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Abstract

This thesis is a collection of four different contributions to the analysis, valuation and

risk management of life insurance products and life insurance portfolios at future time

horizons, as well as it examines the extent of longevity risk for future cohorts. To

calculate the implied conditional expectations arising in these problems, we propose

to apply a methodology based on regression and simulation methods. In particular,

in the first paper, we deal with the valuation of future life annuity contracts by de-

veloping a methodology based on the Least-Squares Monte Carlo (LSMC) approach,

i.e., by combining Monte Carlo simulation with Least-Squares regression to evaluate

conditional expectations, a technique widely adopted for pricing American contingent

claims, allowing to avoid the use of nested simulations. To test the accuracy and the

efficiency of the proposed methodology, we perform an extensive comparative analysis

by exploiting a benchmark based on a nested simulations procedure. We consider first

a simplified computational framework where just one risk factor is taken into account

and then we introduce multiple sources of risk. We aim at exploring the resulting algo-

rithm and several of its variants to the valuation (more generally, to the study of the

distribution) of annuity values at any future date when the model employed involves

processes for interest rates and mortality that have no closed-form expressions for ex-

pected present values of pure endowments. The methodology has multiple applications,

from the pricing of traditional, equity-indexed, variable annuities, guaranteed annuity

options, pension buy-in/out and other pension risk management problems.

In the second paper we focus on a demographic application of the LSMC method. Specif-

ically, we aim at studying the time evolution of some longevity metric, such as future life



expectancy and lifespan disparity. This study will be conducted by adopting a cohort

based perspective in contrast to the usual practice based on period life tables. Indeed,

as it will be discussed, the use of cohort life tables automatically implies conditional ar-

guments which will be faced with the LSMC method. A comparative analysis between

cohort and period valuations will be provided in order to assess their forecast difference.

To project mortality onto the future, we exploit extrapolative procedures; in particular,

we consider single and multi-population mortality models in order to take into account

the inter-dependence in mortality evolution among sub-populations. Overall, this will

provide a very flexible tool which can be used for any other longevity measure involving

conditional expectations, where cohort based measurements are often replaced by period

ones for computational simplicity.

In the third paper, we present an R function which has been developed on the basis

of the previously mentioned papers. The function will be part of the well-known and

widely used R package for stochastic mortality StMoMo, giving also the possibility

to accommodate customized mortality forecasts and to include stochastic interest rate

models. We illustrate some of the capabilities of the function and introduce the corre-

sponding new R class on which it is possible to use many basic R methods.

Finally, in the fourth paper, we address the problem of approximating the future value

distribution of a large and heterogeneous life insurance portfolio which would play a rel-

evant role, for instance, for solvency capital requirement valuations. This work is based

on a metamodel by which we first select a subset of representative policies in the portfo-

lio and then approximate the distribution of a single policy and of the entire portfolio by

means of two different approaches, the ordinary least square, and a regression method

based on the class of generalized beta distribution of the second kind. The reliability

of the proposed methodology is investigated through extensive numerical experiments,

where a solid benchmark obtained by means of nested simulations is considered.
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Introduction

The topics addressed by the present thesis are mainly related to the analysis, val-

uation and risk management of life insurance products and life insurance portfolios at

future time horizons. In what follows, we provide a review of the previous works pro-

posed in literature and on which the present project is based on. Then, we point out

the relevant and original contributions provided by the present thesis.

Overview

The valuation of future annuity contracts is getting ever-more prominent since it is

implicitly present in many contexts (e.g. pricing guaranteed annuity options or pension

de-risking strategies such as pension buy-ins and buy-outs). A straightforward approach

for dealing with such a problem would be based on nested simulations, where a number

of inner trajectories branch out from a number of outer scenarios. Simulation techniques

are widely used both in the financial and actuarial literature (see Boyer and Stentoft,

2013). However, these techniques turn out to be quite computationally challenging,

even more if we consider a nested problem or a complex mathematical framework where

many sources of risk are taken into account.

As it will be shown later, the valuation of future annuity contracts implies computing

conditional expectations. Under some specific circumstances, closed-form-expressions

exist; for instance, Biffis (2005) shows how analytical formulas can be derived by exploit-

ing the mathematical tractability of the so-called affine stochastic processes assumed to

describe the dynamics of the relevant risk-factors. However, this mathematical frame-

work may be too restrictive, and so the existence of analytical solutions may be no

longer guaranteed once different scenarios are considered.

1
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In the context of future annuity valuations, to overcome the simulations within sim-

ulations method, there have been proposed several alternatives. For instance, Denuit

(2008) suggests comonotonic approximations of the life annuity conditional expected

present value, while Dowd et al. (2011a) propose a Taylor series approach. The first

proposal is somehow restricted to some specific dynamics assumed to model the evolu-

tion of the main risk-drivers, and so would be not easy to extend to other contexts. The

second one is still computationally expensive since multiple simulation sets are required

in order to estimate the coefficients of the Taylor series expansion.

Therefore, in order to provide a flexible methodology, which is able to reduce the com-

putational effort and to preserve at the same time the accuracy of the desired estimates,

we are going to propose an application of a well-established method. Specifically, we

present an application of the well-known Least-Squares Monte Carlo (LSMC) method

in the valuation of future annuity contracts. This methodology has proved to be very

powerful and efficient for the insurance industry and it has been applied in many con-

texts.

The LSMC approach was originally developed by Carrière (1996), Tsitsiklis and van

Roy (1999), and Tilley (1993) for valuing early-exercise features embedded in financial

contracts. However, the LSMC method became very popular after the work of Longstaff

and Schwartz (2001), who applied it in the context of American-type Option pricing,

where an application of a nested simulations method turned out to be almost impractical.

This approach essentially aims at estimating efficiently the continuation value of the

option at each time step through a linear combination of some basis functions depending

on the risk-factors affecting the value of the option itself. This completely avoids a

ramification at each time step, leading to a drastic reduction in the computational

complexity. A convergence analysis of this method has been presented in many papers;

for instance, Clément et al. (2002), Stentoft (2004), and Zanger (2009), just to name a

few. In particular, they have shown through theoretical results that the LSMC algorithm

converges to the true conditional value as both the number of basis functions and that

of simulations increase.

Because of its simplicity, the LSMC method has been applied in many other contexts,

especially where a nested simulations approach would be naturally adopted. Indeed, a

first application of the LSMC method in the life insurance context can be found in
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Andreatta and Corradin (2003), where the pricing of surrender option embedded in a

portfolio of guaranteed participating policies is considered. Since then, many other ap-

plications of the LSMC method have been proposed in actuarial literature; for instance,

we may cite Bacinello et al. (2009), and Bacinello et al. (2010) where it has been used to

value complex features embedded in life insurance products, such as surrender option.

Furthermore, in the last years, the LSMC set-up has been exploited for comput-

ing Solvency Capital Requirements (SCR) for insurance companies. Indeed, the recent

European “Solvency II” directive actually requires insurance companies to determine

the minimum solvency capital requirements accordingly to a market-consistent valua-

tion approach, which therefore led to an obvious nested problem. As first contributions

in which the LSMC method was proposed to value SCR’s, we may mention Cathcart

and Morrison (2009) and Bauer et al. (2010). Furthermore, Floryszczak et al. (2016)

and Krah et al. (2018) provide a practical implementation of the LSMC in this par-

ticular context, highlighting the efficiency and the accuracy of the considered method.

Moreover, Benedetti (2017) provides a convergence analysis of the LSMC applied to the

estimation of risk-measures, and Bauer and Ha (2018) point out the importance of a

suitable choice of the employed basis functions.

A natural extension of the study of future annuity contracts would be to analyse the

evolution of some longevity measure. Indeed, as it is known, the persistent improve-

ment in mortality has never stopped over the past decades, thus determining the need to

carry out precise studies on its evolution in order to implement political actions aimed at

stemming any negative economic and social impact. However, understanding whether

or not there is a limit to the human lifespan is still an open question. In particular, it

has been addressed by several demographers; some of them have suggested that due to

biomedical factors, future life expectancy could stabilize or even decrease while others,

more optimistic, say that there is no evidence of an upper limit and that indeed this

improvement could even accelerate in the coming decades thanks to scientific advances

and socio-political actions. For these reasons, great attention has been devoted in liter-

ature to the development of models capable of directly describing the evolution of life

expectancy trends. In this regard, after Oeppen and Vaupel (2002) that introduced the

concept of “best-practice life expectancy” (BPLE), several authors proposed to model

life expectancy changes as functions of the gap with the BPLE, e.g. see Torri and Vaupel
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(2012) and Pascariu et al. (2018).

However, limiting ourselves to the study of the evolution of life expectancy would not

be sufficient to describe and understand the actual evolution in terms of mortality of a

population. Indeed, it would be important to consider other longevity measures capable

of taking into account, for instance, any changes in the age-at-death distribution. To

this end, we may consider the lifespan disparity indicator introduced by Goldman and

Lord (1986) and Vaupel (1986). As stated in Vaupel (1986), it can be interpreted as the

number of years lost in life expectancy due to death, depicting in this way the dispersity

of the age-at-death at an individual level. Therefore, studying both the evolution of

life expectancy and its variation would guarantee a timely detection of any unexpected

mortality developments, thus allowing a rapid and effective response by policy makers

(see van Raalte et al., 2018; Edwards and Tuljapurkar, 2005).

In contrast to the usual period-based evaluation of longevity measures, we address

the problem of approximating the distribution of future life expectancy and lifespan

disparity with a cohort-based perspective. Indeed, calculating these measures by calen-

dar year, and so not considering any further improvements after that date, might not

describe the cohort’s actual life course. A first contribution in this direction can be

found in Vaupel (2019), who proposed the so-called SCOPE approach to forecast future

life expectancy levels conditioning on specific future mortality scenarios.

Cohort based valuations require to solve conditional arguments; in particular, Dowd

et al. (2010) applied the Taylor series approximation method to the conditional expected

future life expectancy. In this regard, we propose an application of the LSMC method,

which has not yet been applied in a demographic context. Moreover, this work will

further contribute to the literature by providing several comparison analyses. Indeed,

both single and multi-population mortality models are considered, as well as cohort

and period-based valuations. We aim at assessing their effects in estimating longevity

measures. Finally, we show how the LSMC approach can be used also for approximating

other longevity measures at future dates, e.g. the lifespan disparity indicator.

The last part of the thesis will address the problem of approximating the value

distribution of a large and heterogeneous life insurance portfolio at a future date. Even

if the LSMC method has been identified as a valid alternative to the nested simulations
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approach, it would be still computationally challenging if a large insurance portfolio is

considered. Indeed, if we think of a real insurance portfolio which is usually composed

by a huge number of contracts, still a lot of simulations are required under the LSMC

approach. For this reason, in this thesis we further propose a sort of extension of

the method which is based on a metamodeling approach. In particular, we aim at

modelling the value distribution of a large and heterogeneous life insurance portfolio

at future times by means of regression models firstly applied to a selected number of

representative policies, and then extended to the entire portfolio. To this end, two

regression approaches are considered. At first, we propose the LSMC to approximate

the conditional distribution of each representative policy at the risk-horizon, and then a

second OLS regression is applied to estimate the future value distribution of the entire

portfolio. The second alternative exploits the class of generalized beta of the second

kind (GB2) distributions to model the conditional distribution of each representative

policy value at the risk-horizon, and also to estimate the future value distribution of the

entire portfolio.

Metamodeling approaches were firstly introduced in system engineering by Barton

(2015), and then applied also in the financial and actuarial literature. For instance, Gan

(2013) proposes a metamodel based on data clustering and machine learning to price

large portfolios of variable annuities, while Gan and Lin (2015) tackled a similar problem

by developing a functional data approach. Furthermore, Gan (2015) compares the data

clustering approach and the Latin hypercube sampling to select representative variable

annuities. Among the financial applications, we may mention Baysal et al. (2008) who

uses Latin hypercube designs and the kriging model to simulate hedging and trading

strategies under nested simulations. Further, Liu and Staum (2009) and Liu and Staum

(2010) exploit stochastic kriging to estimate the expected shortfall of a portfolio.

The class of GB2 distributions has been widely used in many actuarial contexts, both

life and non-life sectors. For instance, Cummins et al. (1990) used it to model the loss

distribution for a non-life insurance company, while in Gan and Valdez (2018) it has

been exploited for modelling the fair current market values of guarantees embedded in

a large variable annuity portfolio starting from a set of representative policies.
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Structure of the thesis and its main contributions

This thesis is composed by four (working) papers: Chapter 1 is based on Bacinello

et al. (2021a), Chapter 2 includes Bacinello et al. (2021b), Chapter 3 is related to

Bacinello et al. (2021c), and Chapter 4 considers Costabile and Viviano (2021). All effort

has been made to homogenise the notation; however, due to the different approaches,

different levels of mathematical notation may be required, rendering it necessary to

refine specific notations.

Chapter 1

Chapter 1 aims at proposing the LSMC method as one possible alternative for valuing

future annuity contracts. In particular, we firstly consider a simplified computational

framework where only longevity risk is taken into account, and then we extend it to

incorporate interest-rate risk. Furthermore, for each considered scenario, we provide a

validation analysis by comparing the obtained results with respect to a benchmark based

on a nested simulations procedure, which allows us to conclude about the reliability and

the efficiency of our proposal. Moreover, we present several practical applications where

the values of future annuity contracts are needed, such as pricing Guaranteed Annuity

Options (GAO), or pricing pension de-risking strategies (buy-ins or buy-outs). The

latter is a relevant issue in the actuarial field since it requires valuing a number of

conditional expectations involved in the valuation of annuity contracts at different time

steps, and so an implementation of a nested simulations method would be impractical.

The main contributions of this work are the following:

1. Provide a general tool for calculating future annuity values, regardless of the

adopted computational framework;

2. Explore different variants of the LSMC algorithm;

3. Consider some examples to show the tool’s versatility: pricing de-risking strategy

for pension plans and GAOs.
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Chapter 2

Chapter 2 adopts the LSMC methodology in a demographic context. In particu-

lar, we aim at studying the evolution of some longevity measures with a cohort based

perspective. This would be quite relevant both for life insurance companies and pub-

lic/private pension funds. Indeed, as studied by Wilmoth (2000), mortality is changing

over time, and unexpected improvement in mortality would have major implications

for the financial stability and solvability. For instance, if we think to public social sys-

tems and specifically to pension systems, an unexpected increase in longevity would

lead them in paying more (and for a longer period) than previously accounted. Because

of that, an appropriate study of future life expectancy is required as pointed out also

in Dowd et al. (2010). The latter faces the implicit conditional expectations by per-

forming a Taylor approximation based method, as the one already discussed in Dowd

et al. (2011a), while this thesis proposes the LSMC approach. We show how the latter

can be used to evaluate other longevity measures, rather than just life expectancy, and

in particular we consider the lifespan disparity index. The analysis will be conducted

by considering both single and multi-population mortality models in order to take into

account any inter-dependence among genders. Finally, we compare cohort and period

valuations to assess their forecast difference.

The main contributions of this work are the following:

1. It provides a general tool for computing longevity measures with a cohort based

approach, regardless of the adopted framework;

2. It compares results based on single and multi-population mortality models;

3. It analyses the forecast difference between period and cohort-based valuations.

Chapter 3

Chapter 3 introduces the new R function calculate.Annuity, which has been de-

veloped on the basis of Chapters 1 and 2. Hence, the function implements the corre-

sponding LSMC algorithms. As it will be shown, the function is connected with the

well-known R package for stochastic mortality StMoMo provided by Villegas et al.
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(2018). In addition, it gives the possibility to exploit customized mortality data object,

and to include stochastic interest rate models. We introduce the new object of the

class "sim.Annuity" on which it is possible to use many basic R methods to perform

qualitative and quantitative analysis such as quantile, hist, summary. The Chapter

illustrates the usage of this function by providing an example based on the valuation of

future annuity contracts.

The main contribution of this work is the following:

1. Provide an R function which develops the LSMC method that can be used by

practitioners for valuing future annuity contracts and/or forecasting future life

expectancy.

Chapter 4

Chapter 4 addresses the problem of approximating the future value distribution of

a large and heterogeneous life insurance portfolio which would play a relevant role, for

instance, for solvency capital requirement valuations. In this area many alternatives

to nested simulations were proposed in literature; among them we may cite the LSMC

method. However, a straightforward application of the LSMC would be still compu-

tationally demanding, since usually an insurance portfolio is composed by a number

of policies which would require many simulation sets. For this reason, in this work

we propose a metamodelling approach which allows to approximate the portfolio value

distribution at future times starting from a set of representative policies. This set of

representative contracts is identified through the Conditional Latin Hypercube Sam-

pling (CLHS) scheme, which tries to identify a small number of contract composing the

insurance portfolio in a way that the sampled policies form a Latin hypercube or the

multivariate distribution of the portfolio is maximally stratified. Once these represen-

tative policies are identified, we apply a similar simulation strategy adopted in a LSMC

setting. In particular, we project the relevant risk-factors affecting each representative

policy from the evaluation time up to the risk-horizon by means of outer scenarios, and

then for each outer trajectory we project a very limited number of inner paths, which

allow to derive a first rough estimate of each representative policy value. To reduce the
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bias in these estimates deriving from the few inner scenarios, we propose two different

regression models. The first one can be thought as a sort of extension of the LSMC

method; in particular, in a first stage we approximate the conditional distribution of

each representative policy value by means of a linear combination of some basis functions

depending on the risk-factors affecting the policy of interest; then, we extend this by an

OLS regression model to the entire insurance portfolio. The second proposed regression

model relies on the class of GB2 distributions, and follows the same strategy as the

previous one; i.e., we first approximate each representative policy value distribution at

the risk horizon, and then we extend to the remaining policies. In the latter proposal,

a maximum likelihood estimation procedure is adopted.

The main contributions of this work are the following:

1. Provide a metamodelling approach for valuing an entire portfolio of policies at

future times for pricing and risk-management purposes;

2. Reduce even more the complexity and time of the involved computations.







Chapter 1

An Efficient Monte Carlo Based

Approach for the Simulation of

Future Annuity Values

This Chapter is based on the research paper Bacinello et al. (2021a) and it has been

presented at the StaTalk 2019 Conference (Trieste, 2019), at the Online International

Conference in Actuarial Science, Data Science and Finance (Online event, 2020), at

the 55th Actuarial Research Conference (Online event, 2020), at the Mathematical and

Statistical Methods for Actuarial Sciences and Finance (Online event, 2020), at the

24th International Congress on Insurance: Mathematics and Economics (Online event,

2021), and at the XLV Annual Meeting A.M.A.S.E.S. (Online event, 2021).

1.1 Introduction

Over the 20th century, due to health improvements and medical advances, it has

become evident that people tend to live longer and longer. Indeed, the mortality of

individuals over time has exhibited many stylized features. In particular, looking at

the survival curve for most developed countries around the world, it is immediately

clear that mortality levels are decreasing as time passes by, leading to an increase in

individual’s life expectancy. As a consequence, life insurance companies and pension

providers need to face the so-called longevity risk.

11
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The actuarial literature has increasingly focused, in the last decades, on studying

and proposing several methods for managing and evaluating this source of risk. The

importance of modelling and transferring such a risk is argued in Blake et al. (2013).

In particular, it is highlighted how the new longevity-linked capital market instruments

could help in facilitating the development of annuity markets and hedging the long-

term viability of retirement incomes. As a further consequence, we may recall the

non-negligible impact on liabilities of insurers and pension plans, as studied in Oppers

et al. (2012).

Recently, some attention has been devoted to the valuation of life annuity contracts

issued at a distant future time. This problem has many sources of uncertainty, among

which the most relevant are future interest rate and mortality levels. In this regard,

Denuit (2008) and Hoedemakers et al. (2005) suggest comonotonic approximations of the

life annuity conditional expected present value. Moreover, Cairns (2011), Dowd et al.

(2011a) and Liu (2013) propose an approach based on a Taylor series approximation of

the involved conditional expectation.

The problem of valuing future annuity contracts is getting prominent since it is

implicitly present in many contexts such as pricing guaranteed annuity options (GAO)

and pension de-risking strategies, i.e. buy-ins and buy-outs. The pricing of GAOs

has been faced by many authors (see Ballotta and Haberman, 2003, 2006; Biffis and

Millossovich, 2006; Boyle and Hardy, 2003). Concerning the valuation of pension buy-

ins and buy-outs, instead, Lin et al. (2017) develop models for pricing both investment

and longevity risks embedded in these strategies. Then, Arık et al. (2018) focus in

pricing pension buy-outs under dependence between mortality and interest rates. As we

will see, facing such a problem requires computing a number of conditional expectations

involved in the valuation of annuity contracts at different future times. Hence, avoiding

the straightforward and time-consuming approach based on nested simulations would

be quite relevant.

For this reason, in this Chapter we propose a simulation based method to estimate the

distribution of future annuity values which is able to strongly decrease the computational

demand and at the same time preserves the accuracy of computations. The methodology

described in what follows provides an application of the well-established Least-Squares

Monte Carlo algorithm (LSMC), originally proposed by Longstaff and Schwartz (2001)
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for pricing American-type options. The most important advantage of this method is its

flexibility to accommodate any type of Markov mortality model, and the possibility to

be extended to more complicate frameworks without increasing the complexity of the

involved computations. Further, we investigate some variants of the LSMC method in

order to improve the accuracy and the robustness of the algorithm. To this end, we

exploit the control variates method as suggested by Rasmussen (2005).

The Chapter is structured as follows. In the next section we introduce the problem

under scrutiny and describe our assumptions and the methodology used to solve it, in

Section 1.3 we present a numerical example, and in Section 1.4 we provide some practical

applications. In Section 1.5, we draw some conclusions.

1.2 Problem and methodology

The ever-increasing interest on adequately evaluating life insurance products or re-

tirement incomes at a future time relates to the need of providing a reliable valuation of

the cost of life expectancy, and to prevent somehow possible insolvency issues. In this

Chapter, our primary goal is to simulate the distribution of the value of an immediate

life annuity contract issued to an individual aged x at a future time horizon T .

We define the current value at the future time T > 0 of a unitary immediate annuity

for an individual then aged x as

ax(T ) =
+∞∑︂
i=1

B(T, T + i) ipx (T ) , (1.1)

where B(T, T + i) is the i-th years discount factor prevailing at time T > 0 and ipx (T )

is the i-th years survival probability for an individual aged x at time T .

The quantities B(T, T + i) and ipx (T ) appearing in Equation (1.1) are both random

variables at time 0 (today), and consequently also ax(T ) is random. More precisely,

these variables are expectations conditional on the information available at time T .

To evaluate these conditional expectations we need models for describing the stochas-

tic evolution of both interest and mortality rates. Under some circumstances, closed

form formulae for computing them are available, for instance when affine processes are

used (see Biffis, 2005), but in general this is not guaranteed. As previously mentioned, a
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straightforward approach would rely on a simulation within simulation procedure, also

known as nested simulations; however, since it is quite computationally time-consuming,

we are going to propose an application of the LSMC method.

1.2.1 Model framework

In order to evaluate Equation (1.1), we need to deal with interest and mortality risks.

In this Section, we define the computational frameworks which are used to build some

numerical results. In a first stage, we assume a stochastic mortality dynamics with a

constant interest rate; after, we consider the case in which also the dynamics of interest

rates is stochastic.

To this end, we assume to act with a (selected) risk-neutral measure, under which

interest and mortality rates are stochastically independent.

Stochastic mortality dynamics

As already discussed, one of the main risk factors affecting the value of an annuity

contract is mortality. Hence, we need to adopt a stochastic mortality model in order

to mimic its possible evolution over time. To this end, we use the Poisson version of

one of the most significant and widely applied stochastic mortality models, i.e. the M7

model (see Cairns et al., 2009). Hence, we assume that the number of deaths at age

x and calendar year t, Dx;t, is Poisson distributed with parameter Ex;tmx;t, where Ex;t

and mx;t denote the central exposure and the central death rate, respectively. Moreover,

according to Cairns et al. (2009), we assume that the force of mortality is constant over

each year of age and calendar and equal to the corresponding central death rate mx;t,

modelled as

logmx;t = κ
(1)
t + (x− x̄)κ

(2)
t +

(︁
(x− x̄)2 − σ̂2

x

)︁
κ
(3)
t + γt−x,

where x̄ is the average age, σ̂2
x is the average value of (x − x̄)2,

{︂
κ
(i)
t , i = 1, 2, 3

}︂
are

time indexes, and γt−x accounts for the cohort effect.
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Therefore, by exploiting the fact that κt =
{︂
κ
(1)
t , κ

(2)
t , κ

(3)
t , γt

}︂
is usually modelled as

a Markov process, we have:

ipx(T ) = E [exp {− (mx;T + · · ·+mx+i−1;T+i−1)} | κT ] ,

and, within this framework, we can rewrite Equation (1.1) as

ax(T ) = E

[︄
ω−x∑︂
i=1

exp {− (ir +mx;T + · · ·+mx+i−1;T+i−1)} | κT

]︄
, (1.2)

where ω is the ultimate age and r the constant interest rate. In particular, as in Cairns

et al. (2009), we model the period indexes,
{︂
κ
(i)
t , i = 1, 2, 3

}︂
, as a three-dimensional

random walk with drift (see Appendix 1.A), while the cohort index, γt−x, follows a

univariate autoregressive process of order 2 independent of the time indexes.

Stochastic interest rate model

If in a first stage we consider a constant interest rate framework, we then move to

extend the complexity of the model by allowing for uncertainty in the future level of the

risk-free interest rate.

In this regard, we assume that the interest rate dynamics is described through a

CIR process which states that the instantaneous spot interest rate r obeys the following

stochastic differential equation

dr(t) = α(r̄ − r(t))dt+ σ
√︁

r(t)dW (t), (1.3)

where α indicates the strength of the mean reversion process governing r, r̄ is the long-

term mean instantaneous spot interest rate, σ is the interest-rate volatility parameter,

and W (t) is a standard Wiener process.

