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ABSTRACT
High-school students specialising in computing fields need to de-
velop the abstraction skills required to understand and create pro-
grams. Novices’ difficulties at high-school level, ranging from mas-
tery of the “notional machine” to appreciation of a program’s pur-
pose, have not yet been investigated as extensively as at undergrad-
uate level.

This work explores high-school students’ code comprehension
by asking to reason about reversing conditional and iteration con-
structs. A sample of 205 K11–13 students from different institutions
were asked to engage in a set of “reversibility tasklets”. For each
code fragment, they need to identify if its computation is reversible
and either provide the code to reverse or an example of a value
that cannot be reversed. For 4 such items, after extracting the recur-
rent patterns in students’ answers, we have carried out an analysis
within the framework of the SOLO taxonomy. Overall, 74% of an-
swers correctly identified if the code was reversible but only 42%
could provide the full explanation/code. The rate of relational an-
swers varies from 51% down to 21%, the poorest performance arising
for a small array-processing loop (and although 65% of the subjects
had correctly identified the loop as reversible).

The instruction level did not have a strong impact on perfor-
mance, indicating such tasks are suitable for K11, when the basic
flow-control constructs are usually introduced. In particular, the
reversibility concept could be a useful pedagogical instrument both
to assess and to help develop students’ program comprehension.

KEYWORDS
Program comprehension; Novice programmers; High school; Flow-
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1 INTRODUCTION
While learning to use basic programming constructs, students man-
age to write working programs but they appear to lack a more
comprehensive grasp of the overall computation carried out by
each block of code. In other words, many students do not fully de-
velop the abstraction skills — and perhaps accurate enough mental
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models — that would allow them to reason about and interact with
code. Several studies report problems and misconceptions even
for such basic flow-control constructs as conditionals and loops
in the context of tertiary education. Kaczmarczyk et al. [13], for
instance, identified “a number of misconceptions all related to an
inability to properly understand the process of while loop function-
ing”, and Cherenkova et al. [6] found that “students have significant
trouble with conditionals and loops, with loops being particularly
challenging”.

Up to now, however, novices’ difficulties with basic programming
concepts have received far less attention in high school contexts.
Vahrenhold et al. [37], in their recent broad literature review of K–12
computer science research, reported only eight studies addressing a
variety of programming topics specifically for the upper secondary
level. Our own literature review of ISSEP and WiPSCE conference
proceedings, combined with keywords search in the ACM digital
library, found no more than a dozen papers about high school
learning of flow-control constructs and recursion.

In this paper we address high-school students’ ability to under-
stand the behaviour of small code fragments by looking at how
they deal with the concept of reversibility, i.e. the possibility to
undo a state transformation in every conceivable situation. A rele-
vant feature of this approach is that, to cope with reversibility, the
behaviour of program constructs must be understood as a whole,
by analysing the interactions of the constituent parts in different
potential execution flows.

A sample of 205 students, attending the last three years of sec-
ondary instruction in different institutions that offer a specialisation
in computing topics, were asked to engage in a set of reversibility
tasklets. Following a short explanation of reversibility in the test
sheet, students were asked to decide if each given (tiny) program
can be reversed or not, as well as to justify their answer by writing
the reversing code (Yes option) or by providing suitable counterex-
amples (No). Thus, the test covers both code reading — at an abstract
level — and code writing abilities. It is also worth remaking that the
involved students had no experience at all of similar tasks in class,
so ensuring their higher-order thinking skills, instead of simple
recall, were put into play in the endeavour. For four of the six items
assigned in the test, namely two conditionals and two iteration
constructs, we extracted the recurrent patterns in the answers and
then we analysed the justifications within the framework of the
SOLO taxonomy [1].

In essence, here we will address the following research questions:

RQ1 – Can students grasp the state transformation enacted by sim-
ple conditionals and loops in an accurate and comprehensive
way?
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RQ2 – When a statement is reversible, are students able to write
correct code to recover the original state?

RQ3 – Is student’s performance consistent over all tasks, reflect-
ing their current level of comprehension? Or does their
comprehension vary for each task example?

The main contribution of this study is twofold. Firstly, it pro-
vides an interesting pedagogical perspective to assess and develop
students’ mastery of program constructs in the high school. Sec-
ondly, it provides a first insight into their ability to reason about
basic flow-control structures. Additionally, the tasks proposed here
have the potential to disentangle the understanding of program
behaviour from the concepts pertaining to some specific applica-
tion domain. This may be especially helpful to assess progress of
novices who already master the “atomic concepts” of syntax and
semantics addressed in [22].

