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Keywords: We consider the Minimum Interference Frequency Assignment Problem and we propose a novel Simulated An-
Fre_quency assignment nealing approach that makes use of a portfolio of different neighborhoods, specifically designed for this problem.
Neighborhood search We undertake at once the two versions of the problem proposed by Correia (2001) and by Montemanni

Simulated annealing

) et al. (2001), respectively, and the corresponding benchmark instances. With the aim of determining the best
Parameter tuning

configuration of the solver for the specific version of the problem we perform a comprehensive and statistically-
principled tuning procedure.

Even tough a totally precise comparison is not possible, the experimental analysis show that we outperform
all previous results on most instances for the first version of the problem, and we are at the same level of the best
ones for the second version.

As a byproduct of this research, we designed a new robust file format for instances and solutions, and a data
repository for validating and maintaining the available solutions.

1. Introduction

Allocating radio spectrum resources is a crucial problem in the de-
sign and operation of mobile communication networks. In particular,
the Frequency Assignment Problem (FAP) consists in assigning, in an
efficient way, a limited number of frequencies to communication links.
In this work, among all the possible frequency assignment models, we
consider the Minimum Interference Frequency Assignment Problem (MI-
FAP), which is the most studied model, mostly due to its practical im-
portance. The MI-FAP aims at allocating frequencies so that interfer-
ences between adjacent frequencies in geographically close links are
minimized.

We undertake the two versions of the problem proposed in the COST
259 project (Correia, 2001) and by Montemanni et al. (2001), respec-
tively, as they both come along with a very challenging dataset, that
have been used as benchmark for many studies.

Even though the technology has evolved substantially since these
formulations have been proposed, the frequency assignment problem re-
mains essential also on more recent environments, such as 5G (Lin et al.,
2015), edge computing (Zhang et al., 2020), D2D networks (Zhao et al.,
2018), and military applications (Lal et al., 2018; Wang and Henz,
2017). However, no specific new formulation and benchmark has
emerged so far, therefore these datasets remain the most popular and
challenging benchmarks.
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For the solution of this problem we have designed and implemented
a local search approach based on a suitable combination of different
neighborhoods, driven by a Simulated Annealing (SA) procedure. SA
has been used also by many other authors for FAP with good results,
suggesting that it is particularly suitable for this type of problems (see
Section 3 on Related work). In addition, we have experienced good re-
sults with SA also on problems that are quite similar to FAP, like, for
example, Examination Timetabling (Bellio et al., 2021).

In order to obtain the best configuration of the algorithm for the
specific problem versions and datasets, we have tuned the algorithm
using a comprehensive and statistically-principled tuning procedure.

We also performed an extensive experimentation with the aim of
comparing our results with previous literature. Although a totally pre-
cise comparison is not possible, the outcomes of the experiments show
that our solution method is able to outperform all those reported for the
version of Correia (2001) for most of the instances and to reach the same
level of the best results for the version of Montemanni et al. (2001), on
the respective datasets. In addition, we have reached many new best-
known solutions for the COST 259 dataset.

Finally, in order to foster future comparisons, we published our so-
lutions on the web. To this aim, we created a novel data format for
both input and output files based on JSON. All data is available for in-
spection and comparison at https://opthub.uniud.it. Our repository is
conceived in such a way that also other researchers can validate and

Gaspero), robertomaria.rosati@uniud.it (R.M. Rosati),

Received 20 July 2021; Received in revised form 15 November 2021; Accepted 21 December 2021
2192-4406,/© 2021 The Authors. Published by Elsevier Ltd on behalf of Association of European Operational Research Societies (EURO). This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)



S. Ceschia, L. Di Gaspero, R.M. Rosati et al.

upload their solutions, so that they become immediately available for
everybody along with the timestamp of the upload.
Summarizing, the main contributions of the paper are:

e an SA procedure based on a novel combination of neighborhoods for
two classical versions of MI-FAP;

e a statistically-principled tuning procedure;

e a comparison with state-of-the-art results showing that the method
is very effective for both versions and different time limits;

e publication of instances and solutions on the web in a new file for-
mat, along with the validator to encourage future comparisons.

2. Problem definition

For the sake of completeness, we describe here informally the
two versions of the MI-FAP problem, and we forward the reader to
Correia (2001) and Montemanni et al. (2001) for more details on the
specific formulations and for the precise mathematical models.

We proceed by firstly describing the problem version proposed
within the COST 259 project, and then we move to the simpler variant
proposed by Montemanni et al. (2001). In the following, for conciseness,
we refer to the two versions as MI-FAP-I and MI-FAP-II, respectively.

The key elements of MI-FAP-I are the following ones:

Cells: a cell is an equipment that provides communication service to
a given geographical area and has a fixed number of transmitters.

Transmitters: a transmitter is a single device that transmits the sig-
nal, and requires the assignment of a frequency. For each cell,
one of the transmitters is designated to carry the control signal
whereas the others carry traffic signals. The control signal needs
special treatment in terms of separation constraints, as explained
below (see handover separation rule).

Frequencies: a fixed number of frequencies (or channels) are avail-
able, each one identified by an integer value. Frequencies that are
adjacent in terms of actual transmission bandwidth are assigned
to consecutive values. Some frequencies can be forbidden either
for a given cell or globally for the entire area.

Sites: a site is a physical installation where several cells (typically
three) are located.

In order to avoid disturbance in the communication, the assignment
of frequencies to transmitters has to satisfy a set of separation rules:

Co-cell: transmitters belonging to the same cell must have a given
frequency separation. The typical separation value is 3 and it is
defined at global level, but some cells can have specific (and dif-
ferent) separation requirements.

Co-site: transmitters belonging to cells at the same site must have a
given frequency separation, typically 2.

Handover: cells that are geographically adjacent might suffer from
the so-called handover effect, therefore requiring a specific sepa-
ration among the transmitters of those cells on the basis of their
specific type (i.e., control / traffic). Typically, there must be a
separation of 2 between the control channels, a separation of 1
or 2 between a control channel and a traffic channel, and a sep-
aration of 1 between traffic channels.

Additional separations: ad hoc separations between pairs of cells
due to specific conditions might be required, and they have to be
enforced on all pairwise combinations of transmitters of the two
cells involved.

In addition to these mandatory channel separations, which must be
always fulfilled (i.e., they are so-called hard constraints), also a milder
interference of frequencies between cells has to be taken into account
in terms of an objective function to be minimized. In detail, for each
pair of cells the interference cost that occurs in case of assignment to the
same frequency (same-channel interference) or to adjacent (i.e., whose
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distance is 1) frequencies (adjacent-channel interference) is specified as
a pair of real-valued numbers.

