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ABSTRACT!

This paper addresses the problem of approximating the future value distribution of a large
and heterogeneous life insurance portfolio which would play a relevant role, for instance,
for solvency capital requirement valuations. Based on a metamodel, we first select a subset
of representative policies in the portfolio. Then, by Monte Carlo simulations we obtain a
rough estimate of the policies’ value at the chosen future date and finally we approximate
the distribution of a single policy and of the entire portfolio by means of two different
approaches, the ordinary least squares, and a regression method based on the class of
generalized beta of the second kind distributions. Extensive numerical experiments are
provided to assess the performance of the proposed models.
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1. Introduction

In many relevant situations, life insurers face the necessity to determine the distribu-
tion of the value of their portfolio of policies at a certain future date. This happens, for
example, when regulators require to maintain solvency capital requirements in order to
continue to conduct business, as stated in Solvency II directive or in the Swiss Solvency
Test. As a consequence, insurers are obliged to assess the value of assets and liabilities
at a future date, the so-called risk-horizon. To do this, the relevant risk factors must
be projected at the risk-horizon and then, conditional on the realized values, a market
consistent valuation of the insurer’s assets and liabilities is required. Due to the complex
structure of the insurer’s liabilities, in general, closed form formulas are not available and a
straighforward approach, common among insures, is to obtain an estimate through nested
Monte Carlo simulations. Unfortunately, this approach is extremely time consuming and
becomes readily unmanageable from a computational point of view. In this regard, one
possible alternative method, proposed in literature to reduce the computational effort
and to preserve the accuracy of the desired estimates, is the Least-Squares Monte Carlo,
firstly introduced by Carriere (1996), Tilley (1993), and Longstaff and Schwartz (2001) in
the context of American-type Option Pricing. An application of the LSMC method for
valuing solvency capital requirements in the insurance business was proposed in Cathcart
and Morrison (2009) and Bauer et al. (2010). Moreover, Floryszczak et al. (2016) and
Krah et al. (2018) illustrate a practical implementation of the LSMC in this particular
context. The above mentioned papers, proposed in actuarial literature, share the common
feature of evaluating capital requirements for a single policy.

In the case of an entire portfolio of policies, the nested simulation approach is even more
difficult to implement due to the huge computational effort needed. For instance, assuming
10000 outer trajectories simulated from the current time to the risk-horizon for each one of
the v risk factors, and then 2500 inner paths for each outer, with a monthly discretization
for 20 years, and considering an insurance portfolio composed by 10000 contracts, the total
number of cash-flow projections needed would be 10000 x v x 2500 x 12 x 20 x 10000 =
v x 6 x 10'3, which is very hard to be managed.

In order to keep the computational complexity of the evaluation problem at a reason-
able level, we propose a metamodeling approach. Metamodeling, introduced in system
engineering (see Barton, 2015), can be defined as “the practice of using a model to de-
scribe another model as an instance” (see Allemang and Hendler, 2011). This approach
has been widely used also in actuarial literature to estimate the price and the Greeks of
large portfolios of life insurance policies. For instance, Gan (2013) develops a metamodel
based on data clustering and machine learning to price large portfolios of variable an-
nuities while Gan and Lin (2015) tackled a similar problem by developing a functional
data approach. In addition, Gan (2015) compares the data clustering approach and the
Latin hypercube sampling to select representative variable annuities. Finally, Gan and
Valdez (2018) propose a metamodel to estimate partial Greeks of variable annuities with
dependence.

In the present paper, the metamodel we propose to approximate the future value dis-
tribution of a life insurance portfolio is constructed in different steps:
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1. select a subset of representative policies by means of conditional Latin hypercube
sampling;;

2. project the risk factors from the evaluation date to the risk-horizon by means of
outer simulations;

3. compute a rough estimate of each representative policy by means of a very limited
(say two) number of inner simulations;

4. create a regression model to approximate the distribution of the value of represen-
tative policies;

5. use the regression model to estimate the future value distribution of the entire
portfolio.

We propose two different approaches to develop the regression model in steps 4 and
5. The first approach relies upon the well-established Ordinary Least Squares (OLS)
method for approximating the conditional distribution of each representative policy at
the risk-horizon, and then a second OLS regression is applied to estimate the future value
distribution of the entire portfolio. Roughly speaking, we may say that the LSMC method
is applied to estimate the distribution of the value of each representative policy at the
risk-horizon, and then this information is extended to the entire portfolio by means of a
simple OLS regression. We call this approach the LSMC method.