The rest of the paper is organized as follows. In section 2 we
outline the background of this work. Section 3 presents the tasklets
and the methodology of data collection and analysis. Section 4
describes the main results of the analysis and in section 5 we discuss
what emerges from the analysis and the implications for instructors
and for planning future research lines. Finally, we summarise the
conclusions of this study in section 6.

2 BACKGROUND
In Piaget’s theory of cognitive development reversibility is a crucial
step towards higher-order thinking [27], and according to a neo-
Piagetian perspective Piaget’s learning stages apply regardless of
age when approaching new knowledge domains [35]. In this respect,
reversibility seems to be an appropriate instrument to assess their
comprehension in the early stages of learning to code.

The central role of “reverse thinking” in computer science was
pointed out in [9]. Lister proposed “asking to reverse a piece of
code" [18] as a tool to detect “archetypal manifestation[s] of con-
crete thinking” in novice programmers, an approach that was then
experimented in [36]. In addition, recent work that used the con-
cept of reversibility to investigate the comprehension of conditional
constructs in introductory courses at university has shown the po-
tential benefits of a similar perspective [11, 26].

More in general, reversibility can be seen as a tool to assess
program comprehension, a broader topic covering, among other
aspects: the divide between code tracing, reading (“explain in plain
English”) and “chunking” abilities [8, 17, 20, 21]; the characterisation
of mental models of program execution [3, 29]; the understanding of
loops and nested loops [5]; the issues connected with basic concepts
of language notation and operational semantics [22].

Previous work has identified keymisconceptions and struggles at
high school level. Rahimi et al. [28] addressed high school students’
misconceptions and remarked that programming “puts a high cog-
nitive and knowledge demand on novices including knowledge on a
specific programming language and knowledge and understanding
of basic programming concepts and constructs such as variables,
loops, conditions, abstraction, and procedures.” Kaila et al. [14] com-
pared students’ ability to learn and master a variety of computer
programming concepts in two different student groups: university
level and junior high school. They reported that “for almost all of
the concepts, both groups perform equally well, but students in the

adolescent treatment group perform significantly worse when learn-
ing the concepts of loop structures and repetition.” Other works
also reported high school student’s difficulties comprehending loop
updates [31] and zero-iteration loops [16]. To develop better com-
prehension, Smetsers-Weeda and Smetsers [34] proposed the use
of flowcharts in combination with reflection and evaluation “in
order to ensure that students learn from their mistakes through an
iterative think-act process”.

At lower secondary school level students are introduced to block-
based programming such as Scratch. Research at this level [10, 25]
also found loops and variable’s initialization as main sources of
misconceptions.

3 METHODOLOGY
In this section we describe the four reversibility tasklets and the
rationale for using them in our investigation. Then, we outline the
data collection process. Finally, we present the criteria underlying
our analysis and our application of the SOLO taxonomy.1

3.1 The task
The exercise analysed in this study comprises four tasklets, which
are shown in Figure 1. In the sheet the questions were preceded by
a basic explanation of reversibility. An interesting feature of this
type of task, unconventional from the students’ standpoint, is that it
allows to a large extent to disentangle the understanding of program
behaviour from any specific application domain knowledge.

To devise the tasklet format, we chose a mixed method that com-
bines the three features useful in measuring higher order thinking
skills: selection, explanation, and creation [15].

Analyse the following code fragments and decide if they are reversible or
not:

• If your answer is Yes, i.e. the command is reversible, write a piece of
code to restore the original state of the variables.

• If your answer is No, i.e. it is not always possible to undo the effect,
provide examples for which we cannot recover the original state.

(a) // int x

if ( x > 10 ) {
x = x + 2;

} else {
x = x + 1;

}

(b) // int x

if ( x < 0 ) {
x = x + 1;

} else {
x = x - 1;

}

(c) // int x

while ( x >= 5 ) {
x = x - 5;

}

(d) // int[] v

int x = 0;
for ( int i=0; i<v.length; i=i+1 ) {
x = x + v[i];
v[i] = x;

}

Figure 1: Reversibility tasklets (a), (b), (c) and (d).

For each item students had first to identify whether a program
is reversible or not (selection); then they were required either to
provide a counterexample (explanation), or to write a reversing
program (creation).

1The complete text of the reversibility task, as well as the recurring patterns and the
SOLO classification of students’ justifications will be available from the corresponding
author, XX, upon reasonable request.