When the cells are geographically apart, there is no interference, so
there will be no penalty for assigning the same frequency or an adjacent
one. It might also be possible that only the same-channel interference
is relevant and the adjacent-channel interference is zero (the opposite
is obviously not possible). In this version of the problem, no interfer-
ence penalty is ever assigned in case of frequencies at distance 2 or
more.

The specification for MI-FAP-II is much simpler, as there are no ex-
plicit notions of cell, site, and handover. Constraints are expressed di-
rectly at the transmitter level, by specifying the required separation be-
tween pairs of transmitters and the cost of its violation. The penalty
for violating the separation is fixed, independently of the degree of vi-
olation. This is different from MI-FAP-I in which same- and adjacent-
channel interferences are weighted differently. Finally, there is no ex-
plicit distinction between hard and soft constraints, though, in some
instances, there are separations with an extremely high cost (10%), that
we interpreted as a hard one.

3. Related work

The literature on Frequency Assignment is very vast. For this rea-
son, we focus our overview specifically on the Minimum Interference
formulation. We refer to the comprehensive and enlightening survey
by Aardal et al. (2007) for the general problem and to the FAP web-
site (Eisenbldtter and Koster, 2000) for other publications, benchmark
instances, and results (unfortunately not very up-to-date).

The MI-FAP originates from the study by Allen et al. (1987) and was
thereafter investigated in many other works (Aardal et al., 1996; Bjork-
lund et al., 2005; Borndorfer et al., 1998; Crisan and Miihlenbein, 1998;
Duque-Antén et al., 1993; Kapsalis et al., 1995; Kolen, 2007; Koster
et al., 1999; 2002; Tiourine et al., 2000), mainly in connection to the
CALMA project (Aardal et al., 2002).

The MI-FAP-I formulation emerged within the COST 259 project
“Wireless Flexible Personalised Communications” (Correia, 2001),
which involved more than 200 European research institutions and com-
panies in the area of mobile radio during the years from 1996 to 2000.
One of the contributions of the project was a dataset of 32 realistic in-
stances, which has become well-known and a very challenging bench-
mark for GSM network planning (see Section 5.1 for details about this
dataset).

Over the years, MI-FAP-I has been mainly tackled by metaheuris-
tic methods, because large-size scenarios of the COST 259 dataset are
still beyond the reach of exact approaches. Among the metaheuristics
methods, a Simulated Annealing (SA) approach for MI-FAP-I was firstly
proposed by Beckmann and Killat (1999). This approach relies on a cell-
based local search neighborhood with some restrictions: a cell is ran-
domly selected, then the frequency of the transmitter (within the cell)
with the largest interference cost is substituted with a new permitted
frequency causing the smallest interference cost.

Hellebrandt and Heller (2000) apply a variant of SA, the threshold
accepting algorithm, where a new solution is accepted if the deteriora-
tion of the value of the objective function is less than a given threshold,
which is reduced during the search process. They implement a basic
neighborhood (i.e., the one that changes the frequency to a single trans-
mitter) but forbidding those moves that produce violations of the hard
constraints. In addition, they also employ at each iteration a one-cell re-
optimization process, by means of a dynamic program that performs a
simultaneous exchange of all the frequencies assigned to a cell when
this improves the current solution.

The dynamic programming method has been generalized to cliques
of vertices by Mannino et al. (2007), who also employ a Simulated
Annealing algorithm as their main search procedure. They also show
that, for some restricted cases under some specific hypothesis on the
subsets of transmitters, the MI-FAP can be reduced to a maximum
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weighted stable set problem, which is solvable in polynomial time.
This theoretical result has been exploited to search effectively in a
large-scale neighborhood, defined as the set of all transmitters whose
frequency can be simultaneously replaced without incurring in any
violation.

Montemanni et al. (2003) propose a Tabu Search procedure with a
dynamic length tabu list in which the neighborhood relation changes the
frequency of a single transmitter involved in at least one constraint vio-
lation. They also implement cell re-optimization by means of a recursive
depth-first search procedure.

More recent works on MI-FAP-I deal with multi-objective optimiza-
tion variants of the problem (Aardal et al., 2007). In particular, besides
the minimization of the total interference, Laidoui et al. (2018) stud-
ied the trade-off between interference and the blocking probability, as
a function of the number of frequencies assigned to each cell. Instead,
Kiouche et al. (2020) dealt with the problem of simultaneously minimiz-
ing also the maximum interference and the number of frequencies used.
In both cases, the authors implemented genetic algorithms hybridized by
combining elements related to game theory for Laidoui et al. (2018) and
to Artificial Immune Systems for Kiouche et al. (2020).

The MI-FAP-II, also known as Fixed-Spectrum Frequency-Assignment
Problem, was introduced by Montemanni et al. (2001) as a generaliza-
tion of the Graph Coloring Problem. The authors propose different lower
bounding techniques that are tested on a new dataset, whose main char-
acteristics are discussed in Section 5.1. Lower bounds for MI-FAP-II have
been further improved in (Montemanni et al., 2004). For the solution of
MI-FAP-II, a number of effective Tabu Search algorithms have been pro-
posed by Montemanni et al. (2003), Montemanni and Smith (2010), and
Lai and Hao (2015). In particular, Lai and Hao (2015) devise a popula-
tion based strategy with relinking operators tailored to MI-FAP-II, which
were able to create solution paths connecting the two high-quality solu-
tions and generate new promising solutions. The Tabu Search algorithm
of Montemanni and Smith (2010) has also been tested on a small subset
of the MI-FAP-I dataset.

Segura et al. (2016) developed an evolutionary algorithm with a di-
versification strategy to avoid premature convergence of the population.
This was obtained by converting MI-FAP-II to a multi-objective problem
that considers the original objective and, as an auxiliary objective, the
contribution of each individual to the diversity. The solution method
was evaluated both on MI-FAP-II and on a complex formulation, which
arose from two real-world instances coming from the cities of Denver
and Seattle (Luna et al., 2007; 2011). In this new formulation, there is
no notion of sites and separations involve only transmitters in the same
cell (co-cell). Analogously to MI-FAP-I the interference matrix is defined
at the cell level, but interferences are not given explicitly and they are
computed through a probabilistic model.

Similarly to Lai and Hao, Siddigi and Sait (2018) proposed a
population-based heuristic that employs Tabu Search to drive the ex-
ploration of the neighborhood of each solution in the population. The
search process is guided by the principles of non-dominated sorting, con-
sidering both the interference and the entropy criteria (as a measure of
the diversity of individuals of a population).

Finally, Lahsinat et al. (2018) developed a Variable Neighborhood
Search (VNS) that explores increasingly large neighborhoods, from the
smallest one that changes the frequency of a single transmitter, to the
largest that changes simultaneously the frequency of 5 transmitters.
In addition, the authors introduced different perturbation schemes for
helping the VNS process to escape from local optimum.

