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UNIQUELY ORDERABLE INTERVAL GRAPHS 1

MARTA FIORI-CARONES AND ALBERTO MARCONE 2

Abstract. Interval graphs and interval orders are deeply linked. In fact, edges of an interval

graphs represent the incomparability relation of an interval order, and in general, of different in-
terval orders. The question about the conditions under which a given interval graph is associated

to a unique interval order (up to duality) arises naturally. Fishburn provided a characterisation
for uniquely orderable finite connected interval graphs. We show, by an entirely new proof, that

the same characterisation holds also for infinite connected interval graphs. Using tools from

reverse mathematics, we explain why the characterisation cannot be lifted from the finite to the
infinite by compactness, as it often happens.

1. Introduction 3

An interval graph is a graph whose vertices can be mapped (by an interval representation) to 4

nonempty intervals of a linear order in such a way that two vertices are adjacent if and only if the 5

intervals associated to them intersect (it is thus convenient to assume that the adjacency relation is 6

reflexive). Consequently, if two vertices are incomparable in the graph, the corresponding intervals 7

are placed one before the other in the linear order. The definition of interval graphs leads to an 8

analogous concept for partial orders. In fact, a partial order <P is an interval order if its points 9

can be mapped to nonempty intervals of a linear order in such a way that x <P y if and only if 10

the interval associated to x completely precedes the interval associated to y. Thus interval graphs 11

are the incomparability graphs of interval orders, i.e. two vertices are adjacent in the graph if and 12

only if they are incomparable in the partial order. 13

Norbert Wiener was probably the first to pay attention to interval orders, disguised under the 14

less familiar name ‘relations of complete sequence’, in [Wie14]. Interval graphs and interval orders 15

were rediscovered and given the current name in [Fis70]. There is now an extensive literature 16

on the topic: [Tro97] provides a survey for many result in this area, focusing primarily on finite 17

structures. 18

Interval graphs and interval orders are extensively employed in diverse fields like psychology, 19

archaeology and physics, just to mention a few. Wiener himself noticed that interval orders are 20

useful for the analysis of temporal events and in the representation of measures subject to a 21

margin of error. Interval orders actually occur in many digital calendars, where hours and days 22

form a linear order and a rectangle covers the time assigned to an appointment: if two rectangles 23

intersect, we better choose which event we will miss. Intervals are also suitable for representations 24

of measurements of physical properties which are subject to error, since they can take into account 25

the accuracy of the measuring device much better than a representation with points. In psychology 26

and economics the overlap between two intervals often indicates that the corresponding stimuli or 27

preferences are indistinguishable. 28

In the first paragraph we described how to build an interval order from an interval representation 29

of an interval graph. In general, an interval graph leads to many different interval orders on its 30

vertices: an extreme example is a totally disconnected graph which is associated to any total order 31

on its vertices. This paper deals with the situation were the interval graph is uniquely orderable, i.e. 32

there is essentially only one interval order associated to the given interval graph. (The “essentially” 33

in the previous sentence is due to the obvious observation that if an interval order is associated 34

to a graph, then the same is true for the reverse partial order.) Here the extreme example is a 35

complete graph, which is associated to a unique partial order, the antichain of its vertices. 36
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UNIQUELY ORDERABLE INTERVAL GRAPHS 2

The question of which interval graphs are uniquely orderable is easily settled for non connected 1

graphs. It is in fact immediate that a non connected interval graph is uniquely orderable if and 2

only if it has at most two components each of which is complete. 3

We can thus restrict our attention to connected interval graphs. In this context, Fishburn [Fis85, 4

§3.6], building on results proved in [Han82], provides two characterizations of unique orderability 5

for finite graphs. Indeed, some steps of the proof heavily rely on the finiteness of the graph. This 6

is in contrast with the rest of Fishburn’s monograph, where results are systematically proved for 7

arbitrary interval graphs and orders; we thus believe that Fishburn did not know whether his 8

result held for infinite interval graphs as well. The main result of this paper solves this issue by 9

extending Fishburn’s characterizations to arbitrary interval graphs by an entirely different proof 10

(for undefined notions see §2 below): 11

Theorem 1. Let (V,E) be a (possibly infinite) connected interval graph. Let W = {(a, b) ∈ V ×V | 12

¬aE b} and (a, b)Q (c, d) ⇐⇒ aE c ∧ bE d. The following are equivalent: 13

(1) (V,E) is uniquely orderable; 14

(2) (V,E) does not contain a buried subgraph; 15

(3) the graph (W,Q) has two components. 16

Fishburn’s statement is slightly different from ours, since it is formulated for connected interval 17

graphs without universal vertices. Since universal vertices (i.e. those adjacent to all vertices of the 18

graph) are incomparable to all other vertices in any partial order associated to an interval graph, 19

removing all universal vertices does not change the unique orderability of the graph. We prefer our 20

formulation of the result since it highlights the connectedness of the graph, which is the central 21

property characterising the class of interval graphs for which Theorem 1 holds. 22

A typical method to lift a result from finite structures to arbitrary ones is compactness. Hence, 23

once Theorem 1 is proved for finite interval graphs, the first attempt to generalise it to the infinite 24

is to argue by compactness. This is not obvious and, using tools from mathematical logic, we 25

are able to show that it is in fact impossible. To this end we work in the framework of reverse 26

mathematics, a research program whose goal is to establish the minimal axioms needed to prove 27

a theorem. In this framework compactness is embodied by the formal system WKL0. We first 28

indicate, with results which parallel those obtained in [Mar07] about interval orders, that all the 29

basic aspects of the theory of interval orders can be developed in WKL0. On the other hand we 30

prove the following: 31

Theorem 2. Over the base system RCA0, the following are equivalent: 32

(1) ACA0, 33

(2) a countable connected interval graph (V,E) is uniquely orderable if and only if does not 34

contain a buried subgraph. 35

Since ACA0 is properly stronger than WKL0 this shows that compactness does not suffice to 36

prove Theorem 1. 37

Section 2 establishes notation and terminology, while Section 3 is devoted to the proof of Theo- 38

rem 1. Section 4 gives an overview of the reverse mathematics of interval graphs: the first author’s 39

PhD thesis [FC19] includes full proofs. The last section is devoted to the proof of Theorem 2. 40

