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Abstract—Hand gesture recognition is still a topic of great
interest for the computer vision community. In particular, sign
language and semaphoric hand gestures are two foremost areas
of interest due to their importance in Human-Human Com-
munication (HHC) and Human-Computer Interaction (HCI),
respectively. Any hand gesture can be represented by sets
of feature vectors that change over time. Recurrent Neural
Networks (RNNs) are suited to analyse this type of sets thanks
to their ability to model the long term contextual information
of temporal sequences. In this paper, a RNN is trained by
using as features the angles formed by the finger bones of the
human hands. The selected features, acquired by a Leap Motion
Controller (LMC) sensor, are chosen because the majority of
human hand gestures produce joint movements that generate
truly characteristic corners. The proposed method, including
the effectiveness of the selected angles, was initially tested by
creating a very challenging dataset composed by a large number
of gestures defined by the American Sign Language (ASL). On
the latter, an accuracy of over 96% was achieved. Afterwards, by
using the SHREC dataset, a wide collection of semaphoric hand
gestures, the method was also proven to outperform in accuracy
competing approaches of the current literature.

Index Terms—Hand gesture recognition, sign language,
semaphoric gestures, leap motion controller (LMC), recurrent
neural network (RNN), Long Short Term Memory (LSTM).

I. INTRODUCTION

HANDS can express a wide range of information thanks
to the many gestures that their fingers can compose.

Different categorizations of hand gestures can be defined
depending on the type of information that the hands intend
to transmit. Based on the researches of Kendon [1] and Quek
et al. [2], a possible taxonomy of hand gesture categories can
be proposed as follows:
• Deictic are the hand gestures that involve a pointing

activity to establish the identity or spatial location of an
object within the context of an application domain;

• Manipulative are usually performed by freehand move-
ments to mimic manipulations of physical objects, such
as in virtual or augmented reality interfaces;

• Semaphoric are specific hand gestures that define a set
of commands and/or symbols to interact with machines.
They are often used alternatively to the speech modality,
when the latter is unusable or ineffective;

• Gesticulation is one of the most natural forms of ges-
turing. It is commonly used in combination with conver-
sational speech interfaces. These hand gestures are often
unpredictable and difficult to analyse;

• Language are the hand gestures used for sign language.
They are performed by combining a set of gestures
to form grammatical structures for conversational style
interfaces. In case of finger spelling, these gestures can
be considered like semaphoric ones.

Hand gesture recognition provides a means to decode the
information expressed by the reported categories, which are
always more used to interact with innovative applications,
such as interactive games [3], [4], serious games [5], [6], sign
language recognisers [7], [8], [9], [10], emotional expression
identifiers [11], [12], remote controllers in robotics [13], [14],
advanced computer interfaces [15], [16], [17], [18], and others.
In general, the approaches used in hand gesture recognition
can be divided into two main classes: 3D model-based [19]
and appearance-based [20]. The first uses key elements of
the body parts to acquire relevant 3D information, while the
second uses images or video sequences to acquire key features.
In the past, several RGB cameras were necessary to obtain a
3D model of the body parts, including hands. Recent works,
supported by advanced devices, e.g., Microsoft Kinect [21] or
LMC [22], as well as novel modelling algorithms based on
depth map concept [23], have enabled the use of 3D models
within everyday application domains.

In this paper, a 3D model-based method for the recognition
of sign language and semaphoric hand gestures is presented.
Specifically, the proposed approach uses a skeletal-based mod-
elling, where a virtual representation of the skeleton hands (or,
in general, of other parts of the body) is mapped to specific
segments. This technique uses joint angle parameters along
with segment lengths, instead of intensive processing of all 3D
model parameters. Then, it measures the variations over time
of the skeleton joints whose spatial coordinates are acquired by
a LMC. In particular, the angles formed by a specific subset of
joints that involve distal, intermediate, and proximal phalanges
for the index, middle, ring, and pinky, as well as the metacarpal
for the thumb, can be considered highly discriminating to
recognize many types of hand gestures, as confirmed by our
tests. Notice that, these features were selected as they are
easy and quick to be extracted. Spatial information about
the fingertips are also considered by the method to manage
not articulated movements of the hands. Finally, to obtain
a more accurate classifier, the proposed approach also takes
into account the information of the intra-finger angles and the
spatial data of the palm of the hand. During the design of the
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proposed method, the following two challenges were fixed:
• the search for a robust solution usable in real contexts

and able to also recognize hand gestures that are similar
to each other;

• the achievement of the highest accuracy level compared
with competing works of the current state-of-the-art.