The second approach exploits the class of generalized beta of the second kind (GB2)
distributions to model the conditional distribution of each representative policy value at
the risk-horizon, and also to estimate the future value distribution of the entire portfolio.
We underline that the GB2 regression model has been used in Gan and Valdez (2018)
for modelling the fair current market values of guarantees embedded in a large variable
annuity portfolio starting from a set of representative policies. Extensive numerical exper-
iments have been conducted in order to assess the performance of the proposed models.
The remainder of the paper is structured as follows. Section 2 provides the evaluation
framework and Section 3 introduces the metamodeling approach. Section 4 illustrates
some numerical results, and finally, in Section 5 conclusions are drawn.

2. The evaluation framework

We consider a life insurance portfolio with M contracts underscribed by different
policyholders (males and females) of different ages at the inception date ¢ = 0. We take
into account different types of life insurance policies which differ each other also in terms
of maturity, policyholder’s age, and sex. In particular, we consider unit-linked products,
term life insurance and immediate life annuities. We assume that the unit-linked product
pays at maturity, upon the survival of the insured, a maximum between a minimum
guaranteed benefit and the value of a specific reference asset. The immediate life annuity
is assumed to pay continously the 10% of the level of a given reference asset until the
insured is alive; and finally, the term insurance contract pays the total value of the asset
upon the death of the policyholder before maturity. Regarding all the possible policy
configurations see Table 1.
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TABLE 1. This table shows the parameters used to generate the life insurance portfolio.

Feature Value
Policyholder age {55,...,65}
Sex {Male, Female}
Maturity {10, 15, 20, 25, 30}
Product type {Unit-linked, Term Insurance, Life Annuity}

Since our task is to approximate the portfolio value distribution at the risk-horizon
starting from a set of representative policies, we use the Conditional Latin Hypercube
Sampling (CLHS) method (see Minasny and McBratney, 2006), as in Gan and Valdez
(2018). More precisely, in order to select a set of s representive contracts, we apply
the CLHS method to the design matrix X which contains all the features characterizing
each specific policy, i.e. types, maturity, sex and age of the policyholder. Note that the
categorical variables are treated as dummy variables.

In order to project the cash-flows generated by the contracts over time, we need to
simulate the possible evolution of the risk factors. In this regard, we consider a compu-
tational framework where longevity, interest rate and the reference asset are taken into
account.

Let (©2,F,P) be a filtered probability space large enough to support a process X in
R¥, representing the evolution of financial variables, and a process Y in R?, representing
the evolution of mortality. The filtration F = (F;),, represents the flow of information
available as time passes by: this includes knowledge of the evolution of all state variables
up to each time ¢ and of whether the policyholder has died by then. Specifically, we define
F; as the o-algebra generated by G; U H;, where

Gi=0(Z:0<s<t), Hi=0(lp<sy:0<5<t),

and where Z = (X,Y) is the joint state variables process in R¥™¢. Thus, we have F =
GVH, with G = G* VG" and with H = (H,)>0 being the smallest filtration with respect
to which ¢ is a stopping time.

Under the physical probability measure, P, we assume that the financial risk factors
(reference asset value S, and interest rate r) dynamics are described by the following
stochastic differential equations

dS(t) = S(t)(r(t) + N)dt + S(t)osdW ¥ (1), (1)
S(O) = SO?

where \ is the risk-premium, og is a positive constant, WF(¢) is a standard Wiener
process, and r(t) is the risk-free interest rate, which is assumed to follow the dynamics

dr(t) = a0 — r(t))dt + o, dW>F (1), (2)

r(0) = 719.
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Here W2F(t) is a standard Wiener process, and the coefficients «, §, o, are positive con-
stants representing the speed of mean reversion, the long-term interest rate, and the
interest rate volatility, respectively. Further, we assume that the two Wiener processes,
WLE(t) and W2F(t), are correlated with correlation coefficient p.

In the absence of arbitrage opportunities, an equivalent martingale measure Q exists,
under which all financial security prices are martingales after deflation by the money
market account. We refer the readers to Biffis (2005) for deeper details. Under the risk-
neutral probability measure, Q, the dynamics in Equations (1) and (2) can be re-written
as

dS(t) = S(t)r(t)dt + S(t)ogdW (1),
and

dr(t) = a (9 - %)\ - r(t)) dt + o, dW>2(t).

Note that WHQ(¢) and W2Q(t) are two correlated standard Wiener processes with coeffi-
cient of correlation p under Q.

Concerning longevity risk, we assume that the force of mortality, j,.¢(t), under the
physical probability measure P for an individual aged x at time ¢ = 0 evolves accordingly
to the following one-factor, non mean-reverting and time homogeneous affine process:

izt (t) = @+ bpa o (8)] db + 0/ oo (H)AWF (1), (3)
1(0) > 0,

where a # 0,b > 0,0, > 0 represent the volatility of the mortality intensity, and W3E(t)
is a standard Wiener process which is assumed to be independent with respect to W1HF(t)
and W2F(t).