2. Preliminaries 41

In this section we establish the terminology used in the paper and underline some properties of 42

interval graphs that turn out to be useful in the next section. 43

All the graphs (V,E) in this paper are such that E ⊆ V × V is a symmetric relation (we do not 44

ask E to be irreflexive, as in some cases it is convenient to have reflexivity). As usual, we write 45

v E u to mean (v, u) ∈ E and, if V ′ ⊆ V , we write (V ′, E) in place of (V ′, E ∩ (V ′ × V ′)). We 46

denote by (V,E) the complementary graph of (V,E): for u, v ∈ V we have uE v if and only if uE v 47

does not hold. 48

Paths and cycles are defined as usual, and their length is the number of their edges. A simple 49

cycle v0E . . . E vn is a cycle such that the vertices in v0, . . . , vn−1 are distinct. A chord of a cycle 50

v0E v1E . . . E vn is an edge (vi, vj) with 2 ≤ j − i ≤ n − 2. The chord is triangular if either 51

j − i = 2 or j − i = n− 2. 52
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Figure 1. An example of interval graph with its representation
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Figure 2. A graph which is not an interval graph, with a partial representation

Definition 2.1. If (V,≺) is a strict partial order, the comparability graph of (V,≺) is the graph 1

(V,E) such that for v, u ∈ V it holds that v E u if and only if either v ≺ u or u ≺ v. The 2

incomparability graph of (V,≺) is the complementary graph of the comparability graph, so that 3

two vertices are adjacent if and only if they coincide or are ≺-incomparable. 4

While the comparability graph of a strict partial order is irreflexive, its incomparability graph 5

is reflexive. 6

Notice that a graph (V,E) can be the incomparability graph of more than one partial order: we 7

say that each such partial order is associated to (V,E). In particular, ≺ and the dual of ≺ (i.e. ≺′ 8

such that u ≺′ v iff v ≺ u) are associated to the same incomparability graph. 9

Definition 2.2. A graph (V,E) is uniquely orderable if it is the incomparability graph of a partial 10

order ≺ and the only other partial order associated to (V,E) is the dual order of ≺; in other words, 11

there exists a unique (up to duality) partial order ≺ such that for each v, u ∈ V it holds that 12

¬uE v if and only if u ≺ v or v ≺ u. 13

The following definition formalises the intuitive idea of interval graph given in the previous 14

pages. 15

Definition 2.3. A graph (V,E) is an interval graph if it is reflexive and there exist a linear order 16

(L,<L) and a map F : V → ℘(L) such that for all v, u ∈ V , F (v) is an interval in (L,<L) (i.e. if 17

` <L `
′ <L `

′′ and `, `′′ ∈ F (v), then also `′ ∈ F (v)) and 18

v E u⇔ F (v) ∩ F (u) 6= ∅. 19

It is well-known that we may in fact assume that there exist functions fL, fR : V → L such that 20

F (v) = {` ∈ L | fL(v) ≤L ` ≤L fR(v)} for all v ∈ V (this is the definition given in [Fis85]). 21

We say that (L,<L, fL, fR) (but often only (fL, fR) or just F ) is a representation of (V,E). 22

To decide whether two vertices u and v are adjacent in an interval graph with representation 23

(fL, fR) we can assume without loss of generality that fL(v) ≤L fL(u) and then simply check 24

whether fL(u) ≤L fR(v). 25

In the context of a representation (fL, fR) of an interval graph, we write F (v) <L F (u) in place 26

of fR(v) <L fL(u). Then ¬v E u means that either F (v) <L F (u) or F (u) <L F (v). 27

Figure 1 provides an example of interval graph, while the graph in Figure 2 does not have an 28

interval representation (in the figures self loops are not shown for clarity). 29

A classical characterization of interval graphs is the following ([LB62], see [Fis85, Theorem 3.6]). 30

Definition 2.4. A graph (V,E) is triangulated if every simple cycle of length four or more has a 31

chord. An asteroidal triple in (V,E) is an independent set of three vertices (i.e. a set of pairwise 32

non adjacent vertices) of V such that any two of them are connected by a path that avoids the 33

vertices adjacent to the third. 34

Theorem 2.5. A reflexive graph (V,E) is an interval graph if and only it is triangulated and has 35

no asteroidal triples. 36
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a b c

k

Figure 3. An interval representation of a non uniquely orderable connected interval graph

Proposition 2.6. Let v0E . . . E vn be a path in the interval graph (V,E) with representation F , 1

and suppose w ∈ V is such that F (w) ≮L F (v0) and F (vn) ≮L F (w). Then viE w for some i ≤ n, 2

and hence v0E . . . E viE w and wE viE . . . E vn are paths. 3

Proof. Let i ≤ n be maximum such that F (w) ≮L F (vi). If i = n, then F (w) ≮L F (vn) and 4

F (vn) ≮L F (w) imply vnE w. If i < n, then F (w) <L F (vi+1) and F (vi) ≮L F (vi+1) (because 5

viE vi+1) imply F (vi) ≮L F (w). This, together with F (w) ≮L F (vi), yields viE w. � 6

Definition 2.7. Let (V,E) be a graph. A path v0E . . . E vn is a minimal path if ¬viE vj for 7

every i, j such that i+ 1 < j ≤ n. 8

Notice that if v0E . . . E vn is a path of minimal length among the paths connecting v0 and vn, 9

then it is a minimal path, but the reverse implication does not hold. 10

Property 2.8. Let (V,E) be a graph. Then each path can be refined to a minimal path. 11

Proof. The statement follows immediately from the following observation: if v0E . . . E vn is a 12

path and viE vj with i+ 1 < j ≤ n, then v0E . . . E viE vj E . . . E vn is still a path. � 13

Property 2.9. Let (V,E) be an interval graph with representation (L,<L, fL, fR) and suppose 14

that v0E . . . E vn is a minimal path with F (v0) <L F (vn). 15

(i) Then fR(vi) <L fR(vi+1) for each i < n− 1 and fL(vj) <L fL(vj+1) for each j > 0; 16

(ii) if F (v) <L F (v0), then ¬viE v for every i 6= 1; symmetrically, if F (vn) <L F (v), then 17

¬viE v for every i 6= n− 1. 18

Proof. To check the first conjunct of (i), suppose i < n− 1 is least such that fR(vi+1) ≤L fR(vi). 19