The goals reported above were obtained by using a stack
of RNNs [24] with Long Short Term Memory (LSTM) [25]
architecture, a particular type of Deep Neural Network (DNN)
where connections between units form a directed cycle within
the same layer. The RNNs, unlike the common DNNs, can
model long term contextual information of temporal se-
quences, thus obtaining excellent results in fields such as sound
analysis and speak recognition, as reported in [26]. The LSTM
is an architecture where a RNN uses special units instead of
common activation functions. LSTM units help to propagate
and preserve the error through time and layers. This aspect
of the LSTMs allows the net to learn continuously over many
time steps, thereby opening a channel to link causes and effects
remotely. An architecture formed by two or more stacked
LSTM RNNs is defined as Deep LSTM (DLSTM). Such an
architecture allows to learn at different time scales over the
input sequences [27]. Initially, in the experimental session,
the method was tested by creating a dataset composed by a
challenging subset of hand gestures defined by the ASL [28].
The latter was chosen because it is composed of a wide
range of hand gestures with a high degree of complexity.
Afterwards, by using the wide collection of semaphoric hand
gestures contained in the SHREC dataset [29], the proposed
method was also compared with competing works of the
current literature. Summarizing, the method reported in this
paper presents the following contributions:
• the selection of a simple set of features, based on the joint

angles, that are highly discriminative for the recognition
of any type of hand gesture, especially for sign language
and semaphoric hand gestures;

• the creation, by the LMC, of a large dataset to support
the comparison of sign language recognizers based on the
hand skeleton model. Notice that, the LMC guarantees a
high precision in the estimation of the joint positions [30];

• the capability of analysing and recognizing a large num-
ber of hand gestures in two main areas of interest like sign
language and semaphoric hand gestures. Notice that, the
study of static and dynamic hand gestures of the ASL
provides a prerequisite for achieving wider recognition
systems for the sign language;

• for the first time in hand gesture recognition field, the use
of the DLSTM, in combination with the hand skeleton
extracted by a LMC, is proposed. Furthermore, even
more important, an accuracy of over 96% on the created
sign language based dataset and a comparison on the
SHREC dataset that outperforms in accuracy competing
approaches of the current literature, are reported.

The rest of the paper is structured as follows. In Section II,
the state-of-the-art of the hand gesture recognition is presented.
The proposed method is described in Section III. Extensive
experimental results and comparisons with competing works

are discussed in Section IV. Finally, conclusions are drawn in
Section V.

II. RELATED WORK

In the current literature, hand and body gesture recognition
is based on a conventional scheme: the features are acquired
from one or more sensors (such as, Kinect [31], [32], [33],
LMC [34], [8]) and machine learning techniques (e.g., Support
Vector Machines (SVMs) [35], [36], Hidden Markov Models
(HMMs) [37], [38], Convolutional Neural Networks (CNNs)
[39], [26]) are used to perform a classification phase. A
reference work is reported in [35], where an SVM is used with
Histogram of Oriented Gradients (HOGs) as feature vectors.
Wang et al. [36] and Suryanarayan et al. [40] used an SVM
with volumetric shape descriptors. Using the same classifier,
Marin et al. [9] applied a combination of features extracted
by Kinect and LMC sensors. Other interesting solutions are
based on HMMs, such as that proposed in Zun et al. [41],
where a robust hand tracking to recognize hand signed digit
gestures is reported.

Different well-known techniques are extended and cus-
tomized to reach increasingly better results. An example is
shown in [7], where a semi-Markov conditional model to
perform finger-spelling gesture recognition on video sequences
is presented. The Hidden Conditional Random Field (HCRF)
method, proposed in Wang et al. [37], is instead used to
recognize different human gestures. Lu et al. [8] use an
extension of the HCRF to recognize dynamic hand gestures
driven by depth data. Regarding the hand pose estimation, the
solution proposed in Li et al. [38] shows excellent results by
applying a Randomized Decision Tree (RDT).

Another common solution is based on the use of Dynamic
Time Warping (DTW). Although DTW does not belong to the
class of machine learning techniques, it is often used in time
series classification. In Vikram et al. [34], a DTW to support
a handwriting recognition process based on the trajectory of
the fingers extracted by a LMC is presented. In [42], the DTW
with a novel error metric to match patterns, combined with a
statistical classifier, is used to perform a tool to aid the study of
basic music conducting gestures. In Sohn et al. [10], a pattern
matching method by the combination of a DTW and a simple
K-Nearest Neighbor (K-NN) classifier is used.