Although many works on this topic used neighborhood search, and
specifically Simulated Annealing, to tackle this problem our contribu-
tion distinguishes from existing literature mainly in the following two
aspects. First of all, differently from the surveyed approaches, we inves-
tigate the use of the combination of complex neighborhood structures
for solving the problem. Secondly, no previous approach dealt with the
MI-FAP-I and MI-FAP-II formulations in a comprehensive way.
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4. Search method

Our search method is based on local search, therefore we now in-
troduce, step by step, the four key ingredients of the application of the
local search paradigm, namely: (i) the search space definition, (ii) the
initial solution strategy, (iii) the neighborhood operators, and, finally,
(iv) the metaheuristic that guides the search.

Before proceeding we introduce some notation and terminology that
will be useful to illustrate these concepts. We consider the graph in
which each single transmitter is taken separately, without their ag-
gregation in cells and sites. This graph is called the split graph by
Chiarandini and Stiitzle (2007). Following the graph-coloring terminol-
ogy, from this point on we will call the transmitters as nodes.

We are then given a set of nodes N = {1, ..., N} and a set of frequen-
cies F = {1, ..., F}. We call S the integer-valued N x N matrix such that
S,.,.n, is the required separation between nodes n; and n,. We are also
given for each node n a set of frequencies U, representing the forbidden
frequencies for node n, with U, c F for all n.

Given these preliminaries we are now able to illustrate the key fea-
tures of the local search.

4.1. Search space and initial solution

The search space is represented by an integer-valued array ¢, so that
@(n) is the frequency assigned to node n € V.

The array ¢ is complemented by redundant data structures that help
us in accelerating the computation of the difference of costs between
neighboring solutions (we call them delta costs). The main data struc-
ture, which has also been used by Chiarandini and Stiitzle (2007), is an
integer-valued matrix I that stores, for each pair (n, /), the number of
conflict violations that would be created by reassigning node n to fre-
quency f in the current state. In addition, we maintain an array of sets
A that stores, for each node n, the set of nodes that are in conflict (i.e.,
violated separation) with » in the current state.

For MI-FAP-I, that has real-valued interferences, in order to exploit
the faster arithmetic of the integers, we multiply all interference values
by a fixed number, suitably high so as not to lose precision (10%). This is
not necessary for MI-FAP-II, for which the values are natively integers.

The initial solution is generated by assigning one node at the time a
uniformly-selected random frequency, among those that are not forbid-
den for that node. That is, separation violations are admitted, but forbid-
den frequency violations are not. Indeed, forbidden frequency violations
are kept outside the search space, as all neighborhoods discussed below
do not include moves that reassign a node » to a frequency in U,,.

4.2. Neighborhood relations

The typical neighborhood relation used in FAPs is the replacement of
the frequency assigned to one node. We call this neighborhood Change,
which is defined as follows:

* Change(C): the move C(n, f) assigns frequency f to node n.
Preconditions: ¢(n) # f, f ¢ U,.

The preconditions state that a node must be assigned to a new fre-
quency (¢(n) # f) and that it cannot be a forbidden one (f ¢ U,). Moves
that do not satisfy the preconditions are removed from the neighbor-
hood, and thus never drawn.

Similarly to the approach followed for the Examination Timetabling
problem, which has a similar structure (see Bellio et al., 2021), we com-
plement this basic neighborhood with larger ones that allow us to make
more complex movements in one single step. The first one is the so-
called Kick move that reallocate two nodes simultaneously, assigning
the first one to the frequency of the second one, and the second one to
a new frequency.
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Fig. 1. A Kick move.

o Kick(K): the move K(n,, n,, f) assigns ¢(n,) to n, and f to n,.
Preconditions: S,, ,,, >0, @(n)) # ¢(ny), @(ny) # f, @) €U, , | &
U,

ny N

The intuition of the Kick neighborhood is to move a node to a poten-
tially favorable frequency even in presence of a conflicting node, given
that at the same time the second one is “kicked out”.

Fig. 1 shows graphically an example of a Kick move, in which the
new assignments are shown in light grey.

The precondition that n; and n, must have a separation (S, ,, > 0)
is meant to restrict Kick moves only to those that are most effective to
overcome a cost barrier, with respect to others that could be obtained by
a sequence of two cost-independent Change moves. The other precon-
ditions ensure that the move is effective and it does not assign forbidden
frequencies.

Notice that f, the new frequency for n,, could also be equal to ¢(n,),
resulting in swapping the two assignments. As a consequence, the Kick
neighborhood is a superset of the Swap neighborhood, also used in the
literature (see Galinier and Hertz, 2006).

The Kick neighborhood is typical for graph coloring problems (see,
e.g., Gonzélez-Velarde and Laguna, 2002). However, FAPs have the pe-
culiarity that conflicts can occur also between nodes assigned to dif-
ferent frequencies. In order to deal with this situation, we propose an
extension of the Kick neighborhood, that we call GKick (G for general-
ized), that moves the first node to a frequency close to the second node,
and moves the second node away.

o GKick(G): the move G(n,, f|,n,, f,) assigns f, to n; and f, to n,.
Preconditions: S, ,, >0, @) # @), @) # f1,  @0ny)#
f2’ f] g Un]y fz g Un2! |fl _(P(nZ)I < Sn],nz'

The behavior of the GKick neighborhood is analogous to the one of
the Kick neighborhood, except that n, can be assigned to a frequency
/1 that differs from ¢(n,), but is close enough to it that still creates a
separation conflict with n, (see precondition | f| — ()| < S, ,,,)-

Like for the Kick neighborhood, we can identify here a subset of
the neighborhood that we call GSwap in which f, is close to ¢(n)), in
particular closer than the separation between n, and n,.

As will be shown in Section 5.2, the subneighborhoods Swap and
GSwap play a prominent role in the search. In detail, we will see that
it is more effective to bias strongly the random move generation of Kick
(resp. GKick) toward Swap (resp. GSwap) moves, rather than to pure
kicks. For this reason, we include in our neighborhood portfolio a larger
one, called 3-Swap, that involves 3 nodes, but makes only swap move-
ments.

o 3-Swap(T): the move T(n,, n,, ns) assigns @(n,) to n;, and g(n3) to
n,, and @(n) to nj.
Preconditions: Suim >0, S, > @) # ony),
@(n3), @nz) # @), en) €U, (P("z) EU,,, on3) €U, .

The intuition for introducing the 3-Swap neighborhood is that, on
the one hand, we aim at exploring larger neighborhoods, and on the
other hand a general 3-node kick (either generalized or not) would be
too large, and thus practically ineffective. Therefore, considering the
usefulness of the bias toward swap movements for the Kick and GKick

@(ny) #
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Fig. 2. A PFSwap move with k = 7.

neighborhoods mentioned above, we decided that it is wiser to focus
only on swaps, and thus the 3-Swap neighborhood seems to be a good
trade-off.

