, |[s, t]| = 2|t\s|.

A set C ⊆ D is convex if for every pair x, y ∈ C it holds that x∩ y ∈ C and
x∪y ∈ C. The closure on pairs of elements is sufficient to guarantee the closure
on any finite number of elements. Since we are dealing with finite sets only,
this implies that, if C is convex, for any set S ⊆ C it holds that

⋂
s∈S s ∈ C

and
⋃

s∈S s ∈ C.
In Figure 1 we give examples of set intervals and in particular on how

memberhip or not membership of a single element can be used to split the set
intervals into two set intervals.

Lemma 2.1. Let X be a finite set and m ⊆M ⊆ X. Then [m,M ] is convex.

1For simplicity, we denote with x ∈ D an element x ∈ ℘(X ), namely a subset of X .

http://clp.dimi.uniud.it/sw/
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{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

{1, 2}

{1} {2}

∅

{1, 2, 3}

{1, 3} {2, 3}

{3}

Figure 1: From left to right, the lattice D = (℘({1, 2, 3}),⊆) and its sublat-
tices consisting of the sets that do not contain the number 3 and of those
containing the number 3. They are all convex and, precisely, the set intervals
[∅, {1, 2, 3}], [∅, {1, 2}], [{3}, {1, 2, 3}].

Proof. Let us consider the set interval [m,M ]. Let s, t ∈ [m,M ]. By definition,
m ⊆ s ⊆M and m ⊆ t ⊆M , thus m ⊆ s∩ t ⊆M and m ⊆ s∪ t ⊆M , namely
they belong to the set interval, and this proves that it is convex.

Let us observe that there are convex sets that cannot be represented as set
intervals; for example, {∅, {1}, {2, 3}, {1, 2, 3}}.

Lemma 2.2. Let D = (℘(X ),⊆) be a lattice, and C ⊆ D be a convex subset
of D. Let x ∈ X . Then C1 = {s ∈ C : x ∈ s} and C2 = {s ∈ C : x /∈ s} are
convex.

Proof. If x belongs to all elements of C then C1 = C and C2 = ∅. Then C1 is
convex by hypothesis, and C2 is trivially convex. Assume this is not the case
and let s, t ∈ C1 and, hence, in C. Since C is convex s ∩ t ∈ C and s ∪ t ∈ C.
By definition of C1, x ∈ s and x ∈ t, thus x ∈ s ∩ t and x ∈ s ∪ t. Then s ∩ t
and s ∪ t are in C1.
If x belongs to no element of C then C1 = ∅ and C2 = C. Then C2 is convex
by hypothesis, and C1 is trivially convex. Assume this is not the case and let
s, t ∈ C2 and, hence, in C. Since C is convex s ∩ t ∈ C and s ∪ t ∈ C. By
definition of C2, x /∈ s and x /∈ t, thus x /∈ s ∩ t and x /∈ s ∪ t. Then s ∩ t and
s ∪ t are in C2.

Corollary 2.3. Given a set interval [m,M ] of D and x ∈ M \ m, then
{s ∈ [m,M ] : x ∈ s} = [m ∪ {x},M ] and {s ∈ [m,M ] : x /∈ s} = [m,M \ {x}].
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{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅A

{1, 2, 4}

{1, 2} {2, 4}

{2}

B

{1, 2, 3, 4}

{1, 2, 3} {1, 2, 4} {2, 3, 4}

{1, 2} {2, 3} {2, 4}

{2}A+B

{1, 2}

{1} {2}

∅

A ·B

{1, 3}

{1} {3}

∅

A−B

Figure 2: The set intervals A = [∅, {1, 2, 3}] and B = [{2}, {1, 2, 4}] and the
three operations applied to them

Definition 2.4. Let us define the following binary operations +, ·,− on set
intervals. Let A = [mA,MA] and B = [mB ,MB ] be two set intervals.

A+B = [mA,MA] + [mB ,MB ] = [mA ∪mB ,MA ∪MB ]
A ·B = [mA,MA] · [mB ,MB ] = [mA ∩mB ,MA ∩MB ]
A−B = [mA,MA]− [mB ,MB ] = [mA \MB ,MA \mB ]

In Figure 2 we give examples of the applications of the just defined oper-
ations on set intervals. The operations +, ·,− are not ∪,∩, \, but they will
be used later in the propagation of constraints involving the corresponding
operator.

Lemma 2.5. Let A = [mA,MA] and B = [mB ,MB ] two set intervals.

1. r ∈ A op B if and only if there are s ∈ A and t ∈ B such as r = s ôp t,
where op and ôp are +, ·,−, and ∪,∩, \, respectively.
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2. A ∩B = {s : s ∈ A ∧ s ∈ B} = [mA ∪mB ,MA ∩MB ].

3. A ∪B = {s : s ∈ A ∨ s ∈ B} is not guaranteed to be a set interval.

4. A \B = {s : s ∈ A ∧ s /∈ B} is not guaranteed to be a set interval.

Proof. 1. op = +(←) Let s ∈ A and t ∈ B. Then mA ⊆ s ⊆MA and mB ⊆
t ⊆ MB . By monotonicity, it holds that mA ∪mB ⊆ s ∪ t ⊆ MA ∪MB ,
namely r = s ∪ t ∈ A+B.
(→) If r ∈ A + B then mA ∪ mB ⊆ r ⊆ MA ∪MB . Let s = r ∩MA

and t = r ∩MB . Observe that r = s ∪ t. Then mA ⊆ s ⊆ MA and
mB ⊆ t ⊆MB .

op = ·(←) Let s ∈ A and t ∈ B. Then mA ⊆ s ⊆MA and mB ⊆ t ⊆MB .
By monotonicity, it holds that mA ∩ mB ⊆ s ∩ t ⊆ MA ∩MB , namely
r = s ∩ t ∈ A ·B.
(→) If r ∈ A · B then mA ∩ mB ⊆ r ⊆ MA ∩MB . Let s = r ∩MA

and t = r ∩MB . Observe that r = s ∪ t. Then mA ⊆ s ⊆ MA and
mB ⊆ t ⊆MB .

op = −(←) Let s ∈ A and t ∈ B. Then mA ⊆ s ⊆ MA and mB ⊆ t ⊆
MB . Since t ⊆MB and mA ⊆ s, we have that

mA \MB ⊆ mA \ t ⊆ s \ t

Since mB ⊆ t and s ⊆MA, we have that

s \ t ⊆ s \mB ⊆MA \mB

and thus r = s \ t ∈ A−B.
(→) If r ∈ A−B then mA\MB ⊆ r ⊆MA\mB . Thus, r = (mA\MB)∪u
with u disjoint from mA \MB . Let us observe that, since r ⊆MA \mB ,
we have that u ⊆ MA and it is disjoint from mB . Let s = mA ∪ u and
t = MB \u. Then r = s\ t. Now, mA ⊆ s by definition, and, as observed,
s ⊆ MA, thus s ∈ A. As far as t is concerned, t ⊆ MB by definition.
Since u is disjoint from mB then MB \ u ⊇ mB , thus t ∈ B.