The dynamics in Equation (3) under Q can be defined as

dﬂz+t (t) - [CL + (b - 50y) Mzt (t)] dt + OuV M+t (t)dW&Q (t),
112(0) > 0,

where W3Q(t) is a standard Wiener process under the risk-neutral measure, and § is the
market price of the systematic mortality risk.

Note that the parameters entering in the stochastic mortality model are estimated
by calibrating the implied survival curve to the one obtained from the population data
of year 2016 (assumed to be t = 0) collected from the Human Mortality Database (see
Fung et al., 2014). The calibration procedure is done for all policyholder ages and genders
reported in Table 1.

3. Problem and methodology

Under the framework defined in Section 2, we need to evaluate the streams of payments
embedded in each policies inside the insurance portfolio. For this purpose, we project the
relevant risk factors affecting the policy (i.e. S,r, and p) under the physical probability

7
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measure from time ¢ = 0 up to the risk-horizon 7, and then for each outer scenario another
set of inner trajectories is simulated under the risk-neutral measure.

In order to avoid the huge computational cost of a pure nested model, as in the LSMC
approach, we simulate n possible outer trajectories of the risk factors and then for each
of them we further simulate 7 < n inner paths. Following this approach, let Z* be a
n X v matrix, where the row-vector z. contains the k-th outer scenario of the v risk
factors affecting the value of the i-th representative policy. For each vector z, and for
time 7 < t < T, we simulate n trajectories under the risk-neutral probability measure.
To simplify the notation we focus on the i-th representative policy, and we denote zg‘?’t
the vector containing the time-t values of the risk factors along the j-th inner trajectory
corresponding to the k-th outer scenario. Moreover, we label Y a n x s matrix where the
element y;;, represents the value of the i-th policy corresponding to the k-th outer scenario
obtained by averaging across the few inner simulations. Formally,

1o . _
ylk:%Z Z @;(zit) i=1,...,s, and k=1,...,n, (4)

=1 r<t<T;

where ®! (-)’s represent the discounted cash-flows at time ¢ of the i-th policy with maturity
T;.

In this way, we obtain a first (rough) estimate of each representative policy value
distribution at the future time 7. The next step is to obtain a more accurate estimate
of the distribution of the time-7 value of each representative policy and then to infer
the distribution of the time-7 value of the entire portfolio. We do this by applying two
different approaches, an OLS as in the Least-Squares Monte Carlo method and a GB2
model.

The LSMC method

The Least-Squares Monte Carlo method applied to the problem of computing the
distribution of the insurer’s liabilities at a certain future date, is based on the idea that
the bias deriving from the few inner simulations can be reduced by approximating the
involved conditional expectations with a linear combination of basis functions depending
on some covariates, whose coefficients are estimated through an ordinary least squares
procedure (see Bauer et al., 2010 for further details).

A straightforward application of the LSMC approach would be to apply the method
on each policy inside the insurance portfolio. However, also this kind of strategy would be
quite computationally expensive due to the big dimension of an insurance portfolio. Be-
cause of that, we propose to apply firstly the LSMC method on just a set of representative
policies, and then through an OLS regression we extend it to the entire portfolio.

Hence, accordingly to the LSMC method, we assume that the conditional i-th rep-
resentative policy value, ¥z, can be expressed as a linear combination of basis functions
depending on the covariate matrix z as follows:

L
@k:ZB;ej(zZ) i=1,...,s and k=1,...,n, (5)
j=1

8
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where e; () is the j-th basis function in the regression, L is the number of basis functions,
and /Bji-s represent the coefficients estimated through

n

L 2
@mezmmmzmw_zgﬂﬁ)
j=1

B1,--BL k=1

In this way, we obtain a n X s matrix Y where each row-vector ¥, contains the values
of each representative policy corresponding to the k-th outer scenario.

Now, in order to approximate the distribution of the value of the entire portfolio, we
construct an OLS regression model for each outer scenario. In this regard, we denote with
X a M x (w+1) matrix, where the row-vector x; contains the w covariates (gender, product
type, age, and maturity) characterizing the i-th contract in the portfolio plus an intercept
term (M is the total number of contracts inside the insurance portfolio). Moreover, let X
be the s x (w + 1) matrix describing the structure of the represantive insurance portfolio.
Hence, X; contains the w covariates characterizing the i-th representative contract plus
an intercept term.

Therefore, we regress each row-vector y;, (k = 1,...,n) on the covariate matrix X, and
once the coefficients are estimated, we extend then to the remaining policies by exploiting
the matrix X. In this way we obtain the value of the i-th contract corresponding to the
k-th outer scenario, which is denoted by v;,. Formally,

Ve = xi83,, i=1,...,M and k=1,...,n, (6)

where L ~

B, = (XX) " Xy
Finally, the entire portfolio value distribution is obtained by summing up all the policy
values in Equation (6) corresponding to each outer scenario.