Our next neighborhood, called FSwap (F for Frequency), swaps all
nodes assigned to one frequency with all assigned to another one.

o FSwap(F): the move F(f,, f,) assigns all nodes n such that ¢(n) = f,
to f,, and all nodes n such that ¢(n) = f, to f;
Preconditions: f| # f»

The FSwap neighborhood is used in graph coloring and its intuition
is that the simultaneous movement of all nodes assigned to the same
color (frequency in our case) does not increase the number of violations
This move however might be less effective in FAPs as, differently from
graph coloring, the conflicts come also from nodes in adjacent frequen-
cies. For this reason we define also a partial version of the same move,
that swaps a limited number of nodes so that it results less disruptive.
We thus design the neighborhood called PFSwap (P for Partial).

o PFSwap(P): the move P(f/, f,, N, N,) assigns all nodes n; € N to
f>, and all nodes n, € N, to f;
Preconditions: f; # f,, for all n; € N; we have ¢(n;) = f;, and for
all n, € N, we have ¢(n,) = f,.

The selection of N, and N, is random, except that the cardinalities
are kept equal or differ by one. That is, the selection of the sets is pre-
ceded by the selection of a number k, and the number of nodes in N| and
N, is [k/2] and |k /2], respectively. The value of k is selected between
3 and a fixed maximum value K.

Fig. 2 shows graphically an example of a PFSwap move (with k =
7.

4.3. Move selection

We now describe how we select a random move from our com-
posite neighborhood: Change u Kick uGKick u 3-Swap u FSwap
UPFSwap. This is done in two stages: first we select the atomic neigh-
borhood and then the specific move inside the neighborhood. The first
selection is based on fixed probabilities. That is, we add five real-valued
parameters called pg, pg, pr, Ps, and pp, such that at each step neigh-
borhoods Kick, GKick, 3-Swap, FSwap, PFSwap, and Change are
selected with probability pg, pg, pr> Ps, pp, and 1 — px — pg — pr — ps —
pp, respectively.

Within the single neighborhood, the specific move is selected uni-
formly, except for Kick and GKick where a move from the Swap (resp.
GSwap) subneighborhood is selected with probability b, (resp. b,) and
a pure kick is selected with probability 1 — b, (resp. 1 - b,). This way,
we add two new parameters, b, and b,, that are included to the pool of
parameters. In turn, the PFSwap neighborhood is parameterized by the
value of the parameter K,, mentioned above representing the maximum
number of nodes involved in the move.
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procedure SimulatedAnnealing(SearchSpace S, Neighborhood N,
CostFunction F, Parameters Ty, Ty, a, Ny, N,)

1: T« Ty

2: s <= RandomState(S)

3: Shest < S

4: while 7' > T}

5: ng <+ 0

6: Ng < 0

7 while ng < Ny A ng < N,
8: m < RandomMove(s,N')
9: AF « F(s®m) — F(s)
10: it (AF <0)

11: 54 Ssdm

12: Ng ¢ Ng + 1

13: if (F(s) < F(Spest))
14: Shest < S

15: else

16: if (RandomReal(0,1) < e=AF/T)
17: s4—s@&m

18: Mg 4 Mg + 1
19: ng < ng+ 1

20: T+T- «

21: return spese

Fig. 3. Simulated Annealing procedure.

4.4. Simulated Annealing

Many variants of the SA procedure have been proposed in the liter-
ature, see Franzin and Stiitzle (2019) for a comprehensive and in-depth
review of them. We use here a basic version, as originally proposed by
Kirkpatrick et al. (1983), shown in Fig. 3.

One of the key ingredients of SA is the random nature of the move se-
lection at each iteration (line 16), as explained in Section 4.3. Improving
and sideways moves are always accepted as new state (line 10), whereas
worsening ones are accepted with probability e=2F/T where AF is the
difference of cost between the candidate and the current solution, and
T is the temperature.

The temperature is decreased after a fixed number of samples N; is
drawn according to the geometric cooling scheme (line 20), where « (with
0 < a < 1) is the cooling rate.

In order to speed up the early stages of SA, we adopt the so-called cut-
off mechanism, which decreases the temperature when a fixed number
of moves N, has been accepted.

Instead of using as parameter N,, we define the parameter p =
N,/N, (with 0 < p < 1) which represents the fraction of the number of
iterations N, so that after accepting p - N,we apply the cut-off, decreas-
ing the temperature even if the number of sampled moves is less than
N,.

In order to have a fixed running time, instead of the stop criterion of
line 4, we stop the SA procedure after the execution of a fixed number
of iterations 7. In order to have the number 7 fixed, we compute the
parameter N, starting from the others using the following formula:

ns=1/<w> o))
loga

where T, and T are the initial and final temperature, respectively.

4.5. Adaptation to MI-FAP-I and MI-FAP-II

We discuss now how we adapt the local search components intro-
duced above to the specific features of the two versions of the problem.
For MI-FAP-], the presence of many hard constraints due to co-cell, co-
site, and handover separations make the problem of finding a feasible
solution non-trivial.

Therefore, in order to deal with the feasibility problem properly,
but also not to waste time in checking moves that create violations, we
make use of a two-stage approach. The first stage starts from a random
solution, whereas the second stage starts from the best solution of the
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first one. Each stage stops according to its own setting of the number of
iterations.

In the Feasibility Stage, we use only the Change neighborhood and
we include also separation violations in the cost function, with a suit-
ably high weight. That is, the cost function that guides the search is
the sum of soft constraints (e.g. interference costs) and hard constraints
violations. For MI-FAP-I the interference costs occur for same-channel
interferences or adjacent channel interferences. On the contrary, hard
constraints violations are related to mandatory separations: co-cell fre-
quency separation, co-site frequency separation, frequency separation
for cells suffering the handover effect, and ad-hoc separations.

This first stage is rather short in relation to the second one, the Op-
timization Stage, but long enough to obtain a feasible solution. The pur-
pose of the Feasibility Stage is not only to reach feasibility, but also
to execute quickly the initial steep descent phase, by using only the
Change neighborhood, which is computationally the cheapest.

In the Optimization Stage, we use the neighborhood portfolio, and
we add the precondition that moves do not introduce violations of hard
constraints. As a consequence, for this stage the cost function coincide
with the objective function that is to minimize the interference costs.

It turned out that for FSwap and PFSwap it is very rare to find
feasible moves, so that most of the time is spent in generating and re-
jecting moves. For this reason, for MI-FAP-I these two neighborhoods
are excluded.