We know that, under a CIR stochastic interest rate model, the time-T price of a

zero-coupon bond with maturity τ , given r(T ), is

B(T, τ) = E
[︂
e−

∫︁ T+t
T r(t)dt | r(T )

]︂
= exp{A(τ − T )− C(τ − T )r(T )}, (1.4)
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where

A(τ − T ) =
2αr̄

σ2
ln

[︃
2γe(γ+α)(τ−T )/2

(γ + α) (eγ(τ−T ) − 1) + 2γ

]︃
,

γ =
√
α2 + 2σ2,

C(τ − T ) =
2
(︁
eγ(τ−T ) − 1

)︁
(γ + α) (eγ(τ−T ) − 1) + 2γ

.

Then Equation (1.1) can be rewritten as follows

ax(T ) = E

[︄
ω−x∑︂
i=1

exp

{︄
−

(︄∫︂ T+i

T

r(t)dt+mx;T + · · ·+mx+i−1;T+i−1

)︄}︄
| rT ,κT

]︄
. (1.5)

The analytic solution in Equation (1.4) will be used in the construction of the bench-

mark; specifically, we firstly produce different possible values of r(T ) using the SDE

in Equation (1.3), and then we calculate the discount rate through Equation (1.4).

Concerning instead the LSMC algorithm, we will not exploit this analytic solution but

the representation of B
(︁
T, τ

)︁
in terms of conditional expectation in order to check the

reliability of the proposed methodology in a fully simulated framework.

1.2.2 Valuation procedure

The previously introduced framework does not produce a closed form formula for

Equation (1.2), as typically the central death rates have a lognormal distribution so

each exponent in Equation (1.2) involves the sum of lognormal variables. Hence, a

possible strategy is to evaluate the involved conditional expectation through simulation

based methods.

A straightforward approach would rely on a nested simulations procedure. This

strategy requires first to simulate all relevant risk factors up to time T (outer scenarios);

then, for each simulated time T value of such factors, one would need to simulate forward

starting from that particular value (inner simulations), and finally compute conditional

expectations by averaging across all inner simulations. It follows that this method can

be computationally expensive, in particular when several annuity values (at different

times and/or ages) are needed.

Therefore, in order to reduce the computational complexity, we propose an alternative
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methodology based on the LSMC approach. It consists on estimating each annuity value

at time T by means of a few inner simulations. Obviously, this would lead to biased

estimates. Nevertheless, the bias can be reduced by regressing them on a set of basis

functions.

Therefore, the LSMC method essentially consists in modelling Equation (1.1) as a

linear combination of basis functions depending on the time-T state vector of the risk

factors, zT . Hence

ax(T ) ≈ ãx(T ) =
M∑︂
j=1

βjej (zT ) ,

where ej (zT ) is the j-th basis function in the regression, the βjs represent the coefficients

to be estimated, and M is the number of basis functions.

Therefore, the LSMC approach involves two main steps: firstly, we need to perform

simulations of the future evolution of the risk factors; then, we use regression across

the simulated trajectories in order to obtain estimates of future annuity values. In this

way, the conditional expectation is evaluated through regression taking into account

the information available at time T (i.e. the simulated values of the state vector zT

exploited as predictor). Moreover, this method allows to obtain an estimate of the

probability distribution of annuity values at future time horizon T for individuals aged x

at that date. Note that a single set of simulations, without increasing the computational

demand, can be used for different ages and time horizons.

1.3 Numerical results

In this Section we provide some numerical examples by considering two main scenar-

ios: a constant interest rate framework and stochastic mortality evolution, and then we

extend the previous model by assuming that also interest rates are stochastic. Note that

in Chapter 3 we describe the computational algorithm which has been used to produce

the following results.

Concerning the dynamics of mortality over time, we exploit in both frameworks the

M7 mortality model, which has been fitted to the Italian male population data over the
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period 1965− 2016 and ages 35− 89 obtained through the Human Mortality Database.

Further, we assume that year 2016 corresponds to the evaluation time 0 (today).

To check the accuracy of the estimates, we compare them with those obtained through

a nested simulations algorithm, so that the latter act as benchmark for evaluating the

efficiency and the accuracy of the LSMC procedure (see Boyer and Stentoft, 2013).

1.3.1 Constant interest rate framework

In this section, we provide an example based on an immediate life annuity issued to an

individual aged 65 at different future time horizons T ∈ {5, 10, 15, 20, 30, 40, 50}. The

risk-free interest rate is set at the (constant) level r = 0.03. Moreover, we simulate a dif-

ferent number of outer trajectories of future mortality
(︁
i.e. n ∈ {1000, 5000, 10000, 20000}

)︁
.

As basis functions, we use polynomials in three or four variables (depending on whether

the cohort term is used or not) with degree p ∈ {1, 2, 3, 4}. All the results are then

compared with a benchmark obtained through a nested simulations procedure consist-

ing in simulating 20000 × 20000 scenarios; in total this amounts to 400 millions inner

simulations.

Table 1.1 reports some statistics of the distributions of future annuity values obtained

through the two valuation algorithms. Looking at the results, it immediately turns out

that, as the time horizon T increases, the distribution changes. Specifically, its mean

increases, which is quite reasonable and in line with the ever-increasing life expectancy

registered in the last decades. In addition, its standard deviation increases as well,

which implies a more dispersed distribution. This result also seems to be reasonable

due to the higher uncertainty caused by the longer time horizon. Furthermore, it seems

that the distribution tends to be increasingly left-skewed, which implies a longer left

tail, hence the distribution is concentrated on the right tail (i.e. higher values of the

annuity contract). Finally, we see that the kurtosis increases, meaning that we recognize

a heavier tailed distribution, hence a greater propensity to result in extreme annuity

values with respect to the Gaussian case.

Concerning the validation procedure, we can see from Table 1.1 that the LSMC

approach provides quite accurate estimates. Moreover, the reliability of the proposed

approach is evidenced by the fact that the obtained distribution overlaps substantially
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Table 1.1: Distribution of annuity values at time horizon T for individuals aged
65 in year 2016 + T . MC 20000 × 20000 simulations. LSMC 20000 × 1 simulations,
Polynomials order p = 4.

Mean Std Dev Skewness Kurtosis 10th perc. Median 90th perc.

T = 5 MC 13.65110 0.17810 -0.09301 2.96378 13.42178 13.65369 13.87852

LSMC 13.65221 0.17765 -0.09354 2.94450 13.42258 13.65587 13.87793

T = 10 MC 13.85305 0.24099 -0.15187 3.01885 13.54231 13.85969 14.15719

LSMC 13.85527 0.23900 -0.15067 3.12398 13.54861 13.86207 14.15362

T = 15 MC 14.30830 0.26616 -0.19999 3.07030 13.96332 14.31609 14.64352

LSMC 14.30860 0.26243 -0.19230 3.09234 13.96858 14.31593 14.63883

T = 20 MC 14.65545 0.27960 -0.23850 3.06219 14.28781 14.66690 15.00814

LSMC 14.65588 0.27676 -0.22483 3.12117 14.29383 14.66667 15.00440

T = 30 MC 15.42633 0.25877 -0.33438 3.14273 15.08635 15.44058 15.74709

LSMC 15.42780 0.25820 -0.34241 3.15839 15.08894 15.44244 15.74712

T = 40 MC 15.64073 0.29064 -0.41765 3.21743 15.25552 15.66414 15.99685

LSMC 15.64056 0.28999 -0.41974 3.18686 15.25324 15.66416 15.99541

T = 50 MC 15.84853 0.30152 -0.51156 3.33996 15.44801 15.87344 16.21229

LSMC 15.84871 0.29998 -0.49213 3.28021 15.45142 15.87253 16.21280

with the one produced through nested simulations; this is also confirmed by the Kol-

mogorov–Smirnov test (KS, see Table 1.2). In addition, we have constructed the Q-Q

plots by considering the distribution obtained through nested simulations as the theo-

retical one, and these graphs, once again, confirm the goodness of the proposed method

in approaching this kind of problem (see Figure 1.1).
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Figure 1.1: Q-Q plots of future annuity value distributions for an individual aged
65 at different future times T ∈ {5, 10, 15, 20, 30, 40, 50}. MC 20000× 20000 simu-
lations; LSMC 20000× 1 simulations, Polynomials up to order p = 4.

Further, for a more comprehensive analysis, we checked whether the LSMC approach
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tends to over- or under-estimate the quantities of interest. In this regard, in Table 1.2 we

report the frequency with which the LSMC mean estimates lie inside the 95% confidence

interval obtained through the nested simulations procedure or outside (on the left or

on the right, respectively). We can see that, in each of the considered scenarios, most

of the time the estimates tend to lie outside the confidence interval. Moreover, there is

evidence of over-estimation which could be due to biases stemming from the regression.

To improve the accuracy and the stability of the LSMC approach, we may rely on

some variance reduction techniques (e.g. control variates or antithetic variates methods)

or we may slightly increase the number of inner trajectories. In this regard, Table 1.3

shows the same quantities already presented in Table 1.2 obtained by slightly increasing

the number of inner trajectories (i.e. 10 inner paths) for each outer level.

Table 1.2: Frequency of hitting the confidence intervals (columns 1 to 3) and KS
Test (columns 4 and 5). MC 20000×20000 simulations. LSMC 20000×1 simulations,
Polynomials order p = 4.

Left Inside Right KS Stat. Value p-value

T = 5 20.355% 47.005% 32.640% 0.0056 0.9124

T = 10 22.850% 28.460% 48.690% 0.0082 0.5199

T = 15 32.775% 28.480% 38.745% 0.0055 0.9228

T = 20 34.165% 26.765% 39.070% 0.0048 0.9777

T = 30 19.460% 33.265% 47.275% 0.0045 0.9874

T = 40 34.475% 28.020% 37.505% 0.0021 1.0000

T = 50 35.220% 33.045% 31.735% 0.0026 0.9999
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Table 1.3: Frequency of hitting the confidence intervals (columns 1 to 3) and KS
Test (columns 4 and 5). MC 20000×20000 simulations. LSMC 20000×10 simulations,
Polynomials order p = 4.

Left Inside Right KS Stat. Value p-value

T = 5 16.195% 72.675% 11.130% 0.00275 1.0000

T = 10 17.600% 71.565% 10.835% 0.00235 1.0000

T = 15 14.695% 75.845% 9.460% 0.00205 1.0000

T = 20 16.210% 73.385% 10.405% 0.00240 1.0000

T = 30 16.145% 74.855% 9.000% 0.00185 1.0000

T = 40 22.600% 62.665% 14.735% 0.00145 1.0000

T = 50 25.470% 55.820% 18.710% 0.00125 1.0000

Concerning the variance reduction techniques, we adopt the control variates method

to improve the accuracy of the LSMC approach (see Appendix 1.A for further details).

The corresponding results are reported in Table 1.4.

Table 1.4: Frequency of hitting the confidence intervals (columns 1 to 3) and KS
Test (columns 4 and 5). MC 20000× 20000 simulations. LSMC with control variates
based on 20000× 1 simulations and sub-optimal θ = −1, Polynomials order p = 4.

Left Inside Right KS Stat. Value p-value

T = 5 14.590% 65.885% 19.525% 0.0023 1.0000

T = 10 12.105% 49.370% 38.525% 0.0052 0.9535

T = 15 20.280% 62.655% 17.065% 0.0024 1.0000

T = 20 29.130% 46.410% 24.460% 0.0034 0.9999

T = 30 11.745% 61.580% 26.675% 0.0031 1.0000

T = 40 27.690% 45.510% 26.800% 0.0016 1.0000

T = 50 17.335% 55.910% 26.755% 0.0014 1.0000

If we compare Tables 1.2 and 1.4, we can see that the control variates technique

effectively improves the stability and the accuracy of the LSMC method. However, we

can see from Tables 1.3 and 1.4 that increasing the number of inner simulations would

be more helpful. Even if we have investigated the application of the two techniques

separately in order to evaluate their effect, the combined use is possible. This, in fact,

could further improve the stability and accuracy of the LSMC method, albeit at a higher

computational cost.
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Table 1.5: KS test statistic value and the corresponding p-value (in brackets) ob-
tained by varying the order of the polynomials and the time horizon T . Results refer
to the future annuity value distribution for an individual aged 65 at future time T .
LSMC: 20000× 1 simulations. MC: 20000× 20000.

Ord. 1 Ord. 2 Ord. 3 Ord. 4

T = 5
0.0053(︁
0.9457

)︁ 0.0048(︁
0.9753

)︁ 0.0042(︁
0.9953

)︁ 0.0056(︁
0.9124

)︁
T = 10

0.0075(︁
0.6356

)︁ 0.0061(︁
0.8576

)︁ 0.0078(︁
0.5853

)︁ 0.0082(︁
0.5200

)︁
T = 15

0.0140(︁
0.0397

)︁ 0.0048(︁
0.9753

)︁ 0.0053(︁
0.9457

)︁ 0.0055(︁
0.9228

)︁
T = 20

0.0174(︁
0.0047

)︁ 0.0041(︁
0.9967

)︁ 0.0052(︁
0.9535

)︁ 0.0048(︁
0.9777

)︁
T = 30

0.0213(︁
0.0002

)︁ 0.0037(︁
0.9994

)︁ 0.0041(︁
0.9967

)︁ 0.0045(︁
0.9874

)︁
T = 40

0.0322(︁
1.973e-09

)︁ 0.0016(︁
1.0000

)︁ 0.0019(︁
1.0000

)︁ 0.0021(︁
1.0000

)︁
T = 50

0.0385(︁
2.669e-13

)︁ 0.0024(︁
1.0000

)︁ 0.0021(︁
1.0000

)︁ 0.0026(︁
1.0000

)︁
Furthermore, we investigate how the choice of the order of polynomials affects the

results. For this purpose, we consider polynomials of degree p ∈ {1, 2, 3, 4} and for each

of the considered scenarios we perform the KS test in order to measure the statistical

distance between the two distributions (LSMC and MC). In particular, Table 1.5 reports

the case of a LSMC algorithm and nested simulations procedure constructed on 20000×1

and 20000× 20000 trajectories, respectively.

If we look at Table 1.5 by row, we can see that using higher order of polynomials

helps to improve the approximation of the desired distribution up to a certain order.

The results seem to be totally coherent with the convergence analysis of the LSMC

algorithm discussed in Bauer and Ha (2018). Essentially, higher polynomial orders need

to be coupled with an increase in the number of simulations in order to achieve better

results, see Table 1.6.
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Table 1.6: KS test statistic value and the corresponding p-value (in brackets) ob-
tained by varying the order of the polynomials and the number of outer simulations.
Results refer to the future annuity value distribution for an individual aged 65 at
future time T = 20. LSMC: n× 1 simulations. MC: 20000× 20000 simulations.

n = 1000 n = 5000 n = 10000 n = 20000

Ord.1
0.04705(︁
0.02950

)︁ 0.02435(︁
0.01742

)︁ 0.02370(︁
0.00112

)︁ 0.01740(︁
0.00469

)︁
Ord. 2

0.04495(︁
0.04262

)︁ 0.01410(︁
0.40421

)︁ 0.00925(︁
0.61832

)︁ 0.00405(︁
0.99665

)︁
Ord. 3

0.04845(︁
0.02287

)︁ 0.01580(︁
0.27081

)︁ 0.00870(︁
0.69394

)︁ 0.00515(︁
0.95353

)︁
Ord. 4

0.05035(︁
0.01599

)︁ 0.01575(︁
0.27422

)︁ 0.00810(︁
0.77421

)︁ 0.00475(︁
0.97773

)︁
For a more comprehensive analysis, we perform multiple runs of the LSMC algorithm

in order to check the variability of the corresponding estimates. In particular, we run 100

times the LSMC method, by varying both the number of outer scenarios and the future

time horizon T . We report in Table 1.7 the mean absolute percentage error (MAPE)

for each scenario computed with respect to the corresponding benchmark value. Figure

1.2 shows the boxplots relative to the 100 mean estimates obtained through the LSMC

approach for an annuity contract issued to an individual aged 65 at the future time

T = 30.

Table 1.7: This table illustrates the MAPE of the mean estimates. Each value was
computed by considering a sample of 100 estimated measures. The benchmark value
is based on a nested simulations algorithm with 20000 × 20000 simulations. LSMC
n× 1 simulations, polynomials order p = 4.

n = 1000 n = 5000 n = 10000 n = 20000

T = 5 0.0527% 0.0216% 0.0163% 0.0115%

T = 10 0.0609% 0.0253% 0.0200% 0.0126%

T = 15 0.0621% 0.0285% 0.0221% 0.0179%

T = 20 0.0618% 0.0289% 0.0211% 0.0184%

T = 30 0.0514% 0.0237% 0.0156% 0.0140%

T = 40 0.0576% 0.0304% 0.0240% 0.0234%

T = 50 0.0544% 0.0265% 0.0199% 0.0193%
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Figure 1.2: Box-plots relative to the 100 mean estimates obtained by considering
different numbers of outer scenarios and different polynomial orders. Age 65 at time
T = 30. LSMC n × 1 simulations, varying polynomial orders p. The red line is the
benchmark value based on 20000× 20000 simulations.

As we can see from Table 1.7 and Figure 1.2, increasing the simulated outer scenarios

helps the LSMC algorithm to converge. In addition, looking at Figure 1.2, it seems

that, if the number of simulations is taken fixed, the choice of the polynomial order

does not affect the reliability of the desired quantity at least for the mean estimate of

the distribution. However, we may be interested in analysing the performance of the

LSMC in estimating some extreme values of the distribution. In this regard, we present

in Table 1.8 and Figure 1.3 the MAPE and box-plots relative to the 90-th percentile

estimates for an immediate life annuity issued to an individual aged 65 at time T = 30,

respectively. Once again, each box-plot was generated by considering 100 estimates, by

varying the number of outer simulations and the order of the polynomials.
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Table 1.8: MAPE of the 90-th percentile estimates computed with the LSMCmethod
for the immediate life annuity issued to an individual aged 65 at time T = 30 by vary-
ing the number of outer simulations n and the polynomial order p ∈ {1, 2, 3, 4}. Each
value was computed by considering a sample of 100 estimated percentiles. Benchmark
value based on 20000× 20000 simulations.

Ord. 1 Ord. 2 Ord. 3 Ord. 4

n = 1000 0.1010% 0.0682% 0.0688% 0.0738%

n = 5000 0.0893% 0.0371% 0.0366% 0.0371%

n = 10000 0.0875% 0.0329% 0.0306% 0.0308%

n = 20000 0.0842% 0.0245% 0.0230% 0.0229%
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Figure 1.3: Box-plots relative to the 90-th percentile estimates of the immediate life
annuity distribution issued to an individual aged 65 at time T = 30. Each box-plot
was generated by considering 100 estimates by varying the number of simulations n
and the order of the involved polynomials. The red line corresponds to the 90-th
percentile estimate obtained through nested simulations (20000× 20000).
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From Table 1.8 and Figure 1.3, it is evident that, for higher number of simulations,

we need to exploit higher polynomial orders. Indeed, we can see from Table 1.8 that, by

simulating 1000 trajectories, it is sufficient to use a lower polynomial order (i.e. p = 2);

instead, once we increase the simulated trajectories, then we need to increase at the

same time p. Moreover, by looking at Figure 1.3, it seems that the LSMC approach

tends to overestimate the desired quantity in all the scenarios. However, the magnitude

of such overestimation is quite negligible (see Table 1.8).

Note that we can exploit as basis functions other types of polynomials. For instance,

we have conducted a similar analysis by using the so-called orthogonal polynomials

(such as Hermite, Legendre, Laguerre and Chebyshev). However, here we do not report

the corresponding results since they turned out to be quite similar to the previously

discussed and hence, at least in this simplified framework, they do not provide any

significant improvement.

Finally, in Figure 1.4 we compare the accuracy of the LSMCmethod with and without

control variates and the LSMC approach with a greater number of inner scenarios. In

particular, Figure 1.4 shows the MAPEs relative to the mean and the 90-th percentile

estimates obtained by varying the number of outer trajectories.
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Figure 1.4: MAPEs relative to the mean (left) and the 90-th percentile (right)
estimates of the immediate life annuity distribution issued to an individual aged 65
at time T = 5 obtained by running 100 times the LSMC method (LSMC), the LSMC
approach with control variates (LSMC CV), and the LSMC method with 10 inner
trajectories. Monomials up to order p = 4 have been employed. Benchmark values
based on 20000× 20000 simulations.
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As we can see from Figure 1.4, as the number of outer simulations increases, the level

of accuracy of the three algorithms converges. In addition, we can see that applying

the control variates technique or increasing the number of inner trajectories produces

similar results in terms of accuracy in each of the considered cases. We have conducted

a similar analysis by varying the future time horizon T , and we have obtained similar

outcomes.

Now let us examine the speed of the LSMC algorithm and the nested simulations

one. Table 1.9 shows the runtime of the two approaches for different numbers of outer

simulations and a specific time horizon (i.e. T = 20). Note that we conducted all

experiments using a custom-built workstation equipped with an Intel® Xeon® Silver

4116CPU 2.10 GHz processor with 64 GB of RAM and Windows 10 Pro for Workstation

operating system.

Table 1.9: Time in seconds demanded by the two approaches. MC based on n×20000
simulations. LSMC based on n× 1 simulations, Polynomials order p = 4. Individual
aged 65 at time T = 20.

n = 1000 n = 5000 n = 10000 n = 20000

LSMC 16.23 74.45 148.53 294.00

MC 274.58 1350.07 2784.07 5564.53

LSMC / MC 5.91% 5.52% 5.34% 5.28%

From Table 1.9, we can appreciate in each of the considered scenarios how the LSMC

outperforms the nested simulation method. In addition, as we have seen, one possible

choice to improve the accuracy of the results would be to slightly increase the number

of inner trajectories employed in the LSMC setting (see Table 1.3). For this reason, in

Table 1.10 we investigate in terms of time the cost of such a procedure.

Table 1.10: Time in seconds demanded by the LSMC method based on n × 1 and
n× 10 simulations. Polynomials order p = 4. Individual aged 65 at time T = 20.

Inner n = 1000 n = 5000 n = 10000 n = 20000

1 16.23 74.45 148.53 294.00

10 20.89 97.21 195.04 394.10

1 / 10 77.69% 76.59% 76.17% 74.62%
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We can see from Table 1.10 that increasing the inner scenarios from 1 to 10, as expected,

leads to an increase in the computational time.

1.3.2 Stochastic interest rate framework

In this Section, we provide numerical examples on the estimation of future annuity

values by considering the two main risk factors affecting the value of the policy under

scrutiny, e.g. future mortality and interest rate levels. For this purpose, we assume that

the interest rate dynamics is described by a CIR process (see Section 1.2.1), while the

evolution of mortality is still described through the M7 mortality model. We set the

parameters entering the SDE in Equation (1.3) as follows: r0 = 0.04, α = 0.2, r̄ = 0.04

and σ = 0.1, as in Dowd et al. (2011a). Again, we consider an annuity contract which

will be issued to an individual aged 65 at different future times T ∈ {5, 10, 15, 20, 30}.

We simulate n ∈ {1000, 5000, 10000, 20000} outer scenarios both for mortality and

interest rates (assuming independence among the two sources of uncertainty). As al-

ready said, the nested simulations approach exploits the analytic solution in Equation

(1.4) while the LSMC method is constructed on a fully simulated scenario based on an

Euler discretization setting for the SDE in Equation (1.3).

Focusing on our proposed methodology, we consider as basis functions employed

in the regression model polynomials with different order p ∈ {1, 2, 3, 4}. Table 1.11

reports summary statistics about the obtained distributions of future annuity values by

considering an individual aged 65 at different future times T and applying both the

nested simulation and the LSMC approaches. Figure 1.5 shows the probability density

functions of the annuity contract value issued to an individual aged 65 at the future

time T = 30 obtained by the two methodologies.
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Table 1.11: Distribution of annuity values at time horizon T for individuals aged
65 in year 2016 + T . MC 20000 × 20000 simulations. LSMC 20000 × 1 simulations,
Polynomials order up to p = 4.

Mean Std Dev Skewness Kurtosis 10th perc. Median 90th perc.

T = 5 MC 12.72846 1.29133 -0.74746 3.42607 10.92840 12.93567 14.20394

LSMC 12.74919 1.32597 -0.80183 3.67530 10.92036 12.96490 14.24625

T = 10 MC 12.91861 1.36829 -0.90133 3.93803 11.04426 13.16814 14.42813

LSMC 12.94864 1.39122 -0.86954 4.01465 11.06078 13.17963 14.49531

T = 15 MC 13.32751 1.42048 -0.90174 3.99626 11.38111 13.58073 14.89697

LSMC 13.36619 1.44427 -0.86384 4.04043 11.40266 13.60434 14.97452

T = 20 MC 13.65274 1.45657 -0.89477 3.93755 11.64542 13.90389 15.27137

LSMC 13.66774 1.49907 -0.90988 3.98496 11.58720 13.93839 15.31676

T = 30 MC 14.31109 1.54101 -0.91214 4.00030 12.21987 14.59021 16.01540

LSMC 14.31839 1.58931 -0.87445 3.95985 12.15367 14.59332 16.09910
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Figure 1.5: Probability density function relative to future annuity values issued to an
individual aged 65 at future time T = 30 under stochastic interest rate and mortality
framework. LSMC 20000× 1 simulations, Polynomial order p = 2. Benchmark based
on 20000× 20000 simulations.
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Once again, we can appreciate the reliability of the proposed methodology. Further,

as already recognized in Dowd et al. (2011a), incorporating interest rate risk makes

the distribution much more left-skewed. In Table 1.12 we report the MAPEs relative

to the mean estimates obtained by running 100 times the LSMC algorithm. We can

see that, compared to Table 1.7, the accuracy gets worst. This is obviously due to the

increasing uncertainty in the valuation process given by the stochastic evolution of the

risk-free rate. Nonetheless, the LSMC method is still able to provide reliable estimates,

especially if we increase the number of outer scenarios.