2. If s ∈ A and s ∈ B then mA ⊆ s ⊆ MA and mB ⊆ s ⊆ MB . Thus
mA ∩mB ⊆ s ⊆MA ∩MB .

3. Consider A = [{1}, {1}] and B = [{2}, {2}]. A ∪B = {{1}, {2}} which is
not a set interval.

4. Consider A = [∅, {1, 2}] and B = [{1}, {1}]. A \ B = {∅, {2}, {1, 2}}
which is not a set interval.
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3. Syntax

In this section, we review some specific fragments of the syntax of the Minizinc
constraint programming language; in particular, we will focus on two basic
sorts: int and set.

3.1. The sort int

Constants of sort int are integer numbers in Z. A variable X of sort int is
defined as a finite domain variable ranging on a domain DX . DX is typically
initially expressed as an interval x..y with x, y ∈ Z and x ≤ y. The domain can
can also be defined in an extensional manner by enumerating its elements; for
example, the statement

var {1, 2, 5} : X;
describes a variableX whose domain is {1, 2, 5}. Variables and constants of sort
int can be used to build arithmetic expressions using the common arithmetic
operators +,−, ∗, /, mod.

Given two arithmetic expressions ℓ and r, we can define primitive con-
straints of the form ℓ op r. Predicate symbols that can be used as op are
=, <,≤. Primitive constraints can be combined with Boolean operators to
build complex constraints on finite domains. Their negation can be expressed
in general as not (ℓ op r); however, ℓ ! = r can be used as a syntactic sugar
for not (ℓ = r), r < ℓ for not (ℓ ≤ r), and r ≤ ℓ for not (ℓ < r).

The sort int is sufficiently expressive to allow us to encode NP complete
problems even using only conjunctions of primitive constraints and without
making use of arithmetic operators. For instance, the instance of the 3-coloring
problem on a graph with:

nodes: {1, 2, 3, 4, 5} and edges: {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5}}
can be expressed as

X1 ̸= X2 ∧X1 ̸= X3 ∧X1 ̸= X4 ∧X2 ̸= X5 ∧X3 ̸= X5

where all variables have domains {1, 2, 3}, representing the three colors.

3.2. The sort set

The sort set is populated by set terms. The empty set ∅ (denoted by {}) is
a set term. An extensional set {e1, . . . , en}, where each ei is an arithmetic
expression of sort int, is a set term as well. Without loss of generality, we
require ei ∈ Z or ei to be a variable of sort int. In concrete syntax, if the set is
an interval {x, x+1, x+2, . . . , y} it can be represented as x..y. An extensional
set without variables is said to be ground.

A variable S of sort set is assigned a finite domain domain DS that can
be defined in the same way as the domain for int variables, i.e., either as an
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interval x..y or as an enumeration of values. Its value ranges on the subsets of
DS . For instance, the variable defined as var set of {1, 2, 5} : S; is allowed to
assume the eight values ∅, {1}, {2}, {5}, {1, 2}, {1, 5}, {2, 5}, {1, 2, 5}. A variable
of sort set is a set term.

A predefined ordering on sets based on a lexicographic ordering of the sorted
set form is assumed in Minizinc; for example, {1, 2} is in sorted set form while
{2, 1} is not. However, it holds that {1, 2} = {2, 1}.

Set terms can be used to build set expressions using the common set oper-
ators ∪,∩, \; the concrete syntax used to represent these operators is union,
intersect, and diff.

Given two set expressions ℓ and r, primitive constraints over ℓ and r are
of the form ℓ op r. Predicate symbols that can be used as op are =,⊆—in
concrete syntax: =, subset. Moreover, a primitive constraint X ∈ S, where
X is of sort int and S is a set term, can be used.

Primitive constraints can be combined with Boolean operators to build
complex set constraints. Negation of primitive constraints can be expressed
using not (with the usual syntactic sugar != for the negation of equality). Let
us observe that the sort set is sufficiently expressive to encode NP-complete
problems using only conjunctions of equality constraints. For instance, the
following instance of SAT:

(X1 ∨ ¬X2 ∨X3 ∨ ¬X4) ∧ (X2 ∨ ¬X3 ∨X4) ∧ (¬X1 ∨ ¬X2)

can be encoded as (where Ni takes the role of ¬Xi)

{X1, N1} = {0, 1} ∧ {X2, N2} = {0, 1}∧
{X3, N3} = {0, 1} ∧ {X4, N4} = {0, 1}∧
{X1, N2, X3, X4, 0} = {0, 1} ∧ {X2, N3, X4, 0} = {0, 1} ∧ {N1, N2, 0} = {0, 1}

This approach was originally presented in [14] for the constraint logic program-
ming language {log}—where the encoding can be captured by a single equation
(thanks to the ability of nesting sets):

{{X1, N1}, {X2, N2}, {X3, N3}, {X4, N4},
{X1, N2, X3, X4, 0}, {X2, N3, X4, 0}, {N1, N2, 0}} = {{0, 1}}

Note that the nesting of sets is not allowed in Minizinc.
Additional operators that can be used in the set-based constaint language

include cardinality operators (card(s) for a set expression s) and operators
to determine the minimum/maximum element of a set expression (min(s) and
max(s)).

3.3. Set operations in Minizinc

Let us summarize the built-in operations for sets supported by Minizinc. Their
negation can be written by anticipating not.
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� set of x..y Returns the set {x, . . . , y}

� X in S Enforces that X ∈ S

� s subset t (or, equivalently, t superset s) States that s ⊆ t

� s = t Set equality, equivalent to s subset t and t subset s.

� s intersect t Returns the set s ∩ t

� s union t Returns the set s ∪ t

� s diff t Returns the set s \ t. Let us observe that if u is assigned to the
“universe” set, then u diff s defines s̄.

� s symdiff t Returns s△t = (s \ t) ∪ (t \ s)

� array intersect(v) Returns the intersection of the sets in array v (unary
intersection)

� array union(v) Returns the union of the sets in array v (unary union)

� card(s) Returns the cardinality of the set s.

� max(s)/min(s) Returns the maximum/minimum (value of the elements)
of the set s

4. Constraint solving

A constraint satisfaction problem (briefly, a CSP) is a triplet ⟨X ,D, C⟩ where
X is a set of variables, D is a set of domains for the variables. We denote as
DX ∈ D the domain of the variable X ∈ X . Moreover, C is a set of constraints
on subsets of variables of X and a constraint is a relation on Cartesian products
of subsets of D. In other words, a k-ary constraint c over variables X1, . . . , Xk

is a relation c ⊆ DX1 × · · · ×DXk
. For instance, a binary constraint c on the

variables X,Y is a relation c ⊆ DX × DY . All pairs (tuples) in c are said
to satisfy the constraint c. A solution to a CSP is an assignment σ : X −→
∪D∈DD such that for all X ∈ X it holds that σ(X) ∈ DX and all constraints
in C are satisfied by the assignment.