For MI-FAP-II the search method can be simplified in a few ways.
First, there are no hard constraints in the strict sense, but a few occur-
rences of a very high cost. These few high values are considered like all
the others, so that the search method proceeds in one single stage. Thus
the cost function sums up the cost of transmitter separation violations.
Furthermore, there are no forbidden frequencies, so that we don’t have
to check that a frequency is not available for the node.

The other difference between the two versions is in the computation
of the costs: for MI-FAP-II each separation violation must be multiplied
by its weight, whereas for MI-FAP-I interference depends on the distance
(same or adjacent channel).

A peculiarity of Frequency Assignment problems, that is shared by
MI-FAP-I and MI-FAP-II, is that certain nodes are indistinguishable, in the
sense that they share exactly the same separations and interference lev-
els. For MI-FAP-I this is made explicit by the fact that they are members
of the same cell and of the same type (control or traffic), for MI-FAP-II
indistinguishable pairs are detected by preprocessing the input data. To
improve efficiency, we remove moves that involve two indistinguish-
able nodes, as they would not change the structure and the cost of the
solution.

5. Experimental results

The software was implemented in C+ + and compiled using g+ +
(v. 9.3). The experiments were run on AMD Ryzen Threadripper PRO
3975WX 32-Cores (3.50 GHz) with Ubuntu Linux 20.4. One single core
was dedicated to each experiment.

5.1. Benchmarks

Both formulations are equipped with a specific dataset that has been
used in previous works. We refer to Eisenblétter and Koster (2000) and
Montemanni (2001), respectively, for an accurate description of the ori-
gin of these instances.

In order to save time, we decided to identify and remove the “easy”
instances. We classify as easy those instances in which the same scores
are obtained consistently by all configurations of our technique and by
the most effective previous works.

The features of the non-easy instances are summarized in Tables 1
and 2, for MI-FAP-I and MI-FAP-II respectively. For MI-FAP-I we con-
sider the number of sites (S), the number of cells (C), the number of
nodes/transmitters (N), the number of frequencies (F), and the average
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Table 1
Features of the instances for MI-FAP-1.
Instance S C N F AF SD sV D
bradford_nt-1-eplus 649 1886 1971 75 75.0 0.0041 2.01 0.1305
bradford_nt-10-eplus 649 1886 4145 75 75.0 0.0045 1.90 0.1305
bradford_nt-10-free 649 1886 4145 75 75.0 0.0044 1.90 0.0525
bradford_nt-10-race 649 1886 4145 75 75.0 0.0044 1.90 0.0406
bradford_nt-2-eplus 649 1886 2214 75 75.0 0.0042 2.02 0.1310
bradford_nt-4-eplus 649 1886 2775 75 75.0 0.0043 1.99  0.1304
bradford-0-eplus 649 1886 1886 75 75.0 0.0041 2.00 0.1319
bradford-1-eplus 645 1878 2947 75 75.0 0.0050 2.13 0.1286
bradford-1-free 645 1878 2947 75 75.0 0.0049 2.13 0.0519
bradford-1-race 645 1878 2947 75 75.0 0.0049 2.13 0.0392
bradford-10-eplus 644 1876 4871 75 75.0 0.0052 2.02 0.1314
bradford-10-free 644 1876 4871 75 75.0 0.0052 2.02 0.0532
bradford-10-race 644 1876 4871 75 75.0 0.0052 2.03 0.0395
bradford-2-eplus 644 1876 3406 75 75.0 0.0051 2.12 0.1295
bradford-2-free 644 1876 3406 75 75.0 0.0051 2.12 0.0524
bradford-2-race 644 1876 3406 75 75.0 0.0051 2.12 0.0389
bradford-4-eplus 649 1886 3996 75 75.0 0.0051 2.08 0.1292
bradford-4-free 649 1886 3996 75 75.0 0.0051 2.09 0.0526
bradford-4-race 649 1886 3996 75 75.0 0.0051 2.09 0.0385
K 92 264 267 50 50.0 0.0297 2.00 0.5382
siemens1 179 506 930 75 43.0 0.0140 2.07 0.0764
siemens2 86 254 977 83 76.0 0.0373 2.08 0.4550
siemens3 366 894 1623 55 51.2 0.0175 2.03 0.0743
siemens4 276 760 2785 39 39.0 0.0072 2.14 0.0978
swisscom 87 148 310 68 29.0 0.0832 1.53 0.0433
Table 2
Features of the instances for MI-FAP-II.
Instance N Fs ID IS P H
AC-95-17 95 15 0.51 1.15 1.00 0
GSM-93 93 9/13 0.25 1.28 1.00 0
GSM-246 246 21/31 0.25 1.32 1.00 0
Test95 95 36 0.27 2.37 1.00 0
Test282 282 61/71/81 0.26 2.38 1.00 0
P06-3 153 31 0.79 1.59 1.00 0
P06-5 88 11 0.79 1.58 1.00 0
P06b-3 153 31 0.79 1.39 1.00 0
GSM2-184 184 39 0.40 1.20 1670.23 609
GSM2-227 227 29/39/49 0.39 1.18 1746.91 918
GSM2-272 272 34/39/49 0.39 1.16 1721.07 1155
1-1-50-75-30-2-50 75 5/10/11/12 0.30 1.26 10.81 0
1-2-50-75-30-4-50 75 9/11 0.30 1.62 11.09 0
1-3-50-75-30-0-50 75 7 0.30 1.00 10.97 0
1-4-50-75-30-2-1 75 6/10 0.30 1.25 1.00 0
1-5-50-75-30-2-100 75 10/12 0.30 1.26 21.35 0
1-6-50-75-30-0-1000 75 10/13 0.30 1.00 2068.48 0

number of available frequencies per transmitter (AF). We consider the
split graph corresponding to the separations and we report its density
(SD) and the average separation value (SV). Finally, we report the den-
sity of the interference split graph (ID).

For MI-FAP-II we consider the number of nodes/transmitters (N),
the list of numbers of frequencies (Fs), the density of the interference
graph (ID), the average separation (IS), and the average cost (P). For this
version, the same instance is used with different number of frequencies,
therefore we report here the list of them (Fs) rather than a single value
(F). From the average costs we exclude the artificial high value used to
state the hard separations. The number of hard separations is reported
in the last column (H).

Notice that MI-FAP-I instances are generally much larger than those
of MI-FAP-II in terms of number of nodes. For MI-FAP-I, we also notice
that only four instances, namely siemens1, siemens2, siemens3 and
swisscom, have some forbidden frequencies, shown by the fact that
the value of the column AF is smaller than the value in the column F.
In particular, siemens1 and siemens2 have only globally forbidden
frequencies, whereas siemens3 and swisscom have also locally for-
bidden ones. For swisscom the AF value is particularly low, and in fact
only for this instance it is particularly difficult to find a feasible solution.