Table 1.12: This table illustrates the MAPE of the mean estimates. Each value was
computed by considering a sample of 100 estimated measures. The benchmark value
is based on a nested simulations algorithm with 20000 × 20000 simulations. LSMC
n× 1 simulations, polynomials order p = 4.

n = 1000 n = 5000 n = 10000 n = 20000

T = 5 0.4840% 0.1417% 0.1134% 0.0979%

T = 10 0.3414% 0.2594% 0.1167% 0.0957%

T = 15 0.3519% 0.1409% 0.2236% 0.0997%

T = 20 0.3470% 0.1718% 0.1051% 0.1040%

T = 30 0.3499% 0.2399% 0.1683% 0.1044%

As already done in Section 1.3.1, also in this case we investigate the accuracy of the

LSMC in approximating extreme values of the distribution. In this regard, Table 1.13

and Figure 1.6 show the MAPEs and the boxplots relative to the 90-th percentile esti-

mates obtained by performing 100 times the LSMC approach (for different polynomial

orders and number of simulations). As we can see, in this case lower polynomial orders

are already sufficient to provide a good performance. This is in line with the theory

since in this framework we are considering one more risk-factor entering as predictor in

the regression model, i.e. the interest rate r(T ) 1.

1If we considered a polynomial order p = 1 or p = 2 and, as in this case, we have 4 risk-factors(︂
κ
(1)
T , κ

(2)
T , κ

(3)
T , rT

)︂
, then the number of basis functions would be M = 5 and M = 15, respectively.
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Table 1.13: MAPE of the 90-th percentile estimates computed with the LSMC
method for the immediate life annuity issued to an individual aged 65 at time T = 30
by varying the number of outer simulations n and the polynomial order p ∈ {1, 2, 3, 4}.
Each value was computed by considering a sample of 100 estimated percentiles. Bench-
mark value based on 20000× 20000 simulations.

Ord. 1 Ord. 2 Ord. 3 Ord. 4

n = 1000 0.6272% 0.5690% 0.6555% 0.7313%

n = 5000 0.3851% 0.5876% 0.6655% 0.6950%

n = 10000 0.3214% 0.5655% 0.6472% 0.6562%

n = 20000 0.5415% 0.3473% 0.4067% 0.4108%

15
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.8

16
.2

90th Perc.

p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4

n = 1000 n = 5000 n = 10000 n = 20000

Figure 1.6: Box-plots relative to the 90-th percentile estimates of the immediate life
annuity distribution issued to an individual aged 65 at time T = 30 under stochastic
interest rate and mortality. Each box-plot was generated by considering 100 estimates
by varying the number of simulations n and the order of the involved polynomials.
The red line corresponds to the 90-th percentile estimate obtained through nested
simulations 20000× 20000.
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1.4 Applications

In this last part, we present some possible applications in which the valuation of

future annuity contracts plays a relevant role, and hence where our proposed method-

ology helps in strongly reducing the computational time, while simultaneously ensuring

a high reliability.

As already mentioned in Section 1.1, the problem of valuing future annuity contracts

recurs in various contexts, e.g. in developing de-risking strategies for pension providers,

or in predicting their pension shortfall distribution in a future time horizon, or for

pricing purposes such as valuing Guaranteed Annuity Options, just to name a few. In

this regard, the next sections provide numerical applications of the LSMC method in

addressing these issues.

1.4.1 Pricing pension buy-outs

In this Section, we apply the LSMC methodology for pricing de-risking strategies; in

particular, we focus on pricing pension buy-outs.

In the case of a buy-out, a pension provider transfers part of its assets and pension

liabilities to an insurance company which plays as contractual counterparty. The lat-

ter requires the payment of an amount equal to the actuarial expected present value

of possible future pension plan’s deficit. In the following, we introduce a simplified

computational framework.

Let us consider a pension plan based on a cohort of pensioners N0 at year t = 0

with age x0. Further, we assume that all pensioners receive the same constant pension

benefit, b, at the end of each year, if alive. We indicate with Lt the pension liability at

year t, which is given by

Lt = Nt · b · ax0+t(t), (1.6)

where Nt is the number of survivors at the calendar year t, and ax0+t(t) is the value of

an ordinary annuity contract issued to an individual aged x0 + t in year t (with unitary

benefits), see Equations (1.1) and (1.2) in Section 1.2. Then, we denote with At the

value of the pension assets in year t.
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At the end of each year, the pension plan must pay the benefits to the survivors,

implying a reduction of the pension portfolio value. In case that the portfolio itself

is not able to cover such payments, the pension buy-out option obliges the insurer to

cover the remaining amount. Therefore, we define such amount as Ot, which can be

formalized as follows:

Ot = max {Lt +Nt · b− At , 0} , t = 1, 2, . . . .

Obviously, just after the pensions are paid, the value of the pension portfolio can be

expressed as

At+ = At −Nt · b+Ot = max {At −Nt · b , Lt} , t = 1, 2, . . . ,

which will be then re-invested between times t and t+ 1.

Therefore, under this setting, we can define the risk-neutral price of the funding

guarantee option of the buy-outs as

G = E

[︄
τ∑︂

t=1

e−rtOt − e−r(τ+1)Aτ+1

]︄
, (1.7)

where τ = max{t : Nt > 0} and, again, we have assumed a constant risk-free interest

rate, r. In addition, the price G can be decomposed in two components

G = GO −GA,

where

GO =
τ∑︂

t=1

e−rt · E [Ot] ,

GA = e−r(τ+1) · E [Aτ+1] .

Hence, GO can be interpreted as the actuarial present value of the future contributions

made by the insurer in order to compensate the deficit; and GA as the present value of

the assets, once the cohort becomes extinct, which will be ceded to the insurer. The
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premium in Equation (1.7) can also be defined as a percentage of the value of the pension

liabilities at time t = 0, i.e.

g =
G

L0

=
GO

L0

− GA

L0

= gO − gA.

Numerical results

Concerning the dynamics of mortality, in order to take into account the difference

in terms of longevity between the target population and that of the retired cohort, we

exploit the Augmented Common Factor mortality model proposed in Li and Lee (2005).

Indeed, in practice, if the value of future annuity contracts in Equation (1.6) are derived

from a reference population, the number of survivors Nt instead reflects the mortality

evolution of the specific retired cohort belonging to the pension plan. Therefore, we

consider as reference population the Italian total one, and we assume that the pension

plan consists of female Italian retirees. We exploit data over the period 1960-2016 and

range of ages 65− 89 obtained from the Human Mortality Database.

Concerning the dynamics of the pension portfolio, for simplicity we assume that At

follows a Geometric Brownian Motion with drift equal to the risk-free rate r = 0.02,

and volatility σA ∈ {0, 0.05, 0.10, 0.15, 0.20}. Moreover, we assume that at time t = 0

the pension plan is fully funded, i.e. A0 = L0 = 172299.

We assume that at time t = 0 the pension plan signs a pension buy-out contract for

the cohort of N0 = 10000 female pensioners all aged x0 = 65 at that time, and we fix

as ultimate age ω = 110, i.e. ω − x0 = 45. The mortality table is completed up to the

ultimate age through a log-linear closure.

In order to evaluate Equation (1.7), we firstly need to evaluate Equation (1.6) which

depends on the value of future annuity contracts. For this purpose, we apply the LSMC

methodology based on a set of 100000×1 scenarios of mortality rates. Then, concerning

the regression part of the algorithm, we exploit polynomials up to order p ∈ {1, 2}.

In Tables 1.14 and 1.15 we report the value at time t = 0 of a pension buy-out

obtained through the LSMC approach for different values of σA and by varying p.

As we can notice from Tables 1.14 and 1.15, the higher σA the higher the pension

buy-out price. Moreover, we can see that the choice of the polynomial order has not
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Table 1.14: Price of a pension buy-out contract at time t = 0 obtained by varying
the level of volatility σA. LSMC 100000 × 1 simulations, Polynomials up to order
p = 1.

σA gO g

0 5.266% 4.561%

0.05 12.010% 4.590%

0.10 22.497% 4.700%

0.15 34.145% 4.968%

0.20 46.858% 5.529%

Table 1.15: Price of a pension buy-out contract at time t = 0 obtained by varying
the level of volatility σA. LSMC 100000 × 1 simulations, Polynomials up to order
p = 2.

σA gO g

0 5.261% 4.561%

0.05 12.009% 4.590%

0.10 22.497% 4.700%

0.15 34.145% 4.969%

0.20 46.858% 5.529%

a relevant effect on g; similar results were obtained by exploiting higher polynomial

orders.

We have reported just a simple numerical application which gives an idea of the

potentiality of the LSMC method. Indeed, the approach drastically reduces the compu-

tational time which would be required if a simulation within simulation approach is used.

Indeed, addressing this problem implies the valuation of a sequence of future annuity

contracts (for instance, in this case we need estimates of ax0+t(t) for t = 1, . . . , ω − x0).

Specifically, the computational budget passes from 100000×100000×(ω−x0) simulations

in case of nested simulations to 100000× 1× (ω − x0) in the LSMC setting.

Pension shortfall

As a further application, we may be interested in approximating the shortfall distri-

bution for a pension provider in a distant future time T , which would be essential for
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solvency capital valuations. In this regard, we exploit the same framework introduced

in the previous subsections to approximate the shortfall distribution at time T = 1 year,

but instead of a female retirees cohort a male one is taken into account. In particular,

we define the pension shortfall after 1 year and discounted at time t = 0 as

S = e−r [L1 − A1+] = e−r [N1 · b · ax0+1(1)− A1+] , (1.8)

again with r = 0.02, L1 denotes the pension liabilities at time t = 1, and A1+ is the

pension portfolio value just after the pensions are paid at the end of the first year.

In order to evaluate Equation (1.8), we need to work under two probability measures.

A physical (or real-world) probability measure P over the first year to simulate the

possible evolution of the relevant risk-factors; and the risk-neutral probability measure

over the remaining time horizon (up to the last date in which the pension plan has

survivors). In particular, looking at Equation (1.8), the number of survivors and the

value of the pension assets at time t = 1 should be valued under P, while ax0+1(1) under

the risk-neutral measure. In this regard, we assume now to start from the dynamics

of mortality under the physical measure P and, to obtain that under the risk-neutral

measure, we apply the valuation method suggested in Wang (2000) (see Appendix 1.B

for details).

The exploited mortality data are those already mentioned in Section 1.4.1. Moreover,

we assume that, under P, the pension portfolio value evolves according to a GBM with

constant drift µ = 0.08 and volatility σA ∈ {0.05, 0.10, 0.20}. The hypothesis that the

pension plan is fully funded at the initial time is still valid.

We simulate n = 100000 P-trajectories of the risk-factors up to time t = 1, and then

we project just 1 inner scenario to which is applied the Wang Transform. The LSMC

method is then applied in order to evaluate a66(1), by exploiting polynomials up to order

p ∈ {1, 2, 3}.

We investigate the 1-year shortfall distribution for different values of the longevity

risk premium λ ∈ {0.0456849, 0.1320511, 0.2209899} which were obtained by setting

different values for a65(0)
2. For each scenario, we estimate the corresponding Value-

at-Risk (VaR) and Conditional Value-at-Risk (CVaR) at the 99.5-th level, which are

2The longevity risk premium were obtained by setting a65(0) = {17.5, 18, 18.5}.
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usually used for valuing solvency capital requirements.

Table 1.16 reports the VaR99.5% and CVaR99.5% of the 1-year shortfall distribution

discounted at time t = 0 (see Figure 1.7) expressed as percentage of the initial pension

liabilities value L0 = 172299, obtained by varying the longevity risk premium λ and the

pension portfolio volatility σA.

Table 1.16: This table reports the 99.5% VaR and CVaR estimates of the pension
shortfall distribution after 1 year, discounted at time t = 0, as a percentage of the
initial level of the pension liabilities for different values of the longevity risk premium
λ, different polynomial order p, and volatility levels σA. Note that L0 = 172299.

λ = 0.0456849 λ = 0.1320511 λ = 0.2209899

p σA VaR99.5% CVaR99.5% VaR99.5% CVaR99.5% VaR99.5% CVaR99.5%

0.05 9.210% 10.777% 14.138% 15.715% 18.986% 20.581%

1 0.10 20.587% 23.292% 25.555% 28.236% 30.434% 33.110%

0.20 39.936% 43.901% 44.872% 48.849% 49.752% 53.728%

0.05 9.213% 10.778% 14.145% 15.716% 18.985% 20.582%

2 0.10 20.593% 23.292% 25.561% 28.236% 30.437% 33.110%

0.20 39.935% 43.901% 44.890% 48.850% 49.766% 53.729%

0.05 9.214% 10.779% 14.143% 15.717% 18.985% 20.583%

3 0.10 20.591% 23.292% 25.558% 28.237% 30.435% 33.110%

0.20 39.932% 43.901% 44.893% 48.850% 49.769% 53.729%

As we can see from Table 1.16, an increase in the volatility σA as well as in the

longevity risk premium λ (i.e. increasing life expectancy) imply higher levels for both

VaR and CVaR; this is quite reasonable since an unexpected increase in longevity leads

to higher possible losses for pension sponsors. In addition, changing the polynomial

order in the LSMC algorithm does not particularly affect the results.
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Figure 1.7: Distribution of the pension shortfall after 1 year discounted at time t = 0
by considering different levels of the longevity risk premium λ. LSMC 100000 × 1,
Monomials order p = 1. σA = 0.05.

1.4.2 Pricing Guaranteed Annuity Options

In this Section, we present a further context where future annuity contract values

are needed, and so where our proposed methodology could be applied. In particular, we

focus on estimating the price of a Guaranteed Annuity Option contract. In addition, we

remind the readers to consult Ballotta and Haberman (2003, 2006), Boyle and Hardy

(2003), and Biffis and Millossovich (2006) for deeper details.

Description

A guaranteed annuity option (GAO) is a contract that provides the policyholder the

right to convert a specific amount at maturity (e.g. benefits embedded in unit-linked

policies) into a life annuity at some guaranteed conversion rate, c (fixed at inception).

In particular, the option is exercised at maturity if the future annuity value prevailing

in the market is greater than the guaranteed annuity (the reciprocal of the conversion

rate, c) granted by the insurer at inception.
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Let us consider a policyholder aged x years at the inception date t = 0. We assume

that the amount available at maturity, i.e. at time T > 0, is given by the value of a

reference fund with price process S, and that the guaranteed conversion rate 0 < c < 1

is fixed at inception. Then, the time-0 value of a GAO with maturity T can be expressed

as

V0 = E
[︃
e−

∫︁ T
0 (rs+µx+s)dscST max

{︃
ax+T (T )−

1

c
, 0

}︃]︃
, (1.9)

where ST is the account value at time T which can be converted into an annuity. There-

fore, as we can see from Equation (1.9), a Guaranteed Annuity Option can be interpreted

as a call option on the annuity value, and the strike is the reciprocal of the guaranteed

conversion rate. We refer to Biffis and Millossovich (2006) for deeper details.

Numerical results

The computational framework is the same as the one introduced in Section 1.3.2,

hence we exploit a CIR process and the M7 model for simulating the dynamics of

interest rates and mortality over time, respectively.

In our numerical example, we consider different individuals aged x < 65 in 2016

(t = 0), and that the GAO matures when they reach age x + T = 65; at that time

they can choose to convert the account value ST = 100 into annuities at the conversion

rate c = 1
13
. Therefore, just for simplicity and without loss of generality, we ignore the

dynamics of a hypothetical reference fund.

The LSMC method is then applied to estimate the value of a future annuity contract

which enters in Equation (1.9), by performing n × 1 simulations of the risk-factors

and by exploiting polynomials up to order p ∈ {1, 2, 3, 4}. In this case, we compare

these results with respect to the corresponding benchmark based on nested simulations

(20000 × 20000 trajectories). Table 1.17 reports the price of a GAO for an individual

aged x today with maturity T together with the probability that the option ends in-the-

money, obtained by both the LSMC and the simulation within simulation algorithms.

As we can see from Table 1.17, the LSMC method provides quite accurate estimates;

indeed, the mean percentage error among all the prices is around 1%. This result is quite

notable since the nested simulations approach exploits the closed formula in Equation
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Table 1.17: This table reports the price of a Guaranteed Annuity Option with
maturity T for an individual aged x today together with the probability that the
option ends in-the-money. The values are computed both by exploiting the LSMC
approach for the evaluation of the future annuity contracts, and the nested simulations
procedure. The LSMC method is based on 20000× 1 simulations of the risk factors,
polynomials with order p = 1. Nested simulation based on 20000× 20000 scenarios.

x 60 55 50 45 35

T 5 10 15 20 30

V LSMC
0 2.362 2.594 3.382 3.666 3.970

P
[︁
ax+T (T ) >

1
c

]︁
LSMC

0.515 0.578 0.684 0.740 0.830

V MC
0 2.353 2.594 3.315 3.614 3.923

P
[︁
ax+T (T ) >

1
c

]︁
MC

0.480 0.547 0.651 0.716 0.816

(1.4), while the LSMC algorithm is based on a fully simulated framework bringing with

itself all the errors related to the discretization of the interest rate stochastic process.

Moreover, we investigate the accuracy of the LSMC method by performing multiple

runs, varying both the number of outer scenarios, n, and the polynomial order, p. In

this regard, Table 1.18 and Figure 1.8 report the MAPEs and box-plots relative to the

GAO price estimates obtained by running 100 times the LSMC and compared to the

corresponding benchmark based on 20000 × 20000 simulations. The results refer to a

GAO subscribed by an individual aged x = 55 today and maturity T = 10.

Table 1.18: This table illustrates the MAPE of the GAO price estimates obtained
by performing 100 runs of the LSMC method by varying both the number of outer
scenarios and the polynomial order. The benchmark value is based on a nested simu-
lations algorithm with 20000× 20000 simulations. GAO subscribed by an individual
aged x = 55 today with maturity T = 10.

n p = 1 p = 2 p = 3 p = 4

1000 5.009% 7.143% 7.936% 9.435%

5000 2.736% 5.952% 6.179% 6.447%

10000 1.763% 4.827% 4.938% 4.968%

20000 1.464% 4.589% 4.673% 4.684%
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Figure 1.8: Box-plots relative to the 100 GAO price estimates obtained by con-
sidering different numbers of outer scenarios and different polynomial orders. The
horizontal red line refers to the benchmark value obtained through nested simulations
(20000 × 20000 trajectories). GAO subscribed by an individual aged x = 55 today
with maturity T = 10.

Once again, from Table 1.18 and Figure 1.8, we can appreciate the good performance

of the LSMC approach. In particular, we can see that increasing the number of outer

scenarios helps in decreasing the variability of the LSMC estimates. Moreover, we can

notice that, as in Section 1.3.2, increasing the polynomial order is not a profitable choice

due to the higher number of regressors used without increasing sufficiently the number

of outer trajectories.
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1.5 Conclusion

In this Chapter we faced the problem of approximating future annuity values. We

proposed a methodology based on the LSMC approach, which turned out to be quite

accurate. Our results highlight the need of developing reliable actuarial models able

to capture the source of risk arising from longevity and interest rate. These are not

negligible aspects, especially for solvency purposes. Further, the Chapter has shown

many contexts in which the valuation of future annuity contracts plays a relevant role,

and hence where the LSMC algorithm helps in reducing the computational demand by

preserving at the same time the accuracy of any desired quantities. The LSMC method

turned out to be quite flexible to accommodate any computational framework without

increasing the computational complexity.
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Appendix 1.A Least-Squares Monte Carlo with Con-

trol Variates

Among the variance reduction techniques, the control variates method is the most

effective approach to improve the efficiency of Monte Carlo simulation (see Glasserman,

2004). The idea is to exploit the information about the errors in estimates of known

quantities to reduce the error in an estimate of an unknown quantity. It consists in

replacing the random variable of interest, Y , with a new random variable Z which has

the same expectation. In particular, we have the new random variable Z defined as

Z = Y − θ (X − E [X]) ,

where X is the control variate, θ is a (real-valued) parameter, and the term X − E [X]

serves as a control in estimating E [Y ]. Then, an estimator of E [Z] can be its sample

mean

Z̄ (θ) =
1

n

n∑︂
i=1

(Yi − θ (Xi − E [X])) . (1.10)

It can be shown that the variance of the estimator defined in Equation (1.10) is mini-

mized if

θ =
Cov [Y, X]

Var [X]
.

A similar idea can be exploited also in a LSMC framework as suggested by Rasmussen

(2005), and further empirically applied by Kan et al. (2010), where a new random

variable with the same conditional expectation needs to be identified.

Control Variate: the GAPC family

Let us consider the mathematical framework defined in Section 1.3.1, and denote with

A
(i)
x (T ) the value of the annuity contract referring to the i-th outer scenario obtained by
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averaging across the few inner simulations. Then, we define the new set of observations

as

{︁
A(i)

x (T )− θ
(︁
M (i)

x (T, l)− E
[︁
M (i)

x (T, l) | zT
]︁)︁}︁

i=1,...,n
,

where zT is the state-vector, and Mx(T, l) is the control variate defined as follows

Mx(T, l) =
l−1∑︂
h=0

mx+h;T+h.

In what follows, we compute the conditional expectation of the control variate which

has then been used to obtain the numerical results in Section 1.3.1. In particular, we

consider the class of Generalized-Age-Period-Cohort stochastic mortality models where

we know that, under a Poisson setting, the logs of mortality rates are modelled through

the following equation:

logmx;t = αx +
N∑︂
i=1

β(i)
x κ

(i)
t + β(0)

x γt−x, (1.11)

where αx is a static-age function, N ≥ 0 is an integer indicating the number of age-

period terms describing the mortality trends, with each time index κ
(i)
t contributing

in specifying the mortality trend and β
(i)
x modulating its effect across ages, and γt−x

accounts for the cohort effect with β
(0)
x modulating its effect across ages. We assume

that the period indexes follow a multivariate random walk with drift as in Cairns et al.

(2006, 2011a), Haberman and Renshaw (2011) and Lovász (2011), i.e.

κt = δ + κt−1 + ϵt, κt =

⎡⎢⎢⎢⎢⎢⎢⎣
κ
(1)
t

κ
(2)
t

...

κ
(N)
t

⎤⎥⎥⎥⎥⎥⎥⎦ , ϵt ∼ N(0,Σ),

where δ is the vector of drift parameters, and Σ is the N×N variance-covariance matrix

of the multivariate white noise ϵt.
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Hence, we have that, conditional on κT ,

κT+h | κT ∼ N(hδ + κT , hΣ).

Our first objective is to determine the distribution of mx+h;T+h | zT , where zT =

[κT , γT−x] is the state-vector. To this end, we define the vectors

βx+h =

⎡⎢⎢⎢⎢⎢⎢⎣
β
(1)
x+h

β
(2)
x+h

...

β
(N)
x+h

⎤⎥⎥⎥⎥⎥⎥⎦ , µh =

⎡⎢⎢⎢⎢⎢⎢⎣
κ
(1)
T + hδ(1)

κ
(2)
T + hδ(2)

...

κ
(N)
T + hδ(N)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and the variance-covariance matrix

Σh =

⎡⎢⎢⎢⎢⎢⎢⎣
σ2
ϵ1

ρϵ1ϵ2σϵ1σϵ2 . . . ρϵ1ϵNσϵ1σϵN

ρϵ1ϵ2σϵ1σϵ2 σ2
ϵ2

. . . ρϵ2ϵNσϵ2σϵN

...
...

. . .
...

ρϵ1ϵNσϵ1σϵN ρϵ2ϵNσϵ2σϵN . . . σ2
ϵN

⎤⎥⎥⎥⎥⎥⎥⎦ · h.

Therefore, we can write

mx+h;T+h | zT = eαx+h+β⊺
x+h·µh+β

(0)
x+hγT−x | zT ∼ exp

{︂
N
(︂
αx+h + β⊺

x+h · µh + β
(0)
x+hγT−x , β⊺

x+hΣhβx+h

)︂}︂
,

and so, we have that mx+h;T+h | zT is log-normally distributed

mx+h;T+h | zT ∼ LN
(︂
αx+h + β⊺

x+h · µh + β
(0)
x+hγT−x , β⊺

x+hΣhβx+h

)︂
. (1.12)

It follows that

E [mx+h;T+h | zT ] = eαx+h+β⊺
x+h·µh+β

(0)
x+hγT−x+

1
2
β⊺
x+hΣhβx+h .

Considering the control variate

Mx(T, l) =
l−1∑︂
h=0

mx+h;T+h,
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we have that its conditional expectation can be easily computed as

E [Mx (T, l) | zT ] = E

[︄
l−1∑︂
h=0

mx+h;T+h | zT

]︄
= mx;T +

l−1∑︂
h=1

E [mx+h;T+h | zT ]

= mx;T +
l−1∑︂
h=1

eαx+h+β⊺
x+h·µh+β

(0)
x+hγT−x+

1
2
β⊺
x+hΣhβx+h .

Concerning the optimal level of θ, Rasmussen (2005) suggests to eventually estimate

the second and cross-product moments through a linear combination of basis functions.

However, in our numerical experiments we have fixed θ at a sub-optimal level.

Appendix 1.B The Wang Transform

The Wang Transform method consists essentially in distorting the cumulative distri-

bution of a random variable Y . This yields a new risk-adjusted cumulative distribution

of cash-flows that can be discounted at the risk-free rate. Specifically, Wang (2000)

defines the following risk-adjusted distribution, that we take as risk-neutral one

F̃ Y (y) = Φ
[︁
Φ−1(FY (y))− λ

]︁
, (1.13)

where FY (y) is the CDF of the random variable Y under the physical measure P, Φ is

the CDF of a standard normal random variable, and λ is the risk premium.