7 87 9 10 11 12 13 14

7 8 9 10 11 12 13 14

State transformation for conditional (a)

x = x+1; x = x+2;

–4 –3 –2 –1 0 1 2 3

x = x–1;

State transformation for conditional (b)

–4 –3 –2 –1 0 1 2 3

x = x+1;

Figure 2: Depiction of the state transformations relative to
tasklets (a) and (b).

The statements in the branches of the two conditionals are very
simple and straightforward to reverse in isolation. The key insight
to decide if the code can be reversed is that there are different com-
putation flows whose outcomes may “overlap”, as shown in Figure
2 for item (b), and in order to find potential overlaps students have
to identify border computations. A more explicit overlap occurs
in the while loop (c), since all computations starting from 𝑥 ≥ 0
result into a final value in the range [0, 4]. Hence, such overlap is
easier to detect as in does not involve borderline analysis.

Finally, tasklet (d) is more cognitively demanding: students have
first to realise that the for loop implements a cumulative sum
on a vector; then that the vector’s original state can actually be
recovered; finally, they have to write a nontrivial reversing program
requiring mastery of the dependencies between the operations
carried out at subsequent iterations.

The rationale inspiring the design of the proposed task can be
better appreciated in terms of the Block Model (BM) [30], a use-
ful framework to map programming concepts and activities into
a matrix representing three program dimensions, namely text, ex-
ecution behaviour and purpose, as well as four abstraction levels:
atomic elements, blocks, relationships between blocks and overall
macro structure, see Figure 3. Typical tracing tasks, for instance,
can be achieved by analysing code behaviour at the atomic level
(A), as pointed out in [12], whereas “explain in plain English” (EiPE)
tasks pertain to the top-rightmost cell which implies the deepest
understanding of a program and its purpose. It is also worth observ-
ing that while the first two columns are concerned with intrinsic
program features, the third one is about extrinsic properties in
connection with some application domain.

Now, to begin with, all tasklets (a–d) essentially pertain to the
program execution dimension (P: middle column in Figure 3), i.e.
with properties intrinsic to the code but requiring a viable mental
model of the underlying notional machine. Thus, to know if a
program is reversible there is no need to figure out its function.
In addition, the analysis of each item can be done at a different
(minimal) level of abstraction: tasklet (c) can possibly be achieved
by simply tracing the code in a few cases (AP), since the probability
of getting “conflicting” outputs is quite high; a reversal of code (a)
requires considering the if block as a whole (BP), but can be written
even without having actually considered borderline computations;
to see that code (b) cannot be reversed, on the other hand, such
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Figure 3: Block Model analysis of the tasklets (a–d).

borderline computations must be identified (RP), what implies that
the if branches cannot be analysed independently of each other;
finally, a comprehensive grasp of the behaviour of both the given
program (MP) and the reversing code is a prerequisite to provide a
solution for tasklet (d).

3.2 Data collection
We administered the test on reversibility at the end of the school
year to a sample of 205 students of the age range 16–19 from (11
classes of) two technical schools, located in two different areas
of the country, that offer a specialisation in computing topics. All
the students had completed at that time an introduction module
of imperative programming, which is scheduled in the third high
school year. 101 students were finishing third year (K11), 52 fourth
(K12), and 52 their last year of high school (K13). Each collected
sheet was then anonymised and digitised prior to analysis.

3.3 Data analysis
The reference framework for the core part of our analysis is the
SOLO taxonomy [1], an instrument of widespread use to assess
code reading and writing tasks, e.g. [21, 33, 38], which is deemed to
provide “a means of evaluating cognitive or mental models, to see if
the novices are able to make connections between what they have
learnt.” [33]. From this perspective, the learners’ achievements are
classified in terms of complexity and quality of the interrelation-
ships between parts they are able to deal with.

After measuring the percentages of correct options, the analysis
has been carried out as follows. As a first step, a researcher identified
and listed the recurrent patterns of code or justification in students’
answers by an inductive content analysis process [23]. Next, a
second researcher revised the patterns, possibly adjusting the list
by splitting some patterns into more refined ones or merging pairs
of essentially equivalent patterns, and assigned a SOLO level to
each pattern according to the guidelines summarised in Table 1.
During this process, the same researcher checked more than half of
the students’ sheets via deductive content analysis (see again [23]),
based on the set of identified patterns, as well as classified into



Table 1: SOLO Classification features

SOLO Level Answer features (reasoning or code)

Prestructural
(1)

Poor answer showing lack of understanding of either the
task or some basic programming construct.