Since i < n − 1 it holds that ¬vj E vn for each j ≤ i by definition of minimal path. An easy 20

induction, starting with our assumption F (v0) <L F (vn), shows that F (vk) <L F (vn) for each 21

k ≤ i. Thus, in particular it holds that fR(vi) <L fR(vn). Let m ≤ n be least such that fR(vi) <L 22

fR(vm) and notice that m > i + 1 by choice of i. By choice of m it holds that fR(vm−1) ≤L 23

fR(vi) <L fR(vm), and so that fL(vm) ≤L fR(vm−1) because vm−1E vm. To summarise we get 24

that fL(vm) ≤L fR(vi) <L fR(vm), namely that viE vm contrary to the definition of minimal 25

path. 26

The second conjunct of (i) follows from the first considering the interval representation given 27

by the linear order (L,>L) and by the maps fL and fR. 28

For (ii), let v0E . . . E vn be a minimal path and F (v) <L F (v0) <L F (vn). Assume v E vi, 29

for some i > 1 (notice that ¬v E v0 by assumption). Since fR(v) <L fL(v0) by assumption, 30

fR(v0) <L fR(vi) by (i), and fL(vi) <L fR(v) by v E vi, it holds that v0E vi, contrary to the 31

definition of minimal path. � 32

3. Uniquely orderable connected interval graphs 33

In this section we prove Theorem 1. Suppose (V,E) is a connected incomparability graph. 34

Saying that (V,E) is not uniquely orderable amounts to check that there are two partial orders 35

≺ and ≺′ associated to (V,E) and three vertices a, b, c ∈ V such that a ≺ b ≺ c and b ≺′ a ≺′ c. 36

The vertices a and b can be reordered regardless, so to speak, the order of c. The connected 37

graph pictured (by one of its interval representations) in Figure 3 is an example of a non uniquely 38

orderable connected interval graph (in fact the intervals for a and b can be swapped without 39

changing their relationship with the intervals c and k). 40

The first characterization of uniquely orderable interval graphs exploits the above observation 41

to identify subgraphs which are forbidden in uniquely orderable interval graphs. 42

Definition 3.1. Let (V,E) be a graph. For B ⊆ V let K(B) = {v ∈ V | ∀b ∈ B (v E b)} and 43

R(B) = V \ (B ∪K(B)). We say that B is a buried subgraph of (V,E) if the following hold: 44

(i) there exist a, b ∈ B such that ¬aE b, 45
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(ii) K(B) ∩B = ∅ and R(B) 6= ∅, 1

(iii) if b ∈ B and r ∈ R(B), then ¬bE r. 2

The last point in the previous definition implies that any path between a vertex in B and a 3

vertex outside B must go through a vertex in K(B). The main consequence of (iii), which we use 4

many times without mention, is that if v ∈ V is such that there exist a, b ∈ B such that v E a and 5

¬v E b, then v ∈ B (because ¬v E b implies v /∈ K(B), while v E a and (iii) imply v /∈ R(B)). 6

Our definition of buried subgraph is slightly different from the one in [Fis85], but it is equivalent 7

for the class of graphs studied by Fishburn, i.e. connected interval graphs without universal vertices. 8

Since we allow universal vertices, in condition (ii) we substituted K(B) 6= ∅ with R(B) 6= ∅ (the 9

former condition implies the latter if there are no universal vertices, the reverse implication holds 10

if the graph is connected by (iii)). Moreover we restated condition (iii) in simpler, yet equivalent, 11

terms. 12

The other main character of Theorem 1 is the graph (W,Q). 13

Definition 3.2. If (V,E) is a graph we let W = {(a, b) ∈ V ×V | ¬aE b} and (writing ab in place 14

of (a, b) for concision) abQ cd if and only if aE c and bE d. 15

If ab and cd are elements of W which are connected by a path in (W,Q) we write ab Q̄ cd. 16

Proposition 3.3. Let (V,E) be an interval graph and ≺ a partial order associated to (V,E). If 17

ab, cd ∈W are such that ab Q̄ cd and a ≺ b, then c ≺ d. In particular we have ¬ab Q̄ ba. 18

Proof. Suppose first that abQ cd, so that aE c and bE d. Notice that bE c and aE d cannot 19

both hold. In fact, if a, b, c, d are not all distinct, then this would contradict ab ∈ W or cd ∈ 20

W . Otherwise, aE cE bE dE a would be a simple cycle of length four without chords, against 21

Theorem 2.5. If ¬bE c, then c ≺ b because a ≺ b and aE c. From this we obtain c ≺ d, since dE b. 22

If instead ¬aE d we obtain first a ≺ d and then again c ≺ d. 23

To derive c ≺ d from ab Q̄ cd it suffices to apply the transitivity of ≺ to a Q-path connecting ab 24

with cd. � 25

The last part of the previous proposition implies that if W 6= ∅ (which is equivalent to (V,E) 26

being not complete), then (W,Q) has at least two components. Moreover, if (W,Q) has more than 27

two (and so at least four) components, then for every partial order ≺ associated to (V,E) there 28

exist ab, cd ∈W such that a ≺ b and c ≺ d, yet ab Q̄ cd fails. 29

We split, as originally done by Fishburn, the proof of Theorem 1 in three steps corresponding to 30

(1) implies (2) (Lemma 3.4), (3) implies (1) (Lemma 3.5), and (2) implies (3) (Theorem 3.12). The 31

proof of the first implication in [Fis85] is not completely accurate, and we apply Fishburn’s idea 32

after a preliminary step which is necessary even when the graph is finite. The second implication is 33

straightforward and applies to interval graphs of any cardinality. The proof of the last implication 34

is completely new and requires more work. 35

The connectedness of the graph is not needed in the first two implications. Moreover, the 36

hypotheses of Lemma 3.4 could be further relaxed, as the proof applies to arbitrary incomparability 37

graphs. 38

Lemma 3.4. Every uniquely orderable interval graph does not contain a buried subgraph. 39

Proof. Let (V,E) be an interval graph with a buried subgraph B. Fix a partial order ≺0 associated 40

to (V,E) and some b0 ∈ B. We define a new binary relation ≺ on V as follows: when either u, v ∈ B 41

or u, v /∈ B set u ≺ v if and only if u ≺0 v; when b ∈ B and v /∈ B set b ≺ v if and only if b0 ≺0 v, 42

and v ≺ b if and only if v ≺0 b0. Thus the whole B is ≺-above the elements not in B which are 43

≺0-below b0 and ≺-below the elements not in B which are ≺0-above b0. 44

Using the fact that the vertices not in B are either ≺0-incomparable to every vertex of B or 45