Accordingly to Lin and Cox (2005), in the context of longevity risk transfer, the

Wang transform in Equation (1.13) can be explicitly written as

F̃ T (x,0)(i) = Φ
[︁
Φ−1

(︁
FT (x,0)(i)

)︁
− λ
]︁
,

where T (x, 0) is the lifetime of a person aged x at time 0. The last equation can also

be written as

iq̃x,0 = Φ
[︁
Φ−1 (iqx,0)− λ

]︁
, (1.14)

where iqx,0 is the probability that a person aged x at time 0 dies before age x + i,

i = 1, 2, . . . .
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In bulk annuities, the market price of risk λ > 0, that we assume constant over

time, reflects the level of both systematic and firm-specific unhedgeable longevity risk

assumed by the insurer.

We can determine λ from a longevity security, so that at time 0 the price of the

security is the discounted expected value under the transformed probability ip̃x,0 =

1− iq̃x,0. For instance, the price of an immediate life annuity contract for an individual

aged x at time t = 0 would be

ax;0 =
ω−x∑︂
i=1

e−ir · ip̃x,0 =
ω−x∑︂
i=1

e−ir ·
(︁
1− Φ

[︁
Φ−1 (iqx,0)− λ

]︁)︁
. (1.15)





Chapter 2

A Regression Based Approach for

Valuing Longevity Measures

This Chapter has been presented at the Online Joint Section Colloquium (Online

event, October 2021).

2.1 Introduction

The improvement of mortality, as registered in the last decades in most developed

countries, has posed a relevant issue among policy makers. The implicit increase in

individual’s life expectancy, in fact, has led governments as well as pension funds and

insurance companies to undertake specific studies in order to quantify and manage the

related risks. An unexpected improvement in mortality would have major implications

for their financial stability and solvability. For instance, if we think of public social

systems and specifically pension systems, an unexpected increase in longevity would

lead them paying more (and for a longer period) than previously accounted.

The reasons behind this persistent improvement in mortality, as discussed in Wilmoth

(2000), are manifold. According to the latter, indeed, the gain in longevity is the result of

a complex array of changes in many factors over time, such as the increasingly advanced

technologies as well as medical progress, economical and cultural conditions, political

actions aimed at improving life and reducing mortality, just to name a few.

49
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For these reasons, studying the evolution of mortality is still a prominent task for

both demographers and actuaries. The most common practice is to rely on extrapola-

tive methods which are based on the idea that we may anticipate the future evolution

of mortality by extrapolating and projecting the past information onto the future. This

aspect, as argued by several demographers, represents the strength of these models but

also its weakness. Anyway, as pointed out also by Wilmoth (2000), even if this assump-

tion would not be appropriate, extrapolative procedures still represent the best possible

alternative to predict future mortality levels. Among the most popular extrapolation

methods, we must mention the widely adopted stochastic mortality model, i.e. the Lee-

Carter model introduced by Lee and Carter (1992). The strength of such a model is

undoubtedly its simplicity; indeed, it describes mortality by taking into account both

age and period components. After this seminal paper, several variants and extensions of

the Lee-Carter model were proposed with much more parameters in order to take into

account many sources of risk affecting the evolution of mortality (e.g., see Cairns et al.,

2006; Renshaw and Haberman, 2003, 2006; Hyndman and Ullah, 2007). For a review

and comparison of most proposed stochastic mortality models see Cairns et al. (2009)

and Haberman and Renshaw (2011).

The common aspect of all the previously mentioned models is that they are based on

a study of mortality with a single population perspective, and so they essentially do not

consider any interdependence among populations and/or sub-populations which would

be instead reasonable to assume. This happens, for example, if we consider populations

that are geographically close; in this case it would be natural to think that mortality

of these countries is affected by some common factors like social-economic aspects and

environmental conditions. Furthermore, even if we focus on just one population, it

would be important to consider the difference in terms of mortality between males and

females. As it is known, due to genetic and biological characteristics, male mortality

rates have been constantly higher than female rates; therefore, modelling mortality not

independently would help preserve such a characteristic. In this regard, a first proposal

can be found in Li and Lee (2005), which can be thought as an extension of the Lee-

Carter model. In particular, Li and Lee (2005) propose a “coherent” model, also known

as Augmented Common Factor (ACF) model, which is able to capture the short-term

divergence and long-term coherence among related subpopulations. In practice, the ACF
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model exploits a common factor to describe the long-term mortality evolution of the

population as a whole, and then it incorporates specific parameters to shape the short-

term differences among subpopulations. Since then, various multi-population mortality

models have been proposed in the literature. Among them, Cairns et al. (2011b) propose

a Bayesian framework for modelling two populations; specifically, they propose an age-

period-cohort model incorporating a mean-reverting stochastic spread, which depicts

the different short-term trends in mortality rates and simultaneously allows parallel

shifts in the long run. Furthermore, in Hyndman et al. (2013) an extension of the

non-parametric approach proposed by Hyndman and Ullah (2007) can be found, which

allows for coherent forecasting. Many other models and methods can be found in Debon

et al. (2011); Delwarde et al. (2006); Dowd et al. (2011b); Kleinow (2015) and Yang et al.

(2016).

On the basis of such methods, there are several works in literature which study the

evolution of lifespan among populations and their forecast efficiency. For instance, Rabbi

and Mazzucco (2018) analyse the performance of the most common stochastic mortality

models in fitting and then forecasting mortality levels, as well as life expectancy esti-

mates, by considering high mortality countries such as Eastern European ones. They

argued that these models are not suitable for high mortality countries, in contrast to

low ones, because of the irregular mortality pattern in such populations. Hence, they

highlighted the need of building up new forecasting techniques for analysing such pop-

ulations.

The study of human lifespan is still an open question in the demographic field.

Indeed, as noticed byWilmoth (2000), the ever decreasing trend of mortality levels would

lead to an ever increasing life expectancy among individuals. Therefore, understanding

whether there exists or not a limit to human lifespan is not a simple task. A first

attempt to address this question can be found in Oeppen and Vaupel (2002) where

the authors, by introducing the concept of “best-practice life expectancy” (BPLE),

argue that empirical data do not suggest any limit to human lifespan. Great attention

after the work of Oeppen and Vaupel (2002) has been devoted to the development

of models capable of directly describing the evolution of life expectancy trends. In

this regard, by assuming that future longevity is given by a general life expectancy

trend, Torri and Vaupel (2012) propose a multi-stage fitting procedure: at first they
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forecast the world’s record life expectancy and then the gap between this record and the

current life expectancy level of a target population assuming a convergence toward the

predicted record level. However, as noticed by Pascariu et al. (2018), this approach has

an important drawback; essentially, it implies that the record level can not be exceeded

by any country and further it does not take into account the interdependence between

genders. To overcome these drawbacks, Pascariu et al. (2018) propose a new forecasting

model based on the trend-line of the record life expectancy and no more on the actual

record values as in Torri and Vaupel (2012), allowing in this way the possibility for a

country to overcome the record level.

However, to provide a comprehensive analysis of the mortality evolution of a given

population, it would be important to consider other longevity measures rather than

just life expectancy. Indeed the latter, being a measure of average mortality rates,

may hide some intrinsic peculiarities; for instance, two countries with the same level of

life expectancy may be characterized by a different age-at-death distribution. In this

regard, several demographical indicators have been proposed, which aim at measuring

the variation in lifespan. Among them, we may cite the Gini coefficient, the life table

entropy (see Keyfitz and Caswell, 2005), and finally the lifespan disparity indicator.

Obviously, other longevity measures exist and therefore we refer the readers to van

Raalte and Caswell (2013) for a comparative study of their sensitivity and elasticity.

The lifespan disparity measure was introduced by Goldman and Lord (1986) and

Vaupel (1986), and it is essentially an alternative expression of the life table entropy.

Accordingly to Vaupel (1986), it can be interpreted as the number of years lost in life

expectancy due to death, and therefore it depicts the dispersity of the age-at-death at

an individual level.

As pointed out by van Raalte et al. (2018), analysing the evolution of lifespan variation

would allow an early detection of any adverse mortality developments, thus guaranteeing

a rapid and effective response by policy makers. Therefore, monitoring this indicator is

relevant not just for demographic purposes but also for the insurance market and public

social systems (see also Edwards and Tuljapurkar, 2005).

Several studies analysed the relationship between life expectancy and lifespan dis-

parity. For instance, it is well-known that countries with high life expectancy are char-

acterized usually by a low lifespan variation (see Vaupel et al., 2011; Edwards and
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Tuljapurkar, 2005; Wilmoth and Horiuchi, 1999). In particular, Aburto et al. (2020)

demonstrate, by considering a measure of lifespan equality, that “the strength of this

relationship is not coincidental but rather a result of progress in saving lives at specific

ages: the more lives saved at the youngest ages, the stronger the relationship is”.

Furthermore, the lifespan disparity indicator has been proposed by Rabbi and Mazzuco

(2021) as an adjustment of the time component in the Lee-Carter stochastic mortality

model, incorporating in this way more information about the mortality pattern of the

considered population. Finally, Nigri et al. (2021) propose a new forecasting model for

life expectancy and lifespan disparity based on a recurrent neural network, i.e. the long

short-term memory (LSTM) model.

In this Chapter, in contrast to the usual period-based evaluation of longevity mea-

sures, we address the problem of approximating the distribution of future life expectancy

and lifespan disparity, and provide a simulation scheme with a cohort-based perspective

which is based on the future evolution of mortality. In this regard, one contribution can

be found in Vaupel (2019), who introduces the so-called SCOPE approach to forecast

future life expectancy levels, i.e. by conditioning on specific future mortality scenarios.

As we will see, evaluating longevity measures with a cohort-based approach implies the

computation of conditional expectations for which explicit solutions often do not ex-

ist, unless specific mortality models are considered. In this regard, we may mention

Luciano and Vigna (2008) and Jevtić and Regis (2019), where the authors review and

present various continuous-time models, with single- and multi-population perspectives,

in which the dynamics of mortality intensities are described by affine stochastic processes

admitting analytical solutions.

However, in general, closed-form expressions are not available, and a simple way

to overcome this problem would be to rely on a nested simulations method, where

mortality is projected up to the future time of interest (generating the so-called outer

trajectories) from which branch out another set of inner paths. It is evident that the

simulations within simulations strategy would be computationally involving, especially

when life expectancy estimates are needed for different cohorts (e.g., the case of the

lifespan disparity indicator) and when stochastic mortality models with multiple factors

are considered. To overcome this drawback, Dowd et al. (2010) propose a Taylor-series

approximation of the conditional expectations to estimate future life expectancy levels.
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More details of the proposed methodology can be found in Dowd et al. (2011a).

This work, instead, suggests an application of a well-established methodology, i.e.

the Least-Squares Monte Carlo (LSMC) approach firstly introduced by Carrière (1996);

Tilley (1993) and Longstaff and Schwartz (2001) in the financial field, and then ex-

tensively adopted in the actuarial one. The main idea is to approximate conditional

expectations by linear combinations of some basis functions depending on the relevant

factors that affect the evolution of mortality. Among the most important advantages of

the LSMC approach we can mention its generality and flexibility; indeed, it can be used

with any mortality models, regardless of their complexity. Essentially the methodology

proposed in this Chapter is based on that described in Bacinello et al. (2021a), where

the problem of evaluating future life annuities is addressed.

This work contributes to the literature by providing several comparison analyses.

Indeed, both cohort and period-based valuations are considered, as well as single and

multi-population mortality models, where these latter are essential when assessing two

or more populations in order to avoid the inherent distortion resulting from the use of

independent single-population models. We aim at assessing their effects in estimating

longevity measures. Finally, we show how the LSMC approach can be used also for

approximating other longevity measures at future dates, e.g. the lifespan disparity

indicator.

The remainder of the Chapter is structured as follows: Section 2.2 introduces the

main longevity measures for which we provide some results. Section 2.3 introduces the

computational framework and explains briefly the proposed methodology, and Section

2.4 illustrates some numerical results. Finally, in Section 2.5 we draw some conclusions.

2.2 Longevity measures

In this Section, we introduce some longevity measures, which are the objects of

this study. In particular, we will focus on the evolution of two relevant demographic

indicators, which are able to provide insights about the mortality pattern evolution

of a given population, i.e. life expectancy and lifespan disparity. Indeed, as already

mentioned in the introduction, limiting the analysis to the investigation of the expected

remaining lifetime may hide some important information about the effective evolution
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of longevity in the population under consideration. In fact, the different variability

of mortality among populations and/or subpopulations may lead to the same level of

life expectancy but to a different shape of the age-at-death distribution. Therefore, as

highlighted in Aburto and van Raalte (2018) and van Raalte et al. (2018), the lifespan

inequality is one of the indicators able to circumvent this drawback.

Anyway, even if the existing literature has broadly studied the evolution of these

longevity measures, the majority of them faced the analysis by exploiting period life ta-

bles only. Therefore, in order to fill this gap, we address the problem of approximating

the distributions of future life expectancy and lifespan disparity with a cohort-based

perspective and proposing the use of LSMC to solve the involved conditional expecta-

tions.

Before discussing the two longevity indicators, i.e. life expectancy and lifespan dis-

parity, let us introduce the formal notation and underlying assumption.

We define µx;t as the instantaneous death rate at time t for individuals aged x at

that time. Then, following Cairns et al. (2009), we assume that, for integers x and t,

the following holds:

µx;t = µx+s;t+s where 0 ≤ s < 1. (2.1)

Hence, we are assuming that the force of mortality is constant over each year of age

and calendar. Moreover, let us define mx;t as the central death rate at age x in year t,

and px,t as the 1-year survival probability of an individual aged x at time t. Therefore,

under the assumption stated in Equation (2.1), the following holds:

mx;t = µx;t,

px,t = e−µx;t = e−mx;t .

Note that the evolution of future mortality in terms of central death rates is not

known at time 0 (today), and as a consequence also the other indexes depending on

them, which may be computed at future times, are not known.

On the basis of this setting, in the following we provide the definitions of the two
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longevity indicators; we start from the definition of both period and cohort life ex-

pectancy, and then we introduce the lifespan disparity metric.

2.2.1 Life expectancy

Let us assume that we are interested in estimating the residual lifespan of an indi-

vidual aged x at future times T > 0. As already mentioned, generally the evolution

of life expectancy has been analysed by adopting period life tables. In this regard, we

define the period life expectancy measure as follows:

epx,T =
1

2
+

ω−x∑︂
i=1

ipx,T , (2.2)

where

ipx,T = e−
∑︁i−1

k=0 mx+k;T = px,T · px+1,T · . . . · px+i−1,T

represents the i-th years survival probability for an individual aged x at time T computed

by considering the age-specific mortality rates at time T , and ω is the ultimate age. As

it is clear from Equation (2.2), exploiting period life tables means ignoring any further

improvements in mortality after time T .

Therefore, to describe the actual life course of the cohort, let us introduce the concept

of cohort life expectancy, which we denote ecx(T ) and define as:

ecx(T ) =
1

2
+

ω−x∑︂
i=1

ipx(T ), (2.3)

where

ipx(T ) = ET

[︂
e−

∑︁i−1
k=0 mx+k;T+k

]︂
= ET

[︁
px(T ) · px+1(T + 1) · . . . · px+i−1(T + i− 1)

]︁
represents the conditional i-th years survival probability for an individual aged x at

time T , and ET [·] is the conditional expectation given the information available at the

future date T .

As already mentioned, cohort life expectancy is not as commonly evaluated, unlike its
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period counterpart, since it needs information over a longer time horizon. Specifically,

consider the case of a cohort of individuals aged x at time t = 0 (today), and suppose

that we are interested in forecasting their residual lifetime at the future time t = T ,

hence when the cohort reaches age x + T . In this regard, period life expectancy needs

projections of mortality levels up to the future time T , while the cohort life expectancy

implies the valuation of a conditional expectation on the future mortality information

available at time T . In the following, we will describe our proposed methodology to solve

Equation (2.3), which ensures high reliability and reduces the computational complexity.

Note that both Equations (2.2) and (2.3) are the discretized versions of period and

cohort life expectancy measures given, for instance, in Guillot (2011).

2.2.2 Lifespan disparity

In addition to the approximation and simulation of the distribution of future life ex-

pectancy, we are going to consider another longevity measure, i.e. the lifespan disparity.

The latter, as defined in Vaupel (1986), represents the life expectancy lost due to death

by an individual aged x at time t.

In this regard, starting from the definition given in Rabbi and Mazzuco (2021), we

define the period lifespan disparity measure for an individual aged x at a future time

T > 0, as follows:

e†, px,T =
ω−x∑︂
k=0

epx+k,T · e−
∑︁k−1

i=0 mx+i;T · (1− e−mx+k;T ), (2.4)

where epx+k,T is the period life expectancy as defined in Equation (2.2), and
∑︁b

a · · · = 0

when a > b.

Once again, this metric may be computed by exploiting cohort life tables. In this

regard, if we are interested in forecasting it for a cohort of individuals aged x at a

future date T , then this requires the evaluation of multiple conditional expectations.

Specifically, considering a cohort aged x at time T , the corresponding cohort lifespan
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variation (i.e. cohort lifespan disparity) can be defined as

e†, cx (T ) = ET

[︄
ω−x∑︂
k=0

ecx+k(T + k) · e−
∑︁k−1

i=0 mx+i;T+i ·
(︁
1− e−mx+k;T+k

)︁]︄
, (2.5)

where ecx+k(T + k) is the cohort life expectancy for an individual aged x + k at time

T + k as defined in Equation (2.3). Note that, in Appendix 2.A, we show how Equation

(2.5) has been obtained together with other alternative definitions.

In the next Section, we are going to introduce the mathematical framework together

with the proposed methodology to address the valuation of these measures.

2.3 Model framework

As we have seen in the previous Section, forecasting both life expectancy and lifespan

disparity at future times requires projections of mortality onto the future. For this

reason, we introduce the computational framework on which we build some numerical

results. In particular, we make use of stochastic mortality models in order to capture

the possible time evolution of mortality. To this end, we will investigate both single and

multi-population mortality models in order to assess their influence on the valuation of

the quantities of interest, i.e. the well-known Lee-Carter (LC) mortality model (see Lee

and Carter, 1992), and the Augmented-Common-Factor (ACF) model proposed by Li

and Lee (2005) which allows for coherent forecasting among different populations.

2.3.1 Stochastic mortality models

Among the most influential extrapolative procedure for future mortality levels, we

can find the Lee-Carter (LC) stochastic mortality model, which has been introduced by

Lee and Carter (1992). In this regard, let mx;t be the central mortality rate at age x in

year t. Following Brouhns et al. (2002), we assume that the number of deaths at age

x in year t, Dx;t, is Poisson distributed with parameter Ex;tmx;t, where Ex;t represents

the central exposure. Hence, under the LC model, we can express the force of mortality
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with the following bilinear equation:

logmx;t = αx + βxκt,

where αx is an age-specific parameter, κt is a period index dictating the mortality

decrease over time, and βx modulates the effect of the period index across ages. In

order to project mortality over time, the period index κt is usually assumed to be a

random walk with drift,

κt = δ + κt−1 + ϵt,

where δ is the drift parameter, and ϵt is a Gaussian error term with mean 0 and variance

σ2
ϵ .

As mentioned in the introduction, the Lee-Carter model focuses on a single popula-

tion. Therefore, in order to capture a possible interdependence among sub-populations,

e.g. males and females, we need to consider a multi-population mortality model. In this

regard, a multi-population extension of the LC model has been proposed by Li and Lee

(2005), the so-called Augmented-Common-Factor (ACF) model. In particular, we as-

sume that the number of deaths at age x in year t of the i-th population, Dx;t;i, is Poisson

distributed with parameter Ex;t;imx;t;i, where Ex;t;i represents the central exposure.

Therefore, under this setting, the central death rate, mx;t;i, at age x in year t of the

i-th sub-population is described as follows:

logmx;t;i = αx,i +BxKt + βx,iκt,i,

whereBxKt is the common factor among the populations, and βx,iκt,i is the subpopulation-

specific factor. The common time index, Kt, depicts the overall mortality time trend,

and Bx modulates its effects across ages. The factor βx,iκt,i, instead, allows for a short

or medium-term difference between the rate of change in the i-th sub-population death

rates and that implied by the common factor.

According to Li and Lee (2005), the period index Kt can be assumed to follow a

random walk with drift independent from the subpopulation-specific time parameters

κt,i; instead, the latters are usually modelled as autoregressive processes with order 1,
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which avoids a long-term divergence in mean mortality forecasts. Formally,

Kt = d+Kt−1 + ϵt,

κt,i = γ0,i + γ1,iκt−1,i + ϵt,i,

where d and γ0,i are constants, γ1,i is another constant whose absolute value is smaller

than 1, and ϵt is a white noise process independent of the other white noise process ϵt,i,

for all i.

2.3.2 Valuation procedure

As shown in Section 2.2, cohort-based valuations of both future life expectancy and

lifespan disparity implies solving conditional expectations. However, this is not a triv-

ial task, since explicit expressions do not always exist. In particular, this happens if

we consider the valuation framework introduced in Section 2.3.1. For this reason, a

straightforward approach would rely on simulations based methods, and specifically on

a nested simulations scheme. The latter is computationally challenging since a high

number of simulated mortality trajectories is required. Indeed, it consists in generat-

ing several outer scenarios of mortality rates at the future time T , for each of which a

further number of simulations branch out (the so-called inner trajectories), and finally

evaluate conditional expectations by averaging across the inner paths. Moreover, it be-

comes readily unmanageable, for instance, in the case of lifespan disparity since, as seen

in Equation (2.5), the sum of several conditional expectations is involved.

A possible way to avoid the nested simulations algorithm has been proposed by

Dowd et al. (2010) and Dowd et al. (2011a), where conditional expectations are ap-

proximated by a Taylor-series expansion. However, even this approach would be still

time-demanding since multiple simulations sets are needed in order to estimate the

involved coefficients.

For this reason, on the basis of Bacinello et al. (2021a), we are going to adopt a very

flexible tool for approximating conditional expectations, i.e. the Least-Squares Monte

Carlo (LSMC) method. Indeed, to the best of our knowledge, even if this method-

ology has been extensively used in many fields, it has not yet been proposed in the
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demographic context. The main idea of the LSMC approach is to express conditional

expectations through a linear combination of some basis functions (e.g. simple or or-

thogonal polynomials) depending on the relevant risk factors that affect the evolution

of mortality, and use regression across simulations against those factors. Hence, we will

evaluate Equations (2.3) and (2.5) by regressions, and the corresponding algorithms are

described in Appendix 2.B. Moreover, we refer the readers to Bacinello et al. (2021a)

for deeper details.

2.4 Numerical Results

In this Section, we are going to provide some numerical results based on the previ-

ously introduced framework. In particular, we analyse the evolution of life expectancy

and lifespan disparity with both cohort and period life tables. The analysis considers

the Italian population, both males and females, and exploits single (LC) and multi-

population (ACF) mortality models in order to take into account any interdependence

among the genders. In this regard, the models have been calibrated, by using the

R package StMoMo (see Villegas et al., 2018), on the mortality data over the pe-

riod 1965 − 2016 and range of ages from 35 − 89 obtained from the Human Mortality

Database. Note that, under the LC setting, the model has been independently fitted

on the gender-specific data. We assume that year 2016 is today, and that life tables are

closed by a log-linear procedure up to the ultimate age ω = 120. Finally, all the compu-

tations are based on n = 20000 trajectories, and the LSMC algorithm exploits as basis

functions simple polynomials with different degree depending on the adopted mortality

model, i.e. p = 3 for the LC model and p = 2 for the ACF one, which corresponds to

the same number of basis functions, M = 101. Finally, the quantities of interest are

evaluated for individuals (males and females) aged x = 65 at times T = 2017, . . . , 2050.

In Appendix 2.B we describe the algorithms which have been used to generate the fol-

lowing results. Obviously, these latter are implied by the adopted mortality models, and

so we warn the reader to interpret them accordingly. Nonetheless, due to the strong

1The number of basis functions is given by M =
∑︁p

k=0

(︃
r + k − 1

k

)︃
, where p is the degree of

polynomials, and r denotes the number of factors, i.e. covariates used in the regression. In particular,
r = 1 (i.e., κT ) in the LC setting, and r = 3 (i.e., KT , κT,F , andκT,M ) in the ACF.
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flexibility of the LSMC algorithm, different, more complex, dynamics to describe the

evolution of mortality can be used.

2.4.1 Life Expectancy

We start by considering the evaluation of cohort life expectancy accordingly to the

definition given in Equation (2.3). In this regard, Tables 2.1 and 2.2 report a summary

of the obtained distributions of future cohort life expectancy for females and males aged

x = 65 at different future years T , respectively. Moreover, each table compares the two

different stochastic mortality models, i.e. the Lee-Carter and the ACF models.

Table 2.1: Distribution of future life expectancy for a cohort of females aged x = 65
at future times T . LSMC based on 20000 × 1 trajectories with monomials of degree
p = 3 for the LC model, and p = 2 for the ACF model.

Mean Std Dev Skewness Kurtosis 5th perc. Median 95th perc.

T = 2017
LC 25.01451 0.21050 -0.02048 3.15021 24.66719 25.01424 25.36224

ACF 24.39084 0.16731 -0.04029 3.01841 24.11240 24.39216 24.66592

T = 2028
LC 26.50256 0.67434 -0.12346 2.99879 25.36283 26.51857 27.58103

ACF 25.73468 0.55289 -0.00590 2.99802 24.82869 25.73423 26.64259

T = 2039
LC 27.90584 0.88610 -0.13305 3.02225 26.41951 27.91929 29.33796

ACF 26.99898 0.73142 -0.06796 2.98152 25.77606 27.00885 28.18568

T = 2050
LC 29.23211 1.01690 -0.15743 3.08036 27.52396 29.26193 30.86188

ACF 28.19057 0.83818 -0.09495 2.99754 26.78509 28.19850 29.54386

Table 2.2: Distribution of future life expectancy for a cohort of males aged x = 65
at future times T . LSMC based on 20000 × 1 trajectories with monomials of degree
p = 3 for the LC model, and p = 2 for the ACF model.

Mean Std Dev Skewness Kurtosis 5th perc. Median 95th perc.

