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AN ULTRAPOWER ANALOGUE OF THE KRONECKER
FUNCTION RING

K. ALAN LOPER AND DARIO SPIRITO

Abstract. We introduce an analogue of the Kronecker function ring
construction in the ultrapower setting, and study when it gives a Bézout
domain.

1. Introduction

The ultraproduct construction is an extremely powerful technique in

logic and model theory: in fact, by  Loś’s theorem, a first-order formula is

satisfied in an ultraproduct if and only if it is satisfied for almost all the

factors (see [11], [5, Chapter 5, Theorem 2.1] or [6, Theorem 4.1.9]), and

this allows a rather simple proof of the compactness theorem for first-order

logic (see e.g. [6, Corollary 4.1.11]). In algebra, the use of ultraproducts has

been pioneered by Ax and Kochen [2, 3, 4], and has grown considerably, for

example as a way to transfer results from rings of positive characteristic to

rings of characteristic 0 (see [18]).

In general, the algebraic structure of the ultrapower of a family of rings

is very complicated, and this construction does not preserve all properties

of the factors: for example, the ultraproduct of a family of Noetherian rings

is very rarely Noetherian. In particular, ultraproducts and ultrapowers gain

many new prime ideals: for example, under some mild hypotheses every non-

zero prime ideal of the ultrapower of an integral domain has infinite height

[13, Proposition 6.2], and to describe the set of maximal ideals one needs to

consider ultrafilters on the set of ideals that are induced by maximal ideals

of the factors (see [13, Section 4] and [14, Theorem 4.3]).

In this paper, we study a generalization of the Kronecker function ring

to the ultrapower setting. The Kronecker function ring is a classical con-

struction that associates to every integrally closed integral domain D a new

domain Kr(D), contained between D[X] and K(X) (where K is the quo-

tient field of D) that, while being an extension of D (in the sense that

Kr(D)∩K = D), gains several strong properties, among them that of being
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2 K. ALAN LOPER AND DARIO SPIRITO

a Bézout domain, meaning that every finitely generated ideal of Kr(D) is

principal. One of the equivalent definitions of Kr(D) is as the intersection

of a family of valuation rings, each one extending a valuation overring of D;

this idea leads also to the definition of the Kronecker function ring Kr(D,∆)

associated to a subset ∆ of the Zariski space of D.

In the ultraproduct setting, this construction admits a straightforward

generalization: given a set ∆ of valuation overrings of D, and an ultrafilter

U on an index set I, we can consider for every V ∈ ∆ the ultrapower V ?

of V (with respect to U ), and then intersect all the V ? (considering all V ?

as subsets of the ultrapower K? of the quotient field K of V ). We call the

ring obtained in this way the Kronecker-ultrafilter ring KU(D,∆,U ) of D

(with respect to ∆ and U ); when ∆ is the whole Zariski space of D, and

U is understood from the context, we set D] := KU(D,∆,U ).

Comparing these two settings, we see that, for D integrally closed, the

polynomial extension D[X] will have many more maximal ideals than D

and an abundance of valuation overrings which are not trivial extensions of

valuation overrings of D. Then, in this larger environment, the collection of

trivial extensions of the valuation overrings of D has a thin character, which

leads to their intersection (the Kronecker function ring) being a Bézout do-

main. The notion of thinness of a collection of valuation domains resulting

in a Prüfer domain is made explicit in several different settings in [15]. Sim-

ilarly, the ultrapower of an integral domain acquires many new prime ideals

and many new valuation overrings, and hence will have a lot of valuation

overrings which are not ultrapowers of valuation overrings of D. It would

seem natural then that the thinness of this collection of valuation domains

would lead to the intersection being a Bézout domain: the main purpose of

this paper is to understand how much the Kronecker-ultrafilter ring mirrors

the Kronecker function ring, and in particular if the former construction

always gives a Bézout domain.

The main setting in which we work is when the index set I is countable:

under this hypothesis, we show in Section 3 that D] is larger than the

ultrapower D? unless D is a semilocal Prüfer domain, while in Section 4 we

give a few sufficient conditions for KU(D,∆,U ) to be a Bézout domain:

for example, we show this when ∆ is countable (Theorem 4.1) or when D is

a unique factorization domain and ∆ is the set of localizations of D at the

height-one primes (Corollary 4.4).

In Section 5, we consider uncountable index sets, and show that in this

case the properties of the ultrafilter play an important role in the algebraic
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properties of the Kronecker-ultrafilter rings. For example, we show that if

U is κ-complete and the Zariski space of D has cardinality at most κ, then

D? = D] (and in particular D] may not be a Bézout domain; Proposition

5.1(c)), but that if the ultrafilter is regular then the methods of the countable

case can be generalized (Theorem 5.10).

2. Notation and preliminaries

2.1. Ultrafilters and ultraproducts. Let I be a set and U be a family

of subsets of I. Then, U is an ultrafilter on I if the following properties

hold:

• ∅ /∈ U ;

• if X, Y ∈ U , then X ∩ Y ∈ U ;

• if X ⊆ Y and X ∈ U , then Y ∈ U ;

• for every X ⊆ I, one of X and I \X is in U .