≺0-comparable to every vertex of B, it is straightforward to check that ≺ is transitive, and hence a 46

partial order. For the same reason ≺ is associated to (V,E). The key feature of ≺ (not necessarily 47

shared by ≺0) is that B is ≺-convex, i.e. if b ≺ v ≺ b′ with b, b′ ∈ B, then v ∈ B as well. Indeed, 48

if v /∈ B, then b ≺ v implies b0 ≺0 v and v ≺ b′ implies v ≺0 b0. 49

Following now [Fis85], let ≺′ be such that the restrictions of ≺ and ≺′ to B are dual, while ≺′ 50

and ≺ coincide on V \ B and between elements of B and V \ B. Formally, u ≺′ v if and only if 51

either u, v ∈ B and v ≺ u, or if at least one of u and v does not belong to B and u ≺ v. The 52

transitivity of ≺′ is a consequence of the ≺-convexity of B (an observation lacking in the proof 53

given in [Fis85]) and hence ≺′ is a partial order associated to (V,E). 54
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If x, y ∈ B are such that x ≺ y and v ∈ R(B) (these elements exist by Definition 3.1) we have 1

either x ≺ y ≺ v or v ≺ x ≺ y. In the first case y ≺′ x ≺′ v, in the second case v ≺′ y ≺′ x, 2

witnessing that ≺′ is neither ≺ nor the dual order of ≺. � 3

Lemma 3.5. Let (V,E) be an interval graph. If (W,Q) has two components, then (V,E) is 4

uniquely orderable. 5

Proof. This follows easily from Proposition 3.3. � 6

For the proof of Theorem 3.12 we describe a construction that, starting from a pair of non- 7

adjacent vertices, attempts to build the minimal buried subgraph containing those two vertices. 8

We then show that if this attempt always fails, then for any ab, cd ∈W either ab Q̄ cd or ab Q̄ dc. 9

Construction 3.6. Let (V,E) be a connected interval graph and v, u ∈ V be such that ¬v E u.
We define recursively Bn(v, u) ⊆ V :

B0(v, u) = {v, u}
Bn+1(v, u) = {w ∈ V | ∃z, z′ ∈ Bn(v, u) (z E w ∧ ¬z′E w)}

We then set B(v, u) =
⋃
Bn(v, u). If w ∈ B(v, u) let ew be the least n such that w ∈ Bn(v, u) 10

(formally we should write ev,uw but we omit the superscript as v and u will always be understood). 11

A straightforward induction shows that Bn(v, u) ⊆ Bn+1(v, u), for each n ∈ N (for the base step 12

recall that interval graphs are reflexive, so that v and u themselves witness that v, u ∈ B1(v, u)). 13

We now show that B(v, u) is close to being a buried subgraph. 14

Property 3.7. In the situation of Construction 3.6, B(v, u) is a buried subgraph if and only if 15

R(B(v, u)) 6= ∅. 16

Proof. Notice that Condition (i) of Definition 3.1 is witnessed by v and u. Condition (3) is obvious, 17

because if r /∈ K(B(u, v)) but bE r for some b ∈ B(u, v), then r ∈ B(u, v). Moreover, if k ∈ 18

K(B(v, u)), then k ∈ K(Bn(u, v)) for every n and hence k /∈ B(u, v); hence B(v, u)∩K(B(v, u)) = 19

∅. Therefore, to verify that B(v, u) is a buried subgraph it suffices that R(B(v, u)) 6= ∅. � 20

In the next propositions, we will always consider a connected interval graph (V,E) with rep- 21

resentation (L,<L, fL, fR), fix v, u ∈ V with ¬v E u and F (v) <L F (u) and define B(v, u) as 22

in Construction 3.6. For brevity, we call this set of hypotheses (z) and indicate it next to the 23

proposition number. 24

Proposition 3.8 (z). Let x, y ∈ B(v, u). If F (u) <L F (x) and fL(x) ≤L fL(y), then ex ≤ ey. 25

Analogously, if F (x) <L F (v) and fR(y) ≤L fR(x), then ex ≤ ey as well. 26

Proof. We prove the first half of the statement by induction on ey. The base case is trivially satisfied 27

since there is no y ∈ B0(v, u) satisfying the hypotheses. Assume ey > 0 and let z ∈ Bey−1(v, u) 28

be such that z E y. If fL(x) ≤L fL(z), then ex ≤ ez < ey by induction hypothesis. Otherwise, 29

fL(z) <L fL(x) ≤ fL(y) ≤L fR(z) given that z E y. This means that z E x, which implies that 30

x ∈ Bez+1(v, u) since u ∈ Bez (v, u) is such that ¬uE x. Hence ex ≤ ez + 1 ≤ ey 31

The second half of the statement follows considering the representation (L,>L, fL, fR). � 32

Proposition 3.9 (z). Let w ∈ B(v, u). If F (w) ≮L F (u), then there exists a path uE b1E . . . bk E w 33

such that ebi < ew for all i ≤ k. 34

Analogously, if F (v) ≮L F (w), then there exists a path v E b1E . . . bk E w such that ebi < ew 35

for all i ≤ k. 36

Proof. By definition of Bew(v, u) there exists a path b0E b1E . . . E bk E w where bi ∈ B(v, u) and 37

0 = eb0 < eb1 < · · · < ebk < ew. Hence b0 ∈ {u, v} and, since F (w) ≮L F (u) and F (u) ≮L F (v), 38

by Proposition 2.6 we can assume that b0 = u. 39

The second half of the statement follows from the first one as usual. � 40

Proposition 3.10 (z). Let x, z ∈ B(v, u) and m = max{ex, ez}. Assume F (z) <L F (x) and 41

F (v) ≮L F (x) (this implies m > 0). Then there exists a minimal path z E v1E . . . E vnE x and 42

s ∈ B(v, u) with es < m such that evi < m and F (vi) <L F (s) for each i ≤ n. 43

Analogously, if F (x) <L F (z) and F (x) ≮L F (u) there exists a minimal path xE v1E . . . E vnE z 44

and s ∈ B(v, u) with es < m such that evi < m and F (s) <L F (vi) for each i ≤ n. 45
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Proof. Notice that once we find the minimal path z E v1E . . . E vnE x and s ∈ B(v, u) with 1

es < m such that evi < m for all i ≤ n it suffices to prove that F (vn) <L F (s), since then 2