T = 2017
LC 20.72922 0.15389 0.01323 2.74521 20.47815 20.72945 20.98230

ACF 20.66300 0.19462 -0.01152 3.02890 20.34077 20.66295 20.98215

T = 2028
LC 21.98424 0.49833 -0.08447 3.01006 21.15237 21.99120 22.78689

ACF 22.14342 0.64354 -0.00966 2.99415 21.08152 22.14389 23.20387

T = 2039
LC 23.17488 0.65820 -0.12208 2.96187 22.05779 23.19188 24.22813

ACF 23.58610 0.85808 -0.05464 2.98284 22.15847 23.59324 24.98173

T = 2050
LC 24.30213 0.75600 -0.12566 2.92667 23.02996 24.31564 25.52661

ACF 24.97197 0.98905 -0.08726 2.99367 23.31704 24.98449 26.56769
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As we can see from Tables 2.1 and 2.2, regardless of the model selected, as time passes,

individuals tend to live longer and longer, which is in line with the existing literature.

Moreover, concerning the choice of the mortality model, if we consider the case of males

(Table 2.2), we can see that in most of the cases the LC model provides under-estimates

of the future expected lifetime with respect to the ACF one, while the opposite happens

for females. Furthermore, in each considered configurations, the distribution becomes

more sparse as the time horizon increases, which is due to the longer simulation horizon

(see also Figure 2.1).

Figure 2.1: Distribution of future life expectancy for a cohort of females (left) and
males (right) aged x = 65 at future times T . LSMC based on 20000 × 1 trajectories
with monomials of degree p = 3 for the LC model (top), and p = 2 for the ACF model
(bottom).

Indeed, Figure 2.1 clearly shows that, as the forecast horizon increases, the distri-

bution changes; in particular, we can see how the empirical distribution tends to shift
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to the right (so the expected future lifetime increases with T ) and simultaneously, as

already noted above, the uncertainty rises.

To provide a comprehensive summary of the results, in Figures 2.2 and 2.3 we report

a graphical representation of the evolution of future cohort life expectancy distributions

over the future period T ∈ {2017, . . . , 2050} by the use of fan charts. The use of these

graphs, indeed, makes the analysis clearer and more effective since it shows ranges of

possible future values along with most likely future outcomes (dark shadows). Moreover,

as stated in Dowd et al. (2010), fan charts help in highlighting the uncertainty which

usually characterizes the evolution of longevity measures. Specifically, Figures 2.2 and

2.3 compare the distributions of future lifetime obtained by exploiting the LC (left) and

ACF (right) models for females and males, respectively.

Figure 2.2: Fan charts relative to the distribution of future life expectancy for females
aged x = 65 at different horizons T ∈ {2017, . . . , 2050}. The black lines marked by
squares represent the 90% prediction intervals. LSMC based on 20000×1 trajectories
with polynomials of order p = 3 for the LC model (left) and order p = 2 for the ACF
model (right).

Looking at Figure 2.2, it seems that the LC model generates more uncertain results

with respect to the ACF model for females. The contrary, instead, happens for males

(see Figure 2.3). Finally, from these figures, we can appreciate the ever-increasing trend

of life expectancy, in line with the experience of the last century.
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Figure 2.3: Fan charts relative to the distribution of future life expectancy for males
aged x = 65 at different horizons T ∈ {2017, . . . , 2050}. The black lines marked by
squares represent the 90% prediction intervals. LSMC based on 20000×1 trajectories
with polynomials of order p = 3 for the LC model (left) and order p = 2 for the ACF
model (right).

In Figure 2.4, to highlight the forecast difference in the future life expectancy esti-

mates provided by the two different mortality models, we overlap the corresponding fan

charts by gender.

Figure 2.4: Fan charts relative to the distribution of future life expectancy for females
(left) and males (right) aged x = 65 at different horizons T ∈ {2017, . . . , 2050}. LSMC
based on 20000 × 1 trajectories with polynomials of order p = 3 for the LC model
(red) and order p = 2 for the ACF model (blue).
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From Figure 2.4, it is possible to see that the LC model provides slightly more

pessimistic estimates of the future life expectancy for males than the ACF model does;

the contrary, instead, happens for females, where a more clear forecast difference can be

noted. Moreover, as previously mentioned, the LC females forecasts seem to be more

uncertain with respect to the ACF ones, while the contrary is for males. Finally, from

the right-hand side of the figure, we can see that the lower bounds of the 90% prediction

intervals provided by the LC and ACF models for males almost overlap throughout the

entire forecast period, while the upper bounds are markedly different.

Figure 2.5, instead, compares the obtained distributions of future life expectancy for

males and females by mortality model. In particular, we can see that the choice of the

stochastic mortality model, as expected, definitely affect the results; indeed, under the

LC model, we can see that the relationship between male and female life expectancy

remains almost the same as time passes, while this does not happen in the ACF case.

In this regard, it is worth noting that, looking at the right-hand side of Figure 2.5,

Figure 2.5: Fan charts relative to the distribution of future life expectancy for females
(red) and males (blue) aged x = 65 at different horizons T ∈ {2017, . . . , 2050}. LSMC
based on 20000 × 1 trajectories with polynomials of order p = 3 for the LC model
(left) and order p = 2 for the ACF model (right).

the lower bound of the 90% prediction interval for females central forecasts is about to

overlap the upper bound relatives to male forecasts.
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For a deeper analysis, Figure 2.6 reports the evolution of the expected future life

expectancy both for males and females along the time period T ∈ {1966, . . . , 2050},

and by modelling independently and not the sub-populations. Note that for cohorts

aged x = 65 at time T ∈ {1966, . . . , 1992}, the corresponding life expectancy has

been evaluated by exploiting the fitted mortality rates; for cohorts aged x = 65 at

time T ∈ {1993, . . . , 2016}, the expected future life expectancy has been evaluated

by a simple Monte Carlo approach; and finally, for the remaining cohorts, the LSMC

algorithm has been used.

Figure 2.6: Expected future life expectancy for males and females aged x = 65 at
different horizons T ∈ {1966, . . . , 2050}. The solid lines refer to estimates obtained
by exploiting the fitted mortality rates. The solid lines marked by crosses represent
Monte Carlo estimates. The solid lines marked by triangles (LC model) and circles
(ACF model) refer to the LSMC estimates. LSMC based on 20000 × 1 trajectories
with polynomials of order p = 3 for the LC model, and order p = 2 for the ACF
model.

From Figure 2.6, it is more evident the issue of long-term divergence which usually

characterizes independent projections (see Li and Lee, 2005). Indeed, we can see that the

gap between the male and female LC estimates becomes wider as time passes. However,
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if we look at Figure 2.7, where we report the evolution of the ratio between the male

and female expected future life expectancy, we can notice that recent historical trends

do not suggest such a behaviour; in particular, starting from year 1978 up to year 2000,

the gap between males and females closes faster than the LC projections forecast for

future times.

Figure 2.7: Ratio between 65-years old females and males expected future life ex-
pectancy at different horizons T ∈ {1966, . . . , 2050}. The solid lines refer to estimates
obtained by exploiting the fitted mortality rates. The solid lines marked by crosses
represent Monte Carlo estimates. The solid lines marked by circles refer to the LSMC
estimates. LSMC based on 20000× 1 trajectories with polynomials of order p = 3 for
the LC model (blue) and order p = 2 for the ACF model (orange).

Finally, we highlight the difference between future lifespan estimates obtained by

exploiting cohort and period life tables based on both the LC and ACF models. In this

regard, Figure 2.8 compares the two different approaches, for each considered model

and gender, by illustrating the corresponding fan charts.
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Figure 2.8: Forecasted probability densities of cohort (red) and period (blue) ex-
pected future lifetime for females (top) and males (bottom) aged x = 65 at time
T ∈ {2017, . . . , 2050}. LSMC based on 20000 × 1 trajectories with polynomials of
order p = 3 for the LC model (left) and order p = 2 for the ACF model (right).

As we can see from Figure 2.8, all the considered configurations show how the ap-

proach based on period life tables persistently under-estimate the desired quantities.

This is not surprising since period life tables do not consider any further developments

after the valuation date T . What is important to notice is, instead, the magnitude of

such under-estimation, which may lead public social systems and life insurance compa-

nies to under-estimate the related risks. In this regard, Table 2.3 reports the expected
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future life expectancy estimates computed by period and cohort-based valuations rela-

tive to females and males.

Table 2.3: Expected future cohort and period life expectancy for females and males
aged x = 65 at future time T .

Female Male

LC ACF LC ACF

T = 2017
Period 22.894 22.487 19.334 19.055

Cohort 25.015 24.391 20.729 20.663

T = 2028
Period 24.390 23.864 20.576 20.429

Cohort 26.503 25.735 21.984 22.143

T = 2039
Period 25.803 25.154 21.754 21.806

Cohort 27.909 27.000 23.175 23.586

T = 2050
Period 27.151 26.369 22.877 23.158

Cohort 29.232 28.191 24.302 24.972

Looking at Table 2.3, we can see that, on average, period life tables under-estimate

the expected future lifespan by about 2 years for females, and 1.5 years for males,

regardless of the chosen model. Furthermore, Figure 2.9 compares the two approaches

over the entire time horizon, i.e. T ∈ {1966, . . . , 2050}, by illustrating the corresponding

mean estimates of future life expectancy for females (left) and males (right). It is clear

that both period and cohort-based computations suggest an ever-increasing trend but,

again, the latter are constantly higher than the former.
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Figure 2.9: Expected future life expectancy for females (left) and males (right) aged
x = 65 in year T ∈ 1966, . . . , 2050. The red colour indicates the LC model which
exploits the corresponding cohort life tables. The blue colour represents the ACF
model which uses the cohort life tables. The green colour shows the results based
on the period life tables obtained by adopting the LC model, while the orange one
the ACF model with period-based valuations. Points represent computations with a
LSMC algorithm based on 20000 × 1 simulations and monomials of order p = 3 for
the LC model and order p = 2 for the ACF model. Crosses refer to valuations based
on a simple Monte Carlo approach with 20000 simulated paths.

As mentioned in the introduction, just analysing the evolution of life expectancy

would not be sufficient to understand how longevity effectively evolves. For this reason,

in the following we provide some numerical results referred to the evolution of the second

longevity measure introduced in Section 2.2.2.

2.4.2 Lifespan disparity

Concerning the evolution of lifespan disparity, we are going to present some numer-

ical results obtained by solving Equations (2.4) and (2.5). As before, we adopt cohort

and period life tables obtained by exploiting both the LC and ACF models. We have

seen in Section 2.2.2 that the valuation of this longevity measure with a cohort perspec-

tive involves several conditional expectations, which may be infeasible to face with a

nested simulations method. On the contrary, the LSMC approach is able to reduce the

computational complexity, and it guarantees high reliability.
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In this regard, our results seem to be in line with those already discussed in literature.

Indeed, it has been already shown that most industrialized countries are experiencing

an ever-increasing trend in life expectancy levels, and simultaneously an increasingly

concentrated age-at-death distribution, which leads to a decreasing trend in lifespan

variation. These aspects can be detected in Tables 2.4 and 2.5, which report a summary

of the approximated distributions of future lifespan disparity for cohorts of females and

males aged x = 65 years at different future times T . We can see that, as T increases, the

expected variation in lifespan decreases in each considered configuration. Moreover, as

for the evolution of life expectancy, the standard deviation of the distributions increases

as the forecast horizon increases. In addition, by comparing Tables 2.4 and 2.5, we can

see that the ACF model forecasts an expected future lifespan disparity for females lower

than for males, while the LC model does not provide a specific pattern. Furthermore,

concerning males estimates obtained by exploiting the ACF model, Table 2.5 depicts

strongly leptokurtic distributions at least in the first future times T .

Table 2.4: Distribution of future lifespan disparity for a cohort of females aged
x = 65 at future times T . LSMC based on 20000 × 1 trajectories with monomials of
degree p = 3 for the LC model, and p = 2 for the ACF model.

Mean Std Dev Skewness Kurtosis 5th perc. Median 95th perc.

T = 2017
LC 8.14013 0.01110 -0.09787 2.69110 8.12131 8.14039 8.15814

ACF 8.09767 0.00997 0.05582 3.07758 8.08134 8.09759 8.11416

T = 2028
LC 8.03697 0.05229 -0.25070 2.96109 7.94778 8.03906 8.11954

ACF 8.01511 0.03734 -0.18231 3.04919 7.95187 8.01640 8.07417

T = 2039
LC 7.91561 0.08218 -0.22318 2.83796 7.77376 7.91952 8.04488

ACF 7.92188 0.05985 -0.21831 3.05975 7.82038 7.92384 8.01667

T = 2050
LC 7.78226 0.10901 -0.14800 2.93505 7.59768 7.78462 7.95634

ACF 7.81714 0.07897 -0.15566 3.03024 7.68373 7.81957 7.94391
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Table 2.5: Distribution of future lifespan disparity for a cohort of males aged x = 65
at future times T . LSMC based on 20000 × 1 trajectories with monomials of degree
p = 3 for the LC model, and p = 2 for the ACF model.

Mean Std Dev Skewness Kurtosis 5th perc. Median 95th perc.

T = 2017
LC 8.08935 0.00822 0.11104 3.63171 8.07627 8.08918 8.10286

ACF 8.42891 0.00151 0.80749 4.34350 8.42680 8.42873 8.43166

T = 2028
LC 8.01101 0.03456 -0.19102 2.92059 7.95258 8.01214 8.06597

ACF 8.41023 0.01955 -1.01640 4.34462 8.37336 8.41363 8.43560

T = 2039
LC 7.92033 0.05360 -0.11543 2.93482 7.83084 7.92113 8.00747

ACF 8.35342 0.04695 -0.67691 3.66108 8.26861 8.35896 8.42035

T = 2050
LC 7.82196 0.06898 0.01061 2.95462 7.70785 7.82209 7.93568

ACF 8.26540 0.07379 -0.42822 3.25022 8.13593 8.27085 8.37725

In Figures 2.10 and 2.11, we report the forecasted probability densities of the cohort

future lifespan variation for females and males, respectively. From the figures, we can

appreciate the decreasing trend, which was already suggested by Tables 2.4 and 2.5.

Furthermore, the widths of the fan chart intervals highlight the uncertainty character-

izing the estimates; indeed, as for life expectancy estimates, the longer forecast horizon,

the wider the prediction interval.
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Figure 2.10: Fan charts relative to the distribution of future lifespan disparity for
females aged x = 65 at different horizons T ∈ {2017, . . . , 2050}. The black lines
marked by squares represent the 90% prediction intervals. LSMC based on 20000× 1
trajectories with polynomials of order p = 3 for the LC model (left) and order p = 2
for the ACF model (right).

Figure 2.11: Fan charts relative to the distribution of future lifespan disparity for
males aged x = 65 at different horizons T ∈ {2017, . . . , 2050}. The black lines marked
by squares represent the 90% prediction intervals. LSMC based on 20000× 1 trajec-
tories with polynomials of order p = 3 for the LC model (left) and order p = 2 for the
ACF model (right).

In Figure 2.12, we compare the forecasts provided by the LC and ACF models by

gender. We can notice that, focusing on females, the two models predict similar values
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(even if the LC model seems to provide more uncertain estimates); indeed, the two fan

charts almost overlap, and the upper bounds of the 90% prediction intervals converge

as T increases. On the contrary, a great forecast difference can be detected in males.

In this regard, the LC model seems to provide more optimistic forecasts than the ACF

does.

Figure 2.12: Fan charts relative to the distribution of future lifespan disparity for
females (left) and males (right) aged x = 65 at different horizons T ∈ {2017, . . . , 2050}.
LSMC based on 20000 × 1 trajectories with polynomials of order p = 3 for the LC
model (red) and order p = 2 for the ACF model (blue).

Figure 2.13 compares females and males forecasted probability densities of future

lifespan disparity for each considered mortality model. We can see that, depending on

the chosen model, we end up with different information. Indeed, even if both the models,

as we have seen so far, suggest a decreasing trend in line with the existing literature, at

the same time they predict differently among genders. In particular, modelling the two

sub-populations separately leads us to fairly similar results between males and females;

indeed, the two fan charts essentially overlap. On the contrary, the ACF model forecasts

an expected male future lifespan disparity constantly above the female one.
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Figure 2.13: Fan charts relative to the distribution of future lifespan disparity for
females (red) and males (blue) aged x = 65 at different horizons T ∈ {2017, . . . , 2050}.
LSMC based on 20000 × 1 trajectories with polynomials of order p = 3 for the LC
model (left) and order p = 2 for the ACF model (right).

Figure 2.14 shows the evolution of this indicator over the entire time horizon that

starts from year 1966 up to 2050. We can notice that, up to a certain year (around

1978 for females, and 1990 for males), the lifespan variation had an increasing trend,

and then it started to decrease, in general. The reasons behind the change illustrated in

Figure 2.14 can be various, and among them we can certainly recall the various political

measures undertaken during that period, both in the economic and health fields, aimed

at improving life, e.g. the introduction of the national health service.
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Figure 2.14: Expected future lifespan disparity for males and females aged x = 65 at
different horizons T ∈ {1966, . . . , 2050}. LSMC based on 20000× 1 trajectories with
polynomials of order p = 3 for the LC model, and order p = 2 for the ACF model.

As previously done for life expectancy, we conducted an analysis of the lifespan dis-

parity index also by exploiting period life tables. In this regard, Figure 2.15 illustrates

and compares the approximated distributions of future cohort and period lifespan varia-

tion for each considered model and gender. Once again, we can see how the period-based

valuations provide a different pattern of the evolution of the quantity of interest, and

further, it seems that the variability of these estimates is lower than that with a cohort

perspective. In addition, in contrast to cohort-based results, the decreasing trend rel-

ative to period valuations is not so evident. Indeed, in the case of the ACF model for

males, it appears to be almost flat or slightly increasing in a stretch.
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Figure 2.15: Forecasted probability densities of cohort (red) and period (blue) ex-
pected future lifespan disparity for females (top) and males (bottom) aged x = 65 at
time T ∈ {2017, . . . , 2050}. LSMC based on 20000 × 1 trajectories with polynomials
of order p = 3 for the LC model (left) and order p = 2 for the ACF model (right).

Furthermore, Table 2.6 reports the cohort and period expected future lifespan dis-

parity for males and females. From this table, we can see that cohort-based valuations

provide more pessimistic results with respect to period-based ones. However, it is possi-

ble to see that the latter approach detects a different degree of longevity improvements;

i.e., it forecasts a slower decreasing trend.
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Table 2.6: Expected future cohort and period lifespan disparity for females and
males aged x = 65 at future time T .

Female Male

LC ACF LC ACF

T = 2017
Period 7.667 7.635 7.672 7.847

Cohort 8.140 8.098 8.089 8.429

T = 2028
Period 7.658 7.640 7.643 7.882

Cohort 8.037 8.015 8.011 8.410

T = 2039
Period 7.623 7.619 7.596 7.891

Cohort 7.916 7.922 7.920 8.353

T = 2050
Period 7.569 7.581 7.538 7.875

Cohort 7.782 7.817 7.822 8.265

Finally, in Figure 2.16, we compare the cohort and period valuations over the entire

time horizon T ∈ {1966, . . . , 2050}. On the left side of the figure, we can see that cohort

female estimates are above the period ones, regardless of the chosen model. The same

happens for the male estimates, even if around year 2043 the LC model with cohort life

tables crosses the ACF model period estimates. Once again, we want to highlight the

different rate of decrease of the lifespan variation between cohort and period evaluation,

which was already suggested by Table 2.6.
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Figure 2.16: Expected future lifespan disparity for females (left) and males (right)
aged x = 65 in year T ∈ {1966, . . . , 2050}. The red colour indicates the LC model
which exploits the corresponding cohort life tables. The blue colour represents the
ACF model which uses the cohort life tables. The green colour shows the results based
on the period life tables obtained by adopting the LC model, while the orange one
the ACF model with period-based valuations. LSMC algorithm based on 20000 × 1
simulations with monomials of order p = 3 for the LC model and order p = 2 for the
ACF model.

Finally, in Appendix 2.A we present an alternative definition of lifespan disparity,

which involves the simulation of the individual’s age at death. In this regard, we compare

in Figure 2.17 the two approaches, one which is based on the computation of Equation

(2.5) (until now discussed), and the second one is based on solving Equation (2.6).

As we can see from Figure 2.17, the two algorithms provide quite similar results in

each considered configuration; indeed, most of the estimates of the expected future lifes-

pan disparity obtained by solving Equation (2.6) lie inside the 90% prediction interval

obtained from Equation (2.5). However, even if the two approaches suggest an overall

decreasing trend, the results based on Equation (2.6) seem to be less regular than those

of Equation (2.5). This was somehow expected since it involves a further simulation

step, and hence it incorporates more uncertainty.
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Figure 2.17: Expected future lifespan variation for females (top) and males (bottom)
aged x = 65 at different horizons T ∈ {2017, . . . , 2050}. The green colour indicates
the results based on Equation (2.5), and the green lines marked by squares represent
the corresponding 90% prediction interval. The blue line marked by points refers to
the estimates based on Equation (2.6). LSMC based on 20000 × 1 trajectories with
polynomials of order p = 3 for the LC model (left) and order p = 2 for the ACF model
(right).

Finally, to conclude the analysis, we compare in Figure 2.18 the evolution of cohort

life expectancy and lifespan disparity for males and females obtained by adopting the

LC and ACF models.
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Figure 2.18: Cohort future life expectancy (blue) and lifespan disparity (red)
for females (top) and males (bottom) aged x = 65 at different horizons T ∈
{2017, . . . , 2050}. LSMC based on 20000 × 1 trajectories with polynomials of or-
der p = 3 for the LC model (left) and order p = 2 for the ACF model (right).

From Figure 2.18, we can appreciate the ever-increasing trend of life expectancy

accompanied by an ever-decreasing variation in lifespan. This result is in line with

other analyses provided in literature; indeed, it has been recognized a sort of inverse

relation between lifespan and its variation, at least in most industrialized countries.
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2.5 Conclusions

In this Chapter we addressed the ever-prominent issue of how to evaluate and fore-

cast future longevity dynamics. In particular, we focused on the analysis of the past

and future evolution of two relevant longevity measures, which are usually taken into

account by both demographic and actuarial studies, i.e. life expectancy and lifespan

disparity. Our results proved to be in line with those already presented in literature;

indeed, we have recognised an ever-increasing trend in future life expectancy levels, and

simultaneously a decreasing pattern in the future lifespan variation for the male and

female Italian population. However, in contrast to the usual period-based valuation

approach, this study has been conducted by exploiting cohort life tables. In this regard,

even if period and cohort life tables describe similar general trends of the two measures,

we have seen how the first approach may not be able to detect promptly unexpected

mortality developments, and so it may not effectively describe the cohort’s actual life

course.

Furthermore, we have compared the forecasting differences between single and multi-

population mortality models; indeed, we have shown how the choice of the mortality

model is crucial to effectively evaluate longevity risk.

Finally, we proposed a very flexible tool to solve the involved conditional expecta-

tions, i.e., the Least-Squares Monte Carlo. The latter, indeed, has strongly decreased

the computational effort, which would be required by the straightforward nested simu-

lations method, thus allowing to evaluate more complex longevity measures such as the

lifespan disparity index.

To conclude, we want to strengthen the idea that this methodology can be used for

any other longevity measure involving conditional arguments, where cohort measure-

ments are often replaced by period ones for computational simplicity.
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Appendix 2.A Expected years of life lost

In what follows, we consider a discretized version of the mathematical framework

defined in Brémaud (1972). In this regard, let (Ω,F,P) be a probability space on which

all the quantities are defined. Then, let us consider the central death rates denoted by

mx;t, where x = x1, . . . , xn and t = 0, 1, 2, . . . , and specifically we assume that time

t = 0 is today. The information structure is represented by the filtration F = {Ft}t≥0,

where Ft represents the information available up to and including time t, which includes

knowledge about mortality rates up to that date. Formally,

σ ({mx;u, x = x1, . . . , xn, u ≤ t}) ⊂ Ft, for all t.

Let M represents the information resulting from the observation of all mortality

rates. Furthermore, let τx,t be the residual lifetime at time t of an individual aged x. It

can be taken to be truncated, i.e. τx,t = 0 means death in the first year, etc..

Then, we assume that, conditional on FT ∨M, the following holds:

PT (τx,T ≥ k | M) = e−
∑︁k−1

h=0 mx+h;T+h , k = 0, 1, 2, . . .

It follows that the k-th years survival probability for an individual aged x at time T is

PT (τx,T ≥ k) = ET

[︂
e−

∑︁k−1
h=0 mx+h;T+h

]︂
= kpx(T ).

Hence, we can define the life expectancy for an individual aged x at time T as

ecx(T ) =
∞∑︂
k=1

kpx(T ) = ET

[︄
∞∑︂
k=1

e−
∑︁k−1

h=0 mx+h;T+h

]︄
.