A family that satisfies the first three properties if said to be a filter ; an

ultrafilter is exactly a maximal filter.

It is easy to see that, if i ∈ I, the family of subsets containing i is an

ultrafilter; such ultrafilters are said to be principal, while those that are not

of this form are said to be free.

Let {Ri}i∈I be a collection of commutative rings and U be an ultrafilter

on I. The ultraproduct of the Ri with respect to U is the ring of all equiv-

alence classes of the direct product
∏

i∈I Ri by the equivalence relation ∼
defined by

(ai)i∈I ∼ (bi)i∈I ⇐⇒ {i ∈ I | ai = bi} ∈ U .

We denote by [ai] the class of the sequence (ai)i∈I , and by
∏

U Ri the ultra-

product of the Ri. When all the Ri are equal (say Ri = R), we also write

R? for the ultraproduct, and we call it the ultrapower of R with respect to

U .

If U is the principal ultrafilter induced by a j ∈ I, then
∏

U Ri ' Rj.

For this reason, throughout the paper, we shall assume that all ultrafilters

are free.

For general properties of ultraproducts and ultrapowers, the reader may

consult [5] or [6].

2.2. Valuations and the Zariski space. All results on valuation, Prüfer

and Bézout domains we will use are standard and can be found, for ex-

ample, in [8]. For Kronecker function rings, the Zariski topology and their

relationship, see for example [7].
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A valuation domain is an integral domain V whose ideals (equivalently,

whose principal ideals) are linearly ordered. Every valuation domain is local,

and we denote the maximal ideal of V as mV . A Bézout domain is a domain

such that every finitely generated ideal is principal.

A Prüfer domain is an integral domain D such that every finitely gen-

erated ideal is invertible, i.e., such that for every finitely generated ideal I

there is a fractional ideal J such that IJ = D. Every valuation domain is

a Bézout domain and every Bézout domain is a Prüfer domain; conversely,

every local Prüfer domain is a valuation domain, and every semilocal Prüfer

domain is Bézout. Furthermore, D is a Prüfer domain if and only if all its

localizations are valuation domains. If D is a Prüfer (respectively, Bézout)

domain and T is a ring between D and its quotient field, then T is Prüfer

(resp., Bézout).

If {Ri} is a family of valuation (resp., Bézout, Prüfer) domains, then the

ultraproduct
∏

U Ri is a valuation (resp., Bézout, Prüfer) domain.

Given an integral domain D, the Zariski space Zar(D) of D is the set of

all rings contained between D and its quotient field K that are valuation

domains. The Zariski space is always nonempty; more precisely, for every

prime ideal p of D there is a V ∈ Zar(D) such that mV ∩D = p. The Zariski

space can also be endowed with a natural topology (the Zariski topology)

which is generated by the sets of the form B(x1, . . . , xn) := {V ∈ Zar(D) |
x1, . . . , xn ∈ V }, as x1, . . . , xn range in K. Under this topology, Zar(D) is

a compact space; furthermore, it is a spectral space, i.e., there is a ring R

such that Zar(D) ' Spec(R). An example of such a ring is the Kronecker

function ring of D:

Kr(D) :=

{
f

g
∈ K(X) | f, g ∈ K[X], c(f)V ⊆ c(g)V for all V ∈ Zar(D)

}
,

where c(f) is the content of f , i.e., the ideal of D generated by the coeffi-

cients of f . The Kronecker function ring can also be defined as

Kr(D) :=
⋂

V ∈Zar(D)

V b,

where V b is the Gaussian extension vG of V , i.e., it is the valuation domain

of K(X) associated to the valuation

vG

(∑
i

fiX
i

)
:= min

i
v(fi),

where v is the valuation associated to V .

The constructible topology on Zar(D) is the topology generated by the

Zariski topology and the complements of open and compact subsets of the
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Zariski topology. The constructible topology is still spectral, but it also

becomes Hausdorff.

3. When D] is big

The main object of study of this paper is the following.

Definition 3.1. Let D be an integral domain, ∆ ⊆ Zar(D), and let U be

an ultrafilter over an index set I. The Kronecker-ultrafilter ring of D with

respect to ∆ and U is

KU(D,∆,U ) :=
⋂
V ∈∆

∏
U
V.

When U is understood from the context, we set

D] := KU(D,Zar(D),U ).

The terminology “Kronecker-ultrafilter ring” is chosen to highlight the

similarity between the definition of D] (or, more generally, of KU(D,∆,U ))

with the definition of the Kronecker function ring ofD (and the more general

construction Kr(D,∆)): we replace the Gaussian extension V b with the

ultrapower V ?.

In this and in the following section, we shall assume that the index set

I is countable; the uncountable case will be studied in Section 5.

The main purpose of this section is to show that, in almost all cases, D]

is larger than the ultrapower D?. It is not immediately obvious that this is

ever true: however, a simple example shows how they can be different.