The GB2 model

A GB2 model appears to provide a flexible family of distributions; indeed, it has been
used in several actuarial applications (e.g. see Gan and Valdez, 2018) to model the fair
market value of a portfolio made up of life insurance policies. A GB2 random variable can
be constructed from a transformed ratio of two gamma random variables. The density
function of a GB2 random variable, Y, is given by

)= s () [ ()] v g

where a # 0,p > 0,q > 0 are shape parameters, b > 0 is the scale parameter, and B(-) is
the Beta function.

In order to approximate the value of the portfolio, at first we approximate the time-
7 value of each representative policy, and then we use this information to approximate
the distribution of the value of the entire insurance portfolio at the risk-horizon. To
do this, we construct two different GB2 regression models which exploit respectively the
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generated information at the risk-horizon (i.e. S(7),7(7), and (7)), and then the features
characterizing uniquely each policy.

Specifically, since the policy values y;, obtained from Equation (4) are not accurate
due to the few inner trajectories on which they are based on, we aim at reducing the bias
by estimating the involved conditional expectation through a GB2 regression model. In
this regard, we assume that the ¢-th policy value at time 7 conditioned on a specific outer
scenario is a GB2 random variable with parameters (a;, p;, g, b;). In particular, we make
the b—parameter depending on some independent covariates (i.e. the value at time 7 of
the risk factors which affect the policy of interest).

Hence, b(Z') = exp (Z'B.), where 3; = (Bi.0, Bi1,- - -, Biv) are the corresponding coef-
ficients attached to each risk-factor. Note that the matrix Z° now includes an intercept
term.

We can use the method of maximum likelihood to estimate the parameters. Since
we incorporate covariates through the scale parameter, we can write the log-likelihood

function of the model as
Yik “
1+ —2 ) |, ®)
(exp(zwi)> ]

where ¢+ = 1,...s, n is the number of the generated outer scenarios and ;. denotes the
value of the i-th policy corresponding to the k-th outer scenario.

Once we estimate the parameters for the GB2 model, we use the expectation for
predicting the value of the policy at time 7. Since we incorporate covariates through the
scale parameter, we can estimate it as

exp (7,8)) B (b + L.~ +)
B(ﬁza Cjz) ’

where z} is the vector containing the k-th outer scenario of the risk factors affecting the
i-th representative policy.

Once we obtain an estimate of the distribution of each representative policy at time
7, we extend this information to the remaining policies. As already done for the OLS
model, we are going to exploit both the matrices X and X on which we now construct a
new GB2 regression model.

Therefore, let Y be the n x s matrix whose elements 7;, denote the value of the i-th
representative policy corresponding to the k-th outer scenario obtained through Equation
9).

Now, we construct a GB2 regression model in order to infer, starting from the set of
representative policies, on the distribution of the entire portfolio. Hence, recalling the pdf
defined in Equation (7), we define the following log-likelihood function:

1 M)%} 10
+ <oxp ()‘clﬁ;c) (10)

where s is the number of the representative policies, and X; is the row-vector containing
the information of the i-th representative contract.

|a]
B(pi, q:)

l(ai,pi, qi, Bi) =nln —aipi Y _ 7B} + (aipi —1) Y In(yix) — (i + @) Yy In
k=1

k=1 k=1

Ui = i=1,2,...,sand k=1,...,n, (9)

S S S
a ~
Uak, P, qr, Br) =sln lowl __ agpy Y XiB, + (agpr, — 1) > I (Gix) — (px +ax) Y_In
B(pk, qx) = = =

10
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Once again, after we estimate the parameters through maximum likelihood approach,
we can then derive the distribution at the risk-horizon for all the policies inside the
insurance portfolio as

exp (&B;) B <ﬁk + sk — i)
B(ﬁka qu) ’

where v;;, is the value of the i-th contract corresponding to the k-th outer scenario.

Finally, the entire portfolio value distribution is again obtained by summing up all the
policy values corresponding to each outer scenario.

Note that the log-likelihood functions in Equations (8) and (10) may have multiple
local maxima and since an analytic solution does not exist, we need to rely on a nu-
merical procedure to estimate the involved parameters. We adopt the same multistage
optimization algorithm described in Gan and Valdez (2018).