Unistructural
(2)

Attempt to reverse part(s) of the code that could work
for limited values, as it disregards interactions with other
parts, for example by doing a cursory “syntactic manip-
ulation”; defective justification that the code cannot be
reversed.

Multistructural
(3)

Answer indicating that the goal of the task is clearly un-
derstood and pursued with a reasonable approach, but
somehow incomplete, e.g. the reasoning may be ambigu-
ous or the code may be affected by minor flaws.

Relational
(4)

Correct and accurate answer, providing either some ap-
propriate reversing program or a clear counterexample
showing that the program cannot be reversed.

SOLO categories all isolated (non-recurrent) answers which were
left unprocessed from the previous steps.

Finally, a third researcher reviewed the categorisation of justifica-
tion patterns and discussed with the second researcher a few cases
where different possible perspectives had emerged. In particular,
they eventually agreed that tasklet (c) could be fully achieved at
the unistructural SOLO level, so that insights to motivate higher
SOLO levels could hardly be found in the students’ answers. In
addition, further discussion resolved minor issues and led to the
final classification presented in section 4.

It is worth noting that all items except tasklet (c) are in fact re-
lational in that students need to consider non-trivial relationships
between parts. Tasklet (c), on the other hand, is unistructural since
it makes only sense to consider the loop as a whole: isolating either
the condition or the inner assignment would be meaningless. To
identify overlaps between final states for the straightforward while
in tasklet (c), students could opt for describing it in words, provid-
ing two or more counterexamples, e.g. via tracing, or attempting
and seeing that any basic code manipulation will fail to retrieve
the original value. Any other answer that fails to describe such
behaviour is classified as prestructural.

Table 1 does not include the extended-abstract SOLO category,
since it does not match with the features of the tasks at hand. It can
however be noticed that the proposed tasklets, although simple,
require abilities at the relational level that cannot be taken for
granted in the high school.

4 RESULTS
In this section we outline the results of our investigation, as well
as providing sample answers to better describe the range of SOLO
levels and mental models identified in the analysis.

Overall, 74% of the chosen options about code reversibility are
correct, but only 42% are also supported by sound justifications,
either at SOLO relational level for items (a), (b) and (d), or at the
unistructural level for item (c). Table 2 summarises the main figures
concerning the selected options as well as the quality of students’
justifications. As it is customary [32], SOLO means are determined
by averaging over the weights assigned to each level: 4=relational,

Table 2: Rate of correct options, full justifications and average
SOLO mean for each tasklet.

correct full average
options justifications SOLO mean

tasklet (a) 92.2% 50.7% (Rel) 2.96
tasklet (b) 59.0% 37.1% (Rel) 2.58
tasklet (c) 81.0% 60.5% (Uni) —
tasklet (d) 65.4% 21.5% (Rel) 1.65
overall 74.4% 42.4% 2.40

3=multistructural, 2=unistructural, 1=prestructural, and 0=null, i.e.
either empty or meaningless justification.

4.1 Analysis of conditional tasks
The first two tasks are relational in that students have to identify if
there is an overlap in values resulting from the two update paths
(if and else). Tasklet (a) has no overlap, hence is reversible and
tasklet (b) has an overlap for borderline values 0 and −1.

Tasklet (a). Most students (more than 90%) rightly conjectured that
code (a) is reversible, but only a little more than half of them (55%)
were also able to write correct reversing code, while one third
provided instead code pertaining to the unistructural SOLO level,
usually an instance of pattern Uni1 (28% overall, see Figure 4) that
lacks awareness of the interrelationships between statements in
the if branches and if condition. The two most “popular” code
patterns are shown in Figure 4; other recurrent patterns (one more
relational, two multistructural, two more unistructural and two
prestructural) are far less frequent.

Tasklet (b). 37.1% of students identify the overlap and clearly de-
scribe it as in the following excerpt from an instance of pattern
Rel1:

“If x’s initial value is either −1 or 1, then the result will
be 0 . . . ”

As the overlap is small, it is possible to write code that reverses
all values except 0 or −1, as shown in Figure 5 for pattern Mul1.
Such code reflects a good understanding of reversibility and ability
to code. However, it assumes the final value 0 was originally “−1”
which is plausible but ignores the other potential original value of
“+1”. In comparison, pattern Uni1 does not adjust the the condition
of the statement. Although both of them fail for a small number of
cases, they show a different level of comprehension.