Recently, the great performance of the deep neural networks
has motivated the use of the CNNs in different application
domains, including the gesture recognition as proposed in [39].
Moreover, analysing the behaviour of these nets in other
fields [24], [25], [26], we have understood that the RNNs can
be suitably used to support the classification of temporal data
sequences. In addition, some recent works, such as [43], have
shown how the LSTMs are potentially more effective than
CNNs in recognizing gestures. Based on these observations,
the proposed method was designed starting from two works
that achieve outstanding results in the current literature: the
first, proposed by Du et al. [44], where an hierarchical
RNN for skeleton action recognition is used, and the second,
proposed by Graves et al. [26], that uses a Deep Bidirectional
LSTM for the speech recognition.
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Fig. 1: Logical architecture of the proposed method. The training phase is performed by a DLSTM with two stacked LSTM
RNNs. Given a sequence of input vectors, the DLSTM returns an output vector for each time instant t, with 0 ≤ t ≤ T − 1,
that contains the probabilities for each class. K and T are the different classes of the hand gestures and the maximum number
of time instants in which a gesture is acquired, respectively.

III. METHOD

Let us consider, each hand gesture acquired by a user is
represented by a set X = {x0, x1, ..., xT−1} of feature vectors,
where T indicates the maximum number of time instants,
inside a time interval Θ, in which the features are extracted
by a LMC. Notice that, a LMC is chosen as reference device
for the acquisitions because it is optimized for the hands and
the obtained skeleton model provides very accurate dynamic
information about finger bones [45]. A DLSTM is applied to
model these sequences of data, where a time series of feature
vectors (one vector for each time instant) is converted into a
series of output probability vectors Y = {y0, y1, ..., yT−1}.
Each yt ∈ Y indicates the class probability of the gesture
carried out at time t, with 0 ≤ t ≤ T − 1. Finally,
the classification of the gestures is performed by a softmax
layer [46] using K = |C| classes, where C is the set of
the considered gesture classes. The logical architecture of the
proposed method is shown in Fig. 1.

A. Feature Extraction

Each gesture can be considered as the composition of
different poses, where each pose is characterized by particular
angles. Such a concept has already been applied in several
works, using the angles formed by the body joints to recognize
human actions [47], [48], [49]. So, each feature vector xt ∈ X ,
with 0 ≤ t ≤ T − 1, is mainly composed by (Fig. 2):
• the internal angles ω1, ω2, ω3, and ω4 of the joints

between distal phalanges and intermediate phalanges. The
internal angle ω0, considered for the thumb, is computed
between distal phalanx and proximal phalanx;

• the internal angles β1, β2, β3, and β4 of the joints
between intermediate phalanges and proximal phalanges.
The internal angle β0, considered for the thumb, is
computed between proximal phalanx and metacarpal.

Each finger can be seen as a set of segments, where CD is
the distal phalanx, BC is the intermediate phalanx (with the
exception of the thumb, where BC is the proximal phalanx),

Fig. 2: The features extracted from the hand: joint angles and
fingertip positions. The yellow points indicate the fingertip po-
sitions on which the 3D displacements are computed. The red
points indicate the joints on which the angles are computed.

and AB is the proximal phalanx (with the exception of the
thumb, where AB is the metacarpal). The angles are calculated
as follows:

ωj = arccos

(
BC · CD
|BC||CD|

)
(1)

βj = arccos

(
AB ·BC
|AB||BC|

)
(2)

where, j = 0, .., 4. Since the information provided by the
angles is not sufficient to manage all types of existing hand
gestures, especially dynamic gestures that perform movements
in 3D space, additional information is used by considering the
following features:
• 3D displacements u5, v5, z5 of the position of the central

point Ph of the palm of the hand. These features are
considered to manage hand translation on the 3D space;

• 3D displacements ul, vl, zl of the fingertip positions, with
l = 0, .., 4. These features are considered to manage hand
rotation in 3D space;
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Fig. 3: Example of static gestures differentiated by the intra-
finger angles γ1, γ2, and γ3.

• the intra-finger angles γ1, γ2, and γ3, i.e., the angles
between two consecutive fingers, where the fingers con-
sidered are: the pointer finger, the middle finger, the ring
finger, and the pink finger. These features are used to
handle special cases of static gestures that differ from
each other only in intra-finger angles, as shown in Fig. 3.