F (vi) <L F (s) for i < n follows from Property 2.9.i. 3

We can apply Proposition 3.9 to both x and z obtaining paths connecting v to x and v to z and 4

with eb < m for all vertices b, distinct from x and z, occurring in the paths. Joining these paths 5

and then using Property 2.8 we obtain a minimal path z E v1E . . . E vnE x with evi < m. Notice 6

that n > 0 as ¬z E x. Let j < m be such that evn = j: we may assume j is least for which such a 7

minimal path exists. 8

If j = 0, then we claim that we can assume vn = v and hence we can choose s = u. In fact, if 9

vn = u, then F (x) <L F (v) is impossible and we have v E x. The hypotheses imply F (v) ≮L F (z) 10

and, since F (u) ≮L F (v), by Proposition 2.6 we can find i < n such that v E vi and consider the 11

path z E v1E . . . E viE v E x. 12

We now assume j > 0: there exists s ∈ B(v, u) such that es < j and ¬sE vn. We claim that 13

F (vn) <L F (s), completing the proof. Suppose on the contrary that F (s) <L F (vn) (F (vn) ∩ 14

F (s) 6= ∅ cannot hold because ¬sE vn). 15

In this case we have F (s) <L F (x) because fL(vn) <L fL(x) by Property 2.9.i. Hence F (v) ≮L 16

F (s) and we can use Proposition 3.9 and Property 2.8 to obtain a minimal path sE u1E . . . E u`, 17

with u` = v and eui
< es. Since F (x) ≮L F (s) and F (v) ≮L F (x) by Proposition 2.6 there exists 18

k ≤ ` such that uk E x. We distinguish two cases: F (z) ≮L F (s) and F (z) <L F (s). 19

In the first case we apply Proposition 2.6 to the path sE u1E . . . E uk E x: there exists h ≤ k 20

such that z E uh. Since z E uhE . . . E uk E x can be refined to a minimal path and eui < j, the 21

minimality of j is contradicted. 22

In the second case we apply Proposition 2.6 to the path z E v1E . . . E vnE x: there exists 23

h < n (recall that ¬vnE s) such that vhE s. Then z E v1E . . . E vhE sE u1E . . . E uk E x can 24

be refined to a path, which can then be refined to a minimal path z E w1E . . . E wr E x. Notice 25

that wr = up, for some p ≤ k because ¬viE x for every i ≤ h < n, by minimality of the path 26

z E v1E . . . E vnE x, and F (s) <L F (x). Since ewr < j we contradict again the minimality of j. 27

The second half of the statement follows from the first one as usual. � 28

Lemma 3.11 (z). If x, y ∈ B(v, u), fR(x) ≤L fR(v) and fL(u) ≤L fL(y), then vu Q̄ xy. 29

Proof. The proof is by induction on ex + ey. If ex + ey = 0, then x = v and y = u, so that the 30

conclusion is immediate (recall that Q is reflexive). Now assume that ex + ey > 0 and suppose 31

ex ≤ ey (if ey < ex we can employ the usual trick of reversing the representation) and hence ey > 0. 32

If uE y, then xuQxy and, since the induction hypothesis implies vu Q̄ xu (because eu = 0), we 33

obtain vu Q̄ xy. Thus we assume ¬uE y and hence F (u) <L F (y). Let z ∈ Bey−1(v, u) be such 34

that y E z. If fL(u) ≤L fL(z), then we can apply the induction hypothesis to xz obtaining vu Q̄ xz. 35

Since xz Qxy, we are done. 36

We thus assume fL(z) <L fL(u) which, together with F (u) <L F (y) and z E y, implies fR(u) <L 37

fR(z) and hence z E u. Notice moreover that z 6= u and hence (since z 6= v is obvious) ey > 1. 38

If ¬xE z, then xuQxz Qxy and, since by induction hypothesis vu Q̄ xu, we have vu Q̄ xy. If 39

instead xE z we must have fL(z) ≤L fR(x) ≤L fR(v). Let t ∈ Bey−2(v, u) be such that ¬t E z. 40

If F (z) <L F (t), then F (u) <L F (t) and fL(y) <L fL(t), so that Proposition 3.8 implies y ∈ 41

Bey−2(v, u), which is impossible. Hence F (t) <L F (z). This implies fR(t) <L fR(x). It follows 42

that x ∈ Bey−1(v, u), either by Proposition 3.8, if F (x) <L F (v), or because x ∈ B1(v, u) if xE v, 43

given that ¬xE u. Since vu Q̄ tu holds by induction hypothesis and we have also tuQ tz Q ty it 44

suffices to show that ty Q̄ xy. 45

If t E x the conclusion is immediate, otherwise F (t) <L F (x). Since F (v) ≮L F (x) we can 46

apply Proposition 3.10 finding a minimal path t E u1E . . . E unE x and s ∈ Bey−2(v, u) such that 47

ui ∈ Bey−2(v, u) and F (ui) <L F (s) for all i ≤ n. We claim that ¬uiE y, for each i ≤ n, so 48

that ty Qu1y Q . . . Quny Qxy witnesses ty Q̄ xy. Indeed, if uiE y, for some i ≤ n, we would have 49

fL(y) <L fR(ui) <L fL(s) and we could apply Proposition 3.8 to obtain y ∈ Bey−2(v, u), which is 50

impossible. � 51

Theorem 3.12. Let (V,E) be a connected interval graph. If (V,E) does not contain a buried 52

subgraph, then (W,Q) has two components. 53

Proof. Fix a representation (L,<L, fL, fR) of (V,E) and assume that (V,E) does not contain a 54

buried subgraph. We show that if ab, cd ∈W are such that F (a) <L F (b) and F (c) <L F (d), then 55

ab Q̄ cd. We can assume without loss of generality that fR(c) ≤L fR(a). We consider three cases: 56
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Case 1: fL(b) <L fL(d): B(a, b) (which satisfies the hypotheses of (z)) is not a buried subgraph 1

and hence by Property 3.7 we must have B(a, b) = V . In particular c, d ∈ B(a, b) and we 2

are in the hypotheses of Lemma 3.11: we conclude that ab Q̄ cd. 3

Case 2: fR(a) <L fL(d) ≤L fL(b): B(a, d) (which satisfies the hypotheses of (z)) is not a buried 4

subgraph and hence by Property 3.7 b, c ∈ B(a, d). Lemma 3.11 implies both ad Q̄ ab and 5

ad Q̄ cd. It follows that ab Q̄ cd. 6

Case 3: fL(d) ≤L fR(a): neither B(a, b) nor B(c, d) (which both satisfy the hypotheses of (z)) 7