Regarding MI-FAP-II, we notice that, based on the average separation
cost (P), the dataset can be split on three distinct groups of instances. In
detail, there is a group that has all costs equal to one, a second group
with medium values (on the order of tens), and a final one with larger
costs (on the order of thousands). This partition reflects, with a few ex-
ceptions, the different generation procedures: the first set is obtained
from existing minimum span problems by limiting the number of avail-
able frequencies; the second set is composed of random scenarios gen-
erated using a basic graph generator, and the last set is obtained by
adapting some fixed spectrum GSM problems to MI-FAP-II. As the cost
values have a significant impact on the SA behavior, as described in the
next section, we consequently perform separate tuning for these three
groups.

Other datasets for MI-FAP have been proposed in the literature,
like the Philadelphia and CALMA ones (see Aardal et al., 2002;
Anderson, 1973). These cases however are rather simple to solve (most
of the instances have been solved to optimality), so that we decided
to skip them. On the contrary, the two instances Denver and Seattle
proposed by Luna et al. (2007) are supposed to be difficult, but unfor-
tunately they refer to a different version of the problem.
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Table 3

Parameter tuning for MI-FAP-I.
Name  Description Tuning  Initial Value

Phase Range

Feasibility Stage
T, Start temperature 1 [500000, 2500000] 1314815
T, Final temperature 1 [1000, 10000] 9280
a Cooling rate 1 [0.98, 0.999] 0.995
P Accepted moves ratio 1 [0.03, 0.15] 0.076
Optimization Stage
T, Start temperature 2 [300000, 1000000] 697531
T, Final temperature 2 [1000, 10000] 8632
a Cooling rate 2 [0.98, 0.999] 0.985
P Accepted moves ratio 2 [0.05, 0.2] 0.112
b, Bias toward swap moves 3 [0.0, 1.0] 0.906
by, Bias toward generalized swap moves 3 [0.0, 1.0] 0.906
Py Probability of Kick moves 4 [0.0, 0.4] 0.216
Pg Probability of GKick moves 4 [0.0, 0.4] 0.042
pr Probability of 3-Swap moves 4 [0.0, 0.2] 0.009

MI-FAP-I instances have been translated from their original file for-
mat to a novel JSON-based one. The original format is rather complex
to parse, so that we believe that this new one could foster the dissemina-
tion of these instances, which in fact has been quite limited in the recent
times. On the contrary, for MI-FAP-II, the original format is extremely
simple, so that we kept it as is.

5.2. Parameter tuning

The tuning procedure was performed using the tool JSON2RUN
(Urli, 2013), which uses configurations generated according to
Hammersley and Handscomb (1964), known as the Hammersley point
set. JSON2RUN uses the F-Race procedure (Birattari et al., 2010) for
selecting the best configuration, which is based on the Friedman and
Wilcoxon statistical tests for removing inferior configurations as soon
as possible.

The total number of parameters is quite large, hence the parameter
tuning proceeds in phases, assuming that the interaction of the param-
eters involved in the different phases is minimal and can be neglected.
In each phase, the parameters belonging to a subsequent phase are set
to values given from preliminary experiments.

The winning configuration for MI-FAP-I is shown in Table 3, ob-
tained with 7 =3-10® corresponding to a running time of approxi-
mately 1500 seconds per run.

Notice the high values of the temperatures, which are due to the fact
that the interference values are integers, obtained by multiplying the
actual values by 108 (for full precision). Notice also the high values of
the two bias parameters b, and b,, which show that the most useful kick
moves are indeed swap ones.

The tuning procedure for MI-FAP-II works along the same tracks,
except that there is no Feasibility Stage and the tuning is done separately
for the three groups of instances, due to the different cost values, which
influence the corresponding temperature ranges. Furthermore, there is
an extra parameter K,, which is the maximum length of a PFSwap
move, which is not in Table 3 as PFSwap is not used for MI-FAP-1. The
best value found for K,, is 4.

5.3. Comparison results for MI-FAP-I

In our experience, for this problem the results improve consis-
tently with the running time, without any sort of “plateau effect”. As
a consequence, the comparison should take into account the running
times and also the CPU speed. Unfortunately though, a comparison
of different CPUs in different years is rather impractical. In addition,
Mannino et al. (2007), which hold most of the best results so far, granted
an extremely long running time to their experiments (i.e., up to 128
hours per run, depending on the instance).

Therefore, as a fair comparison is not possible and the running times
of Mannino et al. (2007) are impractical also for future comparisons, we
decided for this version of the problem to grant our experiments a fixed
number of iterations, specifically equal to T = 3 - 10°. The results for 10
runs in comparison with the best in the literature are shown in Table 4.
Beckmann and Killat (1999) and Hellebrandt and Heller (2000) do not
report the running times. Montemanni et al. (2003) write that the ex-
periments run for “several days”. Montemanni and Smith (2010) set a
timeout of 2h for all instances.

We can see that we outperformed all previous results on most of
the instances, considering both the best and the average values. Only in
six cases our average results are slightly inferior to the best ones, which
however are obtained with much longer running time (on an older CPU,
tough). In addition, we improve the best known solutions for 23 out of
25 instances.

5.4. Comparison results for MI-FAP-IT

Table 5 shows the results for 30 runs with timeout 2400s, which has
been set also by the other authors. For the path relinking approach by
Lai and Hao (2015), we report the results obtained by both the random
path relinking operator (denoted with rPR) and the randomized and
mixed relinking operator (denoted with mrPR).

We can see that for all instances excluding instance GSM2-227 we
reach the best known result, whereas the average results are in some
cases worse than the previous ones, mainly by Lai and Hao. For the
GSM2 instances, we have the best average results for 4 out of 7 in-
stances.

In Table 6, we compare our results with those obtained by the hy-
brid genetic algorithm (HGA) of Siddiqi and Sait (2018) with a common
time-limit of maximum 2 hours. For SA, the table reports the best and
average values of 10 runs. It can be noticed that for all instances with
a separation cost equal to one or to medium values, the performances
of the two methods are almost equivalent with 14 ties, four instances
for which the results of SA are better than those of HGA and five for
which SA is worse. Conversely, for the last family, which comprises the
GSM2* instances and the instance 1-6-50-75-30-0-1000 and that is
characterized by large separation costs, HGA exhibits superior results,
being better, equal and worse than SA in five, two and two cases, re-
spectively.