Constraint propagation is a fixpoint procedure that allows us to remove
elements from the domains of variables which cannot appear in any solution
of the CSP. In a typical constraint solving procedure, constraint propagation
alternates with non-deterministic variable assignments, until either a solution
is found (i.e., all the variables have been assigned a value) or one of the domain
becomes empty. The latter case indicates the unsatisfiability of the constraint.
Constraint propagation allows us to prune the search tree, reducing its overall
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size, and it is repeated at each node of the tree; thus, any speed-up in its
implementation immediately impacts the performance of the overall resolution
procedure.

In this paper, we focus on the possible performance improvements that
can be obtained by exploiting the Single Instruction Multiple Threads (SIMT)
parallelism supported by modern General-Purpose Graphical Processing Units
(GPUs) and exploited through the use of programming paradigms like CUDA.
In particular, we are interested in using CUDA to improve performance of
constraint propagation for set constraints.

Let us start with a quick review of some general definitions related to con-
straint propagation. Constraint propagation is primarily based on the no-
tions of arc or bounds consistency for binary constraints, and on generalized
arc/bounds consistency for global constraints dealing with more than two vari-
ables (organized as lists of variables). A binary constraint c on the variables
X and Y is said to be arc consistent if

� for every element x ∈ DX there is an element y ∈ DY such that (x, y) ∈ c,
and

� for every element y ∈ DY there is an element x ∈ DX such that (x, y) ∈ c

Namely, every element of one of the two domains is supported by at least one
element of the other domain. In order to obtain arc consistency, we need
to repeatedly remove elements in the domains which are not supported. In
the worst case, obtaining arc consistency of a single constraint requires time
O(|DX | · |DY |). The process of achieving arc consistency is repeated for each
constraint as part of a fixpoint procedure, until no further additional domain
reductions are possible.

If the domains DX and DY are large, an approximated version of the above
rule is often used, which focuses exclusively on the ‘bounds’ of the domains.
The notion of bound depend on the constraint system considered. In the case
of finite domains, the domains DX and DY could be approximated by the
intervals min(DX)..max(DX) and min(DY )..max(DY ). In the case of sets, by
the lower bound and the upper bound of the set interval. The fact that ⊆ does
not induce a total order makes this approximation, in a sense, weaker than the
one of finite domains.

A binary constraint c on the variablesX and Y wheremX = minDX ,MX =
maxDX ,mY = minDY ,MY = maxDY , is said to be bounds consistent if

1. (∃b ∈ mY ..MY ) ((mX , b) ∈ c) and (∃b ∈ mY ..MY ) ((MX , b) ∈ c),

2. (∃a ∈ mX ..MX) ((a,mY ) ∈ c) and (∃a ∈ mX ..MX) ((a,MY ) ∈ c).

Namely, the bounds of the two domains are supported by at least one point
within the bounds of the other domain.
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Example 4.1: For instance, let us consider the constraint X = 2Y betweeen
the finite-domain variables such that DX = 0..5 and DY = 0..3. By updating
DX into D′

X = 0..4 and DY into D′
Y = 0..2 we reach bounds consistency. Let

us remark that the points 1 and 3 in D′
X are not supported by points in D′

Y

and they should be eliminated if we wish to obtain arc consistency.
Let us consider the constraint S ⊆ T between set variables with set interval

domains DS = [{1}, {1, 2, 3}] and DT = [{0}, {0, 1, 2}]. {1} in DS is supported
by {0, 1, 2} in DT . Similarly, {0, 1, 2} in DT is supported by {1} in DS . The
other two bounds are not supported and bounds consistency can be obtained
by updating D′

S = [{1}, {1, 2}] and DT = [{0, 1}, {0, 1, 2}].
However, in the case of constraints on set variable, the non linearity of the

order might prevent us in mantaining bounds consistency using set intervals for
representing sets. For instance, consider the constraint X ∈ S where DX = 1..2
and DS = [{0}, {0, 1, 2}]. The two bounds of DX are supported by {0, 1, 2}.
Similarly {0, 1, 2} in DS is supported (either by 1 or by 2). Instead, the bound
{0} of DS is supported by no points of DX . However, by removing {0} from
the set interval we’d obtain DS = {{0, 1}, {0, 2}, {0, 1, 2}} which is no longer a
set interval.

Bounds consistency affects only the bounds, it can be implemented faster,
but it reduces the effectiveness of pruning:

� Arc consistency generates a smaller search tree but with a larger compu-
tation time at each node, while

� Bounds consistency generates a larger search tree in a faster manner at
each node.

In practice, removal of unsupported values is delayed in the lower parts of the
search tree. The NP hardness of solving a CSP on these domains guarantees
that we can find examples in which the first technique performs better and
others in which it performs worse.

In the case of integer domains, one can adopt both bounds consistency
and arc consistency by, e.g., storing domains using bitmaps (see Section 5.1).
As pointed out by Gervet [26], the case of set domains does not allow us to
deal with explicit representation of domains due to the intrinsic combinatorial
explosion in their sizes and thus we are forced to implement a weak form of
bounds consistency. As shown in the example above, even mantaining bounds
consistency would lead us outside set interval representation.

4.1. Arc consistency and Integer constraints

Ensuring arc and bounds consistency of binary constraints on finite domains is
one of the most studied problems in constraint programming and all constraint
solvers implements extremely fast solvers. We will not enter here into much
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details. We just focus on one example that clarifies the effectiveness of strength
of constraint propagation (and the polynomial limits).

Example 4.2: Let us consider this self-contained fragment of Minizinc code,
where a vector of n finite domains variables x with domain [1, n] is constrained
such as to ensure that x[i] < x[i+ 1] for every i.

array [1..n] of var 1..n: x;

constraint forall(i in 1..n-1)( x[i] < x[i+1] );

Enforcing arc consistency deterministically produces the unique answer x[i] = i
for all i. All constraints in the first step and progressively some of them are not
considered in the successive step, and in overall a quadratic computation is gen-
erated. Just to give a taste, on a common desktop Core i7, 2.30 GHz, Win 10,
for n = 4k, 8k, 12k, 16k, 20k running times are roughly 0.6s, 1.4s, 2.5s, 4.9s, 5.5s
with the default solver of Minizinc 2.5.3.