The third item in Figure 5 (Uni2) is another interesting recurrent
pattern that seems to indicate a quasi-syntactic manipulation of the
code, where both the condition as well as the operations in the if
branches are reversed, resulting into a program that fails to undo
the state transformation in almost all the cases.

We speculate that students that answer Yes to both (a) and (b)
may be failing to check the relationship between the parts and
treating them separately. In fact, more than one third of the students
choose the Yes option for both items (a) and (b).



(i) Rel1 (ii) Uni1

Figure 4: Most common code patterns for tasklet (a).

4.2 Analysis of iterative tasks
Asmentioned before, the first iterative task (c) is unistructural while
task (d) is relational. Thus, we will discuss them separately.

Tasklet (c). Based on the characterisation in section 3.1, tasklet (c)
appears to be the least cognitively demanding among the considered
ones. And as many as 60% of students were indeed able to identify
the (large) overlap relative to the output state.

Examples of the most common acceptable justifications in words
are: “We cannot know how many times the loop repeats” (pattern
Uni1, 31%); or “The final state is the same, x = 0, for any multiple of
5.” (Uni2, 12%). Moreover, 9 students attempted to write the code
shown in Figure 6, pattern Uni5, which led them to conclude that
the reversal was not feasible.

Most of the 25% prestructural answers reported transformations
to the while statement that mimic the transformations performed
for items (a) and (b), by editing both the variable update and the
condition as shown in pattern Pre1. It appears none of these super-
ficial edits were tested; in fact, 18 students wrote code giving rise
to no iterations or infinite loops in a large number of relevant cases
(patterns Pre2 and Pre3, the latter being shown in Figure 6). Finally,
15% of the answers were empty.

Tasklet (d). As expected, tasklet (d) turned out to be quite challeng-
ing: although 65% of the students had correctly conjectured that the
loop is reversible, only one third of them, i.e. 21% overall, managed
to write a correct reversing program and about 10% wrote code at
the multistructural level.

The challenges faced by a novice programmer in order to ap-
proach tasklet (d) are manifold:

• Students have first to understand the computation as a whole,
i.e. that the for loop implements a cumulative sum on a vector
(usually this aspect is implicit in their answers).

• Then, they have to make the link between final state (cumu-
lative sum) and original state. In short, they should realise
that the value of any element but the first one can be restored
by subtracting the previous one (its final value). (SUB)
Although this appears simple, some students (about 11%)
failed to see such connection, as shown in this instance of
pattern Uni3: “We don’t know x’s previous values to be sub-
tracted.”

• Once they identify that SUB link, they have to plan a loop
to process all vector’s elements. (PRC)
Although seemingly obvious, there are solutions where all
vector elements are left unchanged, see for example Figure 7,
item Pre*.

• More importantly, students have to be aware of the depen-
dencies between actions at subsequent iterations, e.g. by
choosing a smoother processing order. (DEP)

• Without DEP it is not possible to write correct code, but
even when students are aware of the dependencies, they still
have to write nontrivial reversing code, requiring mastery
of the aforementioned dependencies and where the role of
x, if used, must be kept consistent. (COD)

As to the last two points, DEP and COD, each original value for
index i is now v[i]-v[i-1]; as a consequence, the update needs
to consider data dependencies and either (i) update the elements
from last to first using a downward loop (pattern Rel1 in Figure 7)
or (ii) preserve the partial sum at i-1 while proceeding upwards
to the next step (pattern Rel2 in Figure 7). Based on the experience
of Kumar and Dancik relative to the high school, “down-counting
loops are more difficult for computer science students than up-
counting loops” [16]. However, the main difficulty is not to write a
correct downward loop but to realise the need to reverse the loop
direction.

A potential reason why students’ code fails to manage the de-
pendencies between subsequent iteration steps is that a variable,
usually x, plays conflicting roles in the loop body. Consider, for in-
stance, the code fragment for theMul1 pattern (see Figure 7). While
we could infer from the use of a downward for that the student
was aware of such dependencies, x is used in two different roles:
in the right-hand side of the first inner assignment it is implicitly
meant to hold a partial sum, whereas in left-hand side and in the
next statement its value is supposed to be the restored original
value of v[i]. Incidentally, in terms of the roles-of-variables peda-
gogical model [4], the above roles would be gatherer and temporary,
respectively.