is a buried subgraph. By Property 3.7 we have c ∈ B(a, b), which implies ab Q̄ cb, and 8

b ∈ B(c, d), which together with fL(d) <L fL(b) yields cd Q̄ cb (we use Lemma 3.11 in both 9

cases). Thus ab Q̄ cd also in this case. � 10

4. Reverse mathematics and interval graphs 11

Reverse mathematics is a research program, which dates back to the Seventies, whose goal is to 12

find the exact axiomatic strength of theorems from different areas of mathematics. It deals with 13

statements about countable, or countably representable, structures, using the framework of the 14

formal system of second order arithmetic Z2. We do not introduce reverse mathematics here, but 15

refer the reader to monographs such as [Sim09] and [Hir15]. 16

The subsystems of second order arithmetic are obtained by limiting the comprehension and 17

induction axioms of Z2 to specific classes of formulas. We mention only the subsystems we are going 18

to use in this paper: RCA0 is the weak base theory corresponding to computable mathematics, 19

WKL0 extends RCA0 by adding Weak König’s Lemma (each infinite binary tree has an infinite 20

path), and ACA0 is even stronger allowing for definitions of sets by arithmetical comprehension. 21

It is well-known that WKL0 is equivalent to many compactness principles and thus we can claim 22

that a theorem not provable in WKL0 does not admit a proof by compactness. In particular this 23

applies to Theorem 1, as Theorem 2 shows that it is not provable in WKL0. 24

The second author studied the equivalence of different characterizations of interval orders from 25

the reverse mathematics perspective in [Mar07]. A similar study can be carried out for interval 26

graphs, and we summarize here the main results: full details and proofs are included in the first 27

author’s PhD thesis [FC19], which includes also results about the subclass of indifference graphs 28

(corresponding to proper interval orders studied in [Mar07]). 29

As customary in reverse mathematics, the system in parenthesis indicates where the definition 30

is given or the statement proved. Notice also that in this and in the next section we deal with 31

countable graphs and orders, the only ones second order arithmetic and its subsystems can speak 32

of. 33

In the literature it is possible to find slightly different definitions of interval graphs and orders, 34

which depend on the notion of interval employed. For example intervals may be required to be 35

closed or not. We thus have five conceptually distinct definitions of interval graphs: 36

Definition 4.1 (RCA0). Let (V,E) be a graph. 37

• (V,E) is an interval graph if there exist a linear order (L,<L) and a relation F ⊆ V × L 38

such that, abbreviating {x ∈ L | (p, x) ∈ F} by F (p), for all p, q ∈ V the following hold: 39

(i1) F (p) 6= ∅ and ∀x, y ∈ F (p)∀z ∈ L (x <L z <L y → z ∈ F (p)), 40

(i2) pE q ⇔ F (p) ∩ F (q) 6= ∅. 41

• (V,E) is a 1-1 interval graph if it also satisfies 42

(i3) F (p) 6= F (q) whenever p 6= q. 43

• (V,E) is a closed interval graph if there exist a linear order (L,<L) and two functions 44

fL, fR : V → L such that for all p, q ∈ V 45

(c1) fL(p) <L fR(p), 46

(c2) pE q ⇔ fL(p) ≤L fR(q) ≤L fR(p) ∨ fL(q) ≤L fR(p) ≤L fR(q) 47

• A closed interval graph (V,E) is a 1-1 closed interval graph if we also have 48

(c3) fR(p) 6= fR(q) ∨ fL(p) 6= fL(q) whenever p 6= q. 49

• (V,E) is a distinguishing interval graph if (c1) and (c2) hold together with 50

(c4) fi(p) 6= fj(q) whenever p 6= q ∨ i 6= j. 51
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4.1. Definitions and characterizations of interval graph. In Definition 2.3 we mentioned 1

that every interval graph is a closed interval graph: in fact all the notions introduced in Defini- 2

tion 4.1 are equivalent in a sufficiently strong theory. Our first results concern the systems where 3

the implications between the notions introduced in Definition 4.1 can be proved. The same in- 4

vestigation for interval orders was carried out in [Mar07] and in this respect interval graphs and 5

interval orders behave similarly. Indeed the proofs of the results we are going to state either mimic 6

the corresponding proofs for interval orders or are easily derived from those results. 7

Definition 4.1 enumerates increasingly strong conditions, so that the implications from a later 8

to an earlier notion are easily proved in RCA0. Regarding the other implications we obtain that, as 9

is the case for interval orders, there are three distinct notions of interval graphs in RCA0, namely 10

that of interval, 1-1 interval and closed interval graph. 11

Theorem 4.2 (RCA0). Every closed interval graph is a distinguishing interval graph. 12

Theorem 4.3 (RCA0). The following are equivalent: 13

(1) WKL0; 14

(2) every interval graph is a 1-1 interval graph; 15

(3) every 1-1 interval graph is a closed interval graph; 16

(4) every interval graph is a closed interval graph. 17

4.2. Structural characterizations of interval graphs. Since interval graphs are incomparabil- 18

ity graphs (and Definition 2.1 can be given in RCA0) we first look at the most important structural 19

characterization of comparability graphs. The first result is due to Jeff Hirst ([Hir87, Theorem 20

3.20]). 21

Lemma 4.4 (RCA0). The following are equivalent: 22

(1) WKL0; 23

(2) every irreflexive graph such that every cycle of odd length has a triangular chord is a 24

comparability graph. 25

We then consider two structural characterizations of interval graphs (notice that Definition 2.4 26

can be given in RCA0). The necessity of both conditions is provable in RCA0, but the sufficiency 27

of one of them requires WKL0. 28

Theorem 4.5 (RCA0). Every interval graph is an incomparability graph such that every simple 29

cycle of length four has a chord. Moreover, every interval graph is triangulated and has no asteroidal 30

triples. 31

Every incomparability graph such that every simple cycle of length four has a chord is an interval 32

graph. 33

Theorem 4.6 (RCA0). The following are equivalent: 34

(1) WKL0; 35

(2) if a reflexive graph is triangulated and has no asteroidal triples, then it is an interval graph. 36