4.2. Consistency and set constraints

We will make use of the following notation (possibly subscripted):

� Lower case letters x, y, z, . . . to denote integer numbers

� Upper case letters X,Y, Z, . . . to denote integer variables

� Upper case letters A,B,C, S, T, . . . to denote set variables

� Lower case letters a, b, c, s, t, . . . to denote sets.

For a set variable S, we denote with ⊥S =
⋂

s∈DS
s the greatest lower bound

(glb) of S and with ⊤S =
⋃

s∈DS
s the least upper bound (lub) of S. These two

values represent the extremes of the domain if viewed as a set interval. Note
that these values might not be part of the domain of S if it is not convex.

We denote with ′ the new values of the domains. Most rewriting rules can
introduce empty domains: if a domain becomes empty, then propagation ends
with a failure. A set interval [m,M ] is empty when m ̸⊆ M (i.e., when there
is x ∈ m such that x /∈M).

If a constraint is satisfied by all values of the domain, the constraint is
freezed, i.e., it will not be considered in future propagations in the same branch
of the search tree.

For U ∈ {A,B,C} the corresponding set interval domain is denoted as
DU = [mU ,MU ]. We analyze the propagation in general (first) and its fast
encoding if the domains are (set) intervals.
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Set equality and inequality.

� A = B: D′
A = D′

B = DA ∩DB .

Interval case: D′
A = D′

B = DA ∩DB = [mA ∪mB ,MA ∩MB ]

� A ̸= B: if DA ∩DB = ∅ then the constraint is satisfied.

If |DA| = 1 then D′
B = DB \DA and if |DB | = 1 then D′

A = DA\DB . Let
us observe that one (or both) between D′

A or D′
B might become empty.

Otherwise no domain update is applied.

Interval case: If DA ∩ DB = [mA ∪ mB ,MA ∩ MB ] = ∅ (emptyness
can be checked just analyzing the interval bounds) then the constraint
is satisfied. This is the unique test in this case. Let us observe that
the singleton case cannot be implemented in intervals. For instance, if
DA = [{1}, {1}], DB = [∅, {1, 2}] then D′

B = {∅, {2}, {1, 2}} which is not
an interval.

Membership.

� X ∈ A: D′
X = DX ∩ ⊤A, D

′
A = {s ∈ DA : s ∩DX ̸= ∅}.

Interval case: D′
X = DX ∩ MA. If D′

X ⊆ mA then the constraint is
satisfied. IfD′

X∩mA ̸= ∅ thenD′
A = DA (ifX is assigned inmA all sets in

DA will be ok). Otherwise, if D′
X = {x1, . . . , xk} ⊆MA \mA, a complete

propagation could be obtained by setting D′
A = [mA ∪ {x1},MA] ∪ · · · ∪

[mA ∪ {xk},MA], namely a union of intervals. Since we avoid dealing
with collections of intervals, we can restrict this case to k = 1, namely:
If D′

X = {x1} and x1 /∈ mA then D′
A = [mA ∪ {x1},MA] else D′

A = DA

Example: DX = {1, 2, 3}, DA = [{4}, {1, 2, 4}] = {{4}, {1, 4}, {2, 4}, {1, 2, 4}}.
D′

X = {1, 2, 3} ∩ {1, 2, 4} = {1, 2}. Arc consistency will lead us to D′
A =

{{1, 4}, {2, 4}, {1, 2, 4}} = [{1, 4}, {1, 2, 4}] ∪ [{2, 4}, {1, 2, 4}]. However,
since D′

A is a non-convex subset domain we prefer keeping D′
A = DA.

� X /∈ A. D′
X = DX \ ⊥A, D

′
A = {s ∈ DA : DX \ s ̸= ∅}.

Interval case: D′
X = DX \ mA. If D′

X = {x1} and x1 ∈ MA then
D′

A = [mA,MA \ {x1}] else D′
A = DA.

Example: DX = {2, 3, 4}, DA = [{2, 3}, {2, 3, 4, 5}]. D′
X = {2, 3, 4} \

{2, 3} = {4}, D′
A = [{2, 3}, {2, 3, 5}].

Set Inclusion.

� A ⊆ B. D′
A = {s ∈ DA : (∃t ∈ DB)(s ⊆ t)},D′

B = {t ∈ DB : (∃s ∈ DA)(s ⊆ t)}.
Interval case: D′

A = [mA,MA ∩MB ] and D′
B = [mA ∪mB ,MB ].

Example: DA = [{2, 3, 4}, {1, 2, 3, 4, 5}], DB = [{2, 3, 5}, {2, 3, 4, 5, 6}].
D′

A = [{2, 3, 4}, {2, 3, 4, 5}], D′
B = [{2, 3, 4, 5}, {2, 3, 4, 5, 6}].
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Set operations and extensional sets.

� Union. A = B ∪ C. D′
A = DA ∩ {s ∪ t : s ∈ DB , t ∈ DC}, D′

B =
{s ∈ DB : (∃t ∈ DC)(s ∪ t ∈ DA)},D′

C = {s ∈ DC : (∃t ∈ DB)(s ∪ t ∈ DA)}.
Interval case: Note that, in order to be satisfiable, we need to have that
mB ⊆MA and mC ⊆MA; D

′
A = [mA ∪mB ∪mC ,MA ∩ (MB ∪MC)]

D′
B = [mB∪(mA\MC),MB∩MA] andD′

C = [mC∪(mA\MB),MC∩MA].
Example: DA = [{1, 2}, {1, 2, 3, 4, 7, 8}], DB = [{1, 3}, {1, 2, 3, 6, 9}], DC =
[{2, 4}, {2, 4, 5, 10}]. D′

A = [{1, 2, 3, 4}, {1, 2, 3, 4}], D′
B = [{1, 3}, {1, 2, 3}],

D′
C = [{2, 4}, {2, 4}].

� Intersection. A = B ∩ C: D′
A = DA ∩ {s ∩ t : s ∈ DB , t ∈ DC}, D′

B =
{s ∈ DB : (∃t ∈ DC)(s ∩ t ∈ DA)},D′

C = {t ∈ DC : (∃s ∈ DB)(s ∩ t ∈ DA)}.
Interval case: D′

A = [mA ∪ (mB ∩mC),MA ∩MB ∩MC)]
D′

B = [mA ∪mB ,MB ], D
′
C = [mA ∪mC ,MC ]

� Difference. A = B \ C: D′
A = DA ∩ {s \ t : s ∈ DB , t ∈ DC}, D′

B =
{s ∈ DB : (∃t ∈ DC)(s \ t ∈ DA)},D′

C = {s ∈ DC : (∃t ∈ DB)(s \ t ∈ DA)}.
Interval case: D′

A = [mA ∪ (mB \MC),MA ∩ (MB \mC)]
D′

B = [mB ∪mA,MB ∩ (MA ∪MC)], D
′
C = [mC ∪ (mB \mA),MC ].