Students’ answers reveal the following combinations of the above
features, each related to a corresponding SOLO category:

• SUB and/or PRC (usually both, as for items Uni1 and Uni2 in
Figure 7): unistructural code;

• SUB, PRC and DEC (DEC = insight suggesting awareness of
dependencies, e.g. Mul1 in Figure 7): multistructural code;

• SUB, PRC, DEC and COD (i.e. essentially correct code, e.g.
Rel1 or Rel2 in Figure 7): relational code;

Notice, in particular, how the ascending vs. descending order of
iteration can make a big difference by comparing the correct and
compact solution Rel1 to the correct but more involved Rel2 or to
the superficially similar but incorrect Uni2 that disregards DEP. The
difficulty of approaching the problem by an upward loop emerges
clearly from the data in Table 3, that reports the numbers of correct
and incorrect solutions relative to the chosen processing order.

Consistency. So far we have looked at the student performance
for each tasklet. We expect most students to reason at similar or
adjacent SOLO levels for every sub-question. We can partition the
students by their overall performance in subgroups as described in
Table 4.

As we have identified tasklet (d) as challenging for K11–12 stu-
dents, we consider students are working at relational level even
when they skip the last task. Of the 50 students classified at that
level, 27 were fully correct, 13 made a partial attempt relative to



(i) Mul1 (ii) Uni1 (iii) Uni2

Figure 5: Examples of partially correct code patterns, all alleged to be reversals of the conditional construct (b).

“It is not reversible because if with the 
original code  x = 15  the outcome will 

be x = 0, but with the code I propose at 
the end of the loop x’s value will be 5.”

(i) Uni5 (ii) Pre1 (iii) Pre3

Figure 6: Examples of recurrent patterns for tasklet (c), used to reason correctly (Uni5) or alleged to reverse it.

(i) Rel1 (ii) Rel2

(iii) Mul1 (iv) Uni1

(v) Uni2 (vi) Pre

Figure 7: Examples of recurrent code patterns meant to reverse loop (d).



item (d) and 10 did not answer it. Most students work at adjacent
levels, with less than 14% working below Uni.

Table 3: Use of downward vs. upward for loop to reverse
code (d).

correct incorrect total
upward loop 4 37 41

downward loop 39 28 67
overall 43 65 108

Table 4: Students performance across all four tasks

Level Description %
Rel (a) to (c) fully correct. 24.4%
R/M all correct except one being Mul or empty 10.7%
Mul all answers are above Uni (excluding c). 12.7%
M/U some answers above Uni, none below 8.3%
Uni mostly Uni and one empty 15.6%
Pre two entries Pre or empty, none above 2 6.8%
Empty three of four empty entries 6.8%
Mixed Non adjacent levels in non-empty answers 15%

Overall, 15% of students show significant differences in compre-
hension across the four tasks: for example, they worked at rela-
tional level with conditionals, but at prestructural level for one of
the iterative tasklets. Only one student failed to see the overlap
in tasklet (c), in fact the easiest endeavour, while was relational
over other tasklets. Another got tasklet (b) correct but (a) only at
unistructural level, while skipping (c) but answering (d) correctly.

4.3 Instruction level impact
So far, the analysis has been concerned with the whole cohort.
We will now look at the performance for specific subgroups. As
we can see from Figure 8, where are reported the average SOLO
means covering tasklets (a), (b) and (d), the instruction level had
a limited impact on performance. (Notice that tasklet (c) has not
been considered because the relational and multistructural levels
do not apply to it.)

A more detailed exploration of each item is provided in Figure 9.
We can see there are only minor differences between the K11 and
K12 cohorts, but the K13 cohort outperforms the rest by about 20%
in tasklets (a–c) and of more than 10% in tasklet (d). It is conceivable
that this is due to more coding practice and fluency, which means
they can produce better code for tasklets (a) and (d), as well as a
better ability to describe their reasoning for tasklets (b) and (c).