Vi = i=1,2,...,.Mand k=1,...,n, (11)

4. Numerical results

In this Section, we present some numerical results obtained by exploiting the previously
defined models. In particular, we consider a life insurance portfolio with M = 10000
contracts, and we focus on approximating its value distribution at the future time 7 =1
year. These policies can be of three different types: unit-linked pure endowment contract
with a minimum maturity guarantee G = 100 payable upon the survival of the poliyholder
at the maturity date T, term life insurance policy which pays the 10% of a reference asset
value in case of death before maturity 7', and an immediate life annuity contract with
continuous survival benefits equal to the 10% of a reference asset value up to the entire
life of the insured person. We consider different policyholders, both males and females,
with different ages = at time ¢ = 0, which is also assumed to be the inception time of
each policy. These characteristics are reported in Table 1. We assume that the insurance
benefits depend upon a reference asset with initial value Sj.

Concerning the dynamics of the financial risk factors, we report in Table 2 the values
of the involved parameters in Equations (1) and (2).

TABLE 2. Parameters of the reference asset value process, S, and interest rate stochastic
process, 7.

Sy oOg A ro Q 0 oy p

100 0.20 0.00 0.04 0.10 0.02 0.02 0.00

Concerning mortality, we have calibrated the survival curve implied by Equation (3)
on the italian males and females mortality data in year 2016 obtained from the Human
Mortality Database for each age z € {55,...,65}, and we assumed a longevity risk-
premium 0 = 0. The corresponding parameter estimates are reported in Table 3.

11



DEAMS Research Paper 3/2021

TABLE 3. Estimated parameters of the stochastic mortality model for italian male (left)
and female (right) aged x € {55,...,65} in 2016.

Age Male Female

a b Ou a b o

55 0.00040 0.0881 0.00157 0.00010 0.10017 0.00100
56 0.00700 0.0705 0.00262 0.00001 0.11110 0.00100
o7 0.00001 0.1051 0.00100 0.00001 0.11060 0.00100
58 0.00001 0.1045 0.00390 0.00009 0.10740 0.00850
59 0.00040 0.0832 0.00100 0.00001 0.11570 0.00100
60 0.00060 0.0743 0.00100 0.00042 0.08362 0.00669
61 0.00030 0.0907 0.00100 0.00044 0.08505 0.00100
62 0.00010 0.1033 0.00710 0.00001 0.11990 0.00100
63 0.00012 0.1063 0.00750 0.00040 0.09704 0.00182
64 0.00008 0.1112 0.00810 0.00039 0.09860 0.00376
65 0.00020 0.1075 0.00123 0.00049 0.09558 0.00720

We conduct this numerical experiment by varying both the number of outer simula-
tions, n, and the number of representative policies, s. In particular, we adopt a monthly
Euler’s discretization setting in order to project n € {1000, 5000, 10000} outer trajecto-
ries of each risk factor under the P-measure, and then for each outer scenario we further
simulate 7 = 2 inner trajectories under the risk-neutral probability measure. With this
simulations set, we are able to obtain a first rough estimate of Y on which we construct
the LSMC and GB2 models discussed in Section 3. Note that, concerning the LSMC
method, we exploit as basis functions Hermite polynomials of order 1 and 2 which are
denoted, respectively, LSMC_1 and LSMC_2 hereafter.

To determine the number of representative contracts s, we start from the informal rule
proposed by Loeppky et al. (2009) which provide reasons and evidence supporting that
the sample size should be about 10 times the input dimension. In our case, the dimension
of covariates in the design matrix X is 5 (including the binary dummy variables converted
from the categorical variables), and so we choose as the initial number of representative
contracts s = 50. However, we investigate the models performance also by setting s = 75
and s = 100.

Finally, the results are compared with a solid benchmark obtained through a nested
simulations approach based on 10000 x 2500 simulations. This allows us to conclude
about the reliability of the proposed methodologies, and to compare them in terms of
computational demand. For a comprehensive analysis we perform multiple runs of each
proposed method; in particular, the following analysis is based on 50 runs.

In Tables 4, 5 and 6 we report the Mean Absolute Percentage Error (MAPE) relative
to different quantities obtained by performing 50 runs of the proposed methodologies with

12
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a fixed number of outer scenarios (n = 10000) and by varying the number of representative
contracts (s € {50,75,100}).

TABLE 4. This table reports the MAPE of the estimates obtained by running 50 times
the GB2 and LSMC methods with n = 10000 and s = 50. The benchmark values are
based on a nested simulations algorithm with 10000 x 2500 trajectories applied to the

entire portfolio.

5th perc.  10th perc. Median Mean 90th perc.  95th perc.  99th perc. 99.5th perc.

GB2 2.812% 2.180% 1.798%  2.594% 3.832% 4.016% 6.154% 4.375%
LSMC_1 3.238% 3.000% 2.399%  2.557% 2.398% 2.174% 2.436% 2.722%
LSMC_2 2.762% 2.754% 2.567%  2.557% 2.436% 2.114% 2.356% 2.841%

TABLE 5. This table reports the MAPE of the estimates obtained by running 50 times
the GB2 and LSMC methods with n = 10000 and s = 75. The benchmark values are
based on a nested simulations algorithm with 10000 x 2500 trajectories applied to the

entire portfolio.