Example: DA = [{1, 2}, {1, 2, 3, 4, 5, 7, 8}], DB = [{1, 2, 3, 4}, {1, 2, 3, 4, 5, 6}],
DC = [{4}, {4, 6, 9, 10}]. D′

A = [{1, 2, 3}, {1, 2, 3, 5}],
D′

B = [{1, 2, 3, 4}, {1, 2, 3, 4, 5}], D′
C = [{4}, {4, 6, 9, 10}].

� A = {x1, . . . , xm, X1, . . . , Xn} where xi ∈ Z for i = 1, . . . ,m. Let RD =
{x1, . . . , xm}∪DX1

∪· · ·∪DXn
. Then D′

A = DA∩RD. D′
Xi

= DXi
∩DA.

Interval case: D′
A = [mA ∪ {x1, . . . , xn},MA ∩RD], D′

Xi
= DXi

∩M ′
A

Negative constraints. These constraints are handled via pre-processing,
since their explicit handling would lead us to introduce disjunctions.

� A ̸⊆ B. This constraint is replaced by N ∈ A,N /∈ B where N is a fresh
variable and DN = MA.

� A ̸= B opC where op is ∪,∩, \. Write it as A ̸= N,N = B opC where N
is a fresh variable with DN = D.

� A ̸= {x1, . . . , xm, X1, . . . , Xn} is replaced by A ̸= N,
N = {x1, . . . , xm, X1, . . . , Xn}, where N is a fresh variable with DN = D.

Lemma 4.3. Rewriting rules are sound and complete.

Proof. Rewriting rules for the set representation are exactly the definition of
arc consistency in the domain of sets (i.e., using the definitions of set equality,
membership, inclusion, and of the set operations). Let us focus on the rules
applied to interval domains.
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Set equality. If A = B then the two domains should be the same. This is
ensured assigning to both of them their intersection DA ∩DB = [mA ∪
mB ,MA ∩MB ] (Lemma 2.5). In the negative case if the intersection is
empty then the constraint is simply true. Nothing else is implemented.

Membership. X ∈ A, implies that X should be member of any possible
set assigned to A. Thus, we remove from DX values “external” to the
interval: D′

X = DX ∩ MA. If D′
X ⊆ mA, the constraint is trivially

satisfied. If D′
X = {x} and x ∈MA \mA we have to remove from DA all

the sets that do not contain x. This is made setting D′
A = [mA∪{x},MA]

(and then the constraint is satisfied).

X /∈ A, implies that X cannot be a member of mA (hence of all sets of the
interval). Thus D′

X = DX \mA. If D
′
X contain one element outside MA

there is always a solution satisfying the constraint. Instead, if D′
X = {x}

and x ∈MA \mA we can restrict the interval to D′
A = [mA,MA \ {x}]

Set Inclusion. DA = [mA,MA] and DB = [mB ,MB ]. Then D′
A = [mA,MA∩

MB ] and D′
B = [mA ∪mB ,MB ]. (Rule I1 in [25]).

Union. A = B∪C. The domain of A should be intersected with that of B∪C
which is computed with the + operation. D′

A = DA ∩ (DB + DC) =
[mA,MA]∩ [mB ∪mC ,MB ∪MC ] = [mA ∪mB ∪mC ,MA ∩ (MB ∪MC)]
(see Lemma 2.5). For the converse direction, we can safely remove from
DB and DC all sets containing points that are not in MA, thus: D′

B =
[mB ,MB ∩MA], D

′
C = [mC ,MC ∩MA]

Intersection. A = B∩C. The domain of A should be intersected with that of
B ∩C which is computed with the · operation. D′

A = DA ∩ (DB ·DC) =
[mA,MA]∩ [mB ∩mC ,MB ∩MC ] = [mA ∪ (mB ∩mC),MA ∩MB ∩MC)]
(see Lemma 2.5) For the converse direction, we can safely remove from
DB and DC all sets that do not contain the points of mA, thus: D′

B =
[mB ∪mA,MB ], D

′
C = [mC ∪mA,MC ].

Difference. A = B \ C. The possible sets for A should be intersected with
those that can be generated by B \ C. Then, D′

A = DA ∩ (DB −DC) =
[mA,MA]∩ [mB \MC ,MB \mC ] = [mA ∪ (mB \MC),MA ∩ (MB \mC)]
(see Lemma 2.5). For the converse direction, let us observe that DC can
contain sets of arbitrary size as long as they have elements not in DB

(the semantics of the set difference is rather asymmetric). Therefore, its
upper bound MC is not updated.
Instead, if an element x belongs to all sets in DA (hence, in mA) it must
belong to all sets of B. This can be achieved by ‘enlarging’ the bottom
of the set interval: m′

B = mB ∪mA.
If an element x belongs to all sets of B (hence, in mB) and it occurs in
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1 DX = 0..15 = FF FF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 01 01 01 01 01 01 01 0 DY = 0..7 = FF 00
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X = 0..6 = FE 00
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Y = 1..7 = 7F 00

Figure 3: The two integer variables X and Y such that there is a constraint
X < Y have initial domains DX and DY and get the new domains D′

X and
D′

Y . Domains are represented as bitmaps (succinctly written in HEX) and as
intervals

no sets of A (hence it is not in MA), then it must be element of all sets
of C and thus in mC : m

′
C = mC ∪ (mB \MA).

If an element x belongs to some sets in DB (hence, in MB) and it does
not occur in sets of DA (hence is is not in MA), then either there is some
set in DC that contains it or it must be removed from MB . This can be
achieved as M ′

B = MB \ ((MB \MA) \MC) = MB ∩ (MA ∪MC).

Extensionally defined set. By the set extensionality principle, x ∈ A iff
x ∈ {x1, . . . , xm, X1, . . . , Xn}, namely x = xi for some i ∈ {1, . . . ,m}
or x ∈ DXj

for some j ∈ {1, . . . , n}. Thus, it is safe to remove from
DA all elements that are not allowed in the extensionally defined set.
Removing the known elements leaves the domain an interval. Similarly,
we can remove from DXj all elements that are not in DA.

Negated constraints. of A ̸= Exp iff an only if there is a N such that N =
Exp and A ̸= N (equality axioms). Moreover, by definition of ⊆, A ̸⊆ B
iff there is an elementN ∈ A such that A /∈ B. This justifies the rewriting.

5. Toward a GPU-based CSP-solver

In this section we describe the main traits of a prototypical solver for CSPs
over set constrains of the forms described in Section 4.2.