For the conditionals (a) and (b) at least half of the class are
working at multistructural level and above. This indicates the task
can be a good learning exercise at any level because it provides a
desirable difficulty [2]: the task is challenging enough for students
at relational level to revise and confirm their correct mental models,
while students at lower levels who partially understand the task
can learn from their mistakes. Similar considerations apply to the

charts

06/07/2020

overall 4.01 overall 2.16 overall 2.40

level 3 (K11) 3.84 level 3 (K11) 2.10 level 3 (K11) 2.33

level 4 (K12) 3.52 level 4 (K12) 2.02 level 4 (K12) 2.24

level 5 (K13) 4.83 level 5 (K13) 2.41 level 5 (K13) 2.69

CS (Informatics) 4.17 CS (Informatics) 2.21 CS (Informatics) 2.46

CS & Telecomm. 3.58 CS & Telecomm. 2.02 CS & Telecomm. 2.22

average number
of correct options (/6)

average
SOLO level (/4)

average
SOLO level (/1-4)

0

1

2

3

4

5

6

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Figure 8: SOLO mean covering the general performance in
tasklets (a), (b) and (c) for different student subgroups.

while loop (c), that appears to be fully understood by a little more
than half of the K11 and K12 cohorts.

As expected, tasklet (d) is challenging for all levels, with only
the K13 cohort reaching a 40% of answers at multistructural level
or above.

5 DISCUSSION
In this section we will first revisit the three research questions, then
discuss other interesting findings and then draw some conclusions
and implications for educators.

5.1 Research questions
Based on the results reported in section 4, we will now answer each
research question.

RQ1 - Can student grasp the state transformations enacted by simple
conditionals and loops in an accurate and comprehensive way? If we
focus on the first three items, we can see 70% of K13 students have
a good grasp of conditional statements and simple while loops com-
pared to 40-50% of their K11–12 counterparts. Similarly, students
that attempted the last item exhibit a good comprehension of the
code transformation in terms of describing the final state and its
link to the original state. Hence, we can conclude that most stu-
dents have managed a reasonable grasp of conditional and iterative
statements.

RQ2 -When a statement is reversible, are students able to write correct
code to recover the original state? The answer to this question needs
to be qualified, due to the difficulty of item (d). The fact 20-30%
of high school students completed this challenging task indicates
their coding skills are above what is expected.

Most of those students used a downward for loop to undo the
state transformation of tasklet (d), in spite of the fact that most
examples, both from textbooks and teachers, are stereotypically
upwards, hence several of them seem to have developed higher-
order thinking skills.
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Figure 9: distribution of SOLO ratings for each task and for each student’s age subgroup.

On the other hand, there is some concern for the 30% of K11–
12 students that made poor attempts to reverse the while loop,
and seem to manipulate conditions and update statements without
understanding their overall effect. This is best understood looking at
patterns Uni5 and Pre1 shown in figure 6. The latter shows students
do not reflect after editing the code on the limited scope of their
transformation which will only reverse numbers in the range {5, 9}.
Thus we can see ability to write code is evenly spread over three
ranges:

high (above average) their code is correct and well-thought as
explained above for item (d).

medium (average) for the range of students that can reverse
conditionals, and their code is mostly correct.

low (below average) for those that lack comprehension of the
code they produce, even when is correct, such as in task (a).

There are also a small number of students (7%) that did not
attempt to code or reason about at least three tasklets.

RQ3 - Is student’s performance consistent over all tasks, reflecting
their current level of comprehension? Or does their comprehension
vary for each task example?

Most student answers are mapped into the same or adjacent
SOLO levels, as described in table 4 reflecting their current code
comprehension level. However 15% showmarked differences in per-
formance across tasks. In particular, four students that completed
task (d) failed to see the overlap in either items (b) or (c), while
ten students that show the overlap in item (b), failed to see it in
item (c). Thus, their comprehension is patchy. These students are
probably representative of the group that would benefit most from
code comprehension activities, as they would become aware of the
inconsistencies in their solutions.

5.2 Other findings
The results of the analysis seem to corroborate, in the high school
context, the findings of previous work addressing students’ difficul-
ties with conditionals and loops, see in particular [6, 13].

It is also interesting to note that the percentages of SOLO rela-
tional justifications (as well as relational+multistructural) decrease
precisely in accordance with the abstraction level of the tasklets.

Students working at low SOLO levels appear to lack any skills to
analyse the code they read or produce. In fact, from the 70 students
who chose the Yes option for both items (a) and (b), only 4 provided
a really accurate justification for item (c). Thus, 66 students (32%)
are answering without showing any analytical skills. The lack of
strategies to test their conjectures about program properties may
be due to laziness, overconfidence or lack of tracing skills. From a
pedagogical perspective, tracing exercises alone that select suitable
input cases may not be enough. We should explicitly teach and
assess strategies to test programming tasks.