Figure 4 summarizes the results about the different definitions and characterizations of interval 37

graphs. The arrows correspond to provability in RCA0, while every implication from a notion below 38

another is equivalent to WKL0. 39

Schmerl [Sch05] claimed that the statement “A graph is an interval graph if and only if each finite 40

subgraph is representable by intervals” is equivalent to WKL0. Theorem 4.6 confirms his claim and 41

shows that compactness is necessary to prove the statement. On the other hand, the corresponding 42

statement for interval orders, i.e. an order is an interval order if and only if each suborders is an 43

interval order, is provable in RCA0 because the structural characterization of interval orders (as 44

the partial orders not containing 2 ⊕ 2) is provable in RCA0 [Mar07, Theorem 2.1]. The different 45

strengths of the structural characterizations of interval graphs and orders can be traced to the 46

fact that an interval order carries full information about the relative position of the intervals in its 47

representations, while an interval graph does not. 48

Lekkerkerker and Boland [LB62] provide another characterization of interval graphs listing all 49

the forbidden subgraphs. It is routine to check in RCA0 that those graphs are a complete list of 50

graphs whose cycles of length greater than four do not have chords or which contain an asteroidal 51

triple. 52
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distinguishing interval1-1 closed intervalclosed interval

1-1 interval

four cycle + incomparabilityinterval graph

triangulated + no asteroidal triples

Figure 4. Implications in RCA0

4.3. Interval graphs and interval orders. Different definitions for interval orders, mirroring 1

those of Definition 4.1, were given and studied in [Mar07]. We give here only the most basic one, 2

as the others can be easily guessed from this. 3

Definition 4.7 (RCA0). A partial order (V,�) is an interval order if there exist a linear order 4

(L,<L) and a relation F ⊆ V × L such that, abbreviating {x ∈ L | (p, x) ∈ F} by F (p), for all 5

p, q ∈ V the following hold: 6

(i1) F (p) 6= ∅ and ∀x, y ∈ F (p)∀z ∈ L (x <L z <L y → z ∈ F (p)), 7

(i2) p � q ⇔ ∀x ∈ F (p)∀y ∈ F (q) (x <L y). 8

We explore the strength of the statements that allow moving from interval graphs to interval 9

orders and back. By the previous results (and the corresponding ones in [Mar07]) it suffices to 10

consider three different notions on each side, and we concentrate on the relationship between 11

corresponding notions. In one direction everything goes through in RCA0. 12

Theorem 4.8 (RCA0). Let (V,E) be a graph and let P be any of “interval”, “1-1 interval”, 13

“closed interval”. (V,E) is a P graph if and only if there exists a P order (V,≺) such that 14

pE q ⇔ p ⊀ q ∧ q ⊀ p for all p, q ∈ V . 15

The other direction is more interesting, as only in one case RCA0 suffices. The proofs of the 16

reversals to WKL0 are modifications of the proof of [Mar07, Theorem 6.4]. 17

Theorem 4.9 (RCA0). Let (V,�) be a partial order. (V,�) is an interval order if and only if 18

(V,E), where pE q ⇔ p ⊀ q ∧ q ⊀ p for all p, q ∈ V , is an interval graph. 19

Theorem 4.10 (RCA0). The following are equivalent: 20

(1) WKL0 21

(2) Let (V,�) be a partial order. (V,�) is a 1-1 interval order if and only if (V,E), where 22

pE q ⇔ p ⊀ q ∧ q ⊀ p for all p, q ∈ V , is a 1-1 interval graph. 23

(3) Let (V,�) be a partial order. (V,�) is a closed interval order if and only if (V,E), where 24

pE q ⇔ p ⊀ q ∧ q ⊀ p for all p, q ∈ V , is a closed interval graph. 25

5. Why compactness does not suffice 26

It is immediate (using Theorem 4.5) that Lemmas 3.4 and 3.5 are provable in RCA0. On the 27

other hand, we now show that Theorem 3.12 is much stronger, and indeed equivalent to ACA0. As 28

mentioned in the introduction of the paper, this result explains why the attempts to prove it by 29

compactness cannot succeed. 30

Lemma 5.1 (ACA0). Let (V,E) be a connected reflexive graph which is triangulated and with no 31

asteroidal triples. Suppose furthermore that a, b, c, d ∈ V are such that ¬ab Q̄ cd and ¬ab Q̄ dc. 32

Then there exists a buried subgraph B ⊆ V such that either a, b ∈ B or c, d ∈ B, and no subgraph 33

A ⊆ B, which contains either a, b or c, d respectively, is a buried subgraph. 34

Proof. By Theorems 4.3 and 4.6 WKL0, and a fortiori ACA0, suffices to prove that any connected 35

graph which is triangulated and with no asteroidal triples has a closed interval representation. We 36
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then need to check that the proof of Theorem 3.12, which indeed provides a buried subgraph with 1

the desired properties, goes through in ACA0. 2

The first step is checking that, given v, u ∈ V with ¬v E u, we can carry out Construction 3.6 3

and define B(v, u) and the various Bn(v, u)’s in ACA0. In fact the definition of each Bn(v, u) in 4

Construction 3.6 uses an instance of arithmetical comprehension and thus the whole construction, 5

as presented there, appears to require the system known as ACA+
0 , which is properly stronger than 6

ACA0. 7

This problem can however be overcome in the following way. Given v, u ∈ V as before, we can 8

characterize B(v, u) as the set of w ∈ V such that there exists a finite tree T ⊆ 2<N and a label 9

function ` : T → V with the following properties: 10

• `(∅) = w (here ∅ is the root of T ); 11

• if σ ∈ T is not a leaf of T , then σa0, σa1 ∈ T , `(σ)E `(σa0) and ¬`(σ)E `(σa1); 12

• if σ ∈ T is a leaf of T , then `(σ) ∈ {v, u}. 13

In fact, the tree and its label function describe the ‘steps’ allowing w to enter B(v, u). Moreover 14

Bn(v, u) is the set of w ∈ V such that there exists T ⊆ 2<n and ` witnessing w ∈ B(v, u). These 15

characterizations of B(v, u) and Bn(v, u) use Σ0
1-formulas, and show that ACA0 suffices to prove 16

the existence of the sets. 17

Once B(v, u) and each Bn(v, u) are defined, it is straightforward to check that all subsequent 18

steps in the proof of Theorem 3.12 can be carried out in RCA0. � 19

To prove that Theorem 3.12 implies ACA0 we use the following notions. Given an injective 20

function f : N→ N we say that i is true for f when f(k) > f(i) for all k > i. It is easy to see that 21

there exist infinitely many i which are true for f . If i is not true for f , i.e. if f(k) < f(i) for some 22

k > i, we say that i is false for f . Moreover, we say that i is true for f at stage s if f(k) > f(i) 23

whenever i < k < s, and that i is false for f at stage s if f(k) < f(i) for some k with i < k < s. If 24

the injective function f is fixed, we omit “for f” from this terminology. 25

The following Proposition is well-known (see e.g. the discussion after Definition 4.1 in [FHM+16]). 26