Example 3.2. Let D := Z be the ring of integers, and let {p1, . . . , pn, . . .}
be the set of prime numbers of Z. Let x be the element

x :=

[
1

p1

,
1

p2

, . . . ,
1

pn
, . . .

]
.

Then, x /∈ Z? since xi = 1/pi /∈ Z for every i. On the other hand, if M = pZ
is a maximal ideal of Z, then 1/pi ∈ ZM for all i such that pi 6= p; hence, if

U is not principal then x ∈ (ZM)?. Therefore, x belongs to the intersection

of all the (ZM)?, which are the ultrapowers of the minimal valuations of Z;

thus, x ∈ Z] \ Z?.

This example can be easily generalized.

Proposition 3.3. Let D be an integral domain, and let x1, . . . , xn, . . . a

sequence of nonunits of D such that (xi, xj)D = D for all i 6= j. Then,

y :=

[
1

x1

, . . . ,
1

xn
, . . .

]
∈ D] \D?,
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and so D? ( D].

Proof. Since each xi is a nonunit, 1/xi /∈ D and thus y /∈ D?. On the other

hand, for each maximal ideal M there is at most one i such that xi ∈ M ;

hence, y ∈ (DM)?. If now V is a minimal valuation overring of D, then V ?

contains (DM)? (where M := mV ∩ D), and thus y ∈ D]. In particular,

D] 6= D?. �

Proposition 3.4. Let D be an integral domain, and suppose there is a

non-maximal prime ideal P of D such that Jac(D) ⊆ P . Then, D? 6= D].

Proof. Let M be a maximal ideal containing P , and let x1 ∈ M \ P . Sup-

pose we have constructed a sequence x1, . . . , xn−1 of nonunits such that

(xi, xj)D = D for i < j < n and such that xi /∈ P for all i < n: then,

x̃ := x1 · · ·xn−1 /∈ P , and thus x̃ /∈ Jac(D). Hence, there is a y such that

xn := yx̃−1 is not a unit of D. Clearly, (xi, xn)D = D for all i < n; in partic-

ular, xn /∈ P , since otherwise (x1, xn)D ⊆ M . The sequence x1, . . . , xn, . . . ,

satisfies the hypothesis of Proposition 3.3, and thus D? 6= D]. �

The hypothesis of the previous proposition can be restated as requiring

that D/Jac(D) has dimension greater than 0; in particular, an important

case that is left out is when D is a local ring. To analyze this situation, we

use a similar method, but based on polynomials.

Proposition 3.5. Let D be an integrally closed domain, and let λ :=

{λn}n≥1 be a sequence of monic polynomials on D such that (λi, λj)D[X] =

D[X] for all i 6= j.

(a) For every nonzero t ∈ K, the element

λ−1(t) :=

[
1

λi(t)

]
i∈N

belongs to D].

(b) If V is a valuation overring of D, then λ−1(t) ∈ mV ? if and only if

t /∈ V .

(c) If V,W are noncomparable valuation overrings of D, then mV ?∩D] 6=
mW ? ∩D].

Proof. Let V be any valuation overring of D, and let v be the valuation

relative to V . Note that if the constant term of λ ∈ D[X] is not a unit

in V , then λ ∈ (mV , X)V [X]; in particular, no two polynomials with this

property can be coprime in V [X] (and thus also in D[X]). Furthermore,

since the λi are coprime, for any t there is at most one i such that λi(t) = 0,

and so λ−1(t) is well-defined.
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We distinguish three cases.

• If t /∈ V , then v(t) < 0: hence, v(λi(t)) is equal to the valuation of

its leading term, which is equal to niv(t) < 0 (where ni is the degree

of λi). Hence, 1/λi(t) ∈ mV , and thus λ−1(t) ∈ mV ? .

• If t ∈ mV , i.e., if v(t) > 0, then (since the constant term of λi is a

unit for all but at most one i), we have v(λi(t)) = 0 (again, for all

but at most one i), and so 1/λi(t) is a unit of V , i.e., λ−1(t) is a unit

of V ?.

• If v(t) = 0 and v(λi(t)) > 0, then t is a zero of λi (when t and λi

are seen over V/mV ). Since the λi are coprime in D[X], they are

also coprime in V/mV [X]; hence, t cannot be a zero of more than

one polynomial. Thus, v(λi(t)) = 0 for all but at most one i, and so

λ−1(t) is a unit of V ?.

In particular, λ−1(t) ∈ V ? for every V , and so λ−1(t) ∈ D]; furthermore,

λ−1(t) ∈ mV ? if and only if t /∈ V .

If V and W are non-comparable, we can find t ∈ V \W ; then, λ−1(t) ∈
mW ? \mV ? , and since λ−1(t) ∈ D] we have mV ? ∩D] 6= mW ? ∩D]. �

Lemma 3.6. Let D be an integral domain. If I, J are D-submodules of K,

then (I ∩ J)? = I? ∩ J?.