Tasklet (d) depth. The analysis of the answers relative to tasklet (d)
was especially instructive because of the richness of its implications.
When designing the task, we exhibited a expert blind spot: although
we new the task to be challenging, we were not fully aware of all
the aspects that could potentially emerge by examining the code
provided by the students. This can be better appreciated by looking
at the features identified in section 4.2 in terms of the block model
framework.

As shown diagrammatically in Figure 10, students are required
to work at different levels of abstraction in the program execution
dimension. At the topmost macrostructure level they have to un-
derstand the overall behaviour of code (d) (reading comprehension)
and write a reversing program (COD). The connections between



the original value of a vector element and the final value of two sub-
sequent elements (SUB) and the treatment of dependencies (DEP)
pertain to the relationships level.

Sheet2

Page 2

 

Macrostructure MT MP MF

Relationships RT RP RF

Blocks BT BP BF

Atoms AT AP AF

 

Text surface Program execution Function / purpose

intrinsic program features extrinsic features

 

SUB

overall
comprehension

of code (d)

consistency
of var roles within

iteration step

PRC

DEP

COD

tracing to test
conjectures

Figure 10: Mapping of the features implied in tasklet (d) into
cells of the Block Model.

A tentative outline of a loop processing all the vector elements
(PRC) can be drafted by considering the looping block as a whole
and neglecting details about dependencies, so working at the block
level of abstraction. Similarly, although the roles of variables have
their effect on the dependencies, possible inconsistencies can be
detected by just looking at the block representing an iteration step.
Finally, the possible use of tracing to test conjectures about program
execution can be done at the atomic level.

5.3 Implications for instructors
The instruction level appears to have a limited impact on students’
performance, what suggests that reversibility tasks are appropriate
for students attending the middle years of high school.

From a pedagogical perspective, designing “low-ceiling” reversibil-
ity tasks could be a useful instrument aimed at assessing and fos-
tering students’ mastery of basic program constructs from K11
onwards. In particular, similar tasks could help to focus on the need
to test program behaviour carefully, and may provide opportunities
to examine code at different levels of abstraction and practice with
varied success higher-order thinking skills.

Tasklet (d) depth presented a step challenge to students; on
the other hand, such complex task allows to expose the links be-
tween reading, writing and testing and provides many lessons to
be learned. Thus, to use this task as a learning event we should
scaffold it, for example by decomposing it into two subtasks: (d1)
explain the computation carried out by this small program and
reason if is reversible or not; and (d2) write the code that reverse
this computation (relative to a different code fragment of similar
structure).

More teaching efforts should explicitly introduce methods to
approach and analyse a programming task, in particular how to
identify suitable test cases in order to check the conjectures on code
behaviour.

In addition, instructing students to analyse the code in terms
of variable roles could be helpful to let them detect, if not avoid,
frequent mistakes, such as that illustrated by item Uni1 in Figure 7
and commented above.

5.4 Future work and perspectives
This study has presented 4 tasklets to explore code comprehen-
sion in a comprehensive way. Other approachable tasklets should
be developed exploring additional features of core programming
constructs.

Future work will also expand on our implications for educators
by (i) exploring ways to scaffold tasklet (d) by decomposing it
into more focused subtasks, in particular to test separately code
reading comprehension and code writing skills; (ii) testing these
and related tasks with different cohorts and (iii) developing and
testing guidelines for novice programmers.

6 CONCLUSIONS
In this paper we explored a promising perspective on code compre-
hension by asking high-school students to reason about reversing
conditional and iteration constructs. We analysed students’ per-
formance on four programming tasklets by extracting recurrent
patterns in their answers and categorising their code and expla-
nations within the framework of the SOLO taxonomy. We also
analysed the structure of the considered tasks in terms of Schulte’s
Block Model.

Vahrenhold et al. review of studies in computer science education
at K–12 levels [37] concluded by inviting researchers to undertake
multi-institutional and multinational projects “in the school sector”
similar to those carried out within the academic milieu (e.g. [7, 19,
24]). According to Vahrenhold et al., in spite of “the significantly
greater complications involved in the school sector,” we should
nonetheless “aspire to similar studies in schools. This is a grand
challenge for Computer Science Education Research.”

This paper is a first step in that direction as it covers students
from different institutions. The reversibility tasks could represent
a useful instrument for multinational projects in this respect, as
this study could be replicated in different contexts (and we would
be happy to collaborate with educators interested in trying similar
investigations).

In the light of our exploration, we think that the reversibility
concept could also be a useful pedagogical instrument to assess and
develop students’ program comprehension in the classroom.
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