All the reported features are independent by the reference.
Thus, the input vector assigned to the DLSTM at time t is:

xt = {ω0, ..., ω4, β0, ..., β4, u0, v0, z0, ..., u5, v5, z5, γ1, γ2, γ3} (3)

B. Sampling Process

Since each person can perform the same gesture with
different speeds, and since the proposed method requires that
all the videos that must be analysed are composed by the same
number T of samples, a sampling process to select the most
significant feature values within the entire time interval Θ of
the hand gesture sequences was implemented. This means that
data are acquired only in the most significant T time instants,
where a time instant t ∈ Θ is defined as significant when
the joint angles and the hand central point position Ph vary
substantially between t and t+ 1 (as explained below).

Let fωi(t), fβi(t), and fγj (t), with 0 ≤ i ≤ 4 and 1 ≤
j ≤ 3, be the functions that represent the value of ωi, βi, and
γj angles at time t. In addition, let fφ(t)

be the function that
represents the value of φ (i.e., the displacement of the centre
of the hand Ph with respect to the previous position at time
t−1) at time t. Then, for each function fg(t), with g ∈ G and
G = {ωi, βi, γj , φ}, the Savitzky-Golay filter [50] is applied.
The Savitzky-Golay filter is a digital filter able to smooth
a set of digital data in order to increase the signal-to-noise
ratio without greatly distorting the signal. Now, the significant
variations on the considered features are identified through the
relative maximum and minimum of each fg(t). All the time
instants t, associated with at least one relative minimum or
relative maximum of a feature g, are used to create a new
set Θ∗, which represents a set of possible important time
instants to be sampled. In Fig. 4, an example of this sampling
phase is shown, where the behaviour of the function fω1

(t)
(i.e., the angle of the distal phalanx of the index finger) for
an instance of the gesture “milk” is considered. By applying
the Savitzky-Golay filter, the signal shown in Fig. 4, that is
affected by a certain amount of noise due to the acquisition

Savitzky-Golay Filter

Fig. 4: Sampling example for the feature ω1 on the “milk”
gesture.

device or tremors of the hand, can be suitably cleaned. Then,
the maximum and minimum relative points are identified and
sampled. In the example, only the procedure for the feature ω1

is shown, but this step is performed for each feature g ∈ G.
Now, depending on the cardinality of the set of the sampled
time instants, the following cases must be considered:
• if |Θ∗| < T , then the remaining (|Θ∗| −T ) time instants

to be sampled are randomly selected in Θ;
• if |Θ∗| > T , then, only some significant time instants

are sampled for each g feature. Let Θg be the set of the
samples in Θ∗ obtained from the relative maximum and
minimum of the feature g (Θg ⊆ Θ∗), we need to know
the number of time instants Tg that can be sampled for
each g such that

∑
g∈G Tg = T . Each Tg is obtained

thought the following proportion |Θg| : |Θ∗| = Tg : T .
Then, from each Θg set, we randomly take Tg samples.

After the sampling step, each acquisition instance is com-
posed by a sequence {x0, .., xT−1} of feature vectors. The
proposed sampling procedure is dynamically based on the
value of the features.

C. Deep Last Short Term Memory Network

A fundamental component in the proposed work is the
network used in the classification of the hand gestures. This
network is based on multiple LSTMs, which unlike other types
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Fig. 5: Example of a LSTM unit. The internal state is main-
tained with a recurrent connection. The input gate it (orange)
and the output gate ot (red) scale the input and output of the
cell ct, while the forget gate ft (azure) scales the internal state.

of Neural Networks (NNs), are able to efficiently analyse time
sequences of data. Several factors, such as the error blowing
up problem [51] and the vanishing gradient [52], do not allow
the use of common activation functions (e.g., tanh or sigmoid)
to suitably train a network composed by multiple RNNs. This
problem can be tackled with the LSTM units (Fig. 5).

The LSTM can be seen as memory blocks that are one
or more self-connected memory cells and three multiplicative
units: the input, output, and forget gates. These gates provide
continuous analogues of write, read, and reset operations for
the cells. Although an LSTM allows to manage the problem
of the vanishing gradient, the input time series often have a
temporal hierarchy, with information that is spread out over
multiple time scales which can not be adequately recognized
by simple recurrent networks such as LSTMs. For this reason,
Deep LSTMs were introduced. In fact, by constructing recur-
ring networks formed over multiple layers, a higher abstraction
on the input data is reached [27]. Increased input abstraction
does not always bring benefits, because the effectiveness of
these networks depends on both task and analysed input.