Proof. Clearly (I ∩ J)? ⊆ I? ∩ J?. If x := [xi] ∈ I? ∩ J?, then

{i | xi ∈ I ∩ J} = {i | xi ∈ I} ∩ {i | xi ∈ J} ∈ U

being the intersection of two subsets belonging to U . Hence, x ∈ (I ∩ J)?,

as claimed. �

Corollary 3.7. Let V be a valuation overring of D. Then, mV ? ∩ D? =

(mV ∩D)?

Proof. It is enough to note that mV ? = (mV )? and apply Lemma 3.6. �

Proposition 3.8. Let D be an integrally closed integral domain that is not

Prüfer. Then, D? 6= D].

Proof. Let λ1 be any monic polynomial and, for n > 1, let λn := λ1 · · ·λn−1−
1. Then, all λi are monic non-constant polynomials, and (λi, λj)D[X] =

D[X] whenever i 6= j. Let λ := {λn}n≥1: then, λ satisfies the hypothesis

of Proposition 3.5, and thus mV ? ∩ D] 6= mW ? ∩ D] for all noncomparable

valuation overrings V,W of D.

However, if D is not a Prüfer domain, there is a maximal ideal M of

D such that DM is not a valuation domain; in particular, there are two
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different minimal valuation overrings of DM , say V and W , and both V and

W have the same center over D, namely M . By Corollary 3.7, V ? and W ?

have the same center over D?, namely M?, i.e., mV ?∩D? = M? = mW ?∩D?.

By the previous reasoning, this is impossible if D? = D]. Hence, D? 6= D],

as claimed. �

The only case left is when D is a Prüfer domain such that the minimal

primes of the Jacobson radical are all maximal. We shall use a topological

lemma.

Lemma 3.9. Let X be an topological space that is compact and totally

disconnected, and suppose that |X| =∞. Then, there is a descending chain

X = X0 ) X1 ) · · · ) Xn ) · · · such that every Xi is compact and open in

X.

Proof. Since X is totally disconnected, there is a proper subset U of X that

is both open and closed. Since |X| = ∞, at least one of U and X \ U is

infinite; let it be X1. Then, X1 is both open and closed; since X is compact,

X1 is compact as well. Since X1 is also totally disconnected, we can apply

the same reasoning, finding an X2 which is compact and open in X1; since

X1 is open in X, it follows that X2 is also open in X. Repeating the process

we have the sequence. �

Proposition 3.10. Let D be a Prüfer domain such that Max(D) is infinite

and such that every minimal prime of Jac(D) is maximal. Then, D? 6= D].

Proof. By the hypothesis, D/Jac(D) has dimension 0 and Spec(D/Jac(D))

is homeomorphic to Max(D). Hence, Max(D) is compact, Hausdorff and

totally disconnected; since it is infinite, we can apply Lemma 3.9 and find

a sequence Max(D) = X0 ) X1 ) · · · of open and compact subsets of

Max(D); since Max(D) is Hausdorff, each Xi is also closed. Let Ωi := Xi \
Xi−1, for each i > 0. Then, Ωi = Xi ∩ (Max(D) \Xi−1) is open and closed

in Max(D); in particular, since Max(D) is closed in Spec(D) (being equal

to V (Jac(D))), then Ωi is closed in Spec(D). Furthermore, since it is open,

there is an ideal Ji such that V (Ji) ∩Max(D) = Max(D) \ Ωi.

Then, V (Ji) and Ωi are disjoint closed subsets of Spec(D); by [9, Lemma

1.1], we can find

xi ∈
⋂

P∈Ωi

P \
⋃

Q∈V (Ji)

Q.

In particular, V (xi) ∩Max(D) = Ωi; since Ωi ∩ Ωj = ∅ if i 6= j, we have

(xi, xj)D = D for all i 6= j. Hence, we can apply Proposition 3.3, and

D] 6= D?. �
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The following theorem recaps the results of this section.

Theorem 3.11. Let D be an integral domain, and suppose that the index

set is countably infinite. Then, D? = D] if and only if D is a semilocal

Prüfer domain.

Proof. If D is a semilocal Prüfer domain, say Max(D) = {M1, . . . ,Mn},
then

D? = (DM1 ∩ · · · ∩DMn)? =
n⋂

i=1

(DMi
)? =

n⋂
i=1

(DMi
)] = D]

using Lemma 3.6 and the fact that each DMi
is a valuation domain.

Suppose that D is a Prüfer domain that is not semilocal. Then, either

dim(D/Jac(D)) = 0 or dim(D/Jac(D)) > 0. In the latter case, D? 6= D] by

Proposition 3.4; in the former, D? 6= D] by Proposition 3.10. If D is not a

Prüfer domain, then D? 6= D] by Proposition 3.8. �

4. Bézout domains

One of the most important properties of the Kronecker function ring

Kr(D) of D is that it is a Bézout domain; in particular, the spectrum and

the Zariski space of Kr(D) are homeomorphic. There does not seem to be

a simple way to extend this result to the Kronecker-ultrafilter ring of D:

indeed, when the index set is uncountable this is in general not true (see

the next section), and thus the Bézoutness of D] depends, at least in part,

on cardinality issues. Nevertheless, we advance the following

Conjecture. If the index set I is countable, then D] is a Bézout domain.