Proposition 5.2 (RCA0). The following are equivalent: 27

(1) ACA0; 28

(2) if f : N→ N is an injective function there exists an infinite set T such that every i ∈ T is 29

true for f . 30

Theorem 5.3 (RCA0). The following are equivalent: 31

(1) ACA0; 32

(2) let (V,E) be a connected graph, triangulated and with no asteroidal triples; if a, b, c, d ∈ V 33

are such that ¬ab Q̄ cd and ¬ab Q̄ dc, then there exists a buried subgraph B ⊆ V such that 34

either a, b ∈ B or c, d ∈ B, and no subgraph A ⊆ B, which contains either a, b or c, d 35

respectively, is a buried subgraph; 36

(3) let (V,E) be a connected closed interval graph; if (W,Q) has more than two components, 37

then there exists a buried subgraph B ⊆ V ; 38

(4) let (V,E) be a connected closed interval graph; if (V,E) is not uniquely orderable, then 39

there exists a buried subgraph B ⊆ V . 40

Proof. (1 ⇒ 2) is Lemma 5.1. The implication (2 ⇒ 3) is trivial, while (3 ⇒ 4) follows directly 41

from Lemma 3.5, which goes through in RCA0. 42

To prove (4 ⇒ 1) we fix an injective function f : N → N and we define (within RCA0) a 43

connected closed interval graph (V,E) such that (W,Q) has more than two components. We then 44

prove, arguing in RCA0, that the unique buried subgraph B ⊆ V codes the (necessarily infinite) 45

set of numbers which are true for f . 46

We let V = {a, b, k, r}∪{xi, yi | i ∈ N}. Beside making sure that (V,E) is reflexive, the definition 47

of the edge relation is by stages: at stage s we define E on Vs = {a, b, k, r} ∪ {xi, yi | i < s} ⊆ V . 48

At stage 0 let k be adjacent to a, b and r (and add no other edges). At stage s+ 1 we define the 49

vertices adjacent to xs and ys by the following clauses: 50

(a) aE xsE bE ys and xsE kE ys, 51

(b) xsE xi and ysE yi for each i < s, 52

(c) xsE yi for each i ≤ s, 53

(d) for i ≤ s, ysE xi if and only if i is true for f at stage s+ 1. 54
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Figure 5. Interval representation of V4 in case 1 (and so 2) becomes false at stage 3.

It is immediate that (V,E) is connected. To check that it is a closed interval graph we define a 1

closed interval representation fL, fR : V → L where (L,<L) is a dense linear order. The definition 2

of fL and fR reflects the construction of the graph by stages. At stage 0 assign to the members of 3

V0 elements of L satisfying 4

fL(r) <L fL(k) <L fR(r) <L fL(a) <L fR(a) <L fL(b) <L fR(b) <L fR(k). 5

This ensures that we are representing the restriction of the graph to V0. 6

At stage s + 1, first let fL(xs) = fL(a) and fR(ys) = fR(b) (since this is done at every stage, 7

we are respecting conditions (a) and (b)). We thus still need to define fR(xs) and fL(ys); first of 8

all we make sure that fL(b) <L fL(yi) <L fL(ys) <L fR(xs) <L fR(b) for every i < s, so that (c) 9

is also respected. To respect condition (d) as well we satisfy the following requirements: 10

• if i < s is true at stage s+ 1, then fR(xs) <L fR(xi) (which implies fL(ys) <L fR(xi)); 11

• if j < s is false at stage s+ 1, then fR(xj) <L fL(ys). 12

The existence of fL(ys) <L fR(xs) with these properties follows from the density of L and from 13

the fact that if i < s is true at stage s+ 1 and j < s is false at stage s+ 1, then fR(xj) <L fR(xi). 14

To see this notice that: 15

• if i < j, then i was also true at stage j + 1 and we set fR(xj) <L fR(xi) then; 16

• if j < i, then j was already false at stage i+1 (if j was true at stage i+1, then f(j) < f(i), 17

and i would be false at stage s + 1 because j is false at that stage), and hence we set 18

fR(xj) <L fL(yi) <L fR(xi) at that stage. 19

Figure 5 depicts a sample interval representation following this construction. 20

To check that (V,E) is not uniquely orderable let ≺1 be the partial order induced by the interval 21

representation we just described: v ≺1 u if and only if fR(v) <L fL(u). Define ≺2 so that ≺1 and 22

≺2 coincide on V \ {s} and u ≺2 s for all u ∈ V \ {r, k}. It is immediate that both ≺1 and ≺2 are 23

associated to (V,E), and that ≺2 is not dual of ≺1. 24

By (4) there exists a buried subgraph B ⊆ V . First of all notice that k ∈ K(B) and hence 25

k /∈ B. Now observe that r ∈ B implies, using Conditions (i) and (iii) of Definition 3.1, that either 26

some xn or some yn belongs to B. From there, using Condition (iii) again, it is easy to see that 27

B = V \ {k} and hence R(B) = ∅, contradicting Condition (ii). Thus r /∈ B. Then, in order to 28

satisfy Condition (i), we must have either a, b ∈ B or a, yn ∈ B or xm, yn ∈ B, for some n and 29

some m which is false at stage n + 1. In any case we have a ∈ B: in the first two cases this is 30

obvious, and in the latter case this follows from Condition (iii) because aE xm and ¬aE yn for 31

every n and m. But then, using bE yn and ¬bE a we obtain b ∈ B even in the second and third 32

case. Thus we can conclude that a, b ∈ B. For each n we have ynE b and ¬ynE a and therefore 33

yn ∈ B. Since bE xnE a for each n ∈ N, then either xn ∈ K(B) or xn ∈ B depending whether xn 34

is adjacent to every ym or not, namely whether n is true or false for f . Therefore we showed 35

B = {a, b} ∪ {yn | n ∈ N} ∪ {xn | n is false}, 36

so that K(B) = {k}∪{xn | n is true} and R(B) = {r}. Then T = {n | xn /∈ B} is the (necessarily 37

infinite) set of all n which are true for f . � 38
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