{CUDA}: SET CONSTRAINTS ON GPUS 17

5.1. Internal representation of CSPs

We restrict integer domains to subsets of 0..k and set-domains to subsets of the
set interval [∅, {0, 1, 2, . . . , k}] for a given k. See for instance Fig. 3, where, for
the sake of simplicity, we set k = 15. Notice that, for practical reasons, in the
concrete implementation it is convenient to choose k = 32 ∗ h − 1, for h > 0.
This because domains of integer variables are represented as bitmaps of k + 1
bits. Each of such bitmap is stored in memory as a sequence of h unsigned

int. A domain for a variable of sort set is represented as a set interval [m,M ]
where m and M are both represented as a bitmap of k + 1 bits. (The actual
value of h is a parameter that can be set by the user.)

Each integer variable is internally referred as a natural number. In the
current implementation we bound the number of variables in a CSP to be less
that 256, hence each integer variable can be referenced by using a single byte.
The same bound/representation is adopted for set variables (hence, there can
be at most 256 set variables in a CSP).

Each constraint is internally represented as an unsigned int, whose 4 bytes
encode the components of the constraint. For instance, consider a constraint
c of the form AirelAjopAh, where Ai, Aj , Ah are set variables, rel is a relator
(i.e., =,̸=,⊆,...), and op is a set operator (i.e., ∪,∩,...). Then, c is compiled into
a word of 4 bytes. Let r(c) be such a word. The leftmost byte of r(c) contains
a code representing rel and op, while the remaining three bytes, positionally,
encode the three variables (that, as mentioned, are identifiable by single bytes).
Such a representation is also adopted for those constraints involving two vari-
ables (e.g., of the form AirelAj) and integer variables (e.g., Xi ∈ Aj). Also in
these cases, the information on the kind of constraint in encoded in the leftmost
byte (and the rightmost byte is ignored).

A slightly more complex representation is adopted for constraints c of the
form Ai = {x1, . . . , xm, X1, . . . , Xn}, because of the arbitrary number of ele-
ments that may occur in them. An auxiliary array Exts of integers is used to
store contiguously (the integers representing) x1, . . . , xm,X1, . . . , Xn, for each
constraint of this form. As before the first byte of r(c) encodes the kind of
constraint. The second byte stores i, the index of the variable Ai of the l.h.s.
of the constraint. The third and fourth bytes of r(c) store the initial positions
of x1, . . . , xm and of X1, . . . , Xn in Exts, respectively.

Notice that the set of constraints is accessed at each propagation step (see
below). The fact that each constraint is compactly represented by a single
memory word, makes it possible for parallel CUDA threads to access uniformly
the constraint representations, maximizing the bandwidth in memory trans-
fers. The same advantage is obtained for accesses to domains: thanks to the
uniform way in which they are represented, all threads concurrently accessing
domain extensions, perform essentially the same amount of work. This helps
in optimizing thread occupancy.
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Algorithm 1: Host code of the CSP-solver (simplified)

procedure cpcs(⟨X ,D, C⟩: CSP)
1 CSPs = ∅ /* empty collection of CSPs */
2 InputCompilation(X ,D, C,CSPs)/* generate internal representation of the input CSP */
3 while CSPs is not empty and no solution has been found do
4 select a not empty subset bs of CSPs
5 foreach each b in bs do in parallel /* a CUDA kernel processes bs in parallel */
6 remove b from CSPs
7 Propagation(b) /* update domains of b until fixpoint */
8 CheckSatisfiability(b,Status) /* check outcome of propagation */
9 if Status == SOLVED then StoreSolution() /* solution found */

10 else if Status ̸= UNSAT then /* select a variable and split its domain and */
11 DomainSplit(b,CSPs) /* add the generated problems to CSPs */

end

12 if exist solutions then output solutions
13 else return unsatisfiable

5.2. Solving Procedure

As mentioned, to solve a specific instance of a Constraint Satisfaction Problem,
the solver proceeds by alternating constraint propagation and (possibly, non-
deterministic) variable assignment. This process implicitly searches a solution
space that can be thought as tree-shaped. Each node corresponds to a (partially
solved) CSP, while each edge corresponds to the updates in the CSP caused by
a variable assignment (and the consequent propagations).

Before entering into the details of the procedure, we add here a few remarks
on the main features of the parallel architecture employed. GPUs are designed
to execute a very large number of concurrent threads on multiple data (the
parallel model is known as Single-Instruction Multiple-Thread (SIMT)). Each
GPU has a number of computing cores physically grouped in a collection of so-
called Streaming MultiProcessors (SMs). Concurrent threads are scheduled on
the SMs and executed in sets of 32, called warps. Threads in the same warp are
expected (but not forced) to follow the same program address. If this condition
is guaranteed, parallelism is maximized, otherwise the thread divergence forces
serialization and the overall performance decreases.

Threads are logically grouped in blocks that are organized as a 3D grid
(the built-in 3D access was introduced to support the graphical applications
of GPUs). A typical CUDA program includes parts meant for execution on
the CPU (the host) and parts meant for parallel execution on the GPU (the
device). A kernel is a (C) procedure launched by the CPU and running on GPU
and its parallel execution is organized by setting the number of blocks and the
number of threads per block that will be exploited. The host program contains
instructions for device data initialization, grids/blocks/threads configuration,
kernel launch, and retrieval of results. GPUs also exhibit a hierarchical memory
organization. The threads in the same block share data using high-throughput
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on-chip shared memory organized in banks of equal dimension. Threads of
different blocks can only share data through the off-chip global memory.

To take full advantage of GPU architecture, one has to: distribute the
workload among the cores to maximize GPU occupancy (exploit all available
device resources) and minimize thread divergence. Existing serial or parallel
solutions need to be substantially re-engineered to become profitably applicable
in the context of GPUs.

Going back to the implementation we are presenting, our CUDA-based con-
straint solver combines two level of parallelism. First, different CSPs are solved
in parallel by different CUDA blocks of the same CUDA kernel. This consists
in following different paths in the solution space. The paths are guaranteed
to be disjoint by the domain-splitting mechanism (see below). Second, each
CSP is processed by the CUDA threads of a block, operating in parallel on its
constraints and domains.

Algorithm 1 shows the (simplified) code of the solving procedure. After
compiling the input CSP (line 2), a collection of active CSPs is allocated in
the GPU’s global memory and is initialized as a set containing the unique gen-
erated internal representation. A loop (starting in line 3) is performed until
unsatisfiability is detected or a solution is found (actually, a number n of so-
lutions can be required by using a command-line option). This part of the
execution is performed on CPU (host). In line 4 a subset bs of the current
collection of active CSPs is selected. The cardinality of this subset is speci-
fied by a command-line option and determines the number of problems that
are processed concurrently by the CUDA blocks: the set CSPs represents a
“pool of problems” to be solved: each block picks a different problem b from
CSPs in order to solve it. Hence, the inner loop (lines 5–11) is executed in
parallel by each CUDA block (on a different problem b) on the GPU (device).
Each block performs constraint propagation on b until a fixpoint is reached
(line 7). This procedure requires repeated accesses and updates of variable
domains. To improve performance it is executed by exploiting the fast shared
memory available on chip: initially, the threads of the block perform a coales-
cent access to global memory to retrieve the representations of domains. These
representations are stored in shared memory in order to speed up the subse-
quent accesses/updates performed during the propagation loop. During each
propagation loop constraints are applied to the corresponding variable domains
using the rules described in the previous sections.