A first evidence in favor of this conjecture is Proposition 3.5(c): the

ultrapowers V ?, in the Zariski space of D], are spread out so much that their

centers on D] (and thus on each KU(D,∆,U )) are distinct. In particular,

every localization of D] at its prime ideals is dominated by at most one V ?.

In this section we use a few different approaches to prove some special

cases of the conjecture. We still assume, throughout the section, that the

index set is countable.

The first idea is to approximate the set ∆ of valuation rings.

Theorem 4.1. Let ∆ ⊆ Zar(D) be a countable set. Then, KU(D,∆,U ) is

a Bézout domain.

Proof. Let D := KU(D,∆,U ). Write ∆ := {V1, V2, . . .}, and let Tn :=

V1 ∩ · · · ∩ Vn: then, Tn is a semilocal Prüfer domain (and thus it is Bézout)

for every n. Take a := [ai],b := [bi] ∈ K?. For every i, the ideal (ai, bi)Ti
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is principal, and thus is generated by some ci ∈ K. Let c := [ci]: we claim

that c generates (a,b)D.

Indeed, let Vn ∈ ∆: then, for every i ≥ n, Ti ⊆ Vn and thus (ai, bi)Vn =

ciVn. Hence, the set {i | ci ∈ (ai, bi)Vn} contains [n,∞) and thus belongs

to U , and so c ∈ (a,b)D]. In the same way, the sets {i | ai ∈ ciVn} and

{i | bi ∈ ciVn} contain [n,∞) and belong to U , so that both a and b belong

to cD. The claim is proved. �

Corollary 4.2. If Zar(D) is countable, then D] is a Bézout domain.

We shall generalize Theorem 4.1 in Theorem 5.10.

A second way of constructing a generator for (a,b)D] is by using fac-

torization properties. For the definitions and properties of GCD domains,

PvMDs, and t-maximal ideals, see for example [1]. A domain has t-finite

character if every nonzero nonunit is contained in only finitely many t-

maximal ideals.

Proposition 4.3. Let D be a GCD domain that has t-finite character,

and let ∆ be the set of localizations of D at the t-maximal ideals. Then,

KU(D,∆,U ) is a Bézout domain.

Proof. A GCD domain is a PvMD [1, Theorem 4.1], and thus if P is a t-

maximal ideal then DP is a valuation domain [1, Theorem 3.1]; hence, it

makes sense to consider KU(D,∆,U ).

Let x := [xi] and y := [yi] be two elements of K?. Since D is a GCD

domain, for every i there is a gi ∈ D such that (xi, yi)
v = gi; dividing both

x and y by g := [gi], we can suppose that (xi, yi)
v = D, i.e., that, for every

i, xi and yi are coprime elements of D.

We claim that we can find two sequences {an}n≥1, {bn}n≥1 of elements of

D such that aixi + biyi and ajxj + bjyj are coprime for every i 6= j. Indeed,

start with a1 = b1 = 1, suppose we have found the sequences up to n − 1,

and let zk := akxk + bkyk for k < n. Let Sk be the set of elements that

are not coprime with zk: then, Sk is just the union of all t-maximal primes

containing zk, and thus it is the union of finitely many prime ideals; hence,

also S :=
⋃

k<n Sk is the union of finitely many primes.

Suppose that, for every α, β ∈ D, the element z := αxn + βyn is not

coprime with some zk: then, (xn, yn)D is contained in S. However, by prime

avoidance, it would follow that (xn, yn)D is contained in some t-maximal

ideal, contradicting the fact that xn and yn are coprime; thus, we can find

an, bn ∈ D such that anxn + bnyn is coprime with every zk.
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Now let a := [ai] and b := [bi], and let z := ax + by = [aixi + biyi].

Then, z ∈ (x,y)D? ⊆ D?. Let Λ be the set of t-maximal ideals: then, every

P ∈ Λ contains at most one zi, and thus 1 ∈ z(DP )?. It follows that

1 ∈
⋂
P∈Λ

z(DP )? = z
⋂
P∈Λ

(DP )?.

Hence, x and y generate a principal ideal in
⋂

P∈Λ(DP )? = KU(D,∆,U );

since x and y were arbitrary, KU(D,∆,U ) is a Bézout domain. �

Corollary 4.4. Let D be a unique factorization domain, and let ∆ := {DP |
h(P ) = 1}. Then, KU(D,∆,U ) is a Bézout domain.

Proof. If D is a unique factorization domain, then it is a GCD domain and

the t-maximal ideals are exactly the height-1 prime ideals. The claim follows

from Proposition 4.3. �

The last result of this section shows that, under some hypothesis on the

units of D, we can find a Kronecker function ring of D inside D].