In several works, such as [26], [53], [54], it was observed
empirically that Deep LSTMs work better than shallower
ones on speech recognition. The audio signals, analysed for
example in speech-to-text task, can be elaborated on more
abstractions ranging from the entire pronounced phrase to the
syllables of each word. Moreover, each abstraction can be
captured in different time scales within the considered period.
Like in the case of audio sequences analysed in the speech
recognition problem, hand gestures can be examined over
multiple time scales. In fact, each gesture can be considered
as composed by many small movements and sub-gestures of
the hand and, as observed, this type of data processing is
particularly suitable for this kind of network.

Based on these considerations, the LSTM stack-based solu-
tion was experimented and then compared to the performance
of a single-level network. The first step was the definition
of the activation functions of memory cell of the LSTM0

(the first layer of the proposed neural network), as well

Fig. 6: Example of connections between two stacked LSTMs,
where the first level is placed at the bottom of the image and
it is represented by the LSTM0. For each level, the units that
handle the input xt−1 and xt are shown.

as the computation of the input, output, and forget gates
determined by evaluating iteratively the following equations
(from t = 0 to T − 1):

i0,t = σ(Wxixt +Whih0,t−1 +Wcic0,t−1 + bi) (4)
f0,t = σ(Wxfxt +Whfh0,t−1 +Wcfc0,t−1 + bf ) (5)
c0,t = ft � ct−1 + i0,t � tanh(Wxcxt +Whch0,t−1 + bc) (6)
o0,t = σ(Wxoxt +Whoh0,t−1 +Wcoc0,t−1 + bo) (7)
h0,t = o0,t � tanh(c0,t) (8)

where, i, f , o, and c denote the input gate, forget gate, output
gate, and cell activation vectors, respectively. These vectors
have the same length of the hidden vector h. Instead, Wxi,
Wxf , Wxo, and Wxc are the weights of the input gate, forget
gate, output gate and cell to the input. In addition, Wic, Wfc,
and Woc are the diagonal weights for peep-hole connections.
Finally, the terms bi, bf , bc, and bo indicate the input, forget,
cell and output bias vectors, respectively. We have that σ is the
logistic sigmoid function and � is the element-wise product
of the vectors. Once the activation functions for the first level
are defined, the next step is to define the upper level activation
functions.

DLSTMs are architectures obtained by stacking multiple
LSTM layers where the output sequence hl of one layer l
forms the input sequence for the next layer l+ 1 (Fig. 6). The
memory cell of an LSTMl at time t, in addition to the classic
xt and hl,t−1 vectors, takes in input the hl−1,t, i.e., the hidden
state at time t of the below LSTMl−1. So, the activations of
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the memory cells of LSTMl of the network higher levels (i.e.,
l > 0) are given by the following equations:

il,t = σ(Wxixt +Whlihl,t−1 +Whl−1ihl−1,t +Wcicl,t−1 + bi) (9)
fl,t = σ(Wxfxt +Whlfhl,t−1 +Whl−1fhl−1,t +Wcfcl,t−1 + bf ) (10)
cl,t = ft � ct−1 + il,t � tanh(Wxcxt +Whlchl,t−1 +Whl−1chl−1,t + bc) (11)
ol,t = σ(Wxoxt +Whlohl,t−1 +Whl−1ohl−1,t +Wcocl,t−1 + bo) (12)
hl,t = ol,t � tanh(cl,t) (13)

The output of the DLSTM network, at time t, with N -layers,
is defined as follows:

yt = WhN−1,thN−1,t + by (14)

where by is a bias vector, hN−1,t is the hidden vector of the last
layer, and WhN−1,t is the weight from the hidden layer hN−1,t
to output layer. The output yt defines a probability distribution
over the K possible gesture classes, where ykt (i.e., the kth

element of yt) is the estimated probability of a specific class
Ck at time t for the acquired gesture X . Finally, all results yt
are collected and normalized into the softmax layer, through
the following equations:

ŷ =

T−1∑
t=0

yt (15)

ỹk = p(Ck|X) =
eŷ

k∑K−1
q=0 eŷq

(16)

for each k, with 1 ≤ k ≤ K. The classification of the gesture
X will be given by the highest probability contained in ỹ.