5th perc.  10th perc. Median Mean 90th perc.  95th perc.  99th perc.  99.5th perc.

GB2 1.971% 1.782% 0.806%  0.542% 3.605% 3.949% 6.094% 3.867%
LSMC_1 2.500% 1.338% 1.530%  1.392% 1.251% 1.657% 0.941% 1.678%
LSMC_2 1.828% 1.047% 1.756%  1.392% 1.307% 1.485% 1.842% 2.142%

TABLE 6. This table reports the MAPE of the estimates obtained by running 50 times
the GB2 and LSMC methods with n = 10000 and s = 100. The benchmark values are
based on a nested simulations algorithm with 10000 x 2500 trajectories applied to the

entire portfolio.

5th perc.  10th perc. = Median Mean 90th perc.  95th perc.  99th perc.  99.5th perc.

GB2 1.986% 1.745% 0.519%  0.347% 1.129% 1.313% 2.856% 1.944%
LSMC_1 1.629% 1.504% 0.440%  0.627% 0.764% 0.824% 0.958% 2.561%
LSMC_2 1.148% 1.145% 0.578%  0.627% 0.762% 0.986% 2.101% 2.334%

13



DEAMS Research Paper 3/2021

If we compare Tables 4, 5 and 6, it is evident that increasing the number of represen-
tative contracts s induces a better approximation of the mean and of the other considered
measures of position. Moreover, it seems that the GB2 model, at least for a low number of
representative contracts, is not able to model adequately the right tail of the distribution.

In Table 7, we report the Mean Percentage Error (MPE) and MAPE relative to the
mean estimates obtained by running 50 times the GB2 and LSMC methods with different
numbers of outer simulations, n, and representative contracts, s.

TABLE 7. This table reports the MPE and MAPE of the mean estimates obtained
by running 50 times the GB2 and LSMC methods and varying the number of outer
simulations (Outer) and that of representative contracts s. The benchmark value is based
on a nested simulations algorithm with 10000 x 2500 trajectories applied to the entire
portfolio.

s=50 s=75 s=100

Outer Method MPE MAPE MPE MAPE MPE MAPE
GB2 3.612% 3.612% 0.163% 0.983% -0.240% 0.923%

1000 LSMC_1 -3.475% 3.475% -2.104% 2.221% -1.017% 1.364%
LSMC_2 -3.475% 3.475% -2.104% 2.221% -1.017% 1.364%

GB2 2.981% 2.981% 0.715% 0.747% -0.301% 0.474%

5000 LSMC_1 -2.840% 2.840% -1.533% 1.533% -1.029% 1.092%
LSMC_2 -2.840% 2.840% -1.533% 1.533% -1.029% 1.092%

GB2 2.594% 2.594% 0.491% 0.542% 0.179% 0.347%

10000 LSMC_1 -2.557% 2.557% -1.392% 1.392% -0.490% 0.627%
LSMC_2 -2.557% 2.557% -1.392% 1.392% -0.490% 0.627%

Looking at Table 7, we can see that for a fixed number of outer scenarios and for
each applied method, the accuracy of the mean estimates increases with the number
of representative contracts s. Moreover, it is evident that in most of the considered
configurations, the GB2 model outperforms the LSMC methods. Furthermore, if we
look at the last column of Table 7 (s = 100), for instance, we can see that the higher
the number of outer scenarios, the better the approximation. Finally, we can see that
increasing the number of basis functions up to degree two in the LSMC method does
not improve the accuracy of the mean estimates. This is probably due to the few outer
simulated trajectories (at most 10000 paths), not sufficient to appreciate the improvement
which is usually expected. In Figure 1, we report the corresponding box-plots from which
it is possible to see that, in each of the considered configurations, the LSMC method
systematically underestimates the quantity of interest.
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Fic. 1. Boxplots relative to the mean estimates obtained by running 50 times the
GB2 and LSMC methods and varying the number of outer simulations n and that of
representative contracts s. The red line refers to the benchmark value based on a nested
simulations algorithm with 10000 x 2500 trajectories applied to the entire portfolio.