Finally, in Table 7 we present comparative results on a subset of
the MI-FAP-II dataset composed by the most challenging instances for a
time-limit of 48 hours. The first column reports some lower bounds (LB)
computed by Montemanni et al. (2004); for the evolutionary algorithm
(EA) developed by Segura et al. (2016), the table shows average and
best values of 30 runs, for SA those of 5 runs. It can be noticed that
SA outperforms EA in nine out of 13 instances, founding four new best
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Table 4
Computational results for MI-FAP-I on COST 259 instances.
Beckmann Hellebrandt Montemanni Montemanni Mannino SA
1999 2000 2003 2010 2007
instance best best best best avg best t[h] best avg t[h]
bradford_nt-1-eplus 1.04 0.86 0.86 22 0.871 0.951 2.1
bradford_nt-10-eplus 148.12 146.12 144.94 19 142.746 143.719 3.7
bradford_nt-10-free 8.63 5.863 5.42 14 4.945 5.213 3.3
bradford_nt-10-race 1.73 1.074 1.09 14 1.035 1.077 4.2
bradford_nt-2-eplus 3.79 3.168 3.20 24 3.152 3.372 2.3
bradford_nt-4-eplus 19 17.728 17.72 21 17.209 17.682 2.7
bradford-0-eplus 0.8 0.60 64 0.597 0.641 2.0
bradford-1-eplus 33.99 33.80 64 32.381 32.735 3.2
bradford-1-free 0.16 0.12 30 0.164 0.172 3.2
bradford-1-race 0.03 0.01 26 0.009 0.011 4.0
bradford-10-eplus 400 395.50 128 387.206 388.573 5.9
bradford-10-free 117.8 113.70 63 104.612 105.997 4.7
bradford-10-race 30.22 27.38 46 23.758 24.072 5.3
bradford-2-eplus 80.03 79.38 75 76.674 76.984 3.9
bradford-2-free 2.95 2.69 37 2.275 2.365 3.6
bradford-2-race 0.42 0.32 39 0.201 0.222 4.3
bradford-4-eplus 167.7 167.00 90 161.325 162.894 4.5
bradford-4-free 22.09 20.00 46 17.883 18.348 3.9
bradford-4-race 3.04 2.93 36 2.174 2.277 4.7
K 0.45 0.447 0.4647 0.4886 0.415 0.434 0.4
siemens1 2.78 2.301 2.7642 2.8492 2.20 5 1.970 2.035 0.9
siemens2 15.46 14.751 14.275 14.936 15.0578 14.27 9 14.005 14.156 2.7
siemens3 6.75 5.259 5.186 6.6496 6.7358 5.13 15 4.852 4.971 3.1
siemens4 89.15 80.967 81.876 110.9725 112.482 77.25 18 76.298 77.014 5.6
swisscom 27.36 27.211 27.027 29.444 1.3

Table 5
Computational results for MI-FAP-II with a time-limit of 2400 secs.

Montemanni Montemanni Lai Lahsinat SA
2003 2010 2015 2018
rPR mrPR

Instance F best best avg best avg best avg best avg best avg
AC-95-17 15 33 33 33.0 33 33.0 33 33.0 33 33.1
GSM-93 9 32 32 32.2 32 32.2 32 32.2 33 34.18 32 33.2
GSM-93 13 7 7 7.0 7 7.0 7 7.0 8 8.60 7 7.0
GSM-246 21 79 79 80.2 79 80.6 78 79.0 83 84.78 77 78.9
GSM-246 31 25 25 26.1 26 26.1 24 25.1 24 24.7
Test95 36 12 8 8.0 8 8.0 8 8.0 8 8.00 8 8.0
Test282 61 51 51 53.2 56 56.8 56 57.1 51 54.3
Test282 71 27 27 29.3 29 30.5 29 30.6 27 28.9
Test282 81 10 11.9 9 10.9 10 11.5 9 10.5
P06-5 11 133 133 133.0 133 133.0 133 133.0 137 137.26 133 133.0
P06-3 31 115 115 115.0 115 115.0 115 115.0 115 115.10 115 115.0
P0O6b-3 31 112 112 112.0 112 112.0 112 112.0 112 117.00 112 112.0
GSM2-184 39 5521 5447 5598.8 5258 5270.8 5250 5276.9 5898 6180.71 5250 5279.9
GSM2-227 29 61586  66510.0 57790  59555.4 58834  59907.7 67586  68721.00 56122  57932.6
GSM2-227 39 10979 10550  10897.7 8656 9022.4 8760 9329.7 8702 9087.4
GSM2-227 49 2459 2459 2613.1 1998 1998.0 1998 2009.4 1998 2019.0
GSM2-272 34 56128  58691.4 53254  55954.2 54085  56916.3 65150 67888.30 51579  53118.9
GSM2-272 39 27416 27416  28488.2 27503  28299.7 28074  28880.4 26479  27165.1
GSM2-272 49 7785 7785 7946.7 7185 7265.2 7107 7252.5 7075 7169.4
1-1-50-75-30-2-50 5 1242 1253.9 1242 1242.0 1242 1242.0 1257 1268.44 1242 1242.0
1-1-50-75-30-2-50 10 97 103.8 96 96.0 96 96.0 96 96.2
1-1-50-75-30-2-50 11 59 66.1 55 55.0 55 55.0 55 56.2
1-1-560-75-30-2-50 12 36 38.7 32 32.0 32 32.0 32 32.6
1-2-50-75-30-4-50 9 671 680.6 665 665.0 665 665.0 670 674.18 665 665.0
1-2-50-75-30-4-50 11 317 325.0 313 313.0 313 313.0 313 313.6
1-3-50-75-30-0-50 7 194 196.5 194 194.0 194 194.0 196 196.76 194 194.0
1-4-50-75-30-2-1 6 70 70.9 70 70.0 70 70.0 71 74.20 70 70.0
1-4-50-75-30-2-1 10 19 19.0 19 19.0 19 19.0 19 19.0
1-5-50-75-30-2-100 10 176 183.8 168 168.0 168 168.0 168 173.6
1-56-50-75-30-2-100 12 63 69.3 57 57.0 57 57.0 57 57.7
1-6-50-75-30-0-1000 10 6840 7064.3 6777 6777.0 6777 6777.0 6777 6777.0
1-6-50-75-30-0-1000 13 1207 1365.2 1190 1190.0 1190 1190.0 1190 1190.0
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Table 6
Computational results for MI-FAP-II with a time-limit of 2 hours.
HGA SA