D. Network Training

Given a dataset D composed of M train gesture sequences,
the goal is to minimize the following maximun-likelihood loss
function:

L(D) = −
M−1∑
m=0

ln

K−1∑
k=0

δ(k, τ)p(Ck|Dm) (17)

where, Dm, 0 ≤ m ≤M , is an input sequence of the training
dataset D, τ is the ground-truth label of Dm, and δ(•, •)
is the Kronecker delta or delta function. This formulation is
referred to the cross-entropy error proposed in [55]. The Back-
Propagation Through Time (BPTT) algorithm [52] is used
to obtain the objective function derived with respect to all
the weights and to compute the minimization based on the
stochastic gradient descent.

IV. EXPERIMENTAL RESULTS

This section describes the experimental tests performed to
evaluate the performance of the proposed approach. All the
experiments were executed by using a LMC on an Intel i5
3.2GHz, 16GB RAM, with a GeForce GTX 1050ti graphics
card. The DLSTM network and the BPTT algorithm, used
to compute the minimization based on the stochastic gradient
descent, were implemented by using the Keras1 framework.

1https://keras.io/

0,887

0,921
0,9245

0,9641

0,9115
0,908

0,88

0,89

0,9

0,91

0,92

0,93

0,94

0,95

0,96

0,97

0 1 2 3 4 5 6 7

(a)

0,887

0,921
0,9245

0,9641 0,962 0,964

0,88

0,89

0,9

0,91

0,92

0,93

0,94

0,95

0,96

0,97

0 1 2 3 4 5 6 7

(b)

Fig. 7: Accuracy results on the proposed dataset by varying
the number of stacked LSTMs in the network architecture:
(a) accuracy results using 800 epochs for each considered
architecture and (b) accuracy results using 800 epochs for
1−LSTM , 2−LSTM , 3−LSTM , and 4−LSTM ; for the
5−LSTM and 6−LSTM are used 1600 and 1800 epochs,
respectively. The x-axis indicates the number of the stacked
LSTMs, while the y-axis indicates the accuracy values.

The main aims of the experimental session were both the
validation of the proposed method, including the assessment
of the joint angles as salient features for the hand gesture
recognition, and the outperforming of competing works of
the current state-of-the-art. The achievement of the first goal
was obtained by creating a challenging dataset based on the
sign language (Section IV-A) on which the optimal number
of stacked LSTMs (Section IV-B) and the effectiveness of
the selected joint features (Section IV-C) were analysed. In
addition, on the same dataset, a set of well-known metrics
was computed to evaluate the overall performance of the
approach (Section IV-D). Instead, the second goal was obtain
by comparing the proposed method with other considerable
works on the basis of the SHREC dataset (Section IV-E).

A. ASL Dataset

Currently, there are no public datasets, with a large number
of classes and with information on the hand joints, that allow
to test approaches like that we propose. For this reason, we
created a new dataset composed of 30 hand gestures. In
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Fig. 8: The confusion matrix related to the proposed gesture
dataset. The overall accuracy is 96.4102%.

particular, the dataset consists of 12 dynamic gestures and 18
static gestures taken by the ASL. These gestures were chosen
to stress the ability of the method in learning the variations
of both joint angles and finger positions that occur when a
hand performs a complex hand gesture. The static gestures
are: 1, 2-V, 3, 4, 5, 6-W, 7, 8, 9, A, B, C, D, H, I, L, X, and
Y. Instead, the dynamic gestures are: bathroom, blue, finish,
green, hungry, milk, past, pig, store, and where.

The dataset is composed of 1200 hand gesture sequences,
coming from 20 different people. Each gesture was collected
by 15 males and 5 females, aged 20 to 28 years. Each person
performed the 30 different hand gestures twice, once for each
hand. The sequences from 13 people were used to create the
training set, while the sequences of the remaining 7 people
were used to form the test set. So, the 7 people used in the
tests were never taken into consideration during the training
phase. As previously described in Section III-B, each sequence
was acquired according to a sampling process, with T = 200
and Θ = 5s.

B. Selection of the Optimal Number of Stacked LSTMs

Several tests were conducted to choose the optimal number
of stacked LSTMs needed to be used in the proposed archi-
tecture. The hidden units per LSTM were fixed to 200, i.e.,
the hidden units were fixed equal to the number of input time
instances considered for each gesture (i.e., T = 200). Fig. 7a
shows as an architecture composed by 4 levels provides the
best accuracy results by using 800 epochs. In fact, although
several levels of an LSTM allow to analyse complex time
sequences by dividing them into multiple time scales, the
5 − LSTM and the 6 − LSTM require more epochs to be
trained. Increasing the number of epochs needed to train the
5 − LSTM and 6 − LSTM architectures (i.e., 1600 epochs

(a)

(b)

Fig. 9: Pairs of gestures joined into a common class: (a) 6 and
W hand gestures, 2 and V hand gestures.

for the 5−LSTM and 1800 for the 6−LSTM ), the Fig. 7b
shows how their results improves. We can notice how greater
abstraction on input does not provide substantial benefits from
a certain number of levels, and the accuracy gained by the
network begins to converge to a fixed value.