Concerning the estimate of the 99.5-th percentile of the distribution, which would
be of interest for valuing solvency capital requirements, Table 8 reports the MPE and
MAPE relative to 50 estimates obtained by varying both the number of simulations and
the number of representative contracts.
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TABLE 8. This table reports the MPE and MAPE of the 99.5-th percentile estimates
obtained by running 50 times the GB2 and LSMC methods and varying the number of
outer simulations (Outer) and that of representative contracts s. The benchmark value
is based on a nested simulations algorithm with 10000 x 2500 trajectories applied to the
entire portfolio.

s=50 s=75 s=100

Outer Method MPE MAPE MPE MAPE MPE MAPE
GB2 3.936% 6.570% -1.512% 5.453% 1.410% 4.494%

1000 LSMC_1 -2.664% 3.715% -6.308% 6.478% -2.961% 4.253%
LSMC_2 -0.252% 6.487% -4.211% 7.150% -1.438% 5.517%

GB2 4.110% 4.723% 3.813% 4.018% 0.081% 2.653%

5000 LSMC_1 -2.908% 3.001% -4.708% 4.722% -1.659% 2.006%
LSMC_2 -1.787% 3.484% -3.118% 4.017% -0.462% 3.110%

GB2 4.157% 4.375% 3.737% 3.867% 0.421% 1.944%

10000 LSMC_1 -2.643% 2.722% -1.560% 1.678% -2.522% 2.561%
LSMC_2 -2.259% 2.841% -0.131% 2.142% -1.007% 2.334%

From Table 8, we can detect a similar behaviour as the one previously discussed.
Specifically, we can see that, concerning the GB2 model, an increase in the number of
representative contracts (for fixed n) leads to an improvement of the resulting estimates.
On the contrary, for the LSMC method there is no clear pattern. Indeed, as we can
see, increasing the number of representative contracts (for fixed n) does not lead to a
clear improvement of the results. Moreover, increasing the number of basis functions as
well as the number of outer simulations does not increase the accuracy of the estimates.
As in the case of the mean estimate this could be due to the small number of outer
simulations. Once again, if we look at the case of n = 10000 and s = 100, the GB2 model
outperforms the LSMC approach. Figure 2 shows the box-plots relative to the 99.5-th
percentile estimates.
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Fic. 2. Boxplots relative to the 99.5-th percentile estimates obtained by running 50
times the GB2 and LSMC methods and varying the number of outer simulations n and
that of representative contracts s. The red line refers to the benchmark value based on a
nested simulations algorithm with 10000 x 2500 trajectories applied to the entire portfolio.

From Figure 2, we can see that the variability of the estimates decreases as the number
of outer scenarios and the number of representative contracts increases. Moreover, there
is a clear pattern in the GB2 model results since an increase in both number of simulations
and representative policies helps in reaching the convergence to the benchmark value. Re-
garding LSMC, we can see that in each of the considered configurations, the method built
on Hermite polynomials of order 1 (LSMC_1) produces less variable estimates compared
to the second order Hermite polynomials (LSMC_2), even if we increase the number of
outer simulations. We may conclude that passing from 1000 to 10000 trajectories is still
not sufficient to exploit more basis functions.

Now let us examine the speed of the proposed algorithms with respect to the bench-
mark. Table 9 shows the runtime of GB2 and LSMC expressed as a percentage of the
time required by the nested simulation method based on 10000 outers and 2500 inners.
Note that we conducted all experiments using R on a computer equipped with an Intel®)
Core(TM) i7-1065G7 CPU 1.50 GHz processor with 12 GB of RAM and Windows 10
Home operating system.
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TABLE 9. Percentage of the runtime required by the GB2 and LSMC methods with respect
to the nested simulations approach. Note that the computational demand to construct the
benchmark with a nested simulations approach based on 10000 x 2500 scenarios applied
to the entire portfolio is about 187200 seconds.

Method n = 1000 n = 5000 n = 10000
s =250 5=17H s=100 s=250 5§=175 s =100 5 =150 5s=175 s =100
GB2 0.069%  0.078%  0.098%  0.337%  0.380%  0.501%  0.660% 0.832%  1.021%
LSMC.1 0.006% 0.006%  0.007%  0.012% 0.018%  0.019%  0.036%  0.045%  0.047%
LSMC-2 0.005%  0.006%  0.007%  0.013%  0.019%  0.020%  0.037%  0.046%  0.047%

As we can see from Table 9, by applying the proposed methodogies we have drasti-
cally reduced the computational time required instead by a nested simulations approach.
Moreover, as expected, the LSMC method presented in Section 3 outperforms the GB2
model in terms of time in each of the proposed configurations. However, this is due to the
existence of a closed form formula for the estimation of the involved parameters. Indeed,
as stated in Section 3, the estimation procedure for the GB2 model is based on a multi-
stage optimization algorithm due to the complexity of the likelihood functions which may
have multiple local maxima. Anyway, if compared with the simulations within simulations
method, the GB2 model proved to be an accurate and efficient alternative.