Each constraint c is processed by ℓ threads —the simple choice is ℓ = 1,
but any value ℓ = 2i, for 0 ≤ i ≤ 5 is possible (recall that a warp is made of
32 threads). The ℓ threads also access the domains of the variables occurring
in c and, if needed, updates their bitmaps. In performing the set-operations
on bitmaps, the different unsigned int composing the same bitmap to be
updated/accessed are updated/accessed in parallel by the different ℓ threads
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of the same warp. This allows a better exploitation of SIMT-parallelism and
reduces thread divergence. To avoid race conditions in concurrent accesses,
updates of bitmaps use atomic operations, that, operating on shared memory,
involve little loss in performance.

Let us observe that since each block is scheduled on a different streaming
multiprocessor (SM) of the GPU, its execution is independent from those of
other blocks. The GPU scheduler is enabled to assign problems/blocks to
different SMs, balancing work load and maximizing GPU usage.

When a fixpoint is reached the threads of a block perform a satisfiability
check (line 7). If the CSP at hand, say b, turns out to be unsatisfiable then
it is removed. If b is in solved form (each variable domain is a singleton) the
solution is stored. Otherwise, b is still active and a decision step has to be
performed in order to “shrink” a variable domain. At this point a variable
X is heuristically chosen, for instance by identifying the most constrained one
(alternative heuristics are possible).

� If X is a variable of sort int with domain DX , then the domain is parti-
tioned in two sets and two problems are put in the pool of active problems
in place of b. This opens two branches in the visit of the solution space.
There may be different ways in which DX is partitioned. For instance,
if DX = {x1, x2, . . . , xn} (x1 < x2 < · · · < xn) the two sub-domains
D′

X = {x1} and D′′
X = {x2, . . . , xn} can be considered. Alternatively,

DX could be split in two disjoint sub-domains of sizes ⌊n/2⌋ and ⌈n/2⌉.

� If X is a variable of sort set with domain DX where ⊤X \ ⊥X =
{x1, x2, . . . , xn} then two new problems will replace b. These new prob-
lems differ on the domain of X, namely, the two domains will be such
that D′

X = {s ∈ DX : x1 ∈ s} and D′′
X = {s ∈ DX : x1 /∈ s}.

Plainly, in both cases, alternative heuristics are possible, even involving par-
titioning in more than two sub-problems. Moreover, a choice must be made
when a decision can be made considering both an integer variable and a set
variable. In the current implementation, we always split in two and give priority
to integer variables.

Once the new problems are generated (working in shared memory) the block
stores them back in global memory, so that other blocks can process them.

Notice that, the way in which a problem b is replaced in CSP by two (or
more) new problems corresponds to performing domain cloning. There is not an
explicit management of a stack of choice points. Moreover there is no imposed
order on the active problems in CSPs. Hence, any strategy can be adopted in
selecting bs and in assigning blocks to active problems in bs (cf., lines 4–5 in
Algorithm 1). This, in combination with the selection of the number of blocks
that are launched at each iteration of the loop (line 5), permits to explore in
parallel different multiple paths in the solution space implementing different
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search strategy. For example, on the one hand, always launching a single block
operating on the last generated problem implements a depth-first visit. On the
other hand, launching |CSPs| blocks implements breadth-first search. Clearly,
all intermediate strategies are possible.

Threads Blocks in Time to Speedup
per block propagation solution

32 1 29.24 1
32 2 14.89 1.96
32 4 8.09 3.61
32 8 3.80 7.70
32 16 1.95 15.02
32 32 1.04 28.23
32 64 0.62 47.05
32 128 0.39 75.40
32 256 0.28 103.54
32 512 0.29 101.36
32 1024 0.27 106.74

64 1 27.57 1
64 2 14.10 1.96
64 4 7.07 3.90
64 8 3.61 7.65
64 16 1.85 14.90
64 32 1.00 27.56
64 64 0.59 46.78
64 128 0.40 69.75
64 256 0.37 73.98
64 512 0.32 85.32
64 1024 0.28 97.60

128 1 26.90 1
128 2 13.71 1.96
128 4 6.91 3.89
128 8 3.50 7.68
128 16 1.82 14.76
128 32 0.95 28.45
128 64 0.57 47.55
128 128 0.54 49.49
128 256 0.46 58.03
128 512 0.41 65.01
128 1024 0.38 70.44

256 1 27.13 1
256 2 13.80 1.97
256 4 6.91 3.92
256 8 3.52 7.72
256 16 1.78 15.21
256 32 0.99 27.50
256 64 0.97 28.05
256 128 0.81 33.47
256 256 0.70 38.99
256 512 0.65 41.60
256 1024 0.64 42.16

Table 1: Performance of the solver for different configuration parameters for the instance

Chain(8,9) of the CSP described in Figure 4

5.3. The solver at work

The GPU-based solver described so far is a prototype still under development.
Only simple basic heuristics have been implemented in the decision step, in
domain partitioning, and in the selection of active problems to be processed.
Much work has to be done in fully exploiting computing capabilities supported
by modern GPUs, such as Volta’s new independent thread scheduling, L2 cache
management, warp-level communication, cooperative groups, etc. Neverthe-
less, the current implementation exhibits promising performance and scalabil-
ity properties. As a witness of this claim, we report here the outcome of just



22 A. DOVIER, A. FORMISANO, E. PONTELLI, F. TARDIVO

Threads Blocks Comb(5,3,6) Comb(6,2,5)
per block Solving Problems Speedup Solving Problems Speedup

time per second time per second

32 1 99.90 13437 1.00 96.04 13649 1.00
32 2 54.13 24791 1.84 51.20 25596 1.88
32 4 29.83 44961 3.35 27.20 48158 3.53
32 8 15.64 85648 6.37 14.47 90425 6.63
32 16 8.55 156487 11.65 7.92 164965 12.09
32 32 5.41 246666 18.36 4.73 275110 20.16
32 64 3.26 407085 30.30 2.86 453147 33.20
32 128 2.42 546783 40.69 2.19 590055 43.23
32 256 2.03 650867 48.44 1.87 688423 50.44
32 512 1.74 756059 56.27 1.67 771193 56.50
32 1024 1.52 865939 64.44 2.07 622775 45.63