As mentioned in Section 2.2, lifespan disparity can be interpreted as the number of

years in life expectancy lost by an individual at the effective age of death. Therefore,

considering that the quantity x+ τx,T can be thought as the expected age at death for
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an individual aged x at time T , we can define the lifespan disparity metric as

e†, cx (T ) = ET

[︂
ecx+τx,T

(T + τx,T )
]︂

(2.6)

= ET

[︄
∞∑︂
k=0

1{τx,T=k}e
c
x+k(T + k)

]︄

= ET

[︄
∞∑︂
k=0

1{τx,T=k}ET+k

[︄
∞∑︂
h=1

e−
∑︁h−1

j=0 mx+k+j;T+k+j

]︄]︄
. (2.7)

Note that 1{τx,T=k} is FT+k-measurable. Then, by exploiting linearity and Tower

properties, Equation (2.7) can be further expressed as:

e†, cx (T ) =
∞∑︂
k=0

ET

[︄
1{τx,T=k}

∞∑︂
h=1

e−
∑︁h−1

j=0 mx+k+j;T+k+j

]︄

=
∞∑︂
k=0

ET

[︄
ET

[︄
1{τx,T=k}

∞∑︂
h=1

e−
∑︁h−1

j=0 mx+k+j;T+k+j | M

]︄]︄

=
∞∑︂
k=0

ET

[︄
PT (τx,T = k | M)

∞∑︂
h=1

e−
∑︁h−1

j=0 mx+k+j;T+k+j

]︄

=
∞∑︂
k=0

ET

[︄
e−

∑︁k−1
j=0 mx+j;T+j(1− e−mx+k;T+k)

∞∑︂
h=1

e−
∑︁h−1

j=0 mx+k+j;T+k+j

]︄
. (2.8)

Hence, from Equation (2.8) we can obtain a first representation of Equation (2.6)

that is:

e†, cx (T ) =
∞∑︂
k=0

ET

[︄
(1− e−mx+k;T+k)

∞∑︂
h=1

e−
∑︁k+h−1

j=0 mx+j;T+j

]︄

= ET

[︄
∞∑︂
k=0

(1− e−mx+k;T+k)
∞∑︂
h=1

e−
∑︁k+h−1

j=0 mx+j;T+j

]︄
. (2.9)

A further alternative expression can be derived starting from Equation (2.8) by using

again the Tower property, i.e.
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e†, cx (T ) =
∞∑︂
k=0

ET

[︄
ET+k

[︄
e−

∑︁k−1
j=0 mx+j;T+j(1− e−mx+k;T+k)

∞∑︂
h=1

e−
∑︁h−1

j=0 mx+k+j;T+k+j

]︄]︄

=
∞∑︂
k=0

ET

[︄
e−

∑︁k−1
j=0 mx+j;T+j(1− e−mx+k;T+k)ET+k

[︄
∞∑︂
h=1

e−
∑︁h−1

j=0 mx+k+j;T+k+j

]︄]︄

= ET

[︄
∞∑︂
k=0

e−
∑︁k−1

j=0 mx+j;T+j(1− e−mx+k;T+k)ecx+k(T + k)

]︄
. (2.10)

Therefore, we can express the lifespan disparity measure with a cohort perspective in

different ways. In particular, in our numerical example we consider the definitions given

in Equations (2.6) and (2.10) for which the corresponding computational algorithms are

described in Appendix 2.B.

Appendix 2.B The LSMC algorithm

The LSMC approach is essentially a simulation based method combined with regres-

sion models. In what follows, we briefly describe the proposed algorithms to approximate

the distribution of future life expectancy and lifespan disparity for a generic cohort aged

x at a future time T .

2.B.1 Future cohort life expectancy

Let us consider an individual aged x at the future time T , assuming that time t = 0

is today. To solve Equation (2.3), we propose the following algorithm:

1. Simulate n trajectories of mortality rates:

{︂
m

(j)
y;t

}︂
j=1,...,n

,

where y = x− T, . . . , ω and t = 1, . . . , ω − x+ T .

2. Evaluate

E
c,(j)
x,T =

1

2
+

ω−x∑︂
i=1

e−
∑︁i−1

k=0 m
(j)
x+k;T+k , j = 1, . . . n.
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3. To reduce the bias, we regress

{︂
E

c,(j)
x,T

}︂
j

on
{︂
ϕ
(︂
z
(j)
T

)︂}︂
j
,

where ϕ = (ϕ1, . . . , ϕp) is a vector of basis functions depending on the state vector

zT
2. An Ordinary Least-Squares procedure is used to estimate the coefficients of

the regression model.

4. Finally, compute

êc,(j)x (T ) =

p∑︂
l=1

β̂lϕl

(︂
z
(j)
T

)︂
, j = 1, . . . , n.

2.B.2 Future cohort lifespan disparity

Concerning the approximation of the future lifespan disparity distribution, we need

always to generate future mortality rates. Then, as shown in Equation (2.5), we need to

evaluate several conditional future life expectancies. Therefore, the valuation procedure

is structured as follows:

1. Compute êcx+k(T + k), where k = 0, . . . , ω − x, using the algorithm shown in

Appendix 2.B.1;

2. Evaluate

e−
∑︁k−1

i=0 m
(j)
x+i;T+i ·

(︂
1− e−m

(j)
x+k;T+k

)︂
, j = 1, . . . , n and k = 0, . . . , ω − x.

3. Compute

E
†, c(j)
x,T =

ω−x∑︂
k=0

ê
c,(j)
x+k(T + k)e−

∑︁k−1
i=0 m

(j)
x+i;T+i ·

(︂
1− e−m

(j)
x+k;T+k

)︂
, j = 1, . . . , n.

2The state vector zT contains the simulated time-T values of the main factors affecting the evolution
of mortality. For instance, under the LC model it can be represented by the simulated values of the
time index parameter, κT . Similarly for the ACF model.
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4. Regress

{︂
E

†, c(j)
x,T

}︂
j

on
{︂
ϕ
(︂
z
(j)
T

)︂}︂
j
.

and then, once the coefficients of the regression model are estimated by OLS,

evaluate the corresponding quantities obtaining
{︂
ê†, c(j)x (T )

}︂
j=1...,n

.

This algorithm applies for the valuation of Equation (2.5) given in Section 2.2.2.

However, as it is shown in Appendix 2.A, an alternative definition for the lifespan

disparity measure is given by Equation (2.6). In this regard, we move to describe a

possible valuation strategy.

The first steps for Equation (2.6) are the same as the first two steps of the previous

algorithm. Then, it evolves as follows:

1. Considering the set of values obtained in Step 2 of the previous algorithm, i.e.

{︂
e−

∑︁k−1
i=0 m

(j)
x+i;T+i ·

(︂
1− e−m

(j)
x+k;T+k

)︂}︂
j=1,...,n

, k = 0, . . . , ω − x,

simulate, for each trajectory j = 1, . . . , n, the residual lifetime τ
(j)
x,T , and so the

corresponding age at death
{︂
x+ τ

(j)
x,T

}︂
j
.

2. Regress

{︃
ê
c,(j)

x+τ
(j)
x,T

(︂
T + τ

(j)
x,T

)︂}︃
j

on
{︂
ϕ
(︂
z
(j)
T

)︂}︂
j
,

and again, by OLS estimate the involved coefficients, which allows to obtain the

distribution of the future lifespan disparity.

As we can see from the first step of this last algorithm, Equation (2.6) involves a second

step of simulations (the simulated age at death of the individual), which may provide

more uncertainty in the desired estimates. Nonetheless, we show in Section 2.4 some

related results.





Chapter 3

The Valuation of Future Annuities

in R

This Chapter has been presented at the Insurance Data Science Conference (Online

event, 2021).

3.1 Introduction

This Chapter introduces the R function calculate.Annuity, which has been devel-

oped on the works presented in Chapters 1 and 2. The function allows to price future

annuity contracts and/or to forecast future life expectancy levels for a cohort of individ-

uals aged x at future times T by adopting the LSMC method. As it will be shown, the

function is connected with the well-known and widely used R package StMoMo (see

Villegas et al., 2018). Moreover, it gives the possibility to exploit customized mortality

data objects and to include stochastic interest rate models. The output of the func-

tion is an object of the class "sim.Annuity" on which it is possible to call other basic

functions to produce quantitative and qualitative analysis; for instance, hist, summary,

quantile, and many others. In the following, just as an example, we will focus on the

application of such a function to the problem of approximating and simulating the dis-

tribution of future annuity contracts. In particular, we start by discussing the proposed

algorithm, which will then be implemented through the R function, and finally we will

present a practical application together with the corresponding chunk of code.

89



90 Section 3.2 - Future annuity contracts: the algorithm

3.2 Future annuity contracts: the algorithm

In this Section, we consider the valuation of an immediate annuity contract which

will be issued at a future time T to an individual then aged x and pays one unit of

account at the end of each year, until death. To this end, let mx;t be the central death

rate at age x at time t, and rt the spot interest rate level at time t. Then, we define the

value of the annuity contract issued to an individual aged x at a future time T as

ax(T ) = ET

[︄
∞∑︂
l=1

e−(Mx,l+Rl)

]︄
, (3.1)

where ET [·] represents the expectation conditional on the information available at time

T , and

Mx,l =
l−1∑︂
h=0

mx+h;T+h, and Rl =
l−1∑︂
h=0

rT+h.

As already discussed in Chapter 1, an explicit solution to Equation (3.1) does not al-

ways exist, and indeed we have proposed the LSMC approach to overcome this drawback

and to avoid the nested simulations method.

Essentially, the LSMC method consists to express Equation (3.1) as a linear combi-

nation of basis functions depending on the time-T state vector of the risk factors, zT .

Formally,

ax(T ) ≈ ãx(T ) =
M∑︂
j=1

βjej (zT ) ,

where ej (·) is the j-th basis function, such as a monomial or an orthogonal polynomial,

the βj’s represent the coefficients usually estimated through Ordinary Least Squares,

and M is the number of basis functions.

The LSMC algorithm can be summarized by the following steps:

1. Simulate n outer trajectories of the relevant risk-factors. In our case, the interest

and mortality rates

z
(i)
t =

(︂
r
(i)
t ,m

(i)
x;t

)︂
, i = 1, . . . , n and t = 1, . . . , T ;
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2. For each outer scenario, project n̄ ≪ n inner paths of the risk factors (typically,

n̄ = 1);

3. Compute for each outer scenario the corresponding cash-flows generated along

each inner trajectory

A(i) =
∞∑︂
l=1

e
−
(︂
M

(i)
x,l+R

(i)
l

)︂
, i = 1, . . . , n.

This results in a set of n biased annuity values

{︁
A(i)
}︁
i=1,...,n

;

4. Estimate the i-th conditional expectation as

ã(i)x (T ) =
M∑︂
j=1

β̃jej
(︁
ziT
)︁
,

where

β̃ =
(︂
β̃1, . . . , β̃M

)︂
= argmin

β1,...,βM

⎡⎣ n∑︂
i=1

(︄
A(i) −

M∑︂
j=1

βjej
(︁
ziT
)︁)︄2

⎤⎦ ;

5. Store the set of fitted annuity values

{︁
ã(i)x (T )

}︁
i=1,...,n

.

In the next Section, we present the R function calculate.Annuity which imple-

ments this algorithm. In particular, the function needs as input the simulated paths of

the risk factors, and then it performs the discussed algorithm from steps 3 to 5.

3.3 The calculate.Annuity function

The calculate.Annuity provides an implementation of the LSMC method for valu-

ing future annuity contracts, according to the algorithm described in Section 3.2. The
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function is linked with the R package StMoMo but it gives also the possibility to ex-

ploit customized mortality data objects and to include stochastic interest rate models.

A summary of the function is:

calculate.Annuity(mortRates, T, x, r = 0, close.table = TRUE, omega = 120, pred = NULL,

basisFun = c("Monomials", "Hermite", "Laguerre", "Chebyshev"),

ordPolyn = 1, standardize = TRUE)

The function takes as input information on the annuity contract, on the dynamics of

the risk-factors, and finally on the regression function to be implemented. In particular,

• mortRates a matrix or a three-dimensional array containing the future simu-

lated mortality rates. It can be an object of class "simStMoMo", or a customized

mortality data object. The latter can be a three dimensional array or a matrix

containing the simulated cohort mortality rates.

• T a numeric object indicating the future time horizon.

• x an integer value representing the individual’s age at the future date T .

• r a constant, vector or a matrix with future levels of the spot interest rates.

• close.table a logical value indicating if the mortality table should be closed up

to the ultimate age omega through a log-linear closure of death probabilities. The

default is TRUE.

• omega an integer value indicating the ultimate age. The default is 120.

• pred optional. It can be a vector or a matrix containing the predictors entering in

the regression function. If pred=NULL, then the simulated mortality rates at age x

and time T will be used. Moreover, if pred=NULL and class(mortRates)="simStMoMo",

the predictors are the simulated values of the time-indexes entering in the stochas-

tic mortality model. The default is NULL.

• basisFun an optional character string. It specifies the type of basis function

to be applied to the predictors. It can be one of "Monomials", "Hermite",

"Laguerre", "Chebyshev" polynomials, or a customized function. If not spec-

ified, by default "Monomials" will be used.



Chapter 3 - The Valuation of Future Annuities in R 93

• ordPolyn an integer value greater than 0. It specifies the polynomials order to

be involved in the regression function. The default is 1.

• standardize a logical value indicating whether the predictors should be stan-

dardized or not. The default is TRUE.

The output of the function is an object of class "sim.Annuity" on which it is possible

to call other basic R methods to produce quantitative and qualitative analysis.

3.3.1 R code example

In this Section, we provide an example of R code which shows the usage of the

calculate.Annuity function and present the R methods that can be applied on the R

class object "sim.Annuity". In particular, we exploit the R package StMoMo to fit

and then simulate mortality rates. Further, we consider firstly a constant interest rates

framework and then extend it to a stochastic one.

We fit the M7 stochastic mortality model proposed in Cairns et al. (2009) on the

England and Wales male population data over the period 1961− 2011 and ages 35− 90.

Further, we assume that year 2011 corresponds to the evaluation time 0 (today).

library(StMoMo)

set.seed(2021)

a.min <- 35

a.max <- 90

A.fit <- a.min:a.max

wxt <- genWeightMat(ages = A.fit, years = EWMaleData$years, clip = 3)

M7fit <- fit(m7(link="log"), data = EWMaleData, ages.fit = A.fit, wxt = wxt)

In this way, we have fitted the M7 stochastic mortality model by exploiting the fit

function provided by the R package StMoMo.

In order to value an annuity contract, we need to generate the possible evolution of

the main risk-factors over time. In a first stage, we consider a constant interest rate

framework while, concerning mortality, we exploit the StMoMo function simulate.

In particular, the following example is based on n = 20000 simulated trajectories of
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mortality rates at least over the next T + a.max - x years. In this example, we focus

on approximating the distribution of future annuity values for an individual aged x =

65 and x = 75 at a future time T = 35 years.

age <- c(65, 75)

timeHorizon <- 35

nsim <- 20000

hsim <- timeHorizon + a.max - min(age)

M7sim <- simulate(M7fit, nsim = nsim, h = hsim, gc.order = c(2,0,0))

We refer the reader to Villegas et al. (2018) for further details. Now, by fixing the

level of interest rate (r = 0.03), we can exploit the calculate.Annuity function for

approximating the desired distribution of future annuity values. Note that we use the

option close.table = TRUE and we fix the ultimate age omega = 120. Moreover, we

firstly use as basis functions basisFun = "Monomials" with order ordPolyn = 1, and

then we vary both of them.

intRate <- 0.03

### Annuity for an individual aged 65 years at the future time T = 35

AnnuityLSMC65 <- calculate.Annuity(mortRates = M7sim, T = timeHorizon, x = 65,

r = intRate, close.table = TRUE, omega = 120, pred = NULL,

basisFun = "Monomials", ordPolyn = 1, standardize = TRUE)

### Annuity for an individual aged 75 years at the future time T = 35

AnnuityLSMC75 <- calculate.Annuity(mortRates = M7sim, T = timeHorizon, x = 75,

r = intRate, close.table = TRUE, omega = 120, pred = NULL,

basisFun = "Monomials", ordPolyn = 1, standardize = TRUE)

class(AnnuityLSMC65)

## [1] "sim.Annuity"

As we can see, the returning object is of the class "sim.Annuity" on which it is

possible to apply some basic R method to perform qualitative and quantitative analysis.

Among them, we can find the print, hist, summary, quantile and many others.
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print(AnnuityLSMC65)

## Annuity values for an individual aged 65 at the future time horizon 35

## Contract Information

## Interest rate: constant

## Basis Functions: Monomials

## Number of Basis Functions: 5

## Number of Simulations: 20000

print(AnnuityLSMC75)

## Annuity values for an individual aged 75 at the future time horizon 35

## Contract Information

## Interest rate: constant

## Basis Functions: Monomials

## Number of Basis Functions: 4

## Number of Simulations: 20000

summary(AnnuityLSMC65)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 12.49 15.03 15.55 15.55 16.08 18.60

mean(AnnuityLSMC65)

## [1] 15.55027

quantile(AnnuityLSMC65, p = c(0.1,0.5,0.95))

## 10% 50% 95%

## 14.55699 15.55247 16.83816

hist(AnnuityLSMC65)
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Figure 3.1: Approximated value distribution of a future annuity contract issued
to an individual aged x = 65 at the future time T = 35. LSMC method based on
20000× 1 simulations, monomials of order 1.

hist(AnnuityLSMC75)
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Figure 3.2: Approximated value distribution of a future annuity contract issued
to an individual aged x = 75 at the future time T = 35. LSMC method based on
20000× 1 simulations, monomials of order 1.

Furthermore, we may be interested in choosing a different type of basis function

and/or its order. An example is provided below.
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### Monomials order 2

AnnuityLSMCmon2 <- calculate.Annuity(mortRates = M7sim, T = timeHorizon, x = 65,

r = intRate, close.table = TRUE, omega = 120, pred = NULL,

basisFun = "Monomials", ordPolyn = 2, standardize = TRUE)

### Monomials order 3

AnnuityLSMCmon3 <- calculate.Annuity(mortRates = M7sim, T = timeHorizon, x = 65,

r = intRate, close.table = TRUE, omega = 120, pred = NULL,

basisFun = "Monomials", ordPolyn = 3, standardize = TRUE)

AnnuityLSMCmon2

## Annuity values for an individual aged 65 at the future time horizon 35

## Contract Information

## Interest rate: constant

## Basis Functions: Monomials

## Number of Basis Functions: 15

## Number of Simulations: 20000

AnnuityLSMCmon3

## Annuity values for an individual aged 65 at the future time horizon 35

## Contract Information

## Interest rate: constant

## Basis Functions: Monomials

## Number of Basis Functions: 35

## Number of Simulations: 20000

quantile(AnnuityLSMCmon2, p = c(0.05, 0.5, 0.95))

## 5% 50% 95%

## 14.27712 15.55123 16.83488

quantile(AnnuityLSMCmon3, p = c(0.05, 0.5, 0.95))

## 5% 50% 95%

## 14.27416 15.55228 16.83470
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### Hermite order 1

AnnuityLSMCherm1 <- calculate.Annuity(mortRates = M7sim, T = timeHorizon, x = 65,

r = intRate, close.table = TRUE, omega = 120, pred = NULL,

basisFun = "Hermite", ordPolyn = 1, standardize = TRUE)

### Hermite order 3

AnnuityLSMCherm3 <- calculate.Annuity(mortRates = M7sim, T = timeHorizon, x = 65,

r = intRate, close.table = TRUE, omega = 120, pred = NULL,

basisFun = "Hermite", ordPolyn = 3, standardize = TRUE)

AnnuityLSMCherm1

## Annuity values for an individual aged 65 at the future time horizon 35

## Contract Information

## Interest rate: constant

## Basis Functions: Hermite

## Number of Basis Functions: 16

## Number of Simulations: 20000

AnnuityLSMCherm3

## Annuity values for an individual aged 65 at the future time horizon 35

## Contract Information

## Interest rate: constant

## Basis Functions: Hermite

## Number of Basis Functions: 256

## Number of Simulations: 20000

quantile(AnnuityLSMCherm1, p = c(0.05, 0.5, 0.95))

## 5% 50% 95%

## 14.27922 15.55056 16.83991

quantile(AnnuityLSMCherm3, p = c(0.05, 0.5, 0.95))

## 5% 50% 95%

## 14.26926 15.55266 16.83084

Finally, the calculate.Annuity function allows to include deterministic or stochastic

interest rates dynamics. To this end, the argument r needs a vector or a matrix con-

taining the simulated future trajectories of interest rates. In the following example, just
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for simplicity, we consider the autoregressive representation of the well-known Vasicek

interest rate model. Hence, the corresponding dynamics is described by

rt = κθ + (1− κ)rt−1 + σrϵt, (3.2)

where κ, θ, and σr are positive constants representing the speed of mean reversion,

the long-term interest rate, and the interest rate volatility, respectively, while ϵt is a

Gaussian error term with mean 0 and unitary variance. In this example, we set κ = 0.2,

θ = 0.05, and σr = 0.018, and assume that at time 0 the level of the spot interest rate

is r0 = 0.04. To generate future trajectories of spot interest rates, we exploit the R

function filter embedded in the R package stats, which will be replicated nsim times.

Note that we need to project the spot interest rates at least over the next (omega - x

+ T -1) years. The corresponding R code is provided below.

omega <- 120

timeHorizon <- 10

age<-65

hpred <- omega - age + timeHorizon - 1

kappa <- 0.2

theta <- 0.05

sigmaR <- 0.018

r0 <- 0.04

VasicekIntRate <- replicate(n = nsim, filter(c(r0, rnorm(n = hpred, mean = kappa*theta, sd = sigmaR)),

filter = (1-kappa), method='recursive'))

VasicekIntRate <- VasicekIntRate[-1,] ### Exclude the spot interest rate of time 0

AnnuityLSMCstocRate <- calculate.Annuity(mortRates = M7sim, T = timeHorizon, x = age,

r = VasicekIntRate, close.table = TRUE, omega = 120, pred = NULL,

basisFun = "Monomials", ordPolyn = 1, standardize = TRUE)

AnnuityLSMCstocRate

## Annuity values for an individual aged 65 at the future time horizon 10

## Contract Information

## Interest rate: stochastic

## Basis Functions: Monomials

## Number of Basis Functions: 5

## Number of Simulations: 20000
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summary(AnnuityLSMCstocRate)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 6.628 11.324 12.275 12.283 13.236 17.365

hist(AnnuityLSMCstocRate)
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Figure 3.3: Approximated value distribution of a future annuity contract issued to
an individual aged x = 65 at the future time T = 10 under stochastic mortality and
interest rates framework. LSMC method based on 20000× 1 simulations, monomials
of order 1.

3.3.2 Pricing Guaranteed Annuity Options in R

In Chapter 1, we have seen how the valuation of future annuity contracts is im-

plicitly present in various contexts, for instance for pricing guaranteed annuity options

(GAO). In this regard, in what follows we illustrate how the calculate.Annuity func-

tion would facilitate the involved computations, and further we explore how the choice

of the stochastic mortality model affects the desired valuation. To this end, we consider

a stochastic mortality and interest rate framework, where we exploit the same mortal-

ity data as in Section 3.3.1, and adopt the autoregressive representation of the Vasicek

model given in Equation (3.2) for projecting future spot interest rates with the same

parameters chosen in Section 3.3.1.
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Guaranteed Annuity Option

As already defined in Section 1.4.2, a guaranteed annuity option provides the owner

the right to convert an amount of money at the option maturity (if the insured is alive)

into a life annuity at some guaranteed conversion rate, c, fixed at inception. Therefore,

if we consider an individual aged x at the inception date t = 0, and assume that the

amount of money at maturity, T > 0, is represented by a reference asset value, ST , and

the guaranteed conversion rate fixed at inception is 0 < c < 1, then a discrete version

of the time-0 value of the GAO contract is given by

V0 = E
[︃
e−

∑︁T−1
h=0 (rh+mx+h;h) · c · ST ·max

{︃
ax+T (T )−

1

c
, 0

}︃]︃
, (3.3)

where mx;t is the central death rate at age x in year t, rt is the spot interest rate level

at time t, and ax+T (T ) is the value of an immediate annuity contract for an individual

aged x+ T at maturity T as defined in Equation (3.1).

R code example

In this example, we consider an individual aged x = 55 in year 2011, assumed to be

t = 0, and a GAO contract with maturity T = 10, i.e. when the owner reaches age

x + T = 65. At maturity, the individual can choose to convert a fixed account value

ST = 100 into an annuity at a conversion rate c = 1/12. In this numerical example, we

consider different stochastic mortality models such as the Lee-Carter, the Age-Period-

Cohort, the M7, and the Cairns-Blake-Dowd models which have been fitted through the

R package StMoMo as follows.

### GAO Pricing

library(StMoMo)

set.seed(2021)

a.min <- 35

a.max <- 90

A.fit <- a.min:a.max
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wxt <- genWeightMat(ages = A.fit, years = EWMaleData$years, clip = 3)

M7fit <- fit(m7(link="log"), data = EWMaleData, ages.fit = A.fit, wxt = wxt)

APCfit <- fit(apc(link="log"), data = EWMaleData, ages.fit = A.fit, wxt = wxt)

CBDfit <- fit(cbd(link="log"), data = EWMaleData, ages.fit = A.fit, wxt = wxt)

LCfit <- fit(lc(link="log"), data = EWMaleData, ages.fit = A.fit, wxt = wxt)

Then, by exploiting again the simulate function embedded in the StMoMo package,

we project mortality rates over the next hsim years. In particular, for each considered

model, we generate nsim = 20000 future trajectories.

### Projecting mortality onto the future

age <- 65

timeHorizon <- 10

nsim <- 20000

hsim <- 100

LCsim <- simulate(LCfit, nsim = nsim, h = hsim)

CBDsim <- simulate(CBDfit, nsim = nsim, h = hsim)

APCsim <- simulate(APCfit, nsim = nsim, h = hsim)

M7sim <- simulate(M7fit, nsim = nsim, h = hsim, gc.order = c(2,0,0))

Concerning future spot interest rates, as already done in Section 3.3.1, we consider

the autoregressive representation of the Vasicek model with the same parameters and

initial value. We again replicate nsim times the filter function to obtain the possible

future paths of interest rates.

### Vasicek model parameters and simulations

kappa <- 0.2

theta <- 0.05

sigmaR <- 0.018

r0 <- 0.04

VasicekIntRate <- replicate(n = nsim,filter(c(r0,rnorm(n = hsim,mean = kappa*theta,sd = sigmaR)),

filter = (1-kappa) , method='recursive'))

rownames(VasicekIntRate) <- 2011:2111
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Once we obtain the simulations of both future mortality and interest rates, we can

move to evaluate the future annuity contract. In this regard, we approximate the dis-

tribution of future annuity values for an individual aged 65 at the future time T = 10

through the calculate.Annuity function. In particular, we are going to exploit as

predictors the simulated mortality rates at age 65 in year 2021 (i.e., T=10) and the sim-

ulated spot interest rates at year 2021. Indeed, the function gives also the possibility to

specify the predictors to be used in the algorithm through the argument pred. More-

over, in this case, this procedure would allow us to make the results comparable in terms

of number of basis functions, since each mortality model depends on a different number

of risk factors (e.g., time index parameters). As basis function, we adopt monomials of

order 3. Furthermore, note that we do not close the life table up to a fixed ultimate

age omega, avoiding in this way any effect on the desired estimates caused by a possible

closure procedure.