Lemma 4.5. Let D be an integral domain and let u1, u2, . . . , be a sequence

of units of D such that ui−uj is a unit for every i 6= j. For every f ∈ K[X]

and every valuation overring V of D we have v(f(ui)) = vG(f) for all but

finitely many i, where v is the valuation relative to V and vG is the Gaussian

valuation of v.

Proof. Let L := V/mV : the hypothesis implies that the images u1, u2, . . . ,

of the ui are distinct elements of L.

Let f(X) :=
∑

i fiX
i, and let s ∈ K be an element of value vG(f); then,

all coefficients of 1
s
f :=

∑
i
fi
s
X i are in V and some of them are units of V ,

so that its image g(X) in L[X] is well-defined and not the zero polynomial.

Hence, g(ui) = 0 for only finitely many i; for all others, 1
s
f(ui) is a unit of

V , and thus v(f(ui)) = v(s) = vG(f). The claim is proved. �

Proposition 4.6. Let D be an integral domain and let u1, u2, . . . , be a

sequence of units of D such that ui − uj is a unit for every i 6= j; let

u := [ui]. Then, the Kronecker function ring of D in K(u) is contained in

D]; in particular, for every a, b ∈ D the ideal (a, b)D] is principal.

Proof. Note first that u is transcendental over K, so it makes sense to

construct the Kronecker function ring T of D in K(u). Let φ ∈ T : then,

we can write φ as f(u)/g(u), where f, g ∈ K[X] are polynomials with

vG(f) ≥ vG(g) for all v. In the ultraproduct representation, f(u)/g(u) =

[f(ui)/g(ui)] (at least for all i such that g(ui) 6= 0; however, g(ui) = 0 for
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only finitely many i, and thus for these indexes we can just set f(ui)/g(ui) =

0). By Lemma 4.5, for all but finitely many i we have v(f(ui)) = vG(f) and

v(g(ui)) = vG(g); hence, for all but finitely many i we have

v(f(ui)) = vG(f) ≥ vG(g) = v(g(ui)),

and so f(ui)/g(ui) ∈ V . Therefore, f(u)/g(u) ∈ V ?, i.e., φ ∈ V ?. Since V

was arbitrary, it follows that φ ∈
⋂

V V
? = D] and so T ⊆ D], as claimed.

The last claim follows since T is a Bézout domain. �

Note that the properties of the Kronecker function ring show that a gen-

erator of (a, b)T is a+ub, which thus also generates (a, b)D]. This claim can

also be proved directly. See Proposition 5.12 for an extension to uncountable

index sets.

5. When the index set is uncountable

In this section, we analyze what happens when the index set I is not

countable; this case is more delicate, since it hits on cardinality problems.

As a first example, we show that the equality D? = D] may hold also outside

the semilocal Prüfer domain case.

Let κ be a cardinal number. An ultrafilter U is said to be κ-complete

if the intersection of any family of at most κ elements of U belongs to U ;

equivalently, U is not κ-complete (or κ-incomplete) if there is a partition

of the index set into (at most) κ subsets none of which belong to U .

An uncountable cardinal κ such that there is an ultrafilter on an index set

of cardinality κ that is α-complete for every α < κ is said to be measurable.

It is consistent with ZFC that measurable cardinals do not exist (see [19]

or [5, Chapter 14, §6]). In our context, complete ultrafilters give rise to

situations where D? = D], showing that Theorem 3.11 cannot be extended

beyond the countable case.

Proposition 5.1. Suppose U is κ-complete, and let ∆ be a family of subsets

of K with |∆| ≤ κ. Then, the following hold.

(a)

(⋂
J∈∆

J

)?

=
⋂
J∈∆

J?.

(b) If ∆ ⊆ Zar(D) and
⋂

V ∈∆ V = D then KU(D,∆,U ) = D?.

(c) If D is integrally closed and |Zar(D)| ≤ κ, then D? = D].

Proof. Part (a) follows in the same way of Lemma 3.6, using the complete-

ness of U . The other two points are immediate consequences of the first

one. �
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Remark 5.2. If U is a κ-complete ultrafilter, and U is not principal,

then the cardinality of the index set is strictly greater than κ: otherwise,

{I \ {i} | i ∈ I} would be a family of at most κ subsets in the ultrafilter

with empty intersection, which would imply that the empty set is in U , a

contradiction.

In particular, if κ is an infinite cardinal and the index set I is count-

able, then every non-principal ultrafilter is countably incomplete (i.e., it

is ℵ0-incomplete). Since we are considering only non-principal ultrafilters,

Proposition 5.1 does non apply (non-trivially) to the case of countable index

set considered in Sections 3 and 4.

In particular, if U is κ-complete, then D] may not be a Bézout domain,

or even a Prüfer domain. For example, if L is a countable field, X, Y inde-

terminates, and D := L + Y L(X)[[Y ]], then Zar(D) is countable (as it is

composed by L(X)((Y )), L(X)[[Y ]], L[X](1/X) + Y L(X)[[Y ]] and the rings

L[X](f) + Y L(X)[[Y ]], as f ranges among the irreducible polynomials of

L[X]) so D? = D]; however, D is not a Prüfer domain, and thus neither is

D?. Therefore, the fact that D] is a Bézout domain for arbitrary index sets

would imply that κ-complete ultrafilters (and thus measurable cardinals)

cannot exist.