Instance F best avg best avg
AC-95-17 15 33 33.0 33 33.0
GSM-93 9 32 32.0 32 33.2
GSM-93 13 7 7.0 7 7.0
GSM-246 21 78 79.2 78 78.6
GSM-246 31 24 24.8 24 24.3
Test95 36 8 8.0 8 8.0
Test282 61 52 53.8 51 53.5
Test282 71 27 27.4 26 27.5
Test282 81 8 8.3 8 9.5
P06-5 11 133 133.0 133 133.0
P06-3 31 115 115.0 115 115.0
P06b-3 31 112 112.0 112 112.0
GSM2-184 39 5250 5265.0 5258 5264.4
GSM2-227 29 55513 56789.0 56464 57474.7
GSM2-227 39 8520 8700.3 8762 8911.3
GSM2-227 49 1998 1998.0 1998 2002.0
GSM2-272 34 51493 52354.5 51877 52907.1
GSM2-272 39 25932 26685.0 26198 26766.4
GSM2-272 49 7056 7129.4 7017 7089.0
1-1-50-75-30-2-50 5 1242 1242.0 1242 1242.0
1-1-50-75-30-2-50 10 96 96.0 96 96.0
1-1-50-75-30-2-50 11 55 55.0 55 55.0
1-1-50-75-30-2-50 12 32 32.8 32 32.0
1-2-50-75-30-4-50 9 665 665.0 665 665.0
1-2-50-75-30-4-50 11 313 313.0 313 313.0
1-3-50-75-30-0-50 7 194 194.0 194 194.0
1-4-50-75-30-2-1 6 70 70.0 70 70.0
1-4-50-75-30-2-1 10 19 19.0 19 19.0
1-5-50-75-30-2-100 10 168 168.0 168 169.2
1-5-50-75-30-2-100 12 53 56.5 57 57.0
1-6-50-75-30-0-1000 10 6777 6777.0 6777 6777.0
1-6-50-75-30-0-1000 13 1190 1190.0 1190 1190.0

known solutions. These last cases are marked with an « in the column
corresponding to the best values obtained by SA. We want to remark
that the EA was specifically designed to deal with long-term executions,
and it has not been tested on shorter running times. Indeed, the authors
themselves claim that with short time “high-quality results could not be
obtained”.

6. Discussion

Our solver works reasonably well for both formulations, though the
results are somewhat better for MI-FAP-I than for MI-FAP-II. This shows
that it is particularly competitive for large instances and the more com-
plex structure.

We see that the approach of Montemanni and Smith (2010), which
has good results for MI-FAP-II, works less effectively for the few in-
stances of MI-FAP-I upon which it has been tested. The other approaches

Table 7
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that performed well on MI-FAP-II have not been applied to MI-FAP-I,
therefore we cannot make any conclusions on their potential perfor-
mance on this version.

In addition, the SA method obtains very competitive results for both
short and long executions, proving that it is flexible to different timeout.
In particular, with the long runs it improved many best known results.

6.1. Larger neighborhoods

It would be worth discussing whether larger neighborhoods could
contribute to improve the results. For example, we could consider the X-
Swap neighborhood (with X > 3), i.e., the generalization of 3-Swap.
However, the tuning experiments showed that the contribution of the
3-Swap neighborhood in the overall best configuration is rather lim-
ited (p; = 0.009). They also showed (not reported in the paper) that the
configurations with even lower values of p; (even p; = 0.0) do not have
a significant loss of performance. In addition, X-Swap would result in a
more complex neighborhood structure with a less efficient evaluation of
the delta costs. For these reasons, we decided not to investigate further
in the X-Swap direction.

6.2. Instance-based tuning

Some additional insights about the results come from the analysis
of the ratio between the time to find the best solution and the total
elapsed time. In most instances this ratio is close to 1, showing that the
best solution is found toward the end of the search. This is a positive
behavior that shows that no time is wasted during the search.

There are however a few instances in which this ratio is constantly
much lower than 1. In particular, for one specific instance, namely
swisscom, this ratio turned out to be extremely low (around 0.01).
This is a very peculiar and constrained instance, in which finding a fea-
sible solution is much more difficult than in all the others. This behavior
rises the question whether the parameter values coming for the general
tuning are suitable for this “outlier”.

Additional experiments on this instance alone proved that an ad-hoc
tuning yields to different values (in particular a much higher value for
T,), which would result in much better scores. Specifically, we obtain
an average cost of 25.99 and a best one of 23.478, compared to 29.444
and 27.027 of Table 4, respectively.

This is however the result of an “overtuning”, which is methodolog-
ically unacceptable, as the tuning procedure is expected to prepare the
method for generic unforeseen instances. Otherwise, the tuning proce-
dure should be considered as part of the solution of the instance and its
time should be included in the solution time.

Nonetheless, this situation might pave the way for a feature-based
tuning that relates the parameters of the search method to the features
of the instance. This however would require a much larger dataset of
instances, and thus will be subject of future work.

Computational results for MI-FAP-II with a time-limit of 48 hours.

LB EA SA
Instance F value best avg best avg
GSM-246 21 50 77 79.2 77 77.8
GSM-246 31 16 25 26.2 *23 23.6
Test282 61 21 53 54.7 *50 50.6
Test282 71 6 27 28.7 *25 25.4
Test282 81 8 9.9 *7 7.8
GSM2-184 39 4856 5250 5251.6 5250 5251.2
GSM2-227 29 55,339 56349.0 55,796 56447.4
GSM2-227 39 7445 8283 8567.0 8467 8580.4
GSM2-227 49 1998 1998 1998.0 1998 1998.0
GSM2-272 34 50,940 51757.0 50,959 51565.0
GSM2-272 39 25,542 26099.6 25,780 25923.4

16,144
GSM2-272 49 6310 6957 7096.6 6978 7012.6
1-5-60-75-30-2-100 10 94 168 168.0 168 168.0
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7. Conclusions and future work

We have proposed a multi-neighborhood Simulated Annealing ap-
proach for the MI-FAP problem. The solver has been designed to deal
with two versions of the problem (with some adaptations), that we
called MI-FAP-I and MI-FAP-II. Our solver proved to be effective and
robust on both formulations, on many diverse instances, and with dif-
ferent time-limits, and compares favorably with previous results.

Most of the recent work focused on the MI-FAP-II version, probably
due to the higher structural complexity of the MI-FAP-I formulation, and
maybe also to the larger size of its instances. Another reason for the lack
of recent “success” of the MI-FAP-I formulation might be its cumbersome
file format. To this regard, we have translated all instances to a novel
JSON format, with the expectation that this “restyling” might bring it
back on tracks for future comparisons.

To this aim, the publication of instances and solutions, along with
the online validator, might also attract new research on this interesting
problem.

For the future we plan to apply and adapt our approach to differ-
ent versions of the Frequency Assignment Problem, in particular to new
formulations that will emerge from recent technologies, such as for ex-
ample 5G wireless networks.

We also plan to design new neighborhoods to be added to our portfo-
lio, in order to further improve the performances of our solver. In detail,
we plan to introduce larger neighborhoods that better exploit the speci-
ficity of the problem. For example, we plan to consider neighborhoods
based on the concept of cell-reoptimization, reassigning simultaneously
all transmitters of a single cell.

As another possible research direction, we would like to consider the
possibility to hybridize our solver with exact methods, developing some
form of matheuristic. Finally, we would like to explore the possibility to
employ some form of learning mechanism in order to adapt the rates of
the neighborhoods, i.e. p, parameters, during the search.
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