### Valuation of future annuity contract for an individual aged 65 at time T=10

zT.LC <- rbind(LCsim$rates["65","2021",], VasicekIntRate["2021",])

a.x65.T10.LC <- calculate.Annuity(mortRates = LCsim, T = timeHorizon, x = age,

r = VasicekIntRate[-1,], close.table = FALSE, pred = zT.LC,

basisFun = "Monomials", ordPolyn = 3, standardize = TRUE)

zT.CBD <- rbind(CBDsim$rates["65","2021",], VasicekIntRate["2021",])

a.x65.T10.CBD <- calculate.Annuity(mortRates = CBDsim, T = timeHorizon, x = age,

r = VasicekIntRate[-1,], close.table = FALSE, pred = zT.CBD,

basisFun = "Monomials", ordPolyn = 3, standardize = TRUE)

zT.APC <- rbind(APCsim$rates["65","2021",], VasicekIntRate["2021",])

a.x65.T10.APC <- calculate.Annuity(mortRates = APCsim, T = timeHorizon, x = age,

r = VasicekIntRate[-1,], close.table = FALSE, pred = zT.APC,

basisFun = "Monomials", ordPolyn = 3, standardize = TRUE)

zT.M7 <- rbind(M7sim$rates["65","2021",], VasicekIntRate["2021",])

a.x65.T10.M7 <- calculate.Annuity(mortRates = M7sim, T = timeHorizon, x = age,

r = VasicekIntRate[-1,], close.table = FALSE, pred = zT.M7,

basisFun = "Monomials", ordPolyn = 3, standardize = TRUE)

A summary of the obtained distributions is provided below.
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summary(a.x65.T10.LC)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 7.817 10.816 11.642 11.715 12.525 18.116

summary(a.x65.T10.CBD)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 7.624 10.787 11.616 11.686 12.493 18.000

summary(a.x65.T10.APC)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 7.192 10.691 11.514 11.582 12.386 18.011

summary(a.x65.T10.M7)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 7.527 10.845 11.676 11.750 12.580 18.035

par(mfrow = c(2,2))

hist(a.x65.T10.LC)

hist(a.x65.T10.CBD)

hist(a.x65.T10.APC)

hist(a.x65.T10.M7)
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Figure 3.4: Approximated value distribution of a future annuity contract issued to
an individual aged x = 65 at the future time T = 10. Stochastic mortality models: LC
(top left), CBD (top right), APC (bottom left), M7 (bottom right). LSMC method
based on 20000× 1 simulations, monomials of order 3.

As we can see, the considered mortality models provide slightly different results, which

obviously will lead to different estimates of the GAO contract value. In this regard, we

now set the guaranteed conversion rate and the account value at maturity, and then we

compute the payoff embedded in the contract by extracting the future annuity values

previously obtained for each mortality model. Indeed, the object of class "sim.Annuity"

contains several information among which we can find values, the vector containing the

desired estimates.

### GAO

c <- 1/12 ### Guaranteed conversion rate

S.T <- 100 ### Account value at maturity

### Payoff

payoffLC <- pmax(a.x65.T10.LC$values - 1/c, 0)
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payoffCBD <- pmax(a.x65.T10.CBD$values - 1/c, 0)

payoffAPC <- pmax(a.x65.T10.APC$values - 1/c, 0)

payoffM7 <- pmax(a.x65.T10.M7$values - 1/c, 0)

We now compute the T-years discount factor and the T-years survival probability of

the considered policyholder. Concerning the latter, we first extract the fitted central

death rate at age x=55 in year 2011, and then the simulated cohort life tables.

### Discount factor from time 0 (today) to time T=10

discFact.0.10 <- exp(-apply((VasicekIntRate[as.character(2011:2020),]), 2, sum))

### Extract fitted mortality rates at age 55 in year 2011

mortRates.x55.t2011.LC <- LCsim$fitted["55","2011",]

mortRates.x55.t2011.CBD <- CBDsim$fitted["55","2011",]

mortRates.x55.t2011.APC <- APCsim$fitted["55","2011",]

mortRates.x55.t2011.M7 <- M7sim$fitted["55","2011",]

### Extract simulated cohort life tables

cohortRatesLC <- extractCohort(LCsim$rates, age = 55, period = 2011)[as.character(56:64),]

cohortRatesCBD <- extractCohort(CBDsim$rates, age = 55, period = 2011)[as.character(56:64),]

cohortRatesAPC <- extractCohort(APCsim$rates, age = 55, period = 2011)[as.character(56:64),]

cohortRatesM7 <- extractCohort(M7sim$rates, age = 55, period = 2011)[as.character(56:64),]

mortRates.x55.64.t2011.2020.LC <- rbind(mortRates.x55.t2011.LC, cohortRatesLC)

mortRates.x55.64.t2011.2020.CBD <- rbind(mortRates.x55.t2011.CBD, cohortRatesCBD)

mortRates.x55.64.t2011.2020.APC <- rbind(mortRates.x55.t2011.APC, cohortRatesAPC)

mortRates.x55.64.t2011.2020.M7 <- rbind(mortRates.x55.t2011.M7, cohortRatesM7)

### 10-years survival probability for an individual aged 55 in year 2011 (time 0)

survProb.x55.T10.LC <- exp(-apply(mortRates.x55.64.t2011.2020.LC, 2, sum))

survProb.x55.T10.CBD <- exp(-apply(mortRates.x55.64.t2011.2020.CBD, 2, sum))

survProb.x55.T10.APC <- exp(-apply(mortRates.x55.64.t2011.2020.APC, 2, sum))

survProb.x55.T10.M7 <- exp(-apply(mortRates.x55.64.t2011.2020.M7, 2, sum))

Once we obtain all the needed quantities, we can compute the time-0 value of the

GAO contract as follows.
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### Value of the GAO contract

V0.GAO.LC <- discFact.0.10 * survProb.x55.T10.LC * c * S.T * payoffLC

V0.GAO.CBD <- discFact.0.10 * survProb.x55.T10.CBD * c * S.T * payoffCBD

V0.GAO.APC <- discFact.0.10 * survProb.x55.T10.APC * c * S.T * payoffAPC

V0.GAO.M7 <- discFact.0.10 * survProb.x55.T10.M7 * c * S.T * payoffM7

### Price of the GAO: individual aged 55 at time 0 and maturity T=10

mean(V0.GAO.LC)

[1] 2.202921

mean(V0.GAO.CBD)

[1] 2.129075

mean(V0.GAO.APC)

[1] 1.876674

mean(V0.GAO.M7)

[1] 2.289041

As expected, the choice of the stochastic mortality model affects the resulting estimates.

For a more comprehensive analysis, we report in Figure 3.5 the price estimates obtained

by varying the maturity of the contract. The depicted pattern is probably due to the

adopted interest rate model. The results shown in Figure 3.5 can be replicated since

they are based on the same simulation sets exploited above.
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Figure 3.5: GAO price estimates for a policyholder aged 65 at different maturities
T. LSMC method based on 20000 × 1 simulations, monomials of order 3. Stochastic
mortality models: LC (red), CBD (green), APC (blue), M7 (yellow).

3.4 Conclusion

In this Chapter we faced the problem of approximating future annuity values. To this

end, we proposed an application of the LSMC method, which allows to overcome the

computational-demanding nested simulations approach. In particular, we introduced

the R function calculate.Annuity, which is built upon the work of Bacinello et al.

(2021a).

We illustrated how this function is linked to the well-known R package StMoMo,

and we presented the new class "sim.Annuity" on which many basic R functions are

applicable to perform qualitative and quantitative analysis.





Chapter 4

Modeling the Future Value

Distribution of a Life Insurance

Portfolio

This Chapter is based on the publication Costabile and Viviano (2021) and it has been

presented at the 24th International Congress on Insurance: Mathematics and Economics

(Online event, 2021).

4.1 Introduction

In many relevant situations, life insurers face the necessity to determine the distri-

bution of the value of their portfolio of policies at a certain future date. This happens,

for example, when regulators require insurance companies to maintain solvency capi-

tal requirements in order to continue to conduct business, as stated in the Solvency

II directive or in the Swiss Solvency Test. In particular, Article 101(3) of the Euro-

pean directive requires that the Solvency Capital Requirement “shall correspond to the

Value-at-Risk of the basic own funds of an insurance or reinsurance undertaking subject

to a confidence level of 99.5% over a one-year period” (see European Parliament and

European Council, 2009). As a consequence, insurers are obliged to assess the value

of assets and liabilities at a future date, the so-called risk horizon, in order to derive

their full loss distributions. To achieve this, the relevant risk factors must be projected

109
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at the risk horizon and then, conditional on the realized values, a market consistent

valuation of the insurer’s assets and liabilities is required. This has led insurance and

reinsurance companies to face a computationally intensive problem. Indeed, due to

the complex structure of the insurer’s liabilities, in general, closed form formulas are

not available and a straightforward approach, common among insurers, is to obtain an

estimate through nested Monte Carlo simulations. Unfortunately, this approach is ex-

tremely time consuming and becomes readily unmanageable from a computational point

of view. In this regard, one possible alternative method proposed in the literature to

reduce the computational effort and to preserve the accuracy of the desired estimates is

the Least-Squares Monte Carlo (LSMC) method, firstly introduced by Carrière (1996),

Tilley (1993), and Longstaff and Schwartz (2001) in the context of American-type Op-

tion Pricing. Application of the LSMC method for valuing solvency capital requirements

in the insurance business was proposed in Cathcart and Morrison (2009) and Bauer et al.

(2010). Moreover, Floryszczak et al. (2016) and Krah et al. (2018) illustrate a practical

implementation of the LSMC in this particular context. The above-mentioned papers,

proposed in the actuarial literature, share the common feature of evaluating capital

requirements for a single policy.

In the case of an entire portfolio of policies, the nested simulation approach is even

more difficult to implement due to the huge computational effort needed. For instance,

assuming 10000 outer trajectories simulated from the current time to the risk-horizon

for each one of the v risk factors, and then 2500 inner paths for each outer, with a

monthly discretization for 20 years, and considering an insurance portfolio composed of

10000 contracts, the total number of cash-flow projections needed would be 10000× v×

2500× 12× 20× 10000 = v × 6× 1013, which is very hard to manage.

In order to keep the computational complexity of the evaluation problem at a reason-

able level, we propose a metamodeling approach. Metamodeling, introduced in system

engineering (see Barton, 2015), can be defined as “the practice of using a model to de-

scribe another model as an instance” (see Allemang and Hendler, 2011). This approach

has also been widely used in the actuarial literature to estimate the price and Greeks

of large portfolios of life insurance policies. For instance, Gan (2013) developed a meta-

model based on data clustering and machine learning to price large portfolios of variable
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annuities, while Gan and Lin (2015) tackled a similar problem by developing a func-

tional data approach. In addition, Gan (2015) compares the data clustering approach

and Latin hypercube sampling to select representative variable annuities. Finally, Gan

and Valdez (2018) proposes a metamodel to estimate partial Greeks of variable annuities

with dependence.

In this Chapter, the metamodel we propose to approximate the future value distri-

bution of a life insurance portfolio is constructed in different steps:

1. Select a subset of representative policies by means of conditional Latin hypercube

sampling;

2. Project the risk factors from the evaluation date to the risk horizon by means of

outer simulations;

3. Compute a rough estimate of each representative policy by means of a very limited

(say two) number of inner simulations;

4. Create a regression model to approximate the distribution of the value of repre-

sentative policies;

5. Use the regression model to estimate the future value distribution of the en-

tire portfolio.

We propose two different approaches to develop the regression model in steps 4 and

5. The first approach relies upon the well-established Ordinary Least Squares (OLS)

method for approximating the conditional distribution of each representative policy at

the risk horizon, and then a second OLS regression is applied to estimate the future

value distribution of the entire portfolio. Roughly speaking, we may say that the LSMC

method is applied to estimate the distribution of the value of each representative policy

at the risk horizon, and then this information is extended to the entire portfolio by

means of a simple OLS regression. We call this approach the LSMC method.

The second approach exploits the class of generalized beta of the second kind (GB2)

distributions to model the conditional distribution of each representative policy value at

the risk horizon and also to estimate the future value distribution of the entire portfolio.

We underline that the GB2 regression model has been used in Gan and Valdez (2018)
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for modeling the fair current market values of guarantees embedded in a large variable

annuity portfolio starting from a set of representative policies. Extensive numerical

experiments have been conducted in order to assess the performance of the proposed

models. The remainder of the Chapter is structured as follows. Section 4.2 provides the

evaluation framework and Section 4.3 introduces the metamodeling approach. Section

4.4 illustrates some numerical results, and finally, in Section 4.5, conclusions are drawn.

4.2 The evaluation framework

We consider a life insurance portfolio with M contracts underwritten by different

policyholders (males and females) of different ages at the inception date t = 0. We

take into account different types of life insurance policies which differ from each other

in terms of maturity, policyholders’ ages, and sex. In particular, we consider unit-

linked products, term life insurance and immediate life annuities. We assume that the

unit-linked product pays, upon reaching maturity, and assuming the survival of the

insured, the maximum value between the minimum guaranteed benefit and the value

of a specific reference asset. The immediate life annuity is assumed to pay 10% of the

level of a given reference asset continuously whilst the insured is alive; finally, the term

insurance contract pays the total value of the asset upon the death of the policyholder

before maturity. Regarding all the possible policy configurations, see Table 4.1.

Table 4.1: This table shows the parameters used to generate the life insurance
portfolio.

Feature Value
Policyholder age {55,...,65}

Sex {Male, Female}
Maturity {10, 15, 20, 25, 30}

Product type {Unit-linked, Term Insurance, Life Annuity}

Since our task is to approximate the portfolio value distribution at the risk horizon

starting from a set of representative policies, we use the Conditional Latin Hypercube

Sampling (CLHS) method (see Minasny and McBratney, 2006). Indeed, this approach

has already been applied to select subsets of representative policies providing reliable

results, e.g. see Gan and Valdez (2018). Therefore, in order to select a set of s repre-

sentative contracts, we apply the CLHS method to the design matrix X, which contains
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all the features characterizing each specific policy, i.e. types, maturity, sex and age of

the policyholder. Note that the categorical variables are treated as dummy variables.

In order to project the cash-flows generated by the contracts over time, we need to

simulate the possible evolution of the risk factors. In this regard, we consider a compu-

tational framework where mortality, interest rate and the reference asset are taken into

account. Despite insurance companies being exposed to systematic and non-systematic

mortality risks, in our setting we consider only the first component for computational

purposes due to the big dimension of the portfolio that will be considered.

Let (Ω,F,P) be a filtered probability space large enough to support a process X in

Rk, representing the evolution of financial variables, and a process Y in Rd, representing

the evolution of mortality. The filtration F = (Ft)t≥0 represents the flow of information

available as time passes by; this includes knowledge of the evolution of all state variables

up to each time t and of whether the policyholder has died by then. Specifically, we

define Ft as the σ-algebra generated by Gt ∪Ht, where

Gt = σ (Zs : 0 ≤ s ≤ t) , Ht = σ
(︁
I{ς≤s} : 0 ≤ s ≤ t

)︁
,

and where Z = (X, Y ) is the joint state variables process in Rk+d. Thus, we have

F = G∨H, with G = GX ∨GY and with H = (Ht)t≥0 being the smallest filtration with

respect to which ς is a stopping time and interpreted as the remaining lifetime of an

insured. For more detail of modeling mortality under the intensity-based framework,

see Biffis (2005).

Under the physical probability measure, P, we assume that the financial risk factors

(reference asset value S, and interest rate r) dynamics are described by the following

stochastic differential equations

dS(t) = S(t)(r(t) + λ)dt+ S(t)σSdW
1,P(t), (4.1)

S(0) = S0,
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where λ is the risk premium, σS is a positive constant, W 1,P(t) is a standard Wiener

process, and r(t) is the risk-free interest rate, which is assumed to follow the dynamics

dr(t) = α(θ − r(t))dt+ σrdW
2,P(t), (4.2)

r(0) = r0.

Here, W 2,P(t) is a standard Wiener process, and the coefficients α, θ, σr are positive

constants representing the speed of mean reversion, the long-term interest rate, and the

interest rate volatility, respectively. Further, we assume that the two Wiener processes,

W 1,P(t) and W 2,P(t), are correlated with the correlation coefficient ρ.

In the absence of arbitrage opportunities, an equivalent martingale measure Q exists,

under which all financial security prices are martingales after deflation by the money

market account. We refer the readers to Biffis (2005) for more detail. Under the

risk-neutral probability measure, Q, the dynamics in Equations (4.1) and (4.2) can be

re-written as

dS(t) = S(t)r(t)dt+ S(t)σSdW
1,Q(t),

and

dr(t) = α
(︂
θ − σr

α
γ − r(t)

)︂
dt+ σrdW

2,Q(t),

where γ is the market price of risk. Note that W 1,Q(t) and W 2,Q(t) are two correlated

standard Wiener processes with the coefficient of correlation ρ under Q.

Concerning mortality, following Fung et al. (2014), we assume that the force of mor-

tality, µx+t(t), under the physical probability measure P for an individual aged x at

time t = 0, evolves accordingly to the following one-factor, non-mean-reverting and

time-homogeneous affine process:

dµx+t(t) = [a+ bµx+t(t)] dt+ σµ

√︁
µx+t(t)dW

3,P(t), (4.3)

µx(0) > 0,

where a ̸= 0, b > 0, σµ > 0 represent the volatility of the mortality intensity and W 3,P(t)
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is a standard Wiener process which is assumed to be independent with respect toW 1,P(t)

and W 2,P(t). As pointed out by Fung et al. (2014), the important advantages of the

mortality model defined in Equation (4.3) are its tractability since analytical expres-

sions are available to evaluate survival probabilities, and also its simplicity since the

model dynamics can be easily simulated. Furthermore, this model guarantees that,

under specific conditions, the force of mortality is strictly positive (i.e. if a ≥ σ2
µ/2).

The dynamics in Equation (4.3) under Q can be defined as

dµx+t(t) = [a+ (b− δσµ)µx+t(t)] dt+ σµ

√︁
µx+t(t)dW

3,Q(t),

µx(0) > 0,

where W 3,Q(t) is a standard Wiener process under the risk-neutral measure and δ is the

market price of the systematic mortality risk.

Note that the parameters in the stochastic mortality model are estimated by cali-

brating the implied survival curve to the one obtained from the Italian population data

of year 2016 (assumed to be t = 0) collected from the Human Mortality Database.

The calibration procedure was conducted for all policyholder ages and genders reported

in Table 4.1.

Finally, it is worth noting that, due to the flexibility of the methodology that will be

proposed, different and/or more complex dynamics to describe the evolution of the risk

factors may be assumed with respect to the ones assumed above.

4.3 Problem and methodology

Under the framework defined in Section 4.2, we need to evaluate the streams of

payments embedded in each policy inside the insurance portfolio. Before discussing the

methodology, let us recall some results provided by Biffis (2005) related to the time-τ

fair values of the most common payoffs embedded in typical life insurance products, i.e.

survival and death benefits.

Proposition 1. (Survival benefit). Let C be a bounded G−adapted process. Then,

the time-τ fair value SBτ (CT ;T ) of the time-T survival benefit of amount CT , with
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0 ≤ τ ≤ T, is given by:

SBτ (CT ;T ) = E
[︂
e−

∫︁ T
τ rsdsI{ς>T}CT | Fτ

]︂
= I{ς>τ}E

[︂
e−

∫︁ T
τ (rs+µs)dsCT | Gτ

]︂
.

In particular, if C is GX-adapted, the following holds:

SBτ (CT ;T ) = I{ς>τ}E
[︂
e−

∫︁ T
τ rsdsCT | GX

τ

]︂
E
[︂
e−

∫︁ T
τ µsds | GY

τ

]︂
.

Proposition 2. (Death benefit). Let C be a bounded G−predictable process. Then, the

time-t fair value DBτ (Cς ;T ) of the death benefit of amount Cς , payable in case the

insured dies before time T, with 0 ≤ τ ≤ T, is given by

DBτ (Cς ;T ) = E
[︂
e−

∫︁ ς
τ rsdsCςI{τ<ς≤T} | Fτ

]︂
= I{ς>τ}

∫︂ T

τ

E
[︂
e−

∫︁ u
τ (rs+µs)dsµuCu | Gτ

]︂
du.

In particular, if C is GX−predictable, the following holds

DBτ (Cς ;T ) = I{ς>τ}

∫︂ T

τ

E
[︂
e−

∫︁ u
τ rsdsCu | GX

τ

]︂
E
[︂
e−

∫︁ u
τ µsdsµu | GY

τ

]︂
du.

We refer the readers to Biffis (2005) for the corresponding proofs and further details.

Therefore, as we can see from Propositions 1 and 2, evaluating life insurance policies at

future times implies solving conditional expectations for which often analytical formulas

do not exist. Due to this, simulation-based approaches are extensively used (see Boyer

and Stentoft, 2013), among which we mention the nested simulations method where a

high number of inner simulations branch out from another huge set of outer scenarios.

However, the simulations within simulations approach is computationally challenging,

especially when several policies are considered, as in our case. Therefore, in the following,

we are going to discuss two methodologies to evaluate the streams of payments embedded

in each policy inside the insurance portfolio. For this purpose, we project the relevant

risk factors affecting the policy (i.e. S, r, and µ) under the physical probability measure

from time t = 0 up to the risk horizon τ , and then for each outer scenario another set

of inner trajectories is simulated under the risk-neutral measure.
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In order to avoid the huge computational cost of a pure nested model, as in the

LSMC approach, we simulate n possible outer trajectories of the risk factors and then

for each of them we further simulate n̄ ≪ n inner paths. Following this approach, let Zi

be an n×v matrix, where the row vector zik contains the k-th outer scenario of the v risk

factors affecting the value of the i-th representative policy. For each vector zik and for

time τ < t ≤ T , we simulate n̄ trajectories under the risk-neutral probability measure.

To simplify the notation, we focus on the i-th representative policy, and we denote zkj,t

the vector containing the time-t values of the risk factors along the j-th inner trajectory

corresponding to the k-th outer scenario. Moreover, we label Y a n × s matrix where

the element yik represents the value of the i-th policy corresponding to the k-th outer

scenario obtained by averaging across the few inner simulations. Formally,

yik =
1

n̄

n̄∑︂
j=1

∑︂
τ<t≤Ti

Φi
t

(︁
zkj,t
)︁

i = 1, . . . , s, and k = 1, . . . , n, (4.4)

where Φi
t (·)’s represent the discounted cash-flows at time t of the i-th policy with ma-

turity Ti.

In this way, we obtain a first (rough) estimate of each representative policy value

distribution at the future time τ . The next step is to obtain a more accurate estimate

of the distribution of the time-τ value of each representative policy and then to infer

the distribution of the time-τ value of the entire portfolio. We achieve this by applying

two different approaches, an OLS as in the least-squares Monte Carlo method and a

GB2 model.

4.3.1 The LSMC method

The least-squares Monte Carlo method applied to the problem of computing the

distribution of the insurer’s liabilities at a certain future date is based on the idea that

the bias deriving from the few inner simulations can be reduced by approximating the

involved conditional expectations with a linear combination of basis functions depending

on some covariates, whose coefficients are estimated through an ordinary least-squares

procedure (see Bauer et al., 2010 for further details).

A straightforward application of the LSMC approach would be to apply the method
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on each policy inside the insurance portfolio. However, this kind of strategy would be

quite computationally expensive due to the big dimensions of an insurance portfolio.

Due to this, we propose applying the LSMC method first on just a set of representative

policies and then through an OLS regression extend it to the entire portfolio.

Hence, according to the LSMC method, we assume that the conditional i-th repre-

sentative policy value, ˆ︁yik, can be expressed as a linear combination of basis functions

depending on the covariate matrix zik as follows:

ˆ︁yik = L∑︂
j=1

β̂
i

jej
(︁
zik
)︁

i = 1, . . . , s and k = 1, . . . , n, (4.5)

where ej (·) is the j-th basis function in the regression, L is the number of basis functions,

and β̂
i

js represent the coefficients estimated through

(︂
β̂
i

1, . . . , β̂
i

L

)︂
= argmin

β1,...,βL

⎡⎣ n∑︂
k=1

(︄
yik −

L∑︂
j=1

βi
jej
(︁
zik
)︁)︄2

⎤⎦ .

In this way, we obtain an n × s matrix ˆ︁Y where each row vector ˆ︁yk contains the

values of each representative policy corresponding to the k-th outer scenario.

Now, in order to approximate the distribution of the value of the entire portfolio, we

construct an OLS regression model for each outer scenario. In this regard, we denote

with X an M × (w + 1) matrix, where the row vector xi contains the w covariates

(gender, product type, age, and maturity) characterizing the i-th contract in the port-

folio plus an intercept term (M is the total number of contracts inside the insurance

portfolio). Moreover, let X̄ be the s × (w + 1) matrix describing the structure of the

representative insurance portfolio. Hence, x̄i contains the w covariates characterizing

the i-th representative contract plus an intercept term.

Therefore, we regress each row vector ˆ︁yk (k = 1, . . . , n) on the covariate matrix

X̄, and once the coefficients are estimated, we extend them to the remaining policies

by exploiting the matrix X. In this way, we obtain the value of the i-th contract

corresponding to the k-th outer scenario, which is denoted by ˆ︁vik. Formally,

ˆ︁vik = xiβ̂
′
k i = 1, . . . ,M and k = 1, . . . , n, (4.6)
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where

β̂
′
k =

(︂
X̄

′
X̄
)︂−1

X̄
′ˆ︁y′

k.