In conclusion, 4 levels are appropriated for the proposed
network and represent a good compromise between training
time and accuracy. The choice of the learning rate influences
the speed of the convergence of the cost function. If the
learning rate is too small, the convergence is obtained slowly,
while if the learning rate is too large, the cost function may not
decrease in each iteration and therefore it could not converge.
In the proposed method, the learning rate was set to 0.0001
through large empirical tests.

C. Effectiveness of the Selected Features

To verify the effectiveness of the features in classifying the
set of gestures taken by the ASL dataset, various tests were
carried out. The adopted network was composed by 4 stacked
LSTMs (as explained in Section IV-B). Two different sets of
hand gesture sequences of the ASL dataset (i.e., a set for the
training and a separate set for the classification, respectively)
were used to check the contribute of subsets of xt as features.

The results in Table I shows that the combination of the
features ωi and βi is sufficient to discriminate a high number
of hand gestures. Notice that, this combination reaches better
classification results with respect to the use of these two
features separately. Although the single γj feature does not
offer good performance, it greatly improves the classification
when used with ωi and βi. Instead, the combination of features
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ωi βi γj uw, vw, zw ωi, βi ωi, γj , βi
Accuracy% 62.70% 68.1204 % 46.67% 56.92% 79.74% 85.13%

TABLE I: Accuracy of the proposed solution obtained on the ASL dataset by varying the different features, where 0 ≤ i ≤ 4,
0 ≤ j ≤ 3, and 0 ≤ w ≤ 5.

Accuracy Precision Recall F1-Score
96.4102% 96.6434% 96.4102% 96.3717%

TABLE II: Performance of the method on the ASL dataset
using Accuracy, Precision, Recall, and F1-Score metrics.

related to the hand movements (uw, vw, zw) are unable by
themselves to classify the hand gestures but, if combined with
the features of the joint angles, allow the method to achieve
high performance (as discussed below).

D. Hand Gesture Recognition on the ASL Dataset

To evaluate the method, we used very popular metrics:
Accuracy, Precision, Recall, and F1-score. These metrics can
be considered a de facto standard to measure the quality of this
class of algorithms [56]. The results are presented in Table II.

According to the tests performed to recognize the different
hand gestures, and to better analyse the proposed method, also
the confusion matrix was computed (Fig. 8). Each column
of the matrix represents the instances in a predicted gesture,
instead each row represents the instances in a current gesture.
The main diagonal of the matrix represents the instances
correctly classified by the DLSTM. The elements below the
diagonal are the false positives, i.e., the gestures that are
incorrectly classified within a class of interest. The elements
above the diagonal are the false negatives, i.e., the gestures
incorrectly classified as not belonging to a class of interest.
The distinction of some gestures is very hard, since they are
very similar to other gestures in the dataset. Despite this,
the proposed method does not suffer of ambiguity issues.
The only exceptions are given by the gestures 6 with W
(Fig. 9a) and 2 with V (Fig. 9b). The variations in their joint
angles are minimal and difficult to see even to the human eye.
Moreover, the LMC device fails to capture these variations.
For this reason, these gestures have been grouped in the same
class. To quantify the difficulty in recognizing these gestures,
we have also performed tests without grouping these classes,
thus obtaining an accuracy of 91.5178%. This decrease, with
respect to the overall accuracy of 96.4102%, is due to the
incorrect classifications related to the classes: 2, 6, v, and W .

In Fig. 10, the Train/Test plots are shown. The first plot
(Fig. 10a) shows the Train/Test accuracy over the iterations,
instead the second plot (Fig. 10b) contains the loss curves that
represent the sum of the errors provided for each training or
test instance. In this work, the loss curves are calculated as
maximum-likelihood loss function, described in Section III-D.
Instead, the curves of accuracy represent the training or vali-
dation instances correctly recognized. After a certain number
of iterations (∼ 125000), the test accuracy curve converges.