64 1 89.29 15034 1.00 83.04 15786 1.00
64 2 48.13 27883 1.85 43.68 30004 1.90
64 4 25.67 52241 3.47 22.69 57717 3.66
64 8 14.02 95555 6.36 11.61 112610 7.13
64 16 7.42 180307 11.99 6.24 209142 13.25
64 32 4.28 311362 20.71 3.83 339300 21.49
64 64 2.95 449484 29.90 2.72 477109 30.22
64 128 2.37 560089 37.25 2.10 616241 39.04
64 256 1.96 673715 44.81 1.75 737537 46.72
64 512 1.72 767465 51.05 1.63 791213 50.12
64 1024 1.52 865702 57.58 1.41 910306 57.67

128 1 83.70 16037 1.00 77.38 16942 1.00
128 2 44.55 30123 1.88 40.71 32187 1.90
128 4 23.75 56469 3.52 21.15 61916 3.65
128 8 12.43 107742 6.72 10.80 121075 7.15
128 16 6.86 194859 12.15 5.82 224044 13.22
128 32 4.05 328799 20.50 3.64 357031 21.07
128 64 2.86 464232 28.95 2.56 506638 29.90
128 128 2.91 456052 28.44 2.05 631459 37.27
128 256 1.88 703497 43.87 1.77 729807 43.08
128 512 1.69 781315 48.72 1.58 813127 47.99
128 1024 1.46 900412 56.15 1.42 900697 53.16

256 1 76.42 17563 1.00 71.33 18378 1.00
256 2 40.77 32911 1.87 37.32 35111 1.91
256 4 21.41 62629 3.57 19.20 68200 3.71
256 8 11.07 120935 6.89 10.00 130737 7.11
256 16 6.13 217853 12.40 5.52 236077 12.85
256 32 3.75 355279 20.23 3.53 367977 20.02
256 64 2.69 493805 28.12 2.56 506269 27.55
256 128 2.21 598025 34.05 2.01 643814 35.03
256 256 1.85 712850 40.59 1.70 757656 41.23
256 512 1.63 807943 46.00 1.68 765378 41.65
256 1024 1.48 886061 50.45 1.44 889006 48.37

Table 2: Performance of the solver for different configuration parameters for two instances

of the CSP Comb(m,t,n) described in Figure 5 We report the time spent to find all solutions

for Comb(5,3,6) and to detect unsatisfiability of Comb(6,2,5).

some sets of experiments involving significant example. The first CSP we used
is formulated as in Figure 4, where n and m are integer parameters. (We denote
instances of this problem by Chain(n,m).)

We run experiments selecting different values for n and m and varying both
the number of threads in each block and the number of blocks launched by
the solver. We used different GPU, obtaining comparable results. We report
on the experiments run on a server running Ubuntu 20.04.2 equipped with an
Nvidia GeForce GTX 1060 with 6GB of RAM, 10 SMs, 1280 cores, compute
capability 6.1, CUDA Driver v. 11.2, GPU frequency 1.5 GHz.

Table 1 shows the results obtained for n=8 and m=9. The first column
reports the number of threads composing each block. The second column
reports the number of problems/blocks run in parallel (namely, the cardinality
of the set bs, described earlier). The third column shows the time in seconds
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%%% Variables: each x[i] and each delta[j] is a set variable:

array [0..m-1] of var set of 1..n: x;

array [0..m-1] of var set of 1..n: delta;

%%% each reps[i] is an int variable:

array [0..m-1] of var 1..n: repr;

%%% Constraints:

constraint forall(i in 0..m-2)

( x[i] subset x[i+1]);

constraint forall(i in 0..m-2)

( delta[i] = x[i+1] diff x[i] /\ repr[i] in delta[i]);

Figure 4: Encoding of instances Chain(m,n)

needed by the solver to solve the CSP. Finally, the fourth column reports the
speedup obtained by using different number of blocks w.r.t. the run which uses
a single block. This last set of data shows the impact on performance of visiting
multiple paths of the solution space, in parallel. The best improvement is 106x,
obtained launching 1024 parallel blocks, for the case of 32 threads-per-block.
On the other hand, rising the number of threads-per-block seems to have a
negative impact on performance. The best performance is obtained using a
number of threads close to the number of constraints of the CSP. In this case,
choosing 32 threads-per-block represents the best configuration (notice that a
block must include at least one warp, namely, 32 threads). This is because
each constraint is processed by 1 thread (i.e., the parameter ℓ described earlier
is set to 1 in these experiments) and running more threads than the number
of constraints only introduces overhead in their management. The Gecode
6.3.0 solver of Minizinc with input order and indomain min search heuristics,
running on a faster Windows 10 Desktop with 3.60 GHz i7 CPU finds the first
solution to the instance of the table in 5.6 s.

Results in line with those obtained for the Chain(m,n) instances, have been
obtained for other CSPs. As an example we report in Table 2 the performance
of the solver for two instances of the CSP Comb(m,t,n) described in Figure 5.
Given the integer values m, t, and n, solving this CSP consists in finding, if
possible, m pairwise distinct subsets of {0, ..., n− 1} such that the intersection
of any pair of them is a set of exactly t elements.

Table 2 also reports the number of intermediate problems (generated by
decision steps, see Section 5.2) processed per second, depending on different
configuration parameters of the solver. The Gecode 6.3.0 solver of Minizinc
with input order and indomain min search heuristics, running on a Windows
10 Desktop with 3.60 GHz i7 CPU computes the two instances of the table in
1.73 s and 0.55 s, respectively.
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%%% Variables:

int: m=5; int: t=3; int: n=5;

array [0..m-1] of var set of 0..n-1: sets;

array [0..m-1,0..m-1,0..t-1] of var 0..n-1: witn;

%%% Constraints:

constraint

forall(i,j in 0..m-1 where i < j) (sets[i] != sets[j]);

constraint

forall(i,j in 0..m-1 where i < j)

(sets[i] intersect sets[j] = {witn[i,j,k]|k in 1..t});

constraint

forall(i,j in 0..m-1, k in 0..t-2) (witn[i,j,k] < witn[i,j,k+1]);

constraint

forall(i,j in 0..m-1 where i >= j, k in 0..t-1) (witn[i,j,k]=k);

Figure 5: Encoding of instances Comb(m,t,n)

6. Conclusions

In this paper we have presented a first attempt of exploiting the parallelism of-
fered by the widespread hardware available inside most of our desktop and lap-
top computers, namely GPUs, for the research areas introduced by Eugenio G.
Omodeo et al. of computable set theory and programming with sets. Precisely,
we have revised the set constraints procedure originally proposed in [25] and de-
veloped an implementation in GPU using the CUDA programming paradigm.
Results are interesting and experimentally proved to be scalable. As future
work we would like, on the one side to include more set operations and opti-
mize the encoding, on the other side to embed the proposal within a complete
solver for the Minizinc modeling language.
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