Full LSMC

In this Section, to provide an exhaustive analysis, we consider a straightforward ap-
plication of the LSMC method. Hence, we apply the LSMC method on each contract
composing the insurance portfolio without considering any set of representative policies.
The results are then compared with those already shown in the previous section both
in terms of accuracy and computational demand. Just as an example, we construct the
LSMC model by exploiting as set of basis functions Hermite polynomials with order 1
based on 10000 x 2 simulations (LSMC_Full). Table 10 reports the MPE and MAPE
relative to the bth-percentile, the mean, and the 99.5-th percentile estimates obtained by
performing 50 runs of the proposed methods. Further, we report the results relative to
the GB2 model (GB2) and LSMC method with Hermite polynomials of order 1 (LSMC_1)
and order 2 (LSMC_2) based on 10000 x 2 simulations and s = 100 representative policies.
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TABLE 10. This table reports the MPE and MAPE relative to the 5-th percentile, the
mean, and the 99.5-th percentile estimates obtained by applying different methodologies.
GB2 stands for the GB2 regression model based on n = 10000 outer scenarios and s =
100 representative policies; LSMC_1 refers to the LSMC method based on n = 10000
outer scenarios and s = 100 representative policies with Hermite polynomials of order 1;
LSMC_2 refers to the LSMC method based on n = 10000 outer scenarios and s = 100
representative policies with Hermite polynomials of order 2; LSMC_Full refers to the
LSMC method based on n = 10000 outer scenarios and constructed on each contract
in the insurance portfolio. The results are compared with the corresponding benchmark
value based on nested simulations with 10000 x 2500 trajectories applied to the entire
portfolio.

Method 5th Perc. Mean 99.5th Perc.
MPE MAPE MPE MAPE MPE MAPE
GB2 -1.986% 1.986%  0.179%  0.347%  0.421%  1.944%

LSMC.1  -1472% 1.629% -0.490% 0.627% -2.522%  2.561%
LSMC2  -0.742% 1.148% -0.490% 0.627% -1.007%  2.334%
LSMC_Full -0.501% 1.032% -0.084% 0.461% -0.420% 1.070%

As it is shown in Table 10, the errors relative to the LSMC_Full approach are lower
than those of the other proposed methods since the estimates are based on the entire
insurance portfolio; i.e. this approach does not suffer of any uncertainty related to the
missingness of policies in its estimation procedure. Figure 3 reports the box-plots on
which the quantities in Table 10 are based on.

19



DEAMS Research Paper 3/2021

Mean 99.5% Perc.
8
o
8 [¢] — (o]
S o 3
o )
o [— °© ° — 8 7 : -
: : & ‘ o
o ] — -
o e —_ o '
o o '
8 g - — =
= 8 ;  —
: 3 : —— ‘
L | ‘ L
| o ‘ -
=] ' '
g | : L
8 ‘ ‘ — 3 — L
g | L L X o
: I I I I I I I I
LSMC_1  LSMC_2 LSMC_Full
- cB2 - = - GB2 LSMC_1  LSMC_2 LSMC_Full

Fic. 3. Boxplots relative to the Mean and the 99.5-th percentile estimates obtained
by running 50 times the proposed methodologies. GB2 stands for the GB2 regression
model based on 10000 outer scenarios and s = 100 representative policies; LSMC_1 refers
to the LSMC method based on 10000 outer scenarios and s = 100 representative policies
with Hermite polynomials of order 1; LSMC_2 refers to the LSMC method based on 10000
outer scenarios and s = 100 representative policies with Hermite polynomials of order 2;
LSMC_Full refers to the LSMC method based on 10000 outer scenarios and constructed
on each contract in the insurance portfolio. The red line refers to the benchmark value
based on a nested simulations algorithm with 10000 x 2500 trajectories applied to the
entire portfolio.

Finally, we compare these methods in terms of time. In Table 11, we report the
computational time required by the algorithms. We can see that the naive application
of the LSMC approach is more computationally expensive with respect to the GB2 and
LSMC models based on a set of representative policies.

TABLE 11. Runtime, in seconds, of GB2 Model and LSMC methods based on 10000 x 2
simulations and s = 100 representative contracts (GB2, LSMC_1, LSMC_2). LSMC_Full
refers to the LSMC method applied to each contract in the insurance portfolio.

Method Time
GB2 1911.445

LSMC_1 87.8236

LSMC_2 88.29

LSMC_Full 7847.96
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5. Conclusion

In this paper, we addressed the problem of approximating the value of a life insurance
portfolio at a future time by proposing two different methodologies able to avoid the time-
consuming nested simulations approach. The first approach can be thought of as extension
of the well-known LSMC method, while the second is based on the GB2 distribution,
widely used to approximate the fair value of portfolios of life insurance policies. Extensive
numerical results have shown that the proposed methods represent viable alternatives to
the full nested Monte Carlo model.
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