If we step outside the complete case, however, the situation becomes

much better. The following “approximation” method can be seen as a gen-

eralization of the proof of Theorem 4.1.

Proposition 5.3. Let D be an integral domain, and let {Ti}i∈I be a set of

overrings of D. Let

∆ := {V ∈ Zar(D) | {i ∈ I | Ti ⊆ V } ∈ U }.

Then,
∏

U Ti ⊆ KU(D,∆,U ). In particular, if each Ti is a Prüfer (re-

spectively, Bézout) domain then KU(D,∆,U ) is a Prüfer (resp., Bézout)

domain.

Proof. Let x := [xi] ∈
∏

U Ti, and let V ∈ ∆. Then,

{i | xi ∈ V } ⊇ {i | xi ∈ Ti} ∩ {i | Ti ⊆ V }

and both sets on the right hand side are in U (the first one since x ∈∏
U Ti, the second one by the definition of ∆). Thus, x ∈ KU(D,∆,U ) and∏
U Ti ⊆ KU(D,∆,U ).

The “in particular” statement follows since if each Ti is a Prüfer (resp.,

Bézout) domain then so is their ultraproduct, and an overring of a Prüfer

(resp., Bézout) domain is still Prüfer (resp., Bézout). �
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Before showing how to extend Theorem 4.1, we use this criterion to-

gether with a result of Roquette. Recall that a field F is real closed if it is

elementary equivalent to the field of real numbers; that is, if every first-order

property in the language of fields is true in F if and only if it is true in R.

Lemma 5.4. Let F be a field that is not algebraically closed nor real closed.

Then, there are irreducible polynomials over F of arbitrary large degree.

Proof. Let F be the algebraic closure of D. If F is not algebraically closed

nor real closed, then [F : F ] = ∞ [10, Corollary 9.3]. If F is perfect, the

claim follows. If F is not perfect, and it has characteristic p, then there is

an element a ∈ F \F p, and for every l the polynomial Xpl −a is irreducible

[10, Corollary 9.2]; the claim follows again. �

Proposition 5.5. Let (D,m) be a local domain, and let F := D/m. Suppose

that F is not algebraically closed nor real closed. Let ∆ be the set of valuation

overrings V of D such that the algebraic closure of F in V/mV is finite over

F . Then, KU(D,∆,U ) is a Prüfer domain.

Proof. Since F is not algebraically closed nor real closed, by Lemma 5.4 we

can find a sequence {λn}n≥1 of irreducible polynomials over F of increasing

degree. Let Ti :=
⋂
{V ∈ ∆ | λi has no roots in V/mV }. By [16, Theorem

1], each Ti is a Prüfer domain.

Let V be a valuation overring of D. By hypothesis, the degree of the

algebraic closure of F in V/mV over F is finite, say equal to n: since the

degrees of the λi are increasing, only finitely many λi can have a root in

V/mV . Therefore, Ti ⊆ V for all but finitely many i; in particular, {i ∈
I | Ti ⊆ V } ∈ U for all V ∈ ∆. By Proposition 5.3, it follows that

KU(D,∆,U ) is a Prüfer domain, as claimed. �

In particular, the set ∆ of Proposition 5.5 contains all valuation overrings

whose residue field is F and those whose residue field is purely transcen-

dental over F .

Corollary 5.6. Let (D,m) be a local domain, and let ∆ be the set of valu-

ation overrings of D with finite residue field. If ∆ 6= ∅, then KU(D,∆,U )

is a Prüfer domain.

We now want to apply Proposition 5.3 more directly.

Proposition 5.7. Let D be an integral domain and ∆ ⊆ Zar(D), and

suppose there is an injection ψ : ∆ −→ U . For every i ∈ I, let Ti :=⋂
{V ∈ ∆ | i ∈ ψ(V )}. Then,

∏
U Ti ⊆ KU(D,∆,U ).
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Proof. For every V ∈ ∆, the set {i ∈ I | Ti ⊆ V } contains ψ(V ), and thus

is in U . The claim follows from Proposition 5.3. �

Since we are trying to show that the Kronecker-ultrafilter ring is Bézout,

we want the Ti of the previous proposition to be Bézout; the easiest way

to guarantee this property is to require them to be a finite intersection of

valuation rings.

Definition 5.8. An ultrafilter U on I is regular if there is a family E ⊆ U

such that:

• |E| = |I|;
• each i ∈ I belongs to only finitely many X ∈ E.

Remark 5.9.

(1) If U is regular, then every element of U has the same cardinality

of I.

(2) If I is countable, every free ultrafilter is regular (if I = N, take E

formed by the sets [n,∞)).