Finally, the entire portfolio value distribution is obtained by adding up all the policy

values in Equation (4.6) corresponding to each outer scenario.

4.3.2 The GB2 model

A GB2 model appears to provide a flexible family of distributions as it nests a

range of standard distributions as special or limiting cases, such as the log-normal,

the generalized-gamma, the Burr type III, the Burr type XII and many other (see

McDonald, 1984). Moreover, it has been used in several actuarial applications (e.g.

see Gan and Valdez, 2018) to model the fair market value of a portfolio made up of life

insurance policies. A GB2 random variable can be constructed from a transformed ratio

of two gamma random variables. The density function of a GB2 random variable, Y , is

given by

f(y) =
|a|

bB(p, q)

(︂y
b

)︂ap−1 [︂
1 +

(︂y
b

)︂a]︂−p−q

, y > 0, (4.7)

where a ̸= 0, p > 0, q > 0 are shape parameters, b > 0 is the scale parameter, B(·) is

the Beta function, and its expectation equals:

E [Y ] = b ·
B
(︁
p+ 1

a
, q − 1

a

)︁
B(p, q)

, (4.8)

which exists if −p < 1
a
< q.

In order to approximate the value of the portfolio, at first we approximate the time-τ

value of each representative policy, and then we use this information to approximate the

distribution of the value of the entire insurance portfolio at the risk horizon. To achieve

this, we construct two different GB2 regression models which exploit the generated

information at the risk horizon
(︁
i.e.S(τ), r(τ), andµ(τ)

)︁
, and then the features charac-

terizing uniquely each policy, respectively.

Specifically, since the policy values yik obtained from Equation (4.4) are not accurate

due to the few inner trajectories on which they are based on, we aim at reducing the bias
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by estimating the involved conditional expectation through a GB2 regression model. In

this regard, we assume that the i-th policy value at time τ conditioned on a specific

outer scenario is a GB2 random variable with parameters (ai, pi, qi, bi). In particular, we

make the b− parameter depend on some independent covariates (i.e. the value at time

τ of the risk factors which affect the policy of interest). Note that several approaches

to incorporate covariates in the GB2 regression model exist as well as different re-

parametrization (see Beirlant et al., 2004; Frees and Valdez, 2008). However, as noticed

by Sun et al. (2008) and Frees et al. (2016), incorporating them into the scale parameter,

b, facilitates the interpretability of the model; indeed, as can be seen in Equation (4.8),

the expectation will change proportionally with respect to b, allowing one to interpret

the regression coefficients as proportional changes.

Hence, b (Zi) = exp (Ziβ′
i), where βi = (βi;0, βi;1, . . . , βi;v) are the corresponding

coefficients attached to each risk-factor. Note that the matrix Zi now includes an inter-

cept term.

We can use the maximum likelihood method to estimate the parameters. Since

we incorporate covariates through the scale parameter, we can write the log-likelihood

function of the model as

l(ai, pi, qi,βi) =n ln
|ai|

B(pi, qi)
− aipi

n∑︂
k=1

zikβ
′
i + (aipi − 1)

n∑︂
k=1

ln (yik)+

− (pi + qi)
n∑︂

k=1

ln

[︃
1 +

(︃
yik

exp (zikβ
′
i)

)︃ai]︃
, (4.9)

where i = 1, ...s, n is the number of the generated outer scenarios and yik denotes the

value of the i-th policy corresponding to the k-th outer scenario.

Once we estimate the parameters for the GB2 model, we use the expectation for

predicting the value of the policy at time τ . Since we incorporate covariates through

the scale parameter, we can estimate it as

ˆ︁yik = exp
(︂
zikβ̂

′
i

)︂
B
(︂
p̂i +

1
âi
, q̂i − 1

âi

)︂
B(p̂i, q̂i)

, i = 1, 2, . . . , s and k = 1, . . . , n, (4.10)

where zik is the vector containing the k-th outer scenario of the risk factors affecting the

i-th representative policy.
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Once we obtain an estimate of the distribution of each representative policy at time

τ , we extend this information to the remaining policies. As already carried out for

the OLS model, we are going to exploit both the matrices X̄ and X on which we now

construct a new GB2 regression model.

Therefore, let ˆ︁Y be the n × s matrix whose elements ˆ︁yik denote the value of the

i-th representative policy corresponding to the k-th outer scenario obtained through

Equation (4.10).

Now, we construct a GB2 regression model in order to infer, starting from the set of

representative policies, the distribution of the entire portfolio. Hence, recalling the pdf

defined in Equation (4.7), we define the following log-likelihood function as:

l(ak, pk, qk,βk) =s ln
|ak|

B(pk, qk)
− akpk

s∑︂
i=1

x̄iβ
′
k + (akpk − 1)

s∑︂
i=1

ln (ˆ︁yik)+
− (pk + qk)

s∑︂
i=1

ln

[︃
1 +

(︃ ˆ︁yik
exp (x̄iβ

′
k)

)︃ak
]︃
, (4.11)

where s is the number of the representative policies and x̄i is the row vector containing

the information of the i-th representative contract.

Once again, after we estimate the parameters through the maximum likelihood ap-

proach, we can then derive the distribution at the risk horizon for all the policies inside

the insurance portfolio as

ˆ︁vik = exp
(︂
xiβ̂

′
k

)︂
B
(︂
p̂k +

1
âk
, q̂k − 1

âk

)︂
B(p̂k, q̂k)

, i = 1, 2, . . . ,M and k = 1, . . . , n, (4.12)

where ˆ︁vik is the value of the i-th contract corresponding to the k-th outer scenario.

Finally, the entire portfolio value distribution is again obtained by adding up all the

policy values corresponding to each outer scenario.

Note that the log-likelihood functions in Equations (4.9) and (4.11) may have mul-

tiple local maxima and since an analytic solution does not exist, we need to rely on a

numerical procedure to estimate the involved parameters. We adopt the same multistage

optimization algorithm described in Gan and Valdez (2018).
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4.4 Numerical results

In this section, we present some numerical results obtained by exploiting the previ-

ously defined models. In particular, we consider a life insurance portfolio with M =

10000 contracts, and we focus on approximating its value distribution at the future time

τ = 1 year. These policies can be of three different types: a unit-linked pure endowment

contract with a minimum maturity guarantee G = 100 payable upon the survival of the

policyholder at the maturity date T , term life insurance policy which pays the value

of a reference asset in case of death before maturity T , and an immediate life annuity

contract with continuous survival benefits equal to the 10% of a reference asset value

up to the entire life of the insured person. We consider different policyholders, both

males and females, with different ages x at time t = 0, which is also assumed to be

the inception time of each policy. These characteristics are reported in Table 4.1. We

assume that the insurance benefits depend upon a reference asset with the initial value

S0.

Concerning the dynamics of the financial risk factors, we report in Table 4.2 the

values of the involved parameters in Equations (4.1) and (4.2).

Table 4.2: Parameters of the reference asset value process, S, and interest rate
stochastic process, r.

S0 σS λ r0 α θ σr γ ρ

100 0.20 0.00 0.04 0.10 0.02 0.02 0.00 0.00

Concerning mortality, we have calibrated the survival curve implied by Equation

(4.3) on the Italian males and females mortality data in year 2016 obtained from the

Human Mortality Database for each age x ∈ {55, . . . , 65}. More in detail, the calibration

procedure was performed by minimizing the root mean square error (see Dacorogna and

Apicella, 2016), and assumed a longevity risk-premium δ = 0. The corresponding

parameter estimates are reported in Table 4.3.
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Table 4.3: Estimated parameters of the stochastic mortality model for Italian male
(left) and female (right) aged x ∈ {55, . . . , 65} in 2016.

Age Male Female

â b̂ σ̂µ â b̂ σ̂µ

55 0.00040 0.0881 0.00157 0.00010 0.10017 0.00100

56 0.00700 0.0705 0.00262 0.00001 0.11110 0.00100

57 0.00001 0.1051 0.00100 0.00001 0.11060 0.00100

58 0.00001 0.1045 0.00390 0.00009 0.10740 0.00850

59 0.00040 0.0832 0.00100 0.00001 0.11570 0.00100

60 0.00060 0.0743 0.00100 0.00042 0.08362 0.00669

61 0.00030 0.0907 0.00100 0.00044 0.08505 0.00100

62 0.00010 0.1033 0.00710 0.00001 0.11990 0.00100

63 0.00012 0.1063 0.00750 0.00040 0.09704 0.00182

64 0.00008 0.1112 0.00810 0.00039 0.09860 0.00376

65 0.00020 0.1075 0.00123 0.00049 0.09558 0.00720

We conduct this numerical experiment by varying both the number of outer simula-

tions, n, and the number of representative policies, s. In particular, we adopt a monthly

Euler’s discretization setting in order to project n ∈ {1000, 5000, 10000} outer trajecto-

ries of each risk factor under the P-measure, and then for each outer scenario we further

simulate n̄ = 2 inner trajectories under the risk-neutral probability measure. With this

simulation set, we are able to obtain a first rough estimate of Y on which we construct

the LSMC and GB2 models discussed in Sections 4.3.1 and 4.3.2, respectively. Note

that, concerning the LSMC method, we exploit as basis functions Hermite polynomials

of orders 1 and 2, which are denoted, respectively, as LSMC 1 and LSMC 2 hereafter.

To determine the number of representative contracts s, we start from the informal

rule proposed by Loeppky et al. (2009), which provide reasons and evidence support-

ing that the sample size should be about 10 times the input dimension. In our case,

the dimension of covariates in the design matrix X is 5 (including the binary dummy

variables converted from the categorical variables), and so we choose s = 50 as the initial
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number of representative contracts. However, we investigate the models’ performances

by setting s = 75 and s = 100.

Finally, the results are compared with a solid benchmark obtained through a nested

simulations approach based on 10000× 2500 simulations. This allows us to conclude on

the reliability of the proposed methodologies and to compare them in terms of compu-

tational demand.

Figure 4.1 shows the Quantile-Quantile (Q-Q) plots of the portfolio value at time

τ = 1 obtained by the nested simulations algorithm (assumed to be the theoretical

one) and those predicted by the GB2 regression model and the LSMC models based on

n = 10000 outer simulations and by varying the number of representative contracts s ∈

{50, 75, 100}. In this regard, we can see from Figure 4.1 that the proposed methodologies

provide a good approximation except for the right tail of the distribution. In particular,

at least regarding the GB2 regression model, we can see that the higher the number of

representative contracts, the better the approximation.

Figure 4.1: Q-Q plots relative to the future value distribution of the insurance port-
folio. The theoretical distribution is assumed to be the one obtained by nested simu-
lations based on 10000× 2500 trajectories. The first row refers to the GB2 regression
model based on 10000 outer scenarios and by varying the number of representative
contracts, s ∈ {50, 75, 100}. The second and third rows refer to the LSMC method
with Hermite polynomials of order 1 and 2 based on 10000 outer scenarios and by
varying the number of representative contracts, s ∈ {50, 75, 100}.



Chapter 4 - Modeling the Future Value Distribution of a Life Insurance Portfolio 125

For a comprehensive analysis, we perform multiple runs of each proposed method; in

particular, the following analysis is based on 50 runs.

In Tables 4.4, 4.5 and 4.6 we report the Mean Absolute Percentage Error (MAPE)

relative to different quantities obtained by performing 50 runs of the proposed method-

ologies with a fixed number of outer scenarios (n = 10000) and by varying the number

of representative contracts (s ∈ {50, 75, 100}).

Table 4.4: This table reports the MAPE of the estimates obtained by running 50
times the GB2 and LSMC methods with n = 10000 and s = 50. The benchmark
values are based on a nested simulations algorithm with 10000 × 2500 trajectories
applied to the entire portfolio.

5th

perc.

10th

perc.
Median Mean

90th

perc.

95th

perc.

99th

perc.

99.5th

perc.

GB2 2.812% 2.180% 1.798% 2.594% 3.832% 4.016% 6.154% 4.375%

LSMC 1 3.238% 3.000% 2.399% 2.557% 2.398% 2.174% 2.436% 2.722%

LSMC 2 2.762% 2.754% 2.567% 2.557% 2.436% 2.114% 2.356% 2.841%

Table 4.5: This table reports the MAPE of the estimates obtained by running 50
times the GB2 and LSMC methods with n = 10000 and s = 75. The benchmark
values are based on a nested simulations algorithm with 10000 × 2500 trajectories
applied to the entire portfolio.

5th

perc.

10th

perc.
Median Mean

90th

perc.

95th

perc.

99th

perc.

99.5th

perc.

GB2 1.971% 1.782% 0.806% 0.542% 3.605% 3.949% 6.094% 3.867%

LSMC 1 2.500% 1.338% 1.530% 1.392% 1.251% 1.657% 0.941% 1.678%

LSMC 2 1.828% 1.047% 1.756% 1.392% 1.307% 1.485% 1.842% 2.142%
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Table 4.6: This table reports the MAPE of the estimates obtained by running 50
times the GB2 and LSMC methods with n = 10000 and s = 100. The benchmark
values are based on a nested simulations algorithm with 10000 × 2500 trajectories
applied to the entire portfolio.

5th

perc.

10th

perc.
Median Mean

90th

perc.

95th

perc.

99th

perc.

99.5th

perc.

GB2 1.986% 1.745% 0.519% 0.347% 1.129% 1.313% 2.856% 1.944%

LSMC 1 1.629% 1.504% 0.440% 0.627% 0.764% 0.824% 0.958% 2.561%

LSMC 2 1.148% 1.145% 0.578% 0.627% 0.762% 0.986% 2.101% 2.334%

If we compare Tables 4.4, 4.5 and 4.6, it is evident that increasing the number of

representative contracts s leads to a better approximation of the mean and of the other

considered measures of position. Moreover, it seems that the GB2 model, at least for

a low number of representative contracts, is not able to adequately model the right tail

of the distribution.

In Table 4.7, we report the Mean Percentage Error (MPE) and MAPE relative to

the mean estimates obtained by running the GB2 and LSMC methods 50 times with

different numbers of outer simulations, n, and representative contracts, s.
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Table 4.7: This table reports the MPE and MAPE of the mean estimates obtained
by running 50 times the GB2 and LSMC methods and varying the number of outer
simulations (Outer) and that of representative contracts s. The benchmark value is
based on a nested simulations algorithm with 10000× 2500 trajectories applied to the
entire portfolio.

s=50 s=75 s=100

Outer Method MPE MAPE MPE MAPE MPE MAPE

GB2 3.612% 3.612% 0.163% 0.983% -0.240% 0.923%

1000 LSMC 1 -3.475% 3.475% -2.104% 2.221% -1.017% 1.364%

LSMC 2 -3.475% 3.475% -2.104% 2.221% -1.017% 1.364%

GB2 2.981% 2.981% 0.715% 0.747% -0.301% 0.474%

5000 LSMC 1 -2.840% 2.840% -1.533% 1.533% -1.029% 1.092%

LSMC 2 -2.840% 2.840% -1.533% 1.533% -1.029% 1.092%

GB2 2.594% 2.594% 0.491% 0.542% 0.179% 0.347%

10000 LSMC 1 -2.557% 2.557% -1.392% 1.392% -0.490% 0.627%

LSMC 2 -2.557% 2.557% -1.392% 1.392% -0.490% 0.627%

Looking at Table 4.7, we can see that for a fixed number of outer scenarios and for

each applied method, the accuracy of the mean estimates increases with the number

of representative contracts s. Moreover, it is evident that in most of the considered

configurations, the GB2 model outperforms the LSMC methods. Furthermore, if we

look at the last column of Table 4.7 (s = 100), for instance, we can see that the higher

the number of outer scenarios, the better the approximation. Finally, we can see that

increasing the number of basis functions up to degree two in the LSMC method does not

alter the mean estimates. This is probably due to the few outer simulated trajectories

(at most 10000 paths), which is not sufficient to appreciate the improvement which

is usually expected. In Figure 4.2, we report the corresponding box-plots from which

it is possible to see that, in each of the considered configurations, the LSMC method

systematically underestimates the quantity of interest.
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Figure 4.2: Boxplots relative to the mean estimates obtained by running 50 times
the GB2 and LSMC methods and varying the number of outer simulations n and that
of representative contracts s. The red line refers to the benchmark value based on
a nested simulations algorithm with 10000 × 2500 trajectories applied to the entire
portfolio.

Concerning the estimate of the 99.5-th percentile of the distribution, which would

be of interest for valuing solvency capital requirements, Table 4.8 reports the MPE and

MAPE relative to 50 estimates obtained by varying both the number of simulations and

the number of representative contracts.
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Table 4.8: This table reports the MPE and MAPE of the 99.5-th percentile estimates
obtained by running 50 times the GB2 and LSMC methods and varying the number
of outer simulations (Outer) and that of representative contracts s. The benchmark
value is based on a nested simulations algorithm with 10000×2500 trajectories applied
to the entire portfolio.

s=50 s=75 s=100

Outer Method MPE MAPE MPE MAPE MPE MAPE

GB2 3.936% 6.570% -1.512% 5.453% 1.410% 4.494%

1000 LSMC 1 -2.664% 3.715% -6.308% 6.478% -2.961% 4.253%

LSMC 2 -0.252% 6.487% -4.211% 7.150% -1.438% 5.517%

GB2 4.110% 4.723% 3.813% 4.018% 0.081% 2.653%

5000 LSMC 1 -2.908% 3.001% -4.708% 4.722% -1.659% 2.006%

LSMC 2 -1.787% 3.484% -3.118% 4.017% -0.462% 3.110%

GB2 4.157% 4.375% 3.737% 3.867% 0.421% 1.944%

10000 LSMC 1 -2.643% 2.722% -1.560% 1.678% -2.522% 2.561%

LSMC 2 -2.259% 2.841% -0.131% 2.142% -1.007% 2.334%

From Table 4.8, we can detect a similar behaviour as the one previously discussed.

Specifically, we can see that, concerning the GB2 model, an increase in the number of

representative contracts (for fixed n) leads to an improvement of the resulting estimates.

On the contrary, for the LSMC method, there is no clear pattern. Indeed, as we can

see, increasing the number of representative contracts (for fixed n) does not lead to a

clear improvement in the results. Moreover, increasing the number of basis functions as

well as the number of outer simulations does not increase the accuracy of the estimates.

As in the case of the mean estimate this could be due to the small number of outer

simulations. Once again, if we look at the case of n = 10000 and s = 100, the GB2

model outperforms the LSMC approach. Figure 4.3 shows the box-plots relative to the

99.5-th percentile estimates.
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Figure 4.3: Boxplots relative to the 99.5-th percentile estimates obtained by running
50 times the GB2 and LSMC methods and varying the number of outer simulations
n and that of representative contracts s. The red line refers to the benchmark value
based on a nested simulations algorithm with 10000× 2500 trajectories applied to the
entire portfolio.

From Figure 4.3, we can see that the variability of the estimates decreases as the num-

ber of outer scenarios and the number of representative contracts increases. Moreover,

there is a clear pattern in the GB2 model results since an increase in both number of

simulations and representative policies helps in reaching the convergence to the bench-

mark value. Regarding LSMC, we can see that in each of the considered configurations,

the method built on Hermite polynomials of order 1 (LSMC 1) produces less variable

estimates compared to the second order Hermite polynomials (LSMC 2), even if we in-

crease the number of outer simulations. We may conclude that passing from 1000 to

10000 trajectories is still not sufficient to exploit more basis functions.
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Now let us examine the speed of the proposed algorithms with respect to the bench-

mark. Table 4.9 shows the runtime of GB2 and LSMC expressed as a percentage of the

time required by the nested simulation method based on 10000 outers and 2500 inners.

Note that we conducted all experiments using R on a computer equipped with an Intel®

Core(TM) i7-1065G7 CPU 1.50 GHz processor with 12 GB of RAM and Windows 10

Home operating system.

Table 4.9: Percentage of the runtime required by the GB2 and LSMC methods with
respect to the nested simulations approach. Note that the computational demand to
construct the benchmark with a nested simulations approach based on 10000× 2500
scenarios applied to the entire portfolio is about 187200 seconds.

Method n = 1000 n = 5000 n = 10000

s = 50 s = 75 s = 100 s = 50 s = 75 s = 100 s = 50 s = 75 s = 100

GB2 0.069% 0.078% 0.098% 0.337% 0.380% 0.501% 0.660% 0.832% 1.021%

LSMC 1 0.005% 0.006% 0.007% 0.012% 0.018% 0.019% 0.036% 0.045% 0.047%

LSMC 2 0.005% 0.006% 0.007% 0.013% 0.019% 0.020% 0.037% 0.046% 0.047%

As we can see from Table 4.9, by applying the proposed methodologies we have

drastically reduced the computational time required instead by a nested simulations

approach. Moreover, as expected, the LSMC method presented in Section 4.3.1 outper-

forms the GB2 model in terms of time in each of the proposed configurations. However,

this is due to the existence of a closed form formula for the estimation of the involved

parameters. Indeed, as stated in Section 4.3.2, the estimation procedure for the GB2

model is based on a multistage optimization algorithm due to the complexity of the like-

lihood functions, which may have multiple local maxima. Regardless, if compared with

the simulations within simulations method, the GB2 model proved to be an accurate

and efficient alternative.

Full LSMC

To provide an exhaustive analysis, we consider a straightforward application of the

LSMC method. Hence, we apply the LSMC method on each contract composing the

insurance portfolio without considering any set of representative policies. The results

are then compared with those already shown in the previous section both in terms of
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accuracy and computational demand. Just as an example, we construct the LSMC

model by exploiting as set of basis functions Hermite polynomials with order 1 based on

10000×2 simulations (LSMC Full). Table 4.10 reports the MPE and MAPE relative to

the 5th-percentile, the mean, and the 99.5-th percentile estimates obtained by perform-

ing 50 runs of the proposed methods. Further, we report the results relative to the GB2

model (GB2) and LSMC method with Hermite polynomials of order 1 (LSMC 1) and

order 2 (LSMC 2) based on 10000× 2 simulations and s = 100 representative policies.

Table 4.10: This table reports the MPE and MAPE relative to the 5-th percentile,
the mean, and the 99.5-th percentile estimates obtained by applying different method-
ologies. GB2 stands for the GB2 regression model based on n = 10000 outer scenarios
and s = 100 representative policies; LSMC 1 refers to the LSMC method based on
n = 10000 outer scenarios and s = 100 representative policies with Hermite poly-
nomials of order 1; LSMC 2 refers to the LSMC method based on n = 10000 outer
scenarios and s = 100 representative policies with Hermite polynomials of order 2;
LSMC Full refers to the LSMC method based on n = 10000 outer scenarios and con-
structed on each contract in the insurance portfolio. The results are compared with
the corresponding benchmark value based on nested simulations with 10000 × 2500
trajectories applied to the entire portfolio.

Method 5th Perc. Mean 99.5th Perc.

MPE MAPE MPE MAPE MPE MAPE

GB2 -1.986% 1.986% 0.179% 0.347% 0.421% 1.944%

LSMC 1 -1.472% 1.629% -0.490% 0.627% -2.522% 2.561%

LSMC 2 -0.742% 1.148% -0.490% 0.627% -1.007% 2.334%

LSMC Full -0.501% 1.032% -0.084% 0.461% -0.420% 1.070%

As is shown in Table 4.10, the errors relative to the LSMC Full approach are lower

than those of the other proposed methods since the estimates are based on the entire

insurance portfolio; i.e. this approach does not suffer of any uncertainty related to the

missingness of policies in its estimation procedure. Figure 4.4 reports the box-plots on

which the quantities in Table 4.10 are based on.
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tained by running 50 times the proposed methodologies. GB2 stands for the GB2
regression model based on 10000 outer scenarios and s = 100 representative policies;
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Finally, we compare these methods in terms of time. In Table 4.11, we report the

computational time required by the algorithms. We can see that the naive application

of the LSMC approach is more computationally expensive with respect to the GB2 and

LSMC models based on a set of representative policies.

Table 4.11: Runtime, in seconds, of GB2 Model and LSMC methods based on
10000×2 simulations and s = 100 representative contracts (GB2, LSMC 1, LSMC 2).
LSMC Full refers to the LSMC method applied to each contract in the insurance
portfolio.

Method Time

GB2 1911.445

LSMC 1 87.824

LSMC 2 88.290

LSMC Full 7847.960



4.5 Conclusion

In this Chapter, we addressed the problem of approximating the value of a life insur-

ance portfolio at a future time by proposing two different methodologies able to avoid

the time-consuming nested simulations approach. The first approach can be thought

of as an extension of the well-known LSMC method, while the second is based on the

GB2 distribution, which is widely used to approximate the fair value of portfolios of

life insurance policies. To validate the proposal, we have considered a solid benchmark

obtained by nested simulations, and we compared the two proposed methodologies both

in terms of accuracy and efficiency. The analysis has been carried out by considering an

ever increasing number of simulations and representative policies, from which it turned

out that, generally, both the methodologies are able to provide increasingly accurate re-

sults. Moreover, the LSMC method proved to be faster in computational terms but also

less accurate than the GB2 model. Furthermore, the proposed methodologies have been

compared with a straightforward application of the LSMC method (i.e. without consid-

ering any subset of representative policies), which turned out to be more accurate but

computationally more expensive.

Extensive numerical results have shown that the proposed methods represent viable

alternatives to the full nested Monte Carlo model. Therefore, the proposed metamod-

eling approach may help insurance and reinsurance undertakings to reduce the com-

putational budget needed, for instance, in the context of evaluating solvency capital

requirements. In this regard, it can be used to evaluate the future cash-flows (inflows

and outflows) generated by the entire portfolio by considering at first only a subset of

policies, and then extend to the remaining ones. Indeed, this represents the main issue

for deriving the full loss distribution on which the Value-at-Risk measure should be

obtained, as prescribed by the European Solvency II directive.
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