(a)

(b)

Fig. 10: Train/Val Curves: the progress of training and testing
over the iterations based on: (a) the accuracy and (b) the loss.
After 100000 iterations, the test accuracy curve converges. The
x-axis represents the progress of training/validation stage and
the y-axis represents the number of training iterations.

E. Comparisons

We compared the proposed method with significant works of
the current state-of-the-art presented in [57], [59], [58], [48],
[29] on the SHREC dataset [29]. The SHREC dataset was
selected since: (a) it provides different types of data to allow
comparisons between methods based on different acquisition
sensors; (b) it allows the classification of hand gestures with
different degrees of complexity; (c) it provides data that allow
to extract all the features necessary for the proposed method.
Notice that, the SHREC dataset contains very challenging
semaphoric hand gesture sequences, and the evaluation of the
method on this type of gestures is one of the main targets of
the presented work.

The SHREC dataset is composed by 14 dynamic hand
gestures performed by 28 participants (all the participants
were right-handed). The hand gestures were captured by the
Intel RealSense short range depth camera. Each gesture was
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Features Accuracy 14 Gestures Accuracy 28 Gestures
Proposed Method 97.62% 91.43%
Skeleton-Based Dynamic Hand Gesture Recognition [57] 88.24% 81.90%
Key Frames with Convolutional Neural Network [29] 82.90% 71.90%
Joint Angles Similarities and HOG2 for Action Recognition [48] 83.85% 76.53%
HON4D: Histogram of Oriented 4D Normals for Activity Recognition from Depth Sequences [58] 78.53% 74.03%
3-D Human Action Recognition by Shape Analysis of Motion Trajectories on Riemannian Manifold [59] 79.61% 62.00%

TABLE III: Comparison of the accuracy measure among significant state-of-the-art approaches on the SHREC dataset.

(a)

(b)

Fig. 11: Confusion matrices obtained on the SHREC dataset:
(a) with 14 hand gestures and (b) with 28 hand gestures.

performed between 1 and 10 times by each participant in two
ways: using one finger and the whole hand. Therefore, the

dataset is composed by 2800 sequences. The depth image,
with a resolution of 640x480, and the coordinates of 22 hand
joints (both in the 2D depth image space and in the 3D world
space) were saved for each frame of each sequence in the
dataset. For the proposed method, we only needed of the 3D
coordinates of the joints from which we derived the features
of our interest. The depth images and hand skeletons were
captured at 30 frames per second (fps) and the length of the
sample gestures ranges from 20 to 170 frames. Since some
sequences of the dataset are very short, to avoid a sampling
with a very low T value, we used the padding technique to
increase the length of these sequences to an acceptable value
of T (i.e., T = 100). As shown in Table III, the proposed
method outperforms the accuracy values of the other works
both in the dataset divided into 14 hand gesture classes and
in the dataset divided into 28 hand gesture classes.

The confusion matrices related to the tests are shown in
Fig. 11. By analysing these matrices, it can be observed that
the method can accurately classify the hand gestures made by
using only one finger, instead, when these gestures are made by
using the whole hand, some mismatches can occur. In detail,
the gesture 16 (SWIPE LEFT) is, sometimes, erroneously
classified, while, the gesture 18 (SWIPE UP) can be confused
with the gesture 26 (SWIPE V). By carefully analysing the
variations of the feature values, it is noticeable that the angles
obtained from these instances are similar, moreover the move-
ments of the hand in space are not substantial. In addition,
some of these sequences are composed of few frames. Despite
these isolated cases, we can state that the proposed method
achieves excellent performance. This result demonstrates how
the DLSTM and the selected features are a very powerful
solution in recognizing different types of challenging hand
gestures.

V. CONCLUSION

In this paper, an original hand gesture recognition method
based on DLSTM is presented. In particular, an affective set of
discriminative features based on both joint angles and fingertip
positions is used in combination with an LSTM-RNN to obtain
high accuracy results. At the time of writing the first version
of the manuscript, there were no other similar approaches.
The method we propose outperforms competing works on
the SHREC dataset. The paper also provides a new dataset,
based on a large subset of the ASL, to train and test the
effectiveness of approaches similar to that we present. This
dataset has been also used to analyse the robustness of the
extracted features and the behaviour of the network when the
number of stacked LSTMs change. As a next step, we intend
to create another public dataset, always based on the ASL,
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in which more hand gestures are inserted. We are planning
to create this new dataset also including RGB frames, depth
maps, and the whole hand skeleton model. This dataset should
be able to support different ambiguities study cases (e.g., the
recognition of hand gestures 6 and W ).
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