Theorem 5.10. Let D be an integral domain. Suppose that |I| ≥ |∆| and

that U is a regular ultrafilter. Then, KU(D,∆,U ) is a Bézout domain.

Proof. Take a family E ⊆ U that makes U into a regular ultrafilter: then,

there is an injection ψ : ∆ −→ E ⊆ U . Define Ti as in Proposition 5.7.

Since U is regular, each Ti is a semilocal Bézout domain; hence,
∏

U Ti is a

Bézout domain, and thus also KU(D,∆,U ) (which is an overring of
∏

U Ti)

is Bézout. �

Note that, using Remark 5.9(2), this theorem can be seen as a general-

ization of Theorem 4.1.

Furthermore, suppose that ϕ is a first-order property such that:

• ϕ holds for semilocal Prüfer domains;

• if ϕ holds for the Bézout domain T , then it holds also for all overrings

of T .

Then, under the hypothesis of Theorem 5.10 ϕ holds for every Ti, and

thus holds also for the ultraproduct
∏

U Ti and for the Kronecker-ultrafilter

ring KU(D,∆,U ). Examples of this phenomenon is when ϕ is “being an

elementary divisor domain” or when ϕ is “having stable range 1” (see [17]

for the definitions).

For regular ultrafilters, we can actually say more about the set ∆?.
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Proposition 5.11. Let D be an integral domain. Suppose that |I| ≥ |∆|
and that U is a regular ultrafilter. Then, ∆? := {V ? | V ∈ ∆} is discrete

in the constructible topology of Zar(D]).

Proof. Fix a valuation overring W of D. We shall show that {W ?} is equal

to B(x)∩ (∆? \B(y)) for some x,y ∈ K?; this will show that {W ?} is open

in the constructible topology.

As in the previous proof, we denote by E a subfamily of U that makes

U into a regular ultrafilter.

We first construct x. Let ∆1 := {V ∈ ∆ | V ⊇ W}; then, there is an

injection ψ1 : ∆ \ ∆1 −→ E. For every i, define Ri as the intersection of

all V ∈ ∆ \ ∆1 such that i ∈ ψ1(V ); then, every Ri is a semilocal Bézout

domain that does not contain W . Hence, we can find an xi ∈ W \ Ri; let

x := [xi]. By construction, x ∈ W ?. On the other hand, if V ∈ ∆ \∆1, then

{i ∈ I | xi /∈ V } ⊇ ψ1(V ) ∈ U

and thus x /∈ V ; hence, B(x) ∩∆? = ∆?
1.

To construct y, we use essentially the same method: let ∆2 := {V ∈ ∆ |
V ⊆ W}, and take an injection ψ2 : ∆ \∆2 −→ E. For every i, define Ti as

the intersection of all V ∈ Zar(D)\∆2 such that i ∈ ψ2(V ); then, every Ti is

a semilocal Bézout domain that is not contained in W . Hence, we can find

an yi ∈ Ti \W ; let y := [yi]. By construction, y /∈ W ?, while if V ∈ ∆ \∆2,

then

{i ∈ I | yi ∈ V } ⊇ ψ2(V ) ∈ U

and thus y /∈ V ; hence, B(y) ∩∆? = ∆? \∆?
2, i.e., ∆? \ B(y) = ∆?

2.

Therefore

B(x) ∩ (∆? \ B(y)) = ∆?
1 ∩∆?

2 = (∆1 ∩∆2)? = {W ?},

and so {W ?} is open in the constructible topology. Since this happens for

every W , ∆? is discrete in the constructible topology. �

As a last application, we generalize Proposition 4.6.

Proposition 5.12. Suppose U is a regular ultrafilter. Let D be an integral

domain containing an infinite field F . If |F ||I| > |∆|, then KU(D,∆,U ) is

a Bézout domain.

Proof. By [5, Chapter 6, Corollary 3.21], the field F ? has cardinality at least

|F ||I|; furthermore, F ? ⊆ D? and so F ? ⊆ V ? for every V ∈ Zar(D). By

[12, Theorem 6.6], the intersection of any set of κ < |F ||I| valuation rings

containing F ? and contained in K? is a Bézout domain; in particular, we
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can apply this result to ∆? := {V ? | V ∈ ∆}. Thus, KU(D,∆,U ) is a

Bézout domain. �

Remark 5.13.

(1) The proof of Theorem 6.6 of [12] does not actually use the fact that

F is a field, but rather that F is a set of units such that u − u′ is

a unit for every u 6= u′ in F . This property is conserved by passing

from F to F ?; thus, we can weaken the hypothesis of Proposition

5.12 in the same way.

(2) Since |F ||I| > |I|, the hypothesis that |F ||I| > |∆| of Proposition 5.12

is weaker than the hypothesis |I| ≥ |∆| of Theorem 5.10; however,

the latter theorem also covers the cases where we cannot find an

infinite field F .
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Largo San Leonardo Murialdo 1, 00146 Roma, Italy

Current address: Dipartimento di Matematica “Tullio Levi-Civita”